
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 19735–19746
November 4-9, 2025 ©2025 Association for Computational Linguistics

Search Wisely: Mitigating Sub-optimal Agentic Searches By Reducing
Uncertainty

Peilin Wu1∗, Mian Zhang1∗, Xinlu Zhang2, Xinya Du1, Zhiyu Zoey Chen1

1Department of Computer Science, The University of Texas at Dallas,
2Department of Computer Science, University of California, Santa Barbara,
{peilin.wu, mian.zhang, zhiyu.chen2}@utdallas.edu

Abstract

Agentic Retrieval-Augmented Generation
(RAG) systems enhance Large Language Mod-
els (LLMs) by enabling dynamic, multi-step
reasoning and information retrieval. However,
these systems often exhibit sub-optimal
search behaviors like over-search (retrieving
redundant information) and under-search
(failing to initiate retrieval for necessary
information), which hinder efficiency and
reliability. This work formally defines and
quantifies these behaviors, revealing their
prevalence across multiple QA datasets
and agentic RAG systems (e.g., one model
could have avoided searching in 27.7% of its
search steps). Furthermore, we demonstrate
a crucial link between these inefficiencies
and the models’ uncertainty regarding their
own knowledge boundaries, where response
accuracy correlates with model’s uncertainty
or confidence in its search decisions. To
address this, we propose β-GRPO, a rein-
forcement learning-based training method that
incorporates confidence threshold to reward
high-certainty search decisions. Experiments
on seven QA benchmarks show that β-GRPO
enable a 3B model with better agentic RAG
ability, outperforming other strong baselines
with a 4% higher average exact match score,
with lower over-search and under-search rate1.

1 Introduction

Recent advances in Large Language Models
(LLMs) have propelled their use in information-
intensive tasks such as question answering and
knowledge synthesis, especially when paired with
retrieval capabilities (Wang et al., 2025b). Agen-
tic Retrieval-Augmented Generation (RAG) frame-
works (Jin et al., 2025a; Song et al., 2025a; Chen
et al., 2025) push this further by empowering LLMs
to perform multi-step reasoning (Li et al., 2025)
∗Equal contribution
1We have release our code for training at https://github.
com/mianzhang/Search-R1.

and dynamically decide when and what to retrieve
(Guan et al., 2025), closely emulating sophisticated
human research processes. However, despite these
advancements, current agentic RAG systems of-
ten struggle with efficiency and reliability due to
sub-optimal search behaviors (Shen et al., 2024;
Qian et al., 2025; Wang et al., 2025a). In particu-
lar, two major challenges: 1) over-search, where
the model retrieves information it already knows ,
and 2) under-search, where it fails to seek external
knowledge when necessary, have been identified as
critical obstacles that degrade performance.

In this work, we conduct a thorough quantita-
tive analysis to identify and measure the preva-
lence of over-search and under-search. Our exper-
iments on several multi-hop QA datasets (2Wiki-
MultiHopQA (Ho et al., 2020), Bamboogle (Press
et al., 2023), HotpotQA (Yang et al., 2018), and
MuSiQue (Trivedi et al., 2022)) using contempo-
rary LLMs like R1-Searcher (Song et al., 2025a)
and Search-R1 (Jin et al., 2025a) reveal significant
instances of sub-optimal search. We also further
explore the connection between these behaviors
and a model’s awareness of its knowledge bound-
aries, finding that candidate responses generated
with higher certainty about the necessity of a search
query tend to achieve better accuracy.

To address this, we introduce β-GRPO, a variant
of GRPO (Shao et al., 2024) where the confidence
of search calls are modeled as the minimal token
probability of the search queries produced by the
model and a confidence threshold is incorporated
into the reward function, only encouraging gener-
ations with high-certainty search calls leading to
correct answer. Through extensive experiments
on seven QA benchmarks, we show that β-GRPO
enables a 3B model with better agentic RAG abil-
ity compared to strong baselines with a 4% higher
average exact match score and 1.21% fewer over-
searches and 7.33% fewer under-searches.

19735

https://github.com/mianzhang/Search-R1
https://github.com/mianzhang/Search-R1


2 Identifying Sub-optimal Search

To investigate the prevalence of over-search and
under-search, we conduct three experiments with
the test sets of four widely recognized multihop
QA datasets: 2WikiMultiHopQA (Ho et al., 2020),
Bamboogle (Press et al., 2023), HotpotQA (Yang
et al., 2018), and MuSiQue (Trivedi et al., 2022).
We mainly investigate two recent LLMs that inter-
act with search engines: R1-Searcher (Song et al.,
2025b) and Search-R1 (Jin et al., 2025b). We adopt
the version trained based on Qwen2.5-7B (Qwen
et al., 2025) for a fair comparison.

2.1 Formal Definition of Under-search &
Over-search

Formally, let an LLM agent’s interaction for a ques-
tion be a sequence of steps T = {s1, s2, . . . , sN}.
Each step st comprises a reasoning component rt.
If the model decides to retrieve information, the re-
trieval step sRt = (rt, qt, ct) includes a search sub-
query qt and the retrieved context ct = search(qt).
The sub-answer at for this step sRt is typically de-
rived using ct and reflected in rt+1. If the model
does not retrieve, the non-retrieval step sNR

t = (rt)
relies on the existing context {s1, s2, . . . , st−1}
and the model’s internal knowledge M to derive at
reflected in rt. Let a∗t be the ground-truth answer
step st. Over-search occurs if a retrieval step sRt ’s
answer at could have been derived from M and
{s1, s2, . . . , st−1} only. Under-search occurs if a
non-retrieval step sNR

t leads to at ̸= a∗t .

2.2 Step-wise Analysis
To directly measure whether a search step was truly
necessary, we separate all outputs into individual
steps and identify if each of them matches with
the definition of over-search and under-search as
described in Section 2.1. For over-search rate mea-
surement, we prompted the model to answer sub-
queries from all the steps with search behavior us-
ing only their internal knowledge and the preceding
context. For under-search, we examine steps with-
out searching and evaluate the correctness of the
generated information. A detailed explanation of
the analysis pipeline is provided in Appendix A.1
with a flow chart in Figure 1.

Capability to Answer from Memory The re-
sults in Figure 2 show that a significant portion
of search actions were instances of over-search.
R1-Searcher could have answered correctly with-
out searching in 20.2% of its search steps over-

Original 
Output Steps

Without 
search

Modify the 
output by 
removing the 
content after 
reasoning

Compare the 
original and re-
generated step

External verifier 
(larger LLM) check 
the correctness

Over-search

Different
answer

Correct usage 
of search

Correct 
decision 
of not 
search

Incorrect
Under-search

With
search

Extract 
Steps via 
LLM

Re-
generate 
via LLM

Correct

Equivalent 
answer

Figure 1: Flowchart of analysis pipeline for over-search
and under-search.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 Overall
O

ve
r-s

ea
rc

h 
Ra

te
 (%

)

Num. of Search

R1-Searcher Search-R1

Figure 2: Percentage for all search steps that can be
answered without performing searches of R1-Searcher
and Search-R1 on 4 datasets combined, with respect to
the number of searches of each test sample.

Figure 3: Error rate for all non-search steps of R1-
Searcher and Search-R1 on 4 datasets combined, with
respect to the number of searches of each test sample.

all, while Search-R1 could have done so in 27.7%
of its search steps. This highlights a substantial
room for efficiency improvement. Figure 2 also
shows the over-search rate for each subset of test
samples grouped by the total number of search
steps an agent used to solve an entire problem in-
stance. The results per each subset indicates that
over-search is a persistent issue irrespective of the
overall search complexity adopted by the model
for a given problem. Despite the step-wise analy-
sis, we also conduct an analysis on comparing the
number of searches versus the pre-given number of
hops from the dataset in Appendix A.2, which also
supports our conclusion.

19736



Model Config Prob. Group 2Wiki Bamboogle HotpotQA Musique

Base + PPO
Max 0.184 0.096 0.152 0.038
Min 0.168 0.096 0.114 0.038

Base + GRPO
Max 0.249 0.112 0.327 0.085
Min 0.234 0.104 0.289 0.056

Instruct + PPO
Max 0.333 0.250 0.262 0.138
Min 0.297 0.250 0.262 0.116

Instruct + GRPO
Max 0.402 0.125 0.343 0.116
Min 0.402 0.063 0.302 0.116

Table 1: Cover EM scores on multi-hop QA datasets,
comparing groups of responses with higher vs. lower
uncertainty (derived from average of minimum proba-
bility of search query tokens) on knowledge boundary.
Bold indicates instances where the Max Prob. group
achieved a strictly better performance.

Error Rate in Non-Search Steps Figure 3 ana-
lyzes the error rate in non-search steps, which can
be seen as the rate of under-search. Both mod-
els exhibited high error rates (R1-Searcher: 63%,
Search-R1: 33.98%) in non-search steps, suggest-
ing a strong tendency towards under-search leading
to incorrect reasoning or hallucination. For R1-
Searcher, this error rate was particularly high with
fewer total searches (over 72% if no searches were
made). For Search-R1, errors in non-search steps
remained notable even when performing many
searches overall (e.g., 48.70% for 4-search prob-
lems), possibly due to decision complexity in later
stages. (See Figure 3 for detailed error rates by
search step count).

2.3 Sub-optimal Search & Knowledge
Boundary

The observed tendencies towards over-search and
under-search, combined with our definition, sug-
gest a core deficiency in how agentic RAG models
perceive knowledge boundaries—the limits of what
they know versus what they need to find out. To
illustrate the link between better knowledge bound-
ary awareness and improved outcomes, we analyze
the performance of 4 Qwen2.5-3B based Search-R1
models (including PPO and GRPO trained, Base
and Instruct variants). We generate 5 candidate
responses for each question and group these re-
sponses based on each output’s minimum proba-
bilities within all the search query tokens in a
trajectory as the indication of certainty on knowl-
edge boundary.

As shown in Table 1, candidate responses gener-
ated with lower intrinsic uncertainty generally lead
to higher final accuracy (as high as 6% on Bam-
boogle and 3.8% on HotpotQA), across different
training methods and base models. This suggests
that when the model exhibits higher confidence

(lower uncertainty) in its generation path, it is more
likely to be on a correct trajectory. Therefore, im-
proving an agent’s ability to accurately gauge its in-
ternal knowledge state—effectively sharpening its
knowledge boundary detection and reducing undue
uncertainty—is a crucial step towards mitigating
both over-search and under-search, thereby enhanc-
ing the overall efficiency and reliability of agentic
RAG systems. Our approach is motivated by this
principle, aiming to train agents to better assess
and reduce uncertainty at each search decision.

3 Approach

Current RL powered agentic RAG methods (Jin
et al., 2025a; Song et al., 2025a; Chen et al.,
2025) do not explicitly model the knowledge self-
awareness during the training process, resulting in
generations with low confidence, which are not
desired and shown to easily contain wrong an-
swer compared to generations with higher confi-
dence (Table 1). To this end, we propose a simple
yet effective variant of GRPO (Shao et al., 2024),
β-GRPO, which leverages the uncertainty of the
search query spans for more effective rewarding
and training.
Agentic RAG with RL (Search-R1 (Jin et al.,
2025a)) Given a question, we prompt the pol-
icy model to explicitly reason enclosed within
<think></think> tags about whether to use
an off-the-shelf search tool, and, if so, to generate a
search query within <search></search> tags.
The search tool then returns relevant documents in-
side <information></information> tags.
Once obtaining new information, the policy
model can either continue searching for addi-
tional information or provide a final answer within
<answer></answer> tags. The instruction
given to the policy model could be found in
Appendix A.3. If the final answer match the
groundtruth, the response will be given a reward 1,
otherwise 0. And the policy are updated via policy
gradient methods like GRPO (Shao et al., 2024).
β-GRPO Motivated by the observation that roll-
outs with low-confidence search calls are more
likely to be incorrect, we incorporate model con-
fidence into the RL reward process. Specifically,
for each rollout containing search calls (enclosed
within <search></search> tags), we extract
the probabilities of the search tokens including the
tags and use the minimum probability among them
as a measure of the model confidence for the search

19737



Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Average

Direct Prompting 0.106 0.288 0.108 0.149 0.244 0.020 0.024 0.134
CoT Prompting 0.023 0.032 0.005 0.021 0.021 0.002 0.000 0.015
IRCoT 0.111 0.312 0.200 0.164 0.171 0.067 0.240 0.181
Search-o1 0.238 0.472 0.262 0.221 0.218 0.054 0.320 0.255
RAG 0.348 0.544 0.387 0.255 0.226 0.047 0.080 0.270
SFT 0.249 0.292 0.104 0.186 0.248 0.044 0.112 0.176
R1 0.226 0.455 0.173 0.201 0.268 0.055 0.224 0.229
Search-R1 0.406 0.587 0.435 0.284 0.273 0.049 0.088 0.303
Search-R1-GRPO 0.432 0.578 0.413 0.294 0.271 0.067 0.112 0.309
Search-R1-β-GRPO (ours) 0.468 0.625 0.449 0.334 0.304 0.086 0.144 0.344

Table 2: Main results. The best performance is set in bold. †/⋆ represents in-domain/out-domain datasets.

calls within a rollout (Jiang et al., 2023). We then
set a confidence threshold β: only rollouts with
the confidence of search calls (if exist) above β
and correct answers receive a reward of 1, other-
wise 0. Formally, for a given reasoning trajectory
T = s1, s2, ..., sN as described in Section 2.1, with
predicted final answer af , ground-truth final an-
swer a∗f , and confidence C(T ) the reward R(T ) is
calculated as Equation 1,

R(T ) =

{
1, if af = a∗f ∧ C(T ) > β

0, otherwise
(1)

where C(T ) is the confidence of trajectory T
calculated as Equation 2,

C(T ) = min
sRt ∈T,w∈qt

P (w) (2)

where w is the token that makes up the search
query qt for a given retrieval step and P (w) is the
probability assigned to w.

4 Experiments

Datasets We follow Search-R1 (Jin et al., 2025a)
using a mixture of the NQ (Kwiatkowski et al.,
2019) and HotpotQA (Yang et al., 2018) training
sets for model training. For evaluation, we con-
sider seven QA benchmarks, including general QA
datasets, NQ, TriviaQA (Joshi et al., 2017), and
PopQA (Mallen et al., 2023), as well as multi-hop
QA datasets: HotpotQA, 2WikiMultiHopQA (Ho
et al., 2020), Bamboogle (Press et al., 2023), and
MuSiQue (Trivedi et al., 2022). Exact match (EM)
is used as our main evaluation metric.
Baselines We compare our method with several
baselines: methods that do not use a retriever
including direct prompting, Chain-of-Thought

(CoT) (Wei et al., 2022) prompting, supervised fine-
tuning (SFT) (Chung et al., 2022), and reinforce-
ment learning-based fine-tuning (R1) (DeepSeek-
AI et al., 2025); methods that use a retriever but
do not perform agentic retrieval, such as Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
and IRCoT (Trivedi et al., 2023); and finally, agen-
tic retrieval methods, including Search-o1 (Li et al.,
2025) and Search-R1 (Jin et al., 2025a).

Based on our preliminary experiments, we found
that training the policy model from scratch us-
ing our confidence-based rewards prevents it from
learning effective search behavior. Therefore, we
use Qwen2.5-3B (Qwen et al., 2025) and initial-
ize it with the parameters from Search-R1. Then
we continue training using GRPO with different
reward functions: one using the original answer-
based reward (Search-R1-GRPO), and the other us-
ing our proposed confidence-based reward (Search-
R1-β-GRPO). We set the value of β as 0.4 accord-
ing to the analysis in Section 5. Detailed training
configurations could be found in Appendix A.5.

Results As shown in Table 2, agentic search with
RL training (Search-R1*) significantly outperforms
other baselines, indicating that incorporating search
through autonomous reasoning and RL training is
more effective than non-agentic or prompting meth-
ods. Our model, Search-R1-β-GRPO, achieves
the highest overall average EM score across the
datasets. Figure 4 in Appendix A.5 shows the train-
ing rewards for Search-R1-GRPO and Search-R1-
β-GRPO. We observe that the rewards for Search-
R1-GRPO fluctuate and do not show clear improve-
ment over training steps. In contrast, Search-R1-
β-GRPO achieves higher and more stable rewards.
This improved performance suggests that our pro-
posed reward assignment based on the confidence
of search calls within a rollout is effective.

19738



Baseline Model (Search-R1-GRPO) Our Model (Search-R1-β-GRPO)

Case 1: Mitigating Over-search for common knowledge questions

Question: Who was the first president of the United States? Question: Who was the first president of the United States?
Generation: <think> The user is asking a question about a historical
figure. To ensure accuracy, I will perform a search. </think> <search>
first president of the United States </search>

Generation: <think> The user is asking for the first president of the
United States. This is a well-established fact stored in my parametric
knowledge. I am highly confident in the answer and do not need to
perform an external search. </think>

<information>Doc 1: ... Doc 2: ... </information> <answer> George Washington </answer>
<answer> George Washington </answer>
Correctness: Correct Correctness: Correct

Case 2: Mitigating Under-search for knowledge-intensive questions

Question: In what Country is Sul America Esporte Clube in? Question: In what Country is Sul America Esporte Clube in?
Generation: <think> The question asks for the country of Sul America
Esporte Clube. The name "Sul America" sounds Portuguese or Spanish,
suggesting a location in South America. It could be in Argentina or
Colombia. I will make a guess based on common football leagues.
</think>

Generation: <think> The user is asking for the location of a specific
sports club, "Sul America Esporte Clube". This is a niche entity, and my
internal knowledge is likely insufficient. To provide an accurate answer,
I must perform a search. </think> <search> country of Sul America
Esporte Clube </search>

<answer> Argentina </answer> <information> Doc 1: ... Doc 2: ... </information>
<answer> Brazil </answer>
(Confidence: 0.99)

Correctness: Incorrect Correctness: Correct

Table 3: Case Study comparing search behaviors. The top pair demonstrates how our model avoids an unnecessary
search (over-search) for a common fact. The bottom pair shows our model correcting a failure to search (under-
search), preventing hallucination for a niche query. Retrieved documents are omitted or summarized for clarity.

5 Analysis

Ablation on β & Case Study Following Jiang
et al. (2023), we experiment with three confidence
threshold values: 0.2, 0.4, and 0.6. The aver-
age EM scores are 0.341, 0.344 and 0.336 with
a threshold of 0.4 yields the best result. More-
over, we find 115 test cases from the multi-hop QA
datasets where Search-R1-β-GRPO produces a cor-
rect answer with higher confidence, while Search-
R1-GRPO gives an incorrect answer. These cases
clearly benefit from the increased model confidence
enabled by the proposed β-GRPO.
Under-searches & Over-searches We also mea-
sure the rate of over-search and under-search of
our Search-R1-β-GRPO and the baseline Search-
R1-GRPO trained based on Qwen2.5-3B with the
methods in Section 2.2. Compared with Search-
R1-GRPO, which has overall 21.10% over-search
rate and 42.04% under-search rate%, our Search-
R1-β-GRPO achieves 19.89% over-search rate and
34.71% under-search rate, which are lower than the
baseline method. This shows that our method effec-
tively reduces both types of sub-optimal searches.
Case Study Our case study in Table 3 highlights
the model’s improved search decisions. For a sim-
ple question ("Who was the first president?"), the
baseline model performs an unnecessary search,
whereas our model confidently answers from its
internal knowledge. Conversely, when faced with

an obscure query ("In what Country is Sul America
Esporte Clube in?"), the baseline hallucinates an
incorrect answer. Our model correctly identifies
this knowledge gap, initiates a search, and provides
the accurate answer.

6 Conclusion

In this work, we formally define sub-optimal search
behaviors, over-search and under-search, in agentic
RAG systems. Our analysis showed these behav-
iors are widespread; for instance, one model could
have avoided searching in 27.7% of its search steps,
while another exhibited error rates as high as 63%
in non-search steps, indicating significant under-
searching. We established a link between these
inefficiencies and a model’s uncertainty about its
knowledge boundaries, finding that higher confi-
dence in search decisions correlates with better
accuracy. By introducing β-GRPO, a confidence-
aware policy gradient method, we enable a 3B
model with better agentic RAG ability than strong
baselines. This approach, which rewards only high-
certainty search decisions that lead to correct an-
swers, resulted in a 4% higher average exact match
score and notable reductions in both over-search
and under-search rates. Future work should ex-
plore more sophisticated and fine-grained reward
design on trajectory, with experiments on larger
size models.

19739



Limitations

We formally define and quantify sub-optimal
search behaviors in agentic RAG systems and pro-
pose β-GRPO to train agentic RAG models with
improved self-knowledge awareness. However,
we acknowledge that sub-optimal search behav-
iors, over-search and under-search, are persistent
challenges that require further investigation, es-
pecially in more open-ended tasks like deep re-
search (Alzubi et al., 2025). Additionally, due to
limited computational resources, we are unable to
train larger models and leave it for future work.

Acknowledgements

We thank the anonymous reviewers for their
thoughtful comments and suggestions. We are
also grateful to our colleagues and collaborators for
their insightful discussions and support throughout
this project.

References
Salaheddin Alzubi, Creston Brooks, Purva Chiniya,

Edoardo Contente, Chiara von Gerlach, Lucas Irwin,
Yihan Jiang, Arda Kaz, Windsor Nguyen, Sewoong
Oh, Himanshu Tyagi, and Pramod Viswanath. 2025.
Open deep search: Democratizing search with open-
source reasoning agents. arXiv [cs.LG].

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Fan Yang, Zenan Zhou, Weipeng
Chen, Haofen Wang, Jeff Z Pan, Wen Zhang, and
Huajun Chen. 2025. ReSearch: Learning to reason
with search for LLMs via reinforcement learning.
arXiv [cs.AI].

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. arXiv [cs.LG].

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z F Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,

Guangbo Hao, Guanting Chen, Guowei Li, H Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J L
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Pan-
pan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, R J Chen, R L Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S S Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W L Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X Q Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y K Li, Y Q Wang, Y X Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y X Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z Z Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. DeepSeek-R1: Incen-
tivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv [cs.CL].

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin,
Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and
Jie Zhou. 2025. Deeprag: Thinking to retrieval step
by step for large language models.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. arXiv [cs.CL].

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang,
Hamed Zamani, and Jiawei Han. 2025a. Search-R1:

19740

http://arxiv.org/abs/2502.01142
http://arxiv.org/abs/2502.01142
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580


Training LLMs to reason and leverage search engines
with reinforcement learning. arXiv [cs.CL].

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025b. Search-r1: Training llms to reason and
leverage search engines with reinforcement learning.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-Tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv [cs.CL].

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
questions: A benchmark for question answering re-
search. Trans. Assoc. Comput. Linguist., 7:453–466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-Tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive NLP tasks. arXiv [cs.CL].

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025. Search-o1: Agentic search-enhanced
large reasoning models. arXiv [cs.AI].

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Mądry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,

Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao

19741

http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/2503.09516


Zhong, Mia Glaese, Mianna Chen, Michael Jan-
ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,
Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. 2024. Gpt-4o system card.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi
Chen, Avirup Sil, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. 2025. Smart: Self-aware agent for tool
overuse mitigation.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,

Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y K Li, Y Wu, and
Daya Guo. 2024. DeepSeekMath: Pushing the limits
of mathematical reasoning in open language models.
arXiv [cs.CL].

Yuanhao Shen, Xiaodan Zhu, and Lei Chen. 2024.
SMARTCAL: An approach to self-aware tool-use
evaluation and calibration. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 774–
789, Miami, Florida, US. Association for Computa-
tional Linguistics.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025a. R1-searcher: Incentivizing the
search capability in LLMs via reinforcement learning.
arXiv [cs.AI].

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025b. R1-searcher: Incentivizing the
search capability in llms via reinforcement learning.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025a. Otc: Optimal
tool calls via reinforcement learning.

Liang Wang, Haonan Chen, Nan Yang, Xiaolong Huang,
Zhicheng Dou, and Furu Wei. 2025b. Chain-of-
retrieval augmented generation.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv [cs.CL].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. arXiv
[cs.CL].

19742

http://arxiv.org/abs/2410.21276
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
http://arxiv.org/abs/2502.11435
http://arxiv.org/abs/2502.11435
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2024.emnlp-industry.59
https://doi.org/10.18653/v1/2024.emnlp-industry.59
http://arxiv.org/abs/2503.05592
http://arxiv.org/abs/2503.05592
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
http://arxiv.org/abs/2504.14870
http://arxiv.org/abs/2504.14870
http://arxiv.org/abs/2501.14342
http://arxiv.org/abs/2501.14342


Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

19743

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259


A Appendix

A.1 Detailed Step-wise Analysis Procedure

To empirically measure the rates of over-search and
under-search, we conducted a detailed step-wise
analysis of the agent’s decision-making process.
The interactions of the agent are logged as a se-
quence of steps, where each step can involve in-
ternal reasoning (thinking), querying a search tool,
processing retrieved context, and generating an an-
swer. We define specific procedures to identify and
quantify each type of sub-optimal search behavior:

1. Step Extraction: We parse the agent’s in-
teraction log following the definition in Ap-
pendix 2.1. Each distinct thinking process is
a decision point and considered a step, typi-
cally delineated by <step> and </step> tags
(or a similar structured logging format). A
"search step" is identified as any step where all
three relevant operations—think (the model’s
reasoning), search (the search query issued),
context (the information retrieved). A "non-
search step" typically only consists of think-
ing. In this work specifically, the Step Extrac-
tion is done by prompting QwQ-32B (Qwen
et al., 2025) as we discover that reasoning
LLM typically perform better on such task.
An example of instruction for step extraction
is provided in Appendix A.4.

2. Extraction of Partial Input: For each identi-
fied search step, we reconstruct the input that
would have been available to the model be-
fore it decided to search. This is achieved by
taking the complete output generated by the
agent from the beginning of the interaction up
to and including the content of the think field
of the current search step.

3. Querying with Internal Knowledge for
Over-search Analysis: For over-search rate
measurement, the extracted partial output is
then appended with a specific instructional
prompt: "I will use my own knowledge to
answer this query and provide my answer
to this query enclosed in <query_answer>
</query_answer> tags." This combined text
serves as a new input to the original RL-tuned
model (e.g., Search-R1-β-GRPO and Search-
R1-GRPO), which is tasked with generating
an answer without performing any new search.

Model Dataset Search vs. Hops Correct (%) Incorrect (%) Sum (%)

Less 2.8 19 21.8
R1-Searcher Musique Match 21.8 45.8 67.6

More 1.8 8.8 10.6

Less 0 0 0
R1-Searcher Bamboogle Match 40.8 52.8 93.6

More 3.2 3.2 6.4

Less 1.8 7 8.8
Search-R1 Musique Match 12.4 27.6 40

More 8.8 42.4 51.2

Less 0.8 1.6 2.4
Search-R1 Bamboogle Match 28.8 28 56.8

More 12 28.8 40.8

Table 4: Comparison of the number of searches gener-
ated vs. annotated hops on Bamboogle and Musique
datasets. "More" indicates potential over-search as
number of searchers exceeds pre-defined optimal hops.
"Less" may indicate a potential under-search.

The over-search rate is then measured by com-
puting the percentage of steps that provide
equivalent answer (determined by QwQ-32B
in our analysis) for both with and without
searching, among all "search steps".

4. Generation of Reference Answer for Under-
search Analysis: For each identified non-
search step, the original query or sub-query
that the agent was attempting to answer at that
point is presented to a more powerful, state-
of-the-art language model (e.g., ChatGPT-4o
(OpenAI et al., 2024)) with recent knowledge
cutoff date. This model generates a "refer-
ence answer," which is assumed to be of high
quality. The reference answer obtained is com-
pared with the actual answer generated by the
agent for that non-search step. The under-
search rate is calculated as the proportion of
non-search steps where the agent’s answer
does not match (determined by QwQ-32B in
our analysis) the reference answer, quantify-
ing how often the agent fails to search when
doing so would have likely led to a more ac-
curate or complete answer.

A.2 Search Frequency vs. Optimal Hops

One indicator of potential over-search is when the
number of search queries generated by an agent
exceeds the optimal number of reasoning hops re-
quired to answer a question. A significantly higher
search count often points to redundant information
gathering. For this experiment, we only use the
test set from Bamboogle (Press et al., 2023) and
MuSiQue (Trivedi et al., 2022) as they are the only
two datasets providing pre-defined number of hops
for each test sample.

19744



R1-Searcher exhibits a tendency to perform
more searches than hops in 10.6% of Musique
cases and 6.4% of Bamboogle cases. Search-R1
shows a more pronounced tendency, with 51.2%
(Musique) and 40.8% (Bamboogle) of cases issu-
ing more searches than annotated hops. This result
suggests that models trained with different methods
do not inherently solve over-search and might even
exacerbate it under certain configurations if not
properly guided. While "Less" searches than hops
might indicate efficient reasoning or under-search,
the "More" category strongly suggests instances of
over-searching.

A.3 Instruction for Model Input

Answer the given question. You must con-
duct reasoning inside <think> and </think>
first every time you get new information.
After reasoning, if you find you lack some
knowledge, you can call a search engine by
<search> query </search>, and it will return
the top searched results between <informa-
tion> and </information>. You can search
as many times as you want. If you find no
further external knowledge needed, you can
directly provide the answer inside <answer>
and </answer> without detailed illustrations.
For example, <answer> Beijing </answer>.
Question: question.

A.4 Instruction for Step Extraction

Objective: Your task is to parse a complete
interaction log from a reasoning agent. Your
goal is to segment the log into a chronological
sequence of steps and structure the output for
each step into a consistent JSON format.

Core Methodology: A reasoning trajectory
is a sequence of steps, s1, s2, . . . , sN . Each
step, st, involves a reasoning component, rt.
The sub-answer, at, which is the conclusion of
step st, is reflected in the reasoning component
of the next step, rt+1. You must follow this
look-ahead method to determine the conclu-
sion for each step.

Key Definitions:

Search Step: A step where the agent uses
a search tool. It must include a

reasoning block (<think>), a search
query (<search>), and retrieved con-
text (<information>).

Non-Search Step: A step where the agent re-
lies only on its internal knowledge and
prior context. It typically only includes a
reasoning block (<think>).

Conclusion: The sub-answer or piece of in-
formation the agent generates or confirms
at the end of a step (st), which contributes
to the final answer.

Instructions:
1. Parse the entire interaction log into a

chronological sequence of steps. A new
step begins with each distinct reason-
ing block (e.g., content within <think>
tags).

2. For each step (st), extract the following
components:

• reasoning: The content from the
<think> block of the current step.

• query: The content from the
<search> block of the current step.
If not present, use null.

• information: The content from the
<information> block of the cur-
rent step. If not present, use null.

• conclusion: The specific sub-
answer (at) produced as a result of
the current step’s actions. Crucially,
you must identify this conclusion
by analyzing the reasoning block
of the following step (rt+1), where
it is first used or stated. For the
final step in the trajectory, the con-
clusion is the final answer itself.

3. For each step, construct a JSON object
containing the extracted components.

4. Present the final output as a sequence of
<step> blocks, with each block contain-
ing the JSON object for that step.

Required Output Format: Your entire out-
put must be a sequence of <step> blocks.

Example for a Search Step:
1 <step>
2 {

19745



0 25 50 75 100 125 150 175 200

Step

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475
R

ew
ar

d

Search-R1-GRPO
Search-R1- -GPRO (ours)

Figure 4: Training Rewards for Search-R1-GRPO and
Search-R1-β-GRPO.

3 "reasoning": "The user is asking
for the capital of France. I
should search for this
information to be certain.",

4 "query": "capital of France",
5 "information": "Paris is the

capital and most populous city of
France...",

6 "conclusion": "The capital of
France is Paris."

7 }
8 </step>

Example for a Non-Search Step:
1 <step>
2 {
3 "reasoning": "Now that I know the

capital is Paris, I can formulate
the final answer.",

4 "query": null,
5 "information": null,
6 "conclusion": "The final answer is

Paris."
7 }
8 </step>

A.5 Training Configuration & Rewards
We train Search-R1-GPRO and Search-R1-β-
GPRO for 200 steps, with a learning rate of 1e-6
and batch size of 512. For a question, we produce 5
generations with temperature of 1 to form a GPRO
group. For the search engine, for fair compari-
son, we also use 2018 Wikipedia dump (Karpukhin
et al., 2020) as the knowledge source and E5 (Wang
et al., 2022) as the retriever as Search-R1 and for
each search query, top-3 documents are returned.
Our training are conducted on two A100 GPUs.

19746


