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Abstract

Language models (LMs) have revolutionized fi-
nancial analysis by demonstrating expert-level
versatility. Recent advances in self-reasoning
have further improved LMs’ performance on
complex tasks. However, LMs are known to
hallucinate facts and generate non-causal rea-
soning paths, which compromise their output
quality, lead to erroneous conclusions, and pose
risks of monetary losses. Therefore, detecting
factual and causal errors in LMs’ reasoning is
essential for risk management and responsible
application of LMs in finance. In this study,
we adopt natural language inference (NLI) as a
paradigm for detecting factual and causal errors
in LMs’ reasoning. We evaluate this approach
by constructing a dataset comprising financial
reasoning points generated by LMs, along with
annotations by domain experts. Our findings
demonstrate that NLI, powered by backbones
of either pre-trained encoders or LMs, exhibits
statistically significant capability in detecting
factual and causal issues. Also, we show that,
although LMs achieve improved performance
with increasing parameters, they underperform
encoders and exhibit self-evaluation bias. Fine-
tuning effectively mitigates this type of bias and
enhances both backbones’ detection capability.

1 Introduction

Language models (LMs) have transformed finan-
cial natural language processing (NLP) through
their expert-level comprehension of financial infor-
mation and versatile problem solving capabilities
according to users’ instructional prompts (Li et al.,
2023; Kong et al., 2024; Hu et al., 2025). Recent
advancements in self-reasoning (Liu et al., 2024a)
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Figure 1: NLI can detect factual and causal errors in
LMs’ self-reasoning for financial analysis

have further enhanced LMs’ ability to tackle com-
plex jobs that cannot be resolved through direct
question answering. However, LMs are known to
hallucinating facts or producing non-causal state-
ments during the reasoning process, which can
lead to erroneous conclusions and compromise the
quality of their outputs (Manakul et al., 2023; La-
ban et al., 2023; Li et al., 2024; Paul et al., 2024;
Chandler et al., 2024; Chen et al., 2025). Such is-
sues pose significant risks in financial applications,
where inaccuracies result in monetary losses (Chat-
wal et al., 2025; Shukla et al., 2025). Even when
the final outcome is correct, flawed reasoning steps
may mislead users who interpret these steps as jus-
tifications for LMs’ decision and indicate that the
outcome was reached by chance rather than logic
(Wu et al., 2024; Wang, 2024; Chu et al., 2025; Bao
et al., 2025). Sole outcome evaluation risks over-
looking deficiencies in the underlying reasoning
and potentially leading to monetary losses.

Therefore, detecting factual and causal errors in
LMs’ reasoning is crucial for mitigating potential
risks in financial decisions and for supporting ef-
fective regulation and compliance (Chatwal et al.,
2025). In this study, we adopt a classic and com-
putationally affordable paradigm, natural language
inference (NLI), in identifying factual and causal
errors in LMs’ reasoning (Lattimer et al., 2023).
To address the absence of well-annotated datasets
aligned with our objectives, we construct a special-
ized dataset by employing LMs to generate final de-
cisions and reasoning process on a public financial
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dataset. Domain experts then manually annotate
the factuality and causality of each reasoning point.
After that, we test pre-trained encoders and LMs as
NLI backbones to derive the probability of factual
or causal issues. Finally, We perform rigorous sta-
tistical analyses to evaluate the feasibility of NLI
as a paradigm for detecting factuality and causality,
compare the performance of pre-trained and fine-
tuned encoders and LMs, and investigate biases
when LMs assess their proprietary reasoning.

As a pilot study on LMs’ self-reasoning in fi-
nance, our work contributes in four aspects. First,
we provide an annotated dataset with labels of fac-
tuality and causality on LMs’ reasoning points.
Second, we demonstrate the effectiveness of the
classic NLI as a detection paradigm for factual and
causal errors, using encoders and LMs as back-
bones. Third, we perform referable statistical anal-
yses to illustrate limitations of LMs in this task:
their inferior accuracy compared to encoders and
potential biases when assessing proprietary reason-
ing in certain scenarios. Last, we demonstrate the
necessity of fine-tuning, which not only enhances
the detection ability of both backbones but also mit-
igates LMs’ self-evaluation bias. Relevant dataset
and notebooks are open-accessed on GitHub1.

2 Related work

As a fundamental NLP task, NLI determines the
logical relationship between a given pair of sen-
tences: a premise and a hypothesis. Typically,
transformer encoder-based NLI models (Devlin
et al., 2019) output three probabilities: entailment,
contradiction, and neutrality (Gubelmann et al.,
2024; Guo and Yang, 2024; Magomere et al., 2025).
Specifically, entailment indicates that the hypothe-
sis logically follows from the premise, contradic-
tion signifies that the hypothesis is false given the
premise, and neutrality implies that the premise is
insufficient to determine the truth of the hypothesis.

NLI plays a crucial role in tasks involving causal-
ity, and its capabilities have significantly improved
with the evolution of foundational models from pre-
trained encoders to LMs (Rozanova et al., 2023;
Guo and Yang, 2024). For example, Ionescu et al.
(2020) employ five pre-trained encoders to exam-
ine causality in financial documents. Pre-trained
encoders, in addition to being used for post hoc
causality detection, can also be integrated in real-

1https://github.com/Han-Yuan-Med/
nli-as-a-judge

time content generation. ConCoRD (Mitchell et al.,
2022) is a framework that enhances LMs’ output
quality by selecting optimal sentences that main-
tain causal consistency throughout the generation
process. With LMs’ advancement, they outperform
specialized pre-trained encoders in some tasks.

Beyond its original purpose of causality, NLI has
also proven effective in tasks concerning factual-
ity. Similar to causality, both pre-trained encoders
(Kryscinski et al., 2020; Goyal and Durrett, 2020;
Sathe and Park, 2021; Fabbri et al., 2022; Utama
et al., 2022; Ni et al., 2024; Yang et al., 2024) and
LMs (Fatahi Bayat et al., 2023; Lattimer et al.,
2023; Li et al., 2024) have been employed for fac-
tuality detection. SummaC (Laban et al., 2022) is
a comprehensive benchmark for evaluating the per-
formance of NLI encoders in factuality detection.
It demonstrates that NLI encoders based on classic
architectures, such as BERT (Devlin et al., 2019),
can achieve a balanced accuracy of nearly 0.75. A
recent comprehensive framework, SelfCheckGPT
(Manakul et al., 2023), integrates both pre-trained
encoders and LMs to perform NLI for assessing the
factuality of LMs’ generated Wikipedia content.

3 NLI as a Judge

NLI evaluates whether a hypothesis follows from a
premise, producing probabilities for three possible
outcomes: entailment, neutrality, and contradiction
(Yu et al., 2024). Our study adopts NLI as the
framework for detecting factual and causal issues
in LMs’ self-reasoning for financial analysis.

Formally, D denotes the input dataset and Di

refers to a specific case within D. Each Di con-
tains J sentences, denoted as Di,j (j = 1, 2, ..., J),
which provide various input details for financial
classification. Given Di as input, a LM generates
a response Oi, comprising K sentences of Oi,k.
The first sentence, Oi,1, states the classification
outcome for Di. The subsequent sentences, Oi,k

(k = 2, ...,K), outline the reasoning points under-
lying this classification and the primary focus of
this study is to detect factual and causal errors in
Oi,k through the paradigm of NLI.

Specifically, NLI takes a premise Sp and a hy-
pothesis Sh as input. Then it outputs probabili-
ties of three possible outcomes: entailment, neu-
trality, and contradiction. For factuality detection
(Utama et al., 2022), the premise Sp corresponds
to the input information Di and the hypothesis Sh

is each reasoning statement Oi,k (k = 2, ...,K).

211

https://github.com/Han-Yuan-Med/nli-as-a-judge
https://github.com/Han-Yuan-Med/nli-as-a-judge


For causality detection, the Sp is the reasoning
statement Oi,k (k = 2, ...,K) and Sh is the clas-
sification outcome Oi,1. Following Manakul et al.
(2023), we omit the neutral class and focus only
on the probability of entailment Pe(Sp, Sh) and
contradiction Pc(Sp, Sh). With this simplifica-
tion, the output becomes binary and is further
normalized to ensure the entailment probability
P ′
e = Pe/(Pe + Pc) to be bounded within [0, 1].

For both factuality and causality detection of Oi,k,
a reasoning point is classified as containing factual
or causal errors if P ′

e is less than 0.5. We adopt a
threshold of 0.5 because our dataset is relatively
small, reserving a separate validation set for thresh-
old optimization would further reduce the effective
training data and increase the overfitting risk, and
this choice is consistent with established practice
(Kazemi et al., 2023; Chicco and Jurman, 2023).

For the comprehensiveness, both classic en-
coders and LMs are used as backbones for cal-
culating P ′

e. For encoders pre-trained on NLI, the
output has been shaped into probability suiting the
formulation. For LMs, we follow the design in
Lattimer et al. (2023) and prompt the LMs with
the following template: "Sp Question: does this
imply Sh? Yes or No?". The logits correspond-
ing to "Yes" and "No" are extracted as Pe(Sp, Sh)
and Pc(Sp, Sh), respectively. The final probabil-
ity P ′

e is then computed as illustrated above. The
simple prompt design is adopted to enhance com-
putational efficiency, eliminate variance introduced
by prompt optimization, facilitate domain-agnostic
assessment without the need for adaptation, enable
the evaluation of long test cases by employing short
prompts with fewer tokens (Laban et al., 2023), and
eliminate hallucination introduced by techniques
such as In-Context Learning (ICL) and Chain-of-
Thought (CoT) (Gao et al., 2023; Paul et al., 2024;
Zhang et al., 2024; Turpin et al., 2023).

4 Dataset

We conduct our experiments using a refined ver-
sion (Yuan et al., 2025) of the public German credit
dataset (Hofmann, 1994) with increased signal-to-
noise ratio and better alignment with modern LMs’
training context. Since no standard annotations of
factuality and causality in LMs’ generated reason-
ing points are available for this dataset, we con-
struct our own data through a two-step process: (1)
collecting LMs’ responses, including both classi-
fication outcomes and reasoning points; and (2)

manually annotating the reasoning sentences for
factual and causal issues.

Following Zhang et al. (2024), we utilize the
processed data, formatted as text input, to prompt
three LMs, Llama-3.2-3B (Touvron et al., 2023),
Gemma-2-2B (Mesnard et al., 2024), and Phi-3.5-
mini (3.8B) (Abdin et al., 2024), to generate both
classification outcomes and the underlying reason-
ing points behind their decisions. Specifically, the
three LMs generate 862, 495, and 515 reasoning
points, respectively, for 50 positive and 50 nega-
tive cases. This suggests that Llama, on average,
employs more reasoning points than the other two.

After that, two authors annotate the reasoning
points using a two-step workflow. Each point is
first assessed for factuality issues, defined as the
involvement of non-factual information. If no fac-
tual errors are found, the reasoning point is further
evaluated for causality issues, also referred to as
logical inconsistencies. A causality issue is identi-
fied when a negatively framed reasoning point is
incorrectly presented as supporting a positive clas-
sification, or vice versa (Yuan et al., 2025). After
independent annotation, the two annotators summa-
rize conflicting cases and consult the senior authors
to resolve discrepancies and reach consensuses.
Among the 1,872 annotated reasoning points, 72
(3.9%) were labeled as factually inaccurate, and
329 (17.6%) were identified as causally erroneous.

5 Experiments

We evaluate both pre-trained encoders and LMs,
along with their fine-tuned versions, on the anno-
tated data for factuality and causality detection.
Pre-trained models are used in their original form
as released on HuggingFace. For fine-tuning, we
explore full-parameter fine-tuning (FPFT) and two
parameter-efficient fine-tuning (PEFT) methods
(Appendix A) of Last Layer fine-tuning (LLFT)
and Low-Rank Adaptation (LoRA) (Hu et al.,
2022). Specifically, we apply three-fold cross-
validation for all fine-tuning experiments, using one
fold for testing and the remaining two for training
in each run. A consistent training setup is adopted
for both encoders and LMs, using the AdamW op-
timizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 1e-5 and and default settings for other
hyperparameters over five epochs. For encoders,
the input consists of premise–hypothesis pairs and
the output is a binary classification label (either
entailment or contradiction). For LMs, the premise
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Figure 2: Entailment probability distributions for statements with and without factual or causal errors

and hypothesis are concatenated into a coherent
instruction, and the model is trained to generate a
target token, either Yes or No, reflecting the rela-
tionship between premise and hypothesis. We ac-
knowledge that additional hyperparameter tuning
and training techniques (e.g., warm-up schedules)
may further enhance model performance. However,
the primary objective of fine-tuning is to demon-
strate its advantages over pre-trained models, rather
than to achieve the upper-bound performance of
fine-tuning, which is reserved for future work.

For backbones based on transformer encoders,
we select DeBERTa-v3-large (He et al., 2021),
RoBERTa-large (Liu et al., 2019), and BART-
large (Lewis et al., 2020). For open-access (OA)
LMs (Lasheras and Pinheiro, 2025), we utilize
the same three families for dataset construction:
Llama (Llama-3.2-3B and Llama-3.1-8B), Gemma
(Gemma-2-2B and Gemma-2-9B), and Phi (Phi-
3.5-mini and Phi-3.5-MoE). All OA models, ex-
cept for Phi-3.5-MoE, have fewer than 10 billion
parameters, aligning with the constraints of our
computational resources. Although Phi-3.5-MoE
contains a total of 60.8 billion parameters, only
6.6 billion parameters are active during any single
inference due to its mixture-of-experts (MoE) ar-
chitecture, thereby keeping computation within our
budget. Section 3 details the process of obtaining
the normalized entailment probability P ′

e, which
is used for performance comparison and statistical
tests in the following sections. In addition to OA
LMs, we include the proprietary GPT-4o (OpenAI,
2024) as a state-of-the-art (SOTA) backbone. It
should be noted that GPT-4o is evaluated only un-
der the pre-trained setting, as the internal training
procedures and fine-tuning methodologies used by
OpenAI are not publicly disclosed (OpenAI). To
estimate P ′

e, we use the same instruction prompt
as for the OA LMs and query the API ten times,
calculating the proportion of "Yes" as a proxy.

First, we assess the effectiveness of NLI as a de-
tection paradigm for pre-trained backbones. Tables

Model Mode F1 BA AUPRC AUROC

DeBERTa-v3-large
Pre-trained 0.28 0.67 0.30 0.84

FPFT 0.82 0.88 0.92 0.99

BART-large
Pre-trained 0.23 0.66 0.35 0.84

FPFT 0.77 0.85 0.80 0.96

RoBERTa-large
Pre-trained 0.19 0.62 0.29 0.77

FPFT 0.84 0.92 0.88 0.99

Llama-3.2-3B
Pre-trained 0.00 0.50 0.10 0.51

FPFT 0.74 0.82 0.67 0.85

Llama-3.1-8B
Pre-trained 0.00 0.50 0.07 0.55

FPFT 0.38 0.66 0.37 0.77

Gemma-2-2B
Pre-trained 0.09 0.53 0.12 0.71

FPFT 0.44 0.70 0.40 0.77

Gemma-2-9B
Pre-trained 0.28 0.60 0.15 0.64

FPFT 0.48 0.70 0.41 0.79

Phi-3.5-mini
Pre-trained 0.17 0.63 0.20 0.65

FPFT 0.73 0.82 0.68 0.93

Phi-3.5-MoE
Pre-trained 0.22 0.60 0.21 0.62

FPFT 0.84 0.89 0.86 0.95
GPT-4o Pre-trained 0.32 0.76 0.28 0.80

Table 1: Factuality detection results of pre-trained and
FPFT encoders and LMs under NLI paradigm

Model Mode F1 BA AUPRC AUROC

DeBERTa-v3-large
Pre-trained 0.37 0.62 0.21 0.59

FPFT 0.92 0.95 0.92 0.98

BART-large
Pre-trained 0.34 0.52 0.28 0.64

FPFT 0.91 0.96 0.92 0.98

RoBERTa-large
Pre-trained 0.36 0.61 0.36 0.67

FPFT 0.92 0.96 0.94 0.99

Llama-3.2-3B
Pre-trained 0.19 0.51 0.24 0.49

FPFT 0.86 0.92 0.91 0.97

Llama-3.1-8B
Pre-trained 0.18 0.48 0.19 0.53

FPFT 0.88 0.92 0.85 0.95

Gemma-2-2B
Pre-trained 0.03 0.46 0.14 0.39

FPFT 0.86 0.93 0.88 0.97

Gemma-2-9B
Pre-trained 0.28 0.46 0.16 0.42

FPFT 0.74 0.89 0.82 0.95

Phi-3.5-mini
Pre-trained 0.31 0.50 0.14 0.39

FPFT 0.91 0.95 0.92 0.98

Phi-3.5-MoE
Pre-trained 0.32 0.54 0.18 0.53

FPFT 0.91 0.95 0.89 0.98
GPT-4o Pre-trained 0.31 0.51 0.19 0.52

Table 2: Causality detection results of pre-trained and
FPFT encoders and LMs under NLI paradigm

1 and 2 present the performance of pre-trained and
FPFT backbones in terms of F1 score, balanced ac-
curacy (BA) (Utama et al., 2022), the area under the
precision-recall curve (AUPRC), and the area un-
der the receiver operating characteristic curve (AU-
ROC), ensuring a robust comparison in the scenario

213



of class imbalance (Yuan et al., 2022). Additionally,
we adopt statistical tests to demonstrate the effec-
tiveness of NLI as a detection paradigm. We collect
P ′
e for reasoning points with and without factual or

causal errors and apply the Wilcoxon rank-sum test
(Wilcoxon, 1947). The null hypothesis assumes no
difference in P ′

e between the two groups, while the
alternative hypothesis asserts that sentences con-
taining errors exhibit lower P ′

e. A p-value below
0.05 rejects the null hypothesis and adopts the alter-
native hypothesis, indicating that NLI, powered by
a certain backbone, has statistically significant dis-
tinguishability at the 95% confidence level. Figure
2 shows the entailment probability distribution of
pre-trained and FPFT models across the two tasks.
The red lines represent reasoning points containing
errors, while the blue lines denote those without
errors. Each subplot displays results for a specific
backbone, with corresponding p-values shown at
the top. The first two rows present results from pre-
trained models on factuality and causality detection
tasks, respectively and the bottom two rows show
results from FPFT models on the two tasks. The
statistically significant p-values demonstrate that
NLI is an effective paradigm for distinguishing
sentences containing factual or causal errors in
both pre-trained and fine-tuning settings.

Second, we aim to compare the discriminabil-
ity of different backbone models. We employ the
same rank-sum test for this comparison, conduct-
ing separate tests on sentences with and without
errors. For sentences containing factual or causal
errors, the null hypothesis assumes no difference
in P ′

e between two backbones, B1 and B2, while
the alternative hypothesis posits that P ′

e from B1 is
lower than that from B2. A p-value below 0.05 sup-
ports the alternative hypothesis, indicating that B1

outperforms B2 in identifying erroneous sentences.
For sentences without factual or causal errors, the
null hypothesis again assumes no difference in P ′

e

between B1 and B2, while the alternative hypoth-
esis asserts that P ′

e from B1 is greater than that
from B2. A p-value below 0.05 supports the alter-
native hypothesis, demonstrating that B1 excels in
classifying error-free reasoning sentences.

Due to space constraints, we present capability
comparisons in factuality detection on reasoning
points containing factual errors under both pre-
trained and fine-tuning settings, and comprehen-
sive details are available in Appendix C. The color
indicates the p-value from a pairwise comparison
between the model in the column and the model in

Figure 3: Pairwise comparison of factuality detection
on erroneous reasoning points in the pre-trained setting

Figure 4: Pairwise comparison of factuality detection
on erroneous reasoning points in the FPFT setting

the row. A significant p-value illustrates that the
column model significantly outperforms the row
model. Figure 3 reveals that encoders outperform
LMs in 17 out of 21 cases under the pre-trained
setting. Figure 4 shows that encoders outperform
LMs in 15 out of 18 cases under the FPFT setting.
Under the pre-trained setting, GPT-4o demon-
strates consistent superiority over both encoders
and other LMs in factual error detection, align-
ing with its status as the SOTA model. However, its
superiority does not extend to causal error detection
(Appendix C). These results suggest that, despite
the general superiority and widespread adoption
across NLP tasks, LMs achieve performance in-
ferior to that of encoders in certain scenarios.
Laban et al. (2023) and Jin et al. (2024) report simi-
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Figure 5: P -value difference in detection capability of
pre-trained and FPFT models

lar findings that LMs, despite having several orders
of magnitude more parameters than pre-trained en-
coders, achieve comparable performance across
multiple benchmarks. Gao et al. (2023) demon-
strate that ChatGPT, despite being one of the most
well-aligned LMs, performs poorly in causal rea-
soning due to bias introduced during its upgrading
training stages. Although increasing the size of OA
LMs generally leads to improved performance, as
reported by Laban et al. (2023), we do not observe
emergent detection capabilities in our experiments.
A potential explanation is that such abilities tend
to emerge only in models exceeding 100 billion
parameters from the same family (Paul et al., 2024;
Kojima et al., 2022). Due to computational con-
straints, we did not test OA LMs of this scale. In
addition, the SOTA LMs like GPT-4 exhibit rela-
tively weak performance on causal understanding
compared to other natural language understanding
tasks (Wang et al., 2023; Romanou et al., 2023;
Paul et al., 2024; Liu et al., 2024b), and do not
significantly outperform encoders.

Third, we perform fine-tuning to compare the
performance of pre-trained versus fine-tuned back-
bones. We use the same rank-sum test and Figure 5
reports the p-value differences between pre-trained
and FPFT models. Smaller p-values indicate bet-
ter discriminability; therefore, a positive difference,
where the p-value of the pre-trained model is higher
than that of the FPFT model, suggests that fine-
tuning enhances the model’s detection capability.
The results show that all models exhibit reduced
p-values after FPFT, confirming the effectiveness
of fine-tuning in improving encoders’ and LMs’
detection performance of factual and causal issues.

Figure 6: P -value difference in self-evaluation bias
between FPFT and pre-trained models

Lastly, we investigate whether fine-tuning can
mitigate the self-evaluation bias exhibited by LMs,
whereby they tend to classify their own erroneous
reasoning or that of models within the same family
but with different parameter sizes as correct (Zheng
et al., 2023). To quantify this bias, we apply the
rank-sum test to compare P ′

e assigned to erroneous
proprietary reasoning versus erroneous reasoning
from other models. The null hypothesis posits no
difference of P ′

e between the two groups, while the
alternative hypothesis suggests that P ′

e assigned to
erroneous proprietary reasoning is higher than that
for reasoning generated by other LMs, revealing
that LMs are less capable of detecting errors in their
own or closely related outputs compared to those
from other LMs. Based on the computed p-values
from pre-trained and FPFT LMs, Figure 6 presents
the p-value differences between FPFT models and
their pre-trained counterparts. A positive difference
implies that the p-value of self-evaluation bias is
higher in the FPFT model than in the pre-trained
model, suggesting that fine-tuning effectively mit-
igates LMs’ self-evaluation bias. The Llama fam-
ily is excluded from this comparison due to their
pre-trained versions’ near-zero discriminability.

6 Conclusions

Our study investigates factual and causal error de-
tection in financial analysis by LMs. We adopt
NLI as the detection paradigm supported by both
encoders and LMs. Our experiments show that
while LMs outperform encoders in many financial
NLP tasks, users should realize their potential dis-
advantages relative to encoders as well as their
susceptibility to biases when evaluating proprietary
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reasoning. Also, practitioners are advised, although
pre-trained models show certain ability, to fine-tune
models when resources permit, as it enhances dis-
criminability and mitigate self-evaluation bias.

Limitations

First, we generated 1,872 reasoning points from
responses of 3 LMs to 50 positive and 50 negative
cases in a public dataset. To further validate our
findings, future experiments should extend to ad-
ditional tasks, a wider range of LMs, and diverse
NLI backbone models. Second, the results indicate
that LMs exhibit relatively weak performance com-
pared to pre-trained encoders in certain scenarios,
likely due to the absence of prompt engineering
and reliance solely on the strategy of comparing
response probabilities of "Yes" and "No" (Lattimer
et al., 2023). Future work will explore prompt
engineering to improve detection accuracy of pre-
trained LMs (Shukla et al., 2025). Third, we do
not conduct a thorough evaluation against top pro-
fessionals, but for time-sensitive applications, AI
models hold a clear advantage since human experts
cannot process thousands of pieces of information
within seconds. Last, we do not examine detection
methods such as keyword-based approaches, and
future work will evaluate whether NLI offers mean-
ingful improvements over these simpler methods.

Ethics statement

This study investigates the factual and causal er-
rors in the reasoning process of LMs within the
financial domain. We demonstrate that NLI is a
computationally efficient detection paradigm. Our
results indicate that its current performance, includ-
ing leveraging LMs as backbones, remains subop-
timal. This aligns with findings by Lasheras and
Pinheiro (2025) that even advanced models such
as GPT-4o exhibit limited capability in causal rea-
soning. Additionally, most existing benchmarks
for factuality and causality detection are built on
English tasks and datasets, often overlooking the
pragmatic differences and cultural nuances inherent
in other languages (Lasheras and Pinheiro, 2025).
Therefore, users are recommended to conduct thor-
ough evaluations before deploying NLI-based de-
tection backbones in real-world applications.

Disclaimer

This paper is provided solely for informational pur-
poses as an academic contribution by the authors

to the research community and does not represent,
reflect, or constitute the views, policies, positions,
or practices of American Express or its affiliates.
Nothing in this paper should be cited or relied upon
as evidence of, or support for, the business views,
policies, positions, or practices of American Ex-
press or its affiliates.
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A PEFT results

Tables 3 and 4 show PEFT results for both en-
coders and LMs in detecting factual and causal
issues, respectively. With the exception of Llama-
3.2-3B and Gemma-2-9B in factuality and causal-
ity, LoRA consistently outperforms LLFT. Notably,
these two exceptional models exhibit consistent
behavior across both tasks, suggesting that LoRA
struggles to identify more effective parameters than
those in the final layer in some scenarios.

Model Mode F1 BA AUPRC AUROC

DeBERTa-v3-large
LoRA 0.81 0.91 0.87 0.98
LLFT 0.19 0.76 0.32 0.85

BART-large
LoRA 0.79 0.89 0.87 0.98
LLFT 0.45 0.79 0.59 0.93

RoBERTa-large
LoRA 0.85 0.94 0.89 0.99
LLFT 0.26 0.79 0.40 0.88

Llama-3.2-3B
LoRA 0.11 0.64 0.25 0.69
LLFT 0.38 0.82 0.28 0.71

Llama-3.1-8B
LoRA 0.52 0.86 0.42 0.93
LLFT 0.15 0.66 0.19 0.76

Gemma-2-2B
LoRA 0.46 0.73 0.33 0.88
LLFT 0.22 0.58 0.21 0.82

Gemma-2-9B
LoRA 0.35 0.75 0.14 0.71
LLFT 0.53 0.79 0.49 0.82

Phi-3.5-mini
LoRA 0.37 0.83 0.51 0.92
LLFT 0.16 0.64 0.27 0.66

Phi-3.5-MoE
LoRA 0.30 0.83 0.27 0.83
LLFT 0.14 0.64 0.18 0.69

Table 3: Factuality detection results of PEFT models

B Position bias of LMs

Prior studies have shown that LMs exhibit position
bias when making inferences involving swapped
answer positions (Zheng et al., 2023). In our con-
text, position bias refers to the effect of present-
ing prompts in the order of "Yes" or "No" versus
"No" or "Yes". To assess the position bias, we per-
form a chi-squared test on the decisions made by
pre-trained models across all samples under two

Model Mode F1 BA AUPRC AUROC

DeBERTa-v3-large
LoRA 0.89 0.95 0.91 0.98
LLFT 0.37 0.62 0.22 0.60

BART-large
LoRA 0.85 0.93 0.91 0.98
LLFT 0.57 0.80 0.73 0.90

RoBERTa-large
LoRA 0.89 0.96 0.89 0.99
LLFT 0.43 0.68 0.42 0.72

Llama-3.2-3B
LoRA 0.30 0.50 0.18 0.49
LLFT 0.35 0.59 0.28 0.63

Llama-3.1-8B
LoRA 0.56 0.81 0.37 0.77
LLFT 0.31 0.51 0.22 0.55

Gemma-2-2B
LoRA 0.07 0.49 0.27 0.70
LLFT 0.04 0.48 0.22 0.61

Gemma-2-9B
LoRA 0.07 0.47 0.21 0.55
LLFT 0.29 0.55 0.21 0.56

Phi-3.5-mini
LoRA 0.30 0.54 0.17 0.48
LLFT 0.27 0.47 0.15 0.42

Phi-3.5-MoE
LoRA 0.45 0.68 0.22 0.58
LLFT 0.32 0.56 0.19 0.55

Table 4: Causality detection results of PEFT models

prompt orders. The null hypothesis posits no signif-
icant difference between the two variants, while the
alternative hypothesis suggests a significant differ-
ence. The results indicate that, with the exception
of Llama-3.2-3B in factuality detection, and Llama-
3.1-8B in both factuality and causality detection,
all other models exhibit p-values less than 0.01.
This provides strong statistical evidence for the
presence of position bias. It is also worth noting
that the absence of bias in Llama is attributable
to its limited capability, as it generates "No" for
nearly all samples, resulting in no variation.

To address the position bias, the reported results
using either average voting or veto voting across
these two prompt variants. For the selection of
voting methods, we adopt a heuristic approach:
when a model’s output is highly skewed toward an
answer (i.e., 95% of responses favor one option),
we apply veto voting to ensure that the minority is
better represented and to encourage output diversity.
For outputs that do not exceed this threshold, we
use average voting to balance positional effects.

C Pairwise comparison

In addition to the 2 comparisons in the main text,
we provide heatmaps of pairwise comparisons
across the remaining 6 scenarios, defined by the
combination of setting (pre-trained vs. FPFT), task
(factuality vs. causality), and issue (true vs. false).
A cell with a significant p-value indicates that the
column model outperforms the row model.
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Figure 7: Pairwise comparison of factuality detection
on correct reasoning points in the pre-trained setting

Figure 8: Pairwise comparison of factuality detection
on correct reasoning points in the FPFT setting

Figure 9: Pairwise comparison of causality detection on
correct reasoning points in the pre-trained setting

Figure 10: Pairwise comparison of causality detection
on correct reasoning points in the FPFT setting

Figure 11: Pairwise comparison of causality detection
on erroneous reasoning points in the pre-trained setting

Figure 12: Pairwise comparison of causality detection
on erroneous reasoning points in the FPFT setting
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