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Abstract

We present Earnings2Insights, a shared task
on generating actionable investment reports
from earnings conference call (ECC) tran-
scripts. Unlike traditional financial summariza-
tion or QA, the goal is decision support: sys-
tems must synthesize facts, highlight risks and
opportunities, and support investors in mak-
ing sound actions. The task required partici-
pants to produce reports based on ECC tran-
scripts. In total, 45 teams registered, with 12
teams submitting reports and 9 submitting so-
lution papers, spanning diverse agentic designs,
retrieval-augmented methods, and data expan-
sion strategies. Our evaluation consists of Au-
man evaluation and automatic evaluation. Re-
sults reveal a consistent divergence between
systems that scored highly in automatic evalua-
tions and those that most effectively supported
human investment decisions, underscoring the
limits of style- or reference-based comparisons
in high-stakes financial report generation. We
advocate human-centered, decision-oriented as-
sessment as the primary lens, with automated
signals serving as complementary diagnostics.
We release task design, evaluation data, and
scripts to catalyze research on decision-centric
financial text generation.'

1 Introduction

With the advent of large language models (LLMs),
researchers have increasingly explored their appli-
cation in specialized professional domains. Be-
yond automatic text comprehension, LLMs now
demonstrate promising abilities in analytical report
generation, enabling new forms of decision support
in high-stakes fields such as law, medicine, and
finance (Goldsack et al., 2025). Financial decision-
making is a particularly high-stakes domain, where
inaccurate or misleading reports can directly im-
pact markets and investor outcomes (Lai et al.,

1h'ctps ://github.com/TTsamurai/
Earnings2Insights.git
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2023). Traditional NLP tasks in finance, such as in-
formation extraction (Chen et al., 2021a), question
answering (Chen et al., 2021b; Liu et al., 2023), and
summarization (Huang et al., 2024), have focused
on factual accuracy. Recently, more and more fo-
cus has shifted to the human side, such as building
financial advisor systems with LLMs (Takayanagi
et al., 2025a,b). At the same time, producing ac-
tionable investment insights requires more than
summarizing facts: systems must synthesize in-
formation, highlight risks and opportunities, and
persuade investors to act (Huang et al., 2025).

The Earnings2Insights shared task is designed
to evaluate the capability of LLMs to generate con-
vincing investment reports from earnings call tran-
scripts. Participants may approach the task in two
ways: using only the raw transcript, or enriching
the input with timestamp-aligned retrieval of rele-
vant external information. A central challenge in
financial report generation is evaluation. Prior stud-
ies have shown that comparing generated outputs
with ground-truth answers via automatic metrics
may be insufficient, and that current LLMs remain
unreliable as evaluators (Chen et al., 2024; Gold-
sack et al., 2025). Inspired by decision-based evalu-
ation frameworks (Takayanagi et al., 2025¢; Huang
et al., 2025), we instead assess systems by their
ability to guide human investment decisions. An-
notators are asked to make buy/hold/sell judgments
based on the generated reports, and the correctness
of these decisions serves as the primary evaluation
metric.

This paper provides an overview of the Earn-
ings2Insights shared task and dataset, summarizes
the methods employed by participating teams, and
evaluates their experiments. Through this, we aim
to shed light on the current capabilities and limita-
tions of LL.Ms in financial report generation, and
to foster broader discussion on human-centered
evaluation for decision-critical Al
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2 Tasks and Dataset

The Earnings2Insights shared task evaluates the
ability of large language models to generate ac-
tionable investment reports from earnings call tran-
scripts. Unlike traditional summarization or QA
tasks, the objective is not merely to condense in-
formation but to produce guidance that highlights
risks, opportunities, and potential actions for in-
vestors. This setting mirrors real-world analyst
workflows, where the value of a report lies in its
ability to influence financial decisions rather than
reproduce factual details alone.

We use earnings conference calls (ECCs) as our
primary scenario. ECCs are quarterly events in
which company executives present financial results
and discuss their outlook with investors and ana-
lysts. ECCs play a central role in shaping market
sentiment because they combine both quantitative
disclosures (e.g., revenues, forecasts, margins) and
qualitative signals (e.g., managerial tone, confi-
dence, and forward-looking statements). Impor-
tantly, professional equity analysts routinely write
analyst reports immediately after ECCs, making
this setting particularly suitable for our task: it natu-
rally links raw financial discourse to the generation
of actionable investment insights.

In this shared task, we provide two complemen-
tary subsets of earnings call transcripts:

¢ ECTSum Subset (40 transcripts)
This subset corresponds to the ECTSum
dataset (Mukherjee et al., 2022). Each tran-
script is paired with a “ref” file representing its
associated summary. Participants may choose
whether or not to use these summaries as aux-
iliary supervision.

Professional Subset (24 transcripts)

This subset consists of transcripts that are
aligned with professional analyst reports. Un-
like the ECTSum subset, no reference sum-
maries are provided to participants. Instead,
the organizers will later compare system out-
puts against the analyst reports to assess align-
ment with professional standards.

In total, participants are required to generate reports
for all 64 earnings calls across both subsets.

A total of 45 teams registered for the Earn-
ings2Insights shared task, of which 12 teams sub-
mitted reports and 9 teams submitted solution pa-
pers.
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Figure 1: Evaluation framework consisting of human
evaluation and automatic evaluation.

3 Evaluation

For evaluation, we conducted both human eval-
uation and automatic evaluation in order to cap-
ture complementary perspectives on system perfor-
mance. Our evaluation framework is illustrated in
Figure 1.

3.1 Human Evaluation

Human evaluation was designed to test whether
the generated reports could effectively guide invest-
ment decisions. After reading each report, anno-
tators were asked to make one of three decisions:
Buy (expect the stock to go up), Neutral (uncertain),
or Sell (expect the stock to go down). Ground-truth
labels were derived from realized stock returns at
three horizons: one business day (1bd), one week
(5bd), and one month (20bd). These labels were
coded as +1 for upward movements and —1 for
downward movements. Neutral responses were
excluded from the calculation, since they indicate
uncertainty rather than a directional prediction. Ac-
curacy was computed at each horizon as the propor-
tion of correct predictions among all non-neutral
responses, and an overall accuracy score was ob-
tained by averaging across the three horizons.

In addition to directional accuracy, we also
evaluated the perceived quality of the generated
reports. Annotators rated each report on five
criteria—clarity, logic, persuasiveness, readability,
and usefulness—using a 7-point Likert scale. We
report both the average score for each dimension
and the overall mean across all five dimensions.



3.2

For human evaluation, we used the Prolific plat-
form.> We recruited 192 English native speakers
residing in either the United Kingdom or the United
States, each with a past task acceptance rate above
80%. Each crowdworker participated in one hour
of evaluation, during which they made financial
decisions based on a total of 12 generated reports.
Consequently, every one of the 64 reports submit-
ted by the 12 participating teams received indepen-
dent judgments from three annotators. Participants
were compensated at a rate of £8 per hour. In total,
the study required 210 participants, amounting to a
total cost of £1,680.

Human Evaluation Setup

3.3 Automatic Evaluation

To complement the human evaluation, we also in-
troduced automatic evaluation measures based on
large language models. In particular, we adopted an
“LLM-as-a-judge” framework (Gu et al., 2024), to
provide pairwise and absolute quality judgments.?
First, we measure the win rate against professional
analyst reports. In this pairwise comparison, each
system-generated report is compared directly with
an analyst-written report, and the win rate reflects
the proportion of cases in which the system report
was judged superior, excluding ties. Second, we
compute the average Likert score by aggregating
the 1-7 ratings across the five qualitative dimen-
sions described above. This provides a single sum-
mary indicator of report quality.

4 Methods

Overall, the participating teams adopted diverse
agentic approaches, with many incorporating
retrieval-augmented generation (RAG) and various
data expansion strategies. This diversity illustrates
the richness of methods explored for financial re-
port generation.

SigJBS used a three-agent pipeline (extraction,
reasoning, critique) to parse transcripts into key
financial milestones, generate recommendations
with risk analysis, and iteratively refine outputs for
consistency and factuality (Sinha et al., 2025).

Jetsons combined writer agents with feedback
agents in a ReAct-style loop (Yao et al., 2023),
integrating structured financial data via Alpha Van-
tage to produce reports that balanced factual ac-

Zhttps://www.prolific.com/
3We use gpt4. 1 as our evaluator.
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Team Average Day Week Month
DKE 0.581 0.596 0577  0.570
DatalLovers 0.579 0.597 0.611  0.529
Jetsons 0.571 0.607 0.555  0.552
SigIBS 0.545 0.609 0513 0.512
iiserb 0.537 0.576  0.558  0.477
PassionAl 0.537 0.588 0.557  0.466
Finturbo 0.524 0.504 0.568  0.500
Bgreens 0.522 0.469 0.581 0.516
LangKG 0.518 0.589 0542 0.424
SI4Fin 0.515 0.525 0.524 0497
KrazyNLP 0471 0514 0525 0.375
bds-LAB 0.462 0478 0434 0474

Table 1: Average accuracy of financial decisions across
time horizons.

curacy, risk coverage, and persuasiveness (Dakle
et al., 2025).

LangKG employed a cognitive reasoner frame-
work, generating personalized reports tailored to
investor profiles using a six-dimensional analysis
and conviction scores for transparency (Prasanna
and Su, 2025).

Datal.overs orchestrated multiple analyst agents
(finance, sentiment, strategy) whose outputs were
merged into a structured report template. Their
meta-prompting framework emphasized collabo-
rative reasoning, implemented with a compact
LLaMA model (Chatwal et al., 2025).*

iiserb modeled investment committee debates
through a Structured Adversarial Synthesis frame-
work, staging adversarial dialogues among bullish,
bearish, and devil’s advocate agents to refine logic
and persuasiveness (Sadhu et al., 2025).

Bgreens mimicked the analyst—writer—editor
workflow with multi-agent roles implemented via
AutoGen (Wu et al., 2024). Iterative feedback im-
proved consistency and readability, with experi-
ments showing higher decision accuracy compared
to single-agent baselines (Satapathy et al., 2025).

DKE built a retrieval-augmented debate system
with five domain-specific analyst agents and a col-
laborative debate phase among trust, skeptic, and
leader agents, synthesizing robust recommenda-
tions with confidence scores (Cai et al., 2025).

FinTurbo emphasized professional-style reports
with structured data and visualization, combin-
ing charting, highlighting, writing, and editing

4https://huggingface.co/meta—llama/Llama—3.
2-1B-Instruct
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Team Average Clarity Logic Persuasiveness Readability Usefulness

LangKG 5.96 6.02 5.92 5.90 5.81 6.13

Jetsons 5.90 6.00 5.89 5.81 5.81 6.01

DKE 5.74 5.71 5.89 5.95 5.17 5.98

SigIlBS 5.67 5.76 5.68 5.59 5.61 5.72

SI4Fin 5.56 5.52 5.84 5.60 5.06 5.80

Datal.overs 5.50 5.56 5.45 5.32 5.73 547

Bgreens 5.49 5.51 5.61 5.51 5.09 5.74

KrazyNLP 5.29 5.15 5.49 5.21 5.01 5.59

iiserb 5.19 5.01 5.51 5.14 4.72 5.57

Finturbo 5.11 5.02 5.39 4.90 4.86 5.40

bds-LAB 4.99 491 5.21 5.03 4.55 5.27

PassionAl 4.70 4.64 4.74 4.39 4.88 4.86

Table 2: Average Likert scores across five qualitative dimensions.
Team ALS WR month (Month) horizons, with the overall average
X representing the mean of the three horizons.
]S:EII;III(I G :g(l)g 832? Table 2 presents the average Likert scores for
Tetsons 4'834 0'762 clarity, logic, persuasivenc?ss, readability, and use-
KrazyNLP 4' 230 0' 962 fulness, as rated on a 7-point scale. We also report
.. ) ’ the overall mean score across the five criteria.
ESI?EE) jgg; 833(3) Overall, the re.:slllllts shgw noticeable Vzlilr'iati(?n
. across teams, with certain systems excelling in

l;iz?glsjo 3252 8;32 decision accuracy while others were rated more
Bareens 4575 0.615 h'ighly on subjective quality dimensions. This high-
bds-LAB 4510 0711 lights the complementary natl_lre Of: accuraC}.f-based
PassionAl 4143 0.365 and human—centered evaluations in financial text
DataLovers 4.134  0.345 generation.

Table 3: Automatic evaluation results. ALS = Average
Likert Score (1-7); WR = Win Rate vs. Analyst Report.

agents. They expanded the dataset by crawling
additional transcripts to enable temporal RAG com-
parisons (Yang et al., 2025).

SI4Fin integrated external financial statements
from Alpha Vantage with an AutoGen-based agen-
tic framework (Wu et al., 2024), where analyst
agents extracted trends (YoY, QoQ) and writers in-
corporated them into grounded reports (Tan et al.,
2025).

5 Results

5.1 Human Evaluation Results

Table 1 reports the average accuracy of financial de-
cisions made by annotators after reading the reports
generated by each team. Accuracy is computed for
one business day (Day), one week (Week), and one
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5.2 Automatic Evaluation Results

In addition to human evaluation, we conducted au-
tomatic evaluation using an LLM-as-a-judge frame-
work. Table 3 reports two measures: ALS (Average
Likert Score), the average 1-7 rating across five
dimensions (persuasiveness, logic, usefulness, read-
ability, and clarity), and WR (Win Rate vs. Analyst
Report), the proportion of pairwise comparisons in
which a system-generated report was judged supe-
rior to a professional analyst report (ties excluded).

6 Discussion

The results reveal a key divergence between
decision-oriented human evaluation and automatic
evaluation based on win rates against profes-
sional analyst reports. Teams such as DKE
and Datal.overs scored highly in human evalu-
ation—effectively supporting annotators’ invest-
ment decisions—yet ranked lower in automatic
evaluation. In particular, Datal.overs’ reports pro-



vided practical guidance but showed a notably
low win rate. This suggests that automatic met-
rics fail to capture the true decision utility of gen-
erated texts. Prior studies indicate that amateur
investors are often unpersuaded by professional
analyst reports, whose language and logic can
be inaccessible. Thus, benchmarking generated
texts solely against professional reports is insuffi-
cient for assessing their usefulness in real decision-
making (Takayanagi et al., 2025c¢).

Moreover, the divergence between human and
automatic Likert-scale evaluations highlights risks
in relying on LLMs as evaluators. While LLMs
offer scalability and consistency, their judgments
may not align with actual investor behavior. This
reinforces the central motivation of the shared task:
evaluation must remain grounded in human deci-
sion outcomes, with automatic methods serving as
complements. Future work should therefore pursue
hybrid evaluation schemes that integrate human
judgment, domain-specific financial metrics, and
scalable LLM-based assessments.

7 Conclusion

This paper presented the Earnings2Insights shared
task, which evaluates the capability of large lan-
guage models to generate actionable investment
guidance from earnings call transcripts. Distinct
from traditional summarization or QA, our setting
targets human-centered decision support: systems
must synthesize facts, surface risks and opportu-
nities, and support investors toward sound actions.
We released two complementary subsets (ECTSum
and Professional), and attracted a diverse set of
agentic methods from participating teams.

Our evaluation combined decision-oriented hu-
man assessment with an automatic “LLM-as-a-
judge” protocol. Results revealed a consistent di-
vergence: several systems that improved human
decision accuracy did not necessarily score highly
against professional analyst reports or in LLM-
based judgments, and vice versa. These findings
underscore a central lesson for high-stakes financial
NLP: evaluation must remain grounded in human
decision outcomes; automatic metrics are valuable
but imperfect complements. In the future work,
we envision hybrid evaluation protocols that inte-
grate human decision accuracy, domain-specific
financial measures, and calibrated, auditable LLM
judgments.

We hope Earnings2Insights catalyzes sustained
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progress on decision-centric financial text genera-
tion. By releasing the task design, data splits, and
evaluation scripts, and by documenting successful
agentic and retrieval-augmented patterns, we aim
to provide a practical foundation for research and
deployment of human-centered advisory systems
in finance.
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