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Abstract

Stock return prediction using Graph Neural
Networks (GNNs) is often hindered by flawed
graph structures. Existing models typically
rely on rigid, predefined static graphs based
on industry classifications or knowledge bases,
which fail to capture the nuanced and com-
plex business relationships between companies.
To address this limitation, we pioneer the use
of Large Language Models (LLMs) for zero-
shot extraction of stock relationship graphs. By
prompting an LLM, we extract its prior knowl-
edge to construct a multi-relational static graph
that captures fundamental corporate relation-
ships. This method eliminates the reliance on
simplistic, predefined industry classifications
or knowledge base. To our knowledge, this is
the first work to leverage zero-shot LLM graph
generation for financial modeling, providing a
more meaningful structural backbone for GNN-
based prediction tasks.

1 Introduction

Stock return prediction is a crucial technique for
profitable stock investment, and recent studies have
begun to incorporate stock relationships as addi-
tional information for forecasting. To explore such
information, graph neural networks (GNNs), a pow-
erful paradigm for modeling inter-stock dependen-
cies, are being applied. However, the predictive
power of GNNs is often constrained by inadequate
graph construction strategies. Current approaches
that use static graphs rely on predefined relation-
ships (e.g., industry sectors) that cannot capture
evolving business relationships. In reality, stocks
are not independent and can be influenced by com-
plex connections beyond simple sector groupings;
for instance, competitive or supply-chain relation-
ships create dependencies that predefined classi-
fications miss. These rigid graphs fail to capture
meaningful underlying relationships, limiting the
GNN’s potential.
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To address this significant gap in graph construc-
tion, we introduce a novel method for creating a
static relationship graph to serve as the market’s
"structural backbone". By prompting a Large Lan-
guage Model (LLM), we extract fundamental busi-
ness relationships that reflect stable, long-term in-
terconnections between companies, including but
not limited to sector connections, competitive rela-
tionships, and supply chain dependencies. Our ap-
proach moves beyond the traditional, structurally-
defined graphs used in prior research.

To sum up, our core contribution is that we pi-
oneer the use of LLMs for zero-shot extraction of
stock relationship graphs that capture multifaceted
business relationships and long-term structural in-
terconnections between companies, eliminating re-
liance on predefined industry classifications. To
the best of our knowledge, this is the first work
to prompt LLMs for this purpose in the financial
domain.

2 Related Work

Graph Neural Networks in Finance Patel et al.
(2024) identified the common pattern and segre-
gated this task into three different modules: Graph
Construction Module, Historical Information En-
coder and Relational Module. Early studies typi-
cally rely on predefined stock relationships, such as
industry-sector (Sawhney et al., 2021), consumer-
supplier (Chen and Robert, 2022), and sharehold-
ing patterns (Wang et al., 2023), etc. Some works
also construct static correlation graphs based on
historical stock price (Li et al., 2021; Yin et al.,
2021), though they are more widely used in build
dynamic graphs due to their fast-changing nature.
For instance, Cheng and Li (2021) infer the latent
stock relation from the sequential embedding at
each timestep. Since the static graphs and dynamic
graphs model the stock relationships from differ-
ent views, researchers has began to explore the
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combination of them. For example, Wang et al.
(2022) use a static graph which is predefined based
on domain knowledge and a latent dynamic graph
which is learned end-to-end. The output feature
vectors from the two separate graph convolutions
are summed together to create a single fused repre-
sentation.

LLMs in Finance Recent researches begin to ex-
plore the potential of using information extracted
by LLMs to construct and analyze knowledge
graphs in the financial sector. Notably, Trajanoska
et al. (2023) used LLMs to generate knowledge
graphs from ESG (Environmental, Social, and Gov-
ernance) reports, creating node-edge-node triples to
represent relationships between entities, including
companies. Similarly, Cheng et al. (2022) devel-
oped a Semantic-Entity Interaction Module with
LLMs and CREF to construct financial knowledge
graphs from brokerage reports, demonstrating the
potential of zero-shot techniques for relationship
extraction without manual rule-setting. However,
these works all rely on additional external tex-
tual information, while we aim to extract the prior
knowledge within the LLMs to build company re-
lationship graphs.

3 Methodology

3.1 Framework Overview

In our framework, we first employ an LLM to
perform zero-shot extraction of structured com-
pany relationship graphs without any textual in-
put or external data sources, thereby allowing
us to directly probe the LLM’s prior knowledge
about inter-company relationships. The extracted
graph encodes multiple types of relations, includ-
ing supply chain dependencies, competitive dy-
namics, and strategic partnerships, represented as
multi-relational edges. The initial node features
are constructed from historical stock price data.
To model the structural and semantic information
embedded in these graphs, we adopt two repre-
sentative graph neural network (GNN) architec-
tures: the Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2017) and the Re-
lational Graph Attention Network (RGAT) (Bus-
bridge et al., 2019). The learned node represen-
tations are subsequently used for stock ranking
prediction. In summary, the framework enables
us to evaluate the efficacy of the LLM-extracted
relationship graphs by comparing their predictive
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performance against models trained on other pre-
defined relationship graphs.

3.2 LLM-prompted Static Graph
Construction Module

The foundation of our model is a static, multi-
relational graph, G g, designed to capture the mul-
tifaceted, long-term economic ties between com-
panies. These fundamental relationships, such as
supply chains and competitive positions, provide a
structural backbone that is less susceptible to the
daily noise of market news. Instead of relying on
manually curated databases, which can be incom-
plete or outdated, we introduce a novel methodol-
ogy to construct this graph by leveraging a Large
Language Model (LLM) as a zero-shot knowledge
extractor.

The first step is to systematically query the LLM
to identify relationships between every pair of com-
panies (s;, s;) in our stock universe .S. To ensure
the LLM provides structured and relevant output,
we employ carefully designed prompt engineering.

Based on the S&P Global Business Relation-
ship Dataset !, we define a comprehensive multi-
relational taxonomy, R, that covers key economic
interactions:  is_Customer_of, is_Supplier_of,
is_Distributor_of, is_Competitor_of, is_Peer_of,
is_Investor_of, is_Invested_by, is_Subsidiary_of,
is_Parent_of, is_Cross_owned_with, is_Joint-
Venture_partner_of, is_R&D_partner_of, is_Mar-
keting_partner_of, is_Strategic_partner_of, is_Li-
censor_of, is_Licensee_of, is_Franchisor_of, is_
Franchisee_of, is_Creditor_of, is_Borrower_of, is_
Acquirer _of, is_Target_of_acquisition, is_Merger_
partner_with, has_Interlocking_directors_with.

For each pair of companies, we use a structured
prompt that forces the LLM to classify their pri-
mary relationship into one of these predefined cate-
gories and to provide a confidence score. An exam-
ple prompt is shown in Figure 1.

However, LLM-generated graphs can be sparse
or noisy for certain relation types. To ensure
that each relational graph used by our model pos-
sesses a meaningful level of connectivity, we ap-
ply a connectivity-based pruning step. Specif-
ically, for each relation type r, we calculate the
total number of edges in its initial graph, given by
1AL [11 = >, ; ALd, 5]. If this edge count falls be-
low a predefined connectivity threshold x (set to

"https://www.marketplace.spglobal.com/en/datasets/business-
relationships-(5)



(
You are a financial analyst with expertise

in the US market. For each of the following
relationships, please help me find five
companies from the list of SP500
constituents which have that relationship
with the source company and sort them from
high to low by relevance. It's fine if you
can't find enough related companies. Please
make sure the relationship is existing and
real. The companies are represented by
ticker symbol.

~

Your response should be in the json format
without explanation: {{{Source company}:
{{Relation 1: [company 1,

company 2,...]}}}}.

{ticker}
{Relation 1,

Source company:
Relationships:

Relation 2,...}

Figure 1: The structured prompt used to query the LLM
for zero-shot relationship extraction between company
pairs.

200 in our experiments), we deem the relation type
too sparse to be reliable and discard it entirely.

This pruning step yields a final, refined set of
adjacency matrices { Ay }reR ;0> Where R pina C
R. Collectively, the set of nodes S and these fil-
tered adjacency matrices constitute our static multi-
relational graph, Gs = (S, {Ar}rery,,,, ) Which
serves as a stable and robust input to the dual-
component GNN encoder.

3.3 Graph Neural Networks

We employ two representative multi-relational
graph neural networks to model the extracted com-
pany relationship graphs: the Relational Graph
Convolutional Network (RGCN) (Schlichtkrull
et al., 2017) and the Relational Graph Attention
Network (RGAT) (Busbridge et al., 2019). RGCN
extends standard graph convolutions to multi-
relational settings by applying relation-specific
transformations with parameter-efficient basis de-
composition, enabling effective aggregation of
neighborhood information across different relation
types. RGAT, in contrast, incorporates relation-
aware attention mechanisms that adaptively weight
the influence of neighboring nodes, allowing the
model to focus on more informative relations. Both
architectures operate on initial node features de-
rived from historical price data, and their learned
representations are used for stock ranking predic-
tion.
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RGAT The Relational Graph Attention Net-
work (RGAT) (Busbridge et al., 2019) general-
izes the conventional graph attention mechanism
(Velickovié et al., 2018) to accommodate multi-
relational graphs by introducing relation-specific
transformations and attention computations. For
each relation type 7, a relation-specific linear trans-
formation W is applied to the input node features,
producing

ey
Multi-head attention coefficients are then computed
as

h: = WTXZ'.

h h)T
e = LeakyReLU (a<’“ T [hy | h;]) )
where a(™") denotes a learnable attention vector as-
sociated with relation 7 and attention head h, and ||
represents vector concatenation. These coefficients

are normalized via the softmax function:
exp (el(;,h)>
(rh)\ "
D okeN (:) XP (‘%‘k )

The relation-specific aggregated representation is
then obtained as

/(r) _ (r )y
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Finally, the outputs across all relations are com-
bined through an aggregation function (e.g., sum,
mean, max, or learned attention-based weighting)
to yield the final node representation:
R

h) = AGG (h;(’”))tl . )
RGCN The Relational Graph Convolutional Net-
work (RGCN) (Schlichtkrull et al., 2017) extends
the standard graph convolution operation to multi-
relational graphs by incorporating relation-specific
transformations and a basis decomposition scheme
for parameter efficiency. For each node ¢ and re-
lation type 7, the model applies degree-based nor-
malization with

1

(6)

Cir VV7‘7

7
where N denotes the set of neighbors of node
1 connected via relation r. The relation-specific
transformation matrices W' are parameterized us-
ing a basis decomposition:

B
W™ =Y anpVe, )
b=1



where {Vb}l]?:1 are shared basis matrices and a,,
are learned relation-specific coefficients. This re-
duces the number of parameters from R X diy, X doyt
to B X diy X dout + R X B. The forward propagation
rule combines self-loop and neighbor messages as

R+ h(l

—o (WO LY Y el
r=1jeN]

®)

where W(()l) handles self-connections and o(-) is

a non-linear activation function. This formulation

enables efficient learning over knowledge graphs

while preserving relation-specific inductive biases

through the decomposed weight matrices.

3.4 Training Objective

Following previous works (Feng et al., 2019; Li
et al., 2024), we formulate the next-day stock re-
turn prediction as a learning to rank problem. We
optimize a hybrid objective combining regression
and ranking terms:

L= Ereg + Qb : Eranky (9)

where ¢ is a hyperparameter controlling the contri-
bution of ranking supervision. We set it to be 0.5
here. The regression loss is defined as:

N
At+1 .

= (3!

N 4
=1

_ t+1\2
Lreg = L )

,  (10)

where NV is the number of stocks, yt“ is the pre-
dicted score, and rtH is the ground truth return.
The ranking loss is formulated as:

) M (NULI
=1 j=1
, (r§+1 _ T§+1)>7
(11)

which penalizes cases where the predicted ordering
contradicts the ground truth ordering. For imple-
mentation, we compute all pairwise differences
in predictions and ground truth, multiply them
element-wise, and apply a ReLU to retain only
positive ranking violations.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate on S&P 500 constituents
using daily OHLCYV data enriched with technical

)

indicators (MA, RSI, MACD). Our chronological
split spans training (2012/07-2022/06), validation
(2022/07-2023/09), and testing (2023/10-2024/12).
We filter out the companies which do not have full
trading records during this period, resulting in 452
tickers in total. Critically, our static graph uses
GPT-40-mini (knowledge cutoff: October 2023) 2,
with testing beginning October 2023 - ensuring true
out-of-sample evaluation where LLM-extracted re-
lationships are tested on genuinely unseen future
data. See Appendix A for detailed feature descrip-
tions and data splits.

Evaluation Metrics We evaluate our model us-
ing three complementary metric categories: rank-
ing quality using Mean Reciprocal Rank (MRR),
prediction accuracy with Mean Squared Error
(MSE), and trading performance with the cumu-
lative Investment Return Ratio (IRR) and Sharpe
Ratio (SR). Specifically, We construct two long-
only strategies by selecting the top-1 and top-10
stocks based on predicted rankings. At the start of
the test period, we invest one unit of capital in each
strategy and compute their cumulative profit and
Sharpe ratio over the evaluation horizon.

Baselines We compare the proposed method
against two commonly used predefined stock rela-
tionship graphs: (1) Wikidata-based relationships
extracted from a structured knowledge base, and (2)
the GICS industry-sector classification reflecting
economic sector groupings. These baselines enable
evaluation of the efficacy of the LLM-extracted
relationship graph relative to established graph con-
structions. We follow the same process as Feng
et al. (2019), the details are in Appendix B.

4.2 Relation Extraction Analysis

Before evaluating the performance on downstream
tasks, it is crucial to verify that the LLM-extracted
company relationship graph is structurally richer
and more diverse than existing alternatives. We
quantitatively compare the number and distribution
of relations against two commonly used predefined
graphs (GICS industry-sector hierarchy and Wiki-
data corporate relations). As shown in Table 2,
compared to the baselines, our LLM-extracted
graph exhibits clear advantages in relational diver-
sity, coverage, and structural realism. It contains 13
distinct relation types, far exceeding the 4 in both
Wikidata and GICS, enabling richer semantic mod-

Zhttps://platform.openai.com/docs/models/gpt-4o-mini



Relations MSE (x10~%) ] MRR1 IRR(1)1T SR1)1 IRR(10)1 SR 10)7
RGAT

Wikidata 3.269 0.016 0.177 0.408 0.206 0.901
GICS 5.311 0.016 0.273 0.615 0.237 1.060
Ours (LLM) 3.196 0.035 0.421 0.835 0.262 1.185
RGCN

Wikidata 3.190 0.026 0.254 0.558 0.258 1.038
GICS 3.190 0.022 0.600 1.011 0.301 1.090
Ours (LLM) 3.189 0.027 0.820 1.176 0.350 1.246

Table 1: Performance comparison of RGCN and RGAT models on different relationship graphs. We report the
average performance across 40 runs. “(1)” and “(10)” mean the top-1 and top-10 strategy, respectively.

Graph R |[E|  Nodes Sym.
Wikidata 4 4723 358 v
GICS 4 19,732 452 v
Ours(LLM) 13 12,800 452 X

Table 2: Basic statistics of the relationship graphs. R de-
notes the number of distinct relation types, |E| denotes
the total number of edges, “Nodes” denotes the number
of unique companies covered, and “Sym.” indicates
whether the graph is symmetric.

eling. While its total number of edges (12,800) is
lower than GICS (20,636), it is substantially denser
than Wikidata (4,723), striking a balance between
diversity and connectivity. In terms of coverage,
it spans 452 companies, matching GICS and sur-
passing Wikidata’s 358, ensuring applicability to
the full stock universe. For both Wikidata and our
LLM-generated relations, we filtered out relation
types with fewer than 200 edges to maintain graph
connectivity, ensuring that the comparison focuses
on meaningful and well-connected relations. Im-
portantly, our graph incorporates directed edges,
capturing asymmetric corporate relationships (e.g.,
supplier—customer) that symmetric baselines can-
not represent, thereby offering a more realistic and
informative foundation for downstream stock rank-
ing tasks.

4.3 Stock Ranking Performance

As shown in Table 1, the LLM-extracted relations
consistently outperform Wikidata and GICS across
both RGAT and RGCN backbones. In terms of
prediction accuracy, our method achieves the low-
est MSE in all cases, showing that LLM-extracted
relations better capture stock dynamics. The gains
are even clearer in ranking quality: MRR nearly

doubles under RGAT (0.035 vs. 0.016) and re-
mains the strongest under RGCN, indicating that
our approach identifies top-performing stocks more
effectively.

The improvements translate into substantial trad-
ing benefits. For both top-1 and top-10 strate-
gies, our relations deliver markedly higher cumu-
lative returns and Sharpe ratios, with the RGCN
backbone achieving over 1.0 in top-1 Sharpe ratio
(1.176), demonstrating strong risk-adjusted prof-
itability. These consistent gains across two distinct
architectures highlight that the advantage comes
from the richer, directional relations themselves
rather than a specific model choice, validating our
claim that LLM-extracted structures bridge the gap
between generic knowledge graphs and actionable
financial insights.

5 Conclusions & Future Work

This work demonstrates that high-quality stock re-
lationship graphs extracted from large language
models can significantly enhance stock ranking
accuracy and trading performance compared to
widely used knowledge sources such as Wikidata
and GICS. By leveraging LLMs’ implicit knowl-
edge of corporate relationships, we achieve 37%
higher investment returns and improved Sharpe ra-
tios across multiple evaluation strategies. To the
best of our knowledge, we are the first to use zero-
shot LLM extraction for financial graphs, opening
a new research direction - using LL.Ms as knowl-
edge bases for finance. Future work will explore
temporal dynamics to capture evolving corporate
relationships while maintaining stability, and in-
vestigate multi-modal integration combining LL.M
knowledge with alternative data sources and market
sentiment.
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A Dataset Details

For each S&P 500 constituent, we collect daily
Open, High, Low, Close prices and Volume
(OHLCV)3. We compute standard technical indi-
cators including Moving Averages (MA), Relative
Strength Index (RSI), and Moving Average Con-
vergence Divergence (MACD). These raw values
are normalized to form time-series feature vectors
x! that initialize node representations in our model.

Table 3 details our chronological split, designed
to simulate realistic live trading conditions:

Split Period Days
Train 2012/07 - 2022/06 2517
Validation 2022/07 - 2023/09 313
Test 2023/10 - 2024/12 315

Table 3: Chronological split of the dataset for training,
validation, and testing.

The validation set is used for hyperparameter
tuning and early stopping. By aligning our test pe-
riod start with GPT-40-mini’s knowledge cutoff*,
we ensure the fundamental relationships extracted

3https://paperswithbacktest.com/datasets/stocks-daily-
price
*https://platform.openai.com/docs/models/gpt-4o-mini
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by the LLLM are evaluated on their ability to gen-
eralize to future, unseen market data, providing a
rigorous assessment of predictive power.

B Baseline Details

GICS The Global Industry Classification Stan-
dard, jointly developed by MSCI and Standard &
Poor’s, is a widely adopted taxonomy for categoriz-
ing companies into a four-tier hierarchical structure
consisting of sectors, industry groups, industries,
and sub-industries. This system facilitates consis-
tent classification and comparison of firms based on
their primary business activities, enabling investors
and analysts to construct sector-based investment
strategies and benchmark performance. In our ex-
periments, we utilize GICS four-level relationships
as one of the baseline graphs. The statistics of each
level are shown in Table 4.

Level |[E|  Categories
Sector 10,841 11
Industry Group 5,323 25
Industry 2,347 67
Sub-Industry 1,221 119

Table 4: Statistics of GICS relationships at different
levels.

Wikidata Wikidata is a collaboratively edited
knowledge base that provides structured informa-
tion across a wide range of domains, including
corporate entities and their interconnections. In our
work, we extract company—company relationships
from Wikidata by meta-paths defined by Feng et al.
(2019). To ensure the connectivity and robustness
of the resulting graph, we filter out relation types
whose total number of connections is below 200,
retaining only sufficiently frequent relations for
analysis.

Meta-path |E|
Industry - Industry 1,944
Member of - Member of 1,220
Owned by - Owned by 1,040
Product or material produced - 519

Table 5: Statistics of Wikidata relationships at different
meta-paths.
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