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Abstract

As large language models continue to scale,
computational costs and resource consumption
have emerged as significant challenges. While
existing sparsification methods like pruning re-
duce computational overhead, they risk los-
ing model knowledge through parameter re-
moval. This paper proposes DSMoE (Dynamic
Sparse Mixture-of-Experts), a novel approach
that achieves sparsification by partitioning pre-
trained FFN layers into computational blocks.
We implement adaptive expert routing using
sigmoid activation and straight-through estima-
tors, enabling tokens to flexibly access differ-
ent aspects of model knowledge based on input
complexity. Additionally, we introduce a spar-
sity loss term to balance performance and com-
putational efficiency. Extensive experiments
on LLaMA models demonstrate that under
equivalent computational constraints, DSMoE
achieves superior performance compared to ex-
isting pruning and MoE approaches across lan-
guage modeling and downstream tasks, partic-
ularly excelling in generation tasks. Analysis
reveals that DSMoE learns distinctive layer-
wise activation patterns, providing new insights
for future MoE architecture design.

1 Introduction

Large Language Models(LLM) have demonstrated
remarkable performance across various down-
stream tasks(Touvron et al., 2023; Dai et al., 2022;
Anil et al., 2023; Biderman et al., 2023). How-
ever, as model sizes continue to expand, computa-
tional costs and resource consumption grow expo-
nentially. How to improve computational efficiency
while maintaining model performance has become
a pressing challenge(Cheng et al., 2024).
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At the algorithmic level, approaches to model
efficiency optimization generally follow two
paradigms: post-training compression and accel-
eration of dense models, or training of Mixture of
Experts (MoE) architectures. While compression
methods like pruning achieve efficiency through
permanent parameter removal(Ashkboos et al.,
2024; Ma et al., 2023; Frantar and Alistarh, 2023),
they may discard valuable knowledge and lack flex-
ibility in handling inputs of varying complexity.
Conversely, though MoE approaches effectively ex-
pand model capacity(Fedus et al., 2022; Dai et al.,
2024; Liu et al., 2024), traditional MoE typically
employs fixed activation patterns where each to-
ken can only access a predetermined number of
experts, lacking the ability to dynamically adjust
computation based on input complexity. Given
that the most widely used and effective founda-
tion models still maintain dense architectures (such
as LLaMA(Touvron et al., 2023), Qwen(Bai et al.,
2023)), we face a critical challenge: how to achieve
truly input-adaptive computation while preserv-
ing pre-trained knowledge, allowing models to dy-
namically adjust activated parameters according
to varying input complexity, thereby reaching an
optimal balance between computational efficiency
and model performance.

To address this challenge, we propose DSMoE,
a novel approach that partitions pre-trained FFN
layers into computational blocks and introduces
dynamic routing mechanisms. DSMoE fundamen-
tally differs from existing methods by preserving
the original model parameters and reorganizing
them into expert networks, while incorporating
adaptive routing mechanisms that enable dynamic
expert activation based on input complexity, rather
than fixed activation strategies. Through straight-
through estimator and sparsity loss design, DSMoE
enables the model to autonomously learn sparse ex-
pert activation patterns, achieving computational
resource allocation for inputs of varying complex-
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Figure 1: The Overview of DSMoE versus Traditional MoE Framework Architectures. The structure shown in the
figure is a simplified representation of the transformer backbone. We have simplified the FEN layer structure here;
the FFN layer also includes a gating matrix with dimensions matching the upper matrix, which performs Hadamard
multiplication with the upper matrix without affecting our partitioning scheme. In the FFN layer, we partition
matrices along the intermediate dimension, where portions corresponding to the original matrix multiplication form

new expert FFN layers.

ity.

Extensive experiments conducted on LLaMA-
1B and LLaMA-7B models demonstrate encour-
aging results. Under equivalent computational
constraints, our method achieves significant im-
provements in language modeling perplexity and
downstream task performance compared to exist-
ing pruning and MoE approaches. Notably superior
performance is observed in reasoning and question-
answering tasks, particularly in generation tasks.

The main contributions of this work include:

* proposing a novel approach that enables tran-
sition from dense to dynamically sparse mod-
els by preserving and partitioning pre-trained
knowledge, enabling different tokens to adap-
tively access varying portions of model knowl-
edge.

* validating the method’s effectiveness across
multiple benchmarks through extensive exper-
imentation, providing new insights for MoE
large model optimization.

2 Related Work

Model pruning is an effective approach to achiev-
ing sparse LLMs while maintaining model func-
tionality. Pruning methods can be categorized into
two main types: unstructured and structured prun-
ing. Unstructured pruning operates at the weight
level, allowing for arbitrary weight removal (Lee
et al., 2018). In large language models, pruned

weights are set to zero (Frantar and Alistarh, 2023;
Sun et al., 2023). However, this method requires
specialized hardware and software support for ac-
celeration(Han et al., 2015; Wen et al., 2016; Fil-
ters’Importance, 2016; Tang et al., 2021). Struc-
tured pruning takes a coarser-grained approach by
removing complete structural units such as convo-
lution kernels, channels, attention heads, or entire
layers (You et al., 2019; Ashkboos et al., 2024; Liu
et al., 2021; Ma et al., 2023; Men et al.). Its main
advantage is the ability to directly produce regu-
lar, narrow model architectures that can achieve
acceleration without specialized sparse computa-
tion libraries (Luo et al., 2017; Liu et al., 2021; Fil-
ters’ Importance, 2016; Nonnenmacher et al., 2021).
However, both approaches face a fundamental lim-
itation: achieving efficiency through permanent pa-
rameter removal may discard valuable knowledge
and lose the ability to adapt computation based on
input complexity.

The Mixture of Experts architecture is recog-
nized as a promising approach for model sparsifica-
tion. Recently, it has garnered significant research
attention, with several studies investigating method-
ologies for converting pre-trained models into MoE
architectures.

While various MoE approaches exist with differ-
ent objectives, methods like Llama-MoE v2 focus
on post-training optimization of instruction-tuned
models, and approaches like DTSI target parame-
ter efficiency during training from scratch. How-
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ever, these methods either address specialized post-
training scenarios or require training models from
initialization, whereas our approach specifically
targets sparsification of pre-trained dense models
during the pre-training stage.

MokEfication(Zhang et al., 2022) trains routers
to predict the activation patterns of experts that
are partitioned from FFNs while keeping model
parameters frozen, thereby activating a fixed num-
ber of experts. However, this method was pri-
marily designed for ReLLU activation functions
and requires additional transformation steps for
SiLU/GeLU activation functions that are widely
utilized in contemporary Transformer architectures.
FactorLLM(Zhao et al., 2024) employs a multi-
stage training strategy, initially utilizing the orig-
inal dense model to guide router training, fol-
lowed by fixing the router and subsequently train-
ing the experts. This sequential training method-
ology constrains collaborative optimization be-
tween routers and experts, and its dependence
on a teacher-student framework introduces addi-
tional training complexity. LLaMA-MoE(Zhu
et al., 2024) explores the decomposition of FFNs
and organizes training according to the Switch
Transformer(Fedus et al., 2022) paradigm; how-
ever, it merely provides improved expert initializa-
tion while lacking flexible input-adaptive compu-
tation mechanisms. Given that MoEfication and
FactorLLM differ significantly from mainstream
MOoE methods in architecture design and training
paradigms, we choose to use LLaMA-MoE as a
comparative approach.

Recent dynamic pruning methods such as De-
jaVu(Liu et al., 2023) and PowerInfer(Song et al.,
2024) can adaptively select activated weights based
on input patterns. However, these approaches pri-
marily focus on system-level acceleration through
specialized hardware configurations: DejaVu re-
quires integration with asynchronous hardware-
aware implementations including kernel fusion and
memory coalescing, while PowerInfer employs
GPU-CPU hybrid inference engines to exploit lo-
cality patterns and minimize communication over-
head. In contrast, our method employs algorithm-
level sparsification, which reduces the model’s
floating-point operations.

3 Background

For simplicity, we focus on the prevalent archi-
tecture of generative large language models while

maintaining a concise mathematical formulation.
In autoregressive generation tasks, given a se-
quence X = (z1,z2,...,o7) of length T, the
model iteratively produces a probability distribu-
tion over the vocabulary for each position condi-
tioned on preceding tokens. This process can be
formulated as:

P,= softmaX(EHﬁ)

HE = Transformer(z1, z2, ..., T7-1)

)]

Here, L denotes the number of layers in the
Transformer architecture. For any position ¢, P, ;
represents the probability distribution over the vo-
cabulary, derived from the ¢-th column of the
hidden state matrix h%. Specifically, H* =
(WL hL, ..., hE ] contains the hidden representa-
tions from the final layer, where hl is the contex-
tual embedding at position ¢. The probability of the
ground-truth token x4 is denoted as P, , ¢ in
the distribution P-, t. The transformation from hid-
den states to probability distributions is achieved
through a linear projection matrix F, followed by
a softmax operation.

In typical scenarios, we employ cross-entropy
loss for autoregressive learning, which can be ex-
pressed as:

T-1
Liv=— Z log P(x41|z<t) 2)

t=1

The Transformer architecture consists of multi-
ple layer-wise submodules, where each layer com-
prises a self-attention module and a Feed-Forward
Network (FFN) module. The simplified mathemat-
ical formulation can be expressed as:

hh = Aun((p' RS LR (3

hl = FEN(h}) )

FFN modules typically consist of two matrix
transformations with a non-linear activation func-
tion. In modern language models, the most preva-
lent FFN implementation uses SwiGLU activation,
which involves three essential matrices: the up-
projection matrix Uy, the down-projection ma-
trix Vgown, and the gate matrix Wgye. The up-
projection matrix transforms the input to a higher
dimensional space for richer feature representation,
the down-projection matrix compresses the infor-
mation back to the original dimension, and the gate
matrix controls information flow through adaptive
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feature weighting. The FFN output is computed
through the following operation:

hfﬁ = (aCt(hfinate) © (hiUup))Vdown 5)

In this formulation, act(-) represents the activa-
tion function and ® denotes Hadamard product.

4 Method

Although our method is termed DSMoE, its train-
ing approach differs from traditional MoE methods
such as Switch Transformer and DeepSeeKMoE
(Dai et al., 2024). Our objective is to achieve spar-
sity through partitioning pre-trained models, where
each expert inherits a distinct portion of the origi-
nal model’s knowledge. Our approach is based on
the principle that the model should learn to selec-
tively utilize different aspects of pre-trained knowl-
edge based on input complexity, rather than routing
tokens among independently trained experts. To
implement this insight, we present our method in
three modules.

4.1 FFN Partitioning

The widespread adoption of MoE architectures in-
spires our exploration of sparsity in FFN layers,
suggesting that different parts of computation can
be dynamically activated based on input patterns.
Previous work has further revealed that FFN layers
essentially operate as key-value memories, where
different portions of the layer specialize in detect-
ing and processing distinct input patterns(Geva
et al., 2020). Building on these insights, we pro-
pose to directly partition pre-trained FFN layers.
As shown in Equation 5, we partition the matrices
U, V, and W into n groups along the intermediate
dimension, where each group can be viewed as an
“expert" that inherits a portion of the original trans-
formation capabilities. When summing all expert
outputs, this partitioned form is mathematically
equivalent to the original FFN computation:

hl = (act(f;fS (W, W])®

%

(ht [t Un)))

vl ©®
= (act(htW1) © hlUY)VA + - -
F(act(WW,) © RLU,)V;,

To enable dynamic expert activation based on
input, we employ a gating network that determines

which experts should be activated. The expert’s
output is propagated to the subsequent layer only
when the corresponding gating activation value ex-
ceeds a certain threshold 7. This can be formulated
as:

0; = (act(f;iWi) ® l”;éU@')Vz’

=1

G(z) = {‘g

where Y = [Y1,...,Y,] € R¥" represents the
parameters of the gating network, and o(+) denotes
the sigmoid activation function.

To maintain consistent output norm regardless of
the number of active experts, similar to dropout, we
scale h! by the ratio of total expert count n to the
number of activated experts. This normalization
can be expressed as:

(7
ifx>r1

others

n - hl

ht = .
LS Io(hbY ) > 7]

®)

4.2 Straight-Through Estimator

A key challenge in converting dense models to
sparse ones is maintaining the learning capability
of all experts. During the forward pass, experts
with activation values below the threshold 7 do not
participate in computation, as defined by the gating
function G(z) in Equation 7. However, this thresh-
olding operation creates a critical problem during
backpropagation - experts that are not activated
receive zero gradients:

Oh, _ On, _ ohl

oV, OW,; 0U;

"y )
Lt —0,ifo(hlY;) <

Y, 0,ifo(h,Y;) <7

This gradient blocking prevents non-activated
experts from receiving training signals, leading to
a “dead expert" problem where these experts be-
come permanently inactive. Due to random initial-
ization of the sigmoid gating parameters, experts
with initially low activation probabilities below the
threshold receive zero gradients and cannot im-
prove through training, creating a Matthew effect
where inactive experts remain progressively under-
utilized. Unlike traditional MoE models that train
experts from scratch, our experts inherit pre-trained
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Model Configuration Params Activated Params PPL ({)
LLaMA-1B d=2048, D=8192 1.24B 1.24B 5.67
LLaMA-7B d=4096, D=11008 6.74B 6.74B 3.40
LLaMA-1B

LLM-Pruner-channel d=1215, D=8192 889M 889M 7.51
LLM-Pruner-block d=2048, D=3896.4 735M 735M 7.46
SparseGPT d=2048, D=8192 1.24B 735M 9.82
LLaMA-MoE d=2048, D=1024 8, topK=3 1.24B 736M 7.45
DSMokE(ours) d=2048, D=1024 x8 1.24B 735M 7.41
LLaMA-7B

LLM-Pruner-channel d=2401, D=11008 3.95B 3.95B 4.01
LLM-Pruner-block d=4096, D=6256.5 3.94B 3.94B 4.01
SparseGPT d=4096, D=11008 6.74B 3.93B 3.96
LLaMA-MoE d=4096, D=1376 x8,topK=3 6.74B 3.98B 4.12
DSMokE(ours) d=4096, D=1376 x8 6.74B 3.93B 391

Table 1: Results of perplexity (PPL) across different language models. The bold values indicate the best-performing
method among various acceleration approaches. The Configuration column describes the specific model architecture,
where d represents the hidden dimension, D denotes the expansion dimension in FFN layers (for LLM-Pruner-block
method, this represents the average value), x n indicates the use of n parallel FFN layers, and topK specifies the
number of activated experts per layer in the MoE architecture. The Params column shows the total number of model
parameters, while Activated Params indicates the average number of parameters activated during inference.

knowledge that we wish to preserve and adapt. To
address this issue, we employ the straight-through
estimator technique, which allows gradient flow
through non-activated experts while maintaining
thresholded activation during the forward pass:

S(z) = sg(G(x)) +x — sg(x)

h=>0;-S(o(hiYy))

i=1

(10)

1D

where the operator “sg(-)" is the “stop gradient"
operator to prevent gradient back propagation. The
partial derivatives for experts and their gates below
the threshold are as follows. Let:

a; = act(ﬂiWi),
gi = U(ﬁiY1)>

The gradients for expert parameters and their
gates can be derived as:

ah = act' (hAW;)
A (12)
U; = hiUz

ol (aiOw) -gi ifgi>7
v, = ) (13)
: 0 ifg; <7
Ohl )T od - (woVy)-g) ifg>T
W ¢ 14
W, {0 g < (14)
onl (Afs)T (a;®©Vi-g) ifgi>T
0, — . (15)
' 0 ifg; <r
O — ()T - (01 - o (HLY)) (16)

The gradient dynamics show a key property:
with the straight-through estimator, experts receive
gradients for their gating parameters regardless of
activation status. The gradient direction for Y;
depends on whether the expert’s output o; would
reduce the overall loss. This allows experts to adap-
tively learn when to activate based on their useful-
ness for specific input patterns.

4.3 Sparse Loss

Since our experts inherit from a dense model, the
model naturally tends to activate all experts to ac-
cess complete knowledge. However, this conflicts
with our goal of sparse computation. We introduce
a sparsity loss term that creates an adversarial ef-
fect with expert gate gradients, encouraging the
model to learn which knowledge is truly necessary

for different inputs.
L=Lim+ »Csparse (17)

where Lgparse denotes the sparsity loss term, which
we abbreviate as £s in subsequent equations.

L= ELM+7ZZ£

=1 n=1

+Yn))) (18)

We employ L1 norm as the sparsity function L.
Given that our activation function o(x) > 0, our
final loss function becomes:

LM+—ZZG

=1 n=1

Y,) (19
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The gradients introduced by this sparse loss term
create an adversarial effect with the gate gradients,
encouraging the model to actively suppress the out-
put of less important experts across different layers.

It is worth noting that our approach differs fun-
damentally from the MoE framework and therefore
does not require auxiliary load balancing losses.
While load balancing losses in MoE aim to en-
sure uniform training across experts, our objective
is solely focused on learning sparse activation pat-
terns. Furthermore, unlike MoE which typically en-
forces a fixed number of active experts, our method
allows for flexible activation patterns determined
by the learned gating mechanism.

5 Experiments

5.1 Dataset

We gathered datasets from various domains to con-
tinually pre-train the base model. For the general
domain, we used the Fineweb-edu dataset, which
consists of high-quality educational web pages
filtered from the Fineweb dataset (Penedo et al.,
2024). In the math and coding domains, we se-
lected the OpenWebMath (Paster et al., 2024) and
StarCoder (Li et al., 2023) datasets respectively.
The OpenWebMath dataset contains high-quality
mathematical text data extracted from web pages,
while the StarCoder dataset offers a diverse range
of code data and has been demonstrated to effec-
tively pre-train well-behaved code models. Fur-
thermore, it has been demonstrated that incorpo-
rating synthetic data enhances model pre-training
performance (Abdin et al., 2024). Therefore, we
introduced the Cosmopedia dataset to leverage this
advantage(Ben Allal et al., 2024).

Furthermore, we mixed datasets from different
domains. Due to computational resource limita-
tions, we set the total amount of training data to 10
billion tokens. Finally, we used the tokenizers from
LLaMA to segment the data, limiting the maximum
sample length to 1024 tokens for each. We ran-
domly sampled 5,000 non-overlapping instances
from each dataset as the validation set, ensuring no
intersection with the training set.

5.2 Experimental Setup

We evaluate DSMOoE on two pre-trained models of
different scales: Llama-7B! and Llama-1B?. For

1https ://huggingface.co/meta-1lama/Llama-2-7b
2https ://huggingface.co/meta-1lama/Llama-3.
2-1B

our method’s hyperparameters, we simply set the
activation threshold 7 = 0.5, learning rate to 2e-5,
batch size to 32, and sequence length to 1024. To
ensure fair evaluation, all baseline methods under-
went continued training on identical data quantities
(10B tokens) with the same training configurations.

We compare our approach with several base-
lines: the channel-wise and block-wise methods
from LLM-Pruner (a structured pruning approach),
and SparseGPT (an unstructured pruning method).
To ensure fair comparison, all baseline meth-
ods (LLM-Pruner channel/block-wise, SparseGPT,
and LLaMA-MOoE) were trained on identical data
quantities (10B tokens) and configured to match
DSMOoE’s activated parameter count.

Additionally, we compare against LLaMA-MOoE,
which applies a similar FFN partitioning scheme
but follows the traditional MoE paradigm with
fixed top-k expert selection and standard MoE
training objectives, to investigate whether conven-
tional MoE frameworks can effectively leverage
pre-trained weights through warm-starting.

5.3 Main Results

We first present the model’s perplexity on the vali-
dation set. Following previous work(Touvron et al.,
2023; Brown et al., 2020; Su et al., 2024; Xiong
et al., 2024; Dai et al., 2024), we then evaluate the
model’s performance on downstream benchmarks,
which includes zero-shot accuracy testing on Hel-
laSwag(Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), SIQA(Sap et al., 2019), PIQA(Bisk
et al., 2020), StoryCloze(Mostafazadeh et al.,
2016), and Winogrande(Sakaguchi et al., 2021).
Additionally, we conduct 5-shot evaluation measur-
ing exact match performance on TriviaQA(Joshi
et al., 2017), WebQuestions (WebQs)(Berant et al.,
2013), GSM8K(Cobbe et al., 2021), and Natural
Questions (NaturalQs)(Kwiatkowski et al., 2019).

5.3.1 Perplexity Results

Table 1 presents the perplexity results of the base-
line dense model and its pruned, sparsified variants.
The results demonstrate that DSMoE consistently
outperforms baseline models under equivalent ac-
tivation constraints. Our experimental results in-
dicate that DSMoE achieves superior efficiency
compared to static parameter pruning. Further-
more, DSMoE exhibits better performance than
fixed-activation methods like MoE, which can be
attributed to the fact that knowledge from all ex-
perts contributes to the model’s learning process,
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Model Hellaswag LAMBADA PIQA SIQA  StoryCloze Wino GSMS8K NaturalQs TriviaQA  WebQs
LLaMA-1B 64.09 61.05 75.51 42.47 72.58 60.85 4.85 12.52 36.08 22.49
LLaMA-7B 76.39 72.34 79.05 44.67 79.15 70.87 14.70 26.28 61.89 32.82
LLaMA-1B

LLM-Pruner-channel 53.44 45.04 71.43 40.94 68.67 58.45 1.44 6.98 17.46 14.56
LLM-Pruner-block 51.05 46.28 71.71 41.04 68.62 56.27 1.36 7.28 18.46 14.56
SparseGPT 54.01 56.49 71.10 40.68 68.05 57.30 1.51 5.29 14.44 11.61
LLaMA-MoE 49.06 44.84 70.02 41.05 65.47 55.64 1.62 5.76 13.49 11.27
DSMokE(ours) 50.92 48.12 72.36 41.14 68.78 56.35 1.67 8.17 25.52 18.21
LLaMA-7B

LLM-Pruner-channel 66.41 61.63 74.97 43.19 75.30 66.85 4.85 12.63 36.02 20.57
LLM-Pruner-block 67.93 62.02 76.22 44.26 75.46 63.53 1.81 12.96 38.77 21.65
SparseGPT 73.60 67.43 77.36 4421 76.37 70.48 8.33 17.61 47.83 24.90
LLaMA-MoE 63.89 60.49 74.10 43.29 72.90 61.17 3.26 11.58 31.25 19.09
DSMokE(ours) 70.22 67.61 78.12 44.31 76.37 66.77 6.41 22.04 57.94 29.92

Table 2: Performances of language models on downstream tasks. The best score is marked in bold.

enabling it to develop the ability to flexibly select
activations based on input. Additionally, DSMoE
exhibits distinctive feature processing capabilities,
learning layer-specific activation patterns that nat-
urally emerge from the input complexity. We will
examine these emergent patterns in detail in the
analysis section.

In conclusion, DSMoE demonstrates consistent
superiority across models of two different scales,
highlighting its robust advantages.

5.3.2 Benchmark Results

Table 2 presents the benchmark performance of var-
ious pruning methods, traditional MoE approaches,
and DSMoE. DSMoE achieved the best perfor-
mance in 7 out of 10 benchmarks for both LLaMA-
1B and LLaMA-7B model architectures, demon-
strating superior effectiveness over existing sparsi-
fication methods across most evaluation metrics.

Specifically, DSMoE exhibited excellent perfor-
mance on inference tasks (i.e., the first 6 bench-
marks), achieving the best results on PIQA, SIQA,
and StoryCloze test sets. While not achieving top
performance on Hellaswag, LAMBADA, and Wino
test sets, DSMOoE still ranked among the leading
models. For generation tasks (i.e., the last 4 bench-
marks), DSMoE demonstrated remarkable effec-
tiveness. Apart from slightly lower performance on
GSMSK with LLaMA-7B compared to SparseGPT,
it significantly outperformed other sparse methods
on all other test sets, with performance only a few
points below the dense model. These results high-
light DSMoE’s potential, particularly in generation
tasks.

Furthermore, we observed that the performance
gap between DSMOoE and other sparse approaches

Model DSMoE  w/o S(z)
Hellaswag 50.92 32.29
LAMBADA  48.12 27.79
PIQA 72.36 62.73
SIQA 41.14 39.30
StoryCloze 68.67 57.14
Wino 56.35 50.83
GSM8K 1.67 0.38
NaturalQs 8.17 2.47
TriviaQA 25.52 2.95
WebQs 18.21 1.00
PPL 7.41 12.75

Table 3: Ablation study of DMoE against the model
without direct estimation function S(x), where G(x) is
employed in place of S(x).

was more pronounced in LLaMA-7B compared
to LLaMA-1B. This may be attributed to greater
model redundancy at larger parameter scales, en-
abling DSMoE to more effectively prune unneces-
sary information. This observation suggests the po-
tential scalability of DSMoE to models with larger
parameter counts.

6 Analyses

6.1 Ablation Study: Removing
Straight-Through Estimator

To validate the necessity of the straight-through
estimator mechanism in DSMoE, we conduct an
ablation study by removing this component. Specif-
ically, instead of using Equation (11) for training,
we employ Equation (7). We perform this compar-
ative analysis on the LLaMA-1B model.

As shown in Table 3, the model without straight-
through estimator significantly underperforms the
complete model in terms of both perplexity and
benchmark performance. This substantial degrada-
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tion occurs because routing parameters for non-
activated experts receive zero gradients during
backpropagation, preventing these routes from be-
ing adjusted to utilize more of the pre-trained
knowledge inherited from the dense model. With-
out the ability to adaptively modify routing deci-
sions, potentially valuable knowledge encoded in
these experts becomes permanently inaccessible,
leading to significant performance loss.

6.2 Ablation Study: Training without
Piecewise Function G(x)
To validate the necessity of incorporating piecewise
function learning during training, we conduct an
ablation study by removing the piecewise function
G(x) and using the following formula for training:
n ~

hh =" 0;xo(hiY;) (20)

i=1

log PPL and Activated Number vs 1

log PPL (wio G(x))
—e—_ Activated Number (wio G(x))
 log PPL (DSME)
Activated Number (DSMoE)

ed Number

Figure 2: During the training phase, G(x) is not utilized.
In the inference phase, G(x) is employed for activation.
The model’s perplexity and the number of activated ex-
perts vary with the threshold 7. The pentagram markers
indicate the perplexity and number of activated experts
achieved by DSMoE.

Prior to inference, we determine the appropriate
activation level by adjusting the threshold value on
the validation set, with a step size of 0.05. Figure
2 illustrates the relationship between perplexity
and the average number of activated experts on the
validation set.

The results clearly demonstrate that as the thresh-
old increases, perplexity rises rapidly while the av-
erage number of activated experts decreases corre-
spondingly. This observation indicates that without
the piecewise function G(x), all experts participate
in computation and gradient updates. Under the

constraint of sparsity loss, the model tends to dis-
tribute activation values uniformly across all ex-
perts rather than learning to distinctively identify
more important experts. This leads to two conse-
quences: first, the activation values for each expert
are suppressed to a relatively low level, and second,
the learned importance of each expert becomes
relatively uniform. Under the same activation con-
straints as DSMoE, the approach without the piece-
wise function G(x) exhibits higher perplexity, high-
lighting how this training-inference inconsistency
significantly degrades model performance.

6.3 Layer-wise Activation Patterns Analysis
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Figure 3: Heatmap visualization of expert activation
counts across different layers and average expert activa-
tions for LLaMA-7B and LLaMA-1B models on various
validation sets.

We evaluated DSMoE across different validation
sets and generated heatmaps to visualize the distri-
bution of activated experts across network layers.
Both model sizes exhibit a distinctive activation
pattern: higher activation counts at both input and
output layers, elevated activation in middle layers,
and lower activation in remaining layers - forming
a “W-shaped" pattern.

The bottom layers, which typically encode fun-
damental features, demonstrate high expert activa-
tion. This suggests the model’s tendency to acti-
vate multiple experts in parallel to process multi-
dimensional input features, potentially serving as
an “information preservation mechanism" to re-
tain critical base-level information. The top layers,
responsible for final decision-making and output
generation, show increased expert activation to en-
hance output robustness by reducing individual ex-
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pert bias through collective decision-making. The
elevated activation in middle layers suggests these
layers serve as critical zones for feature transfor-
mation, integration, and processing of long-range
dependencies. This bottom-middle-top activation
pattern forms a complete information processing
pipeline: bottom layers for extensive collection
and processing of basic features, middle layers for
feature transformation and information integration,
and top layers for comprehensive decision-making
and output generation.

Furthermore, we observed significant variations
in both the average number of activated experts
and activation patterns across different test sets.
This indicates that DSMoE implements dynamic
regulation mechanisms specific to different inputs
rather than converging to a homogeneous learning
pattern.

These observations provide novel insights for
future MoE architectures, suggesting that expert
activation counts can be strategically varied across
different layers of the network.

7 Conclusion

This paper presents DSMoE, a novel approach that
achieves model sparsification by partitioning pre-
trained FFN layers into computational blocks. Ex-
periments on LLaMA models demonstrate supe-
rior performance over existing pruning and MoE
approaches under equivalent computational con-
straints, while revealing distinctive layerwise acti-
vation patterns for future MoE designs.

8 Limitations

Due to computational resource constraints, we
were only able to evaluate DSMoE on language
models up to 7B parameters. Future work with
access to larger computational resources could ex-
plore the scalability and effectiveness of our ap-
proach on larger model architectures, which may
reveal additional insights about the relationship
between model scale and dynamic sparsification
patterns.
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A Sparseness Adjustment

Although our method does not explicitly specify
the activation quantity (sparsity degree) of the MoE
model, the sparsity of DSMOoE can be adjusted by
modulating the hyperparameter 7. The specific
regulatory effects are shown in the table 4.

Table 4: DSMoE LLaMA Models: Threshold (1) vs.
Performance and Parameter Activation

LLaMA-7B LLaMA-1B
T [TPPL activated params | PPL  activated params
02 | 3.82 65.45% 7.22 64.19%
03 | 3.83 62.70% 7.24 62.32%
04 | 3.85 60.43% 7.29 60.79%
0.5 | 391 58.46% 7.41 59.35%
0.6 | 4.02 56.54% 7.61 57.87%
0.7 | 4.28 54.77% 8.01 56.34%
0.8 | 5.09 52.54% 8.85 54.37%

The results demonstrate that as 7 increases from
0.2 to 0.8, perplexity gradually increases while
the percentage of activated parameters decreases,
which aligns with intuitive expectations. Perfor-
mance degradation is relatively modest in the range
of 7=0.2 to 7=0.5, but becomes more pronounced
beyond 7=0.5.

We selected 7=0.5 as the default value for our
main experiments because it offers an optimal bal-
ance between model performance and computa-
tional efficiency. In practical applications, 7 can
function as an adjustable parameter that users can
tune according to their specific computational re-
source constraints and performance requirements.
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B Impact of Continued Pretraining Token
Count on DSMoE Performance

To evaluate how the number of tokens used in con-
tinued pretraining affects DSMoE performance,
we conducted a series of controlled experiments
on both LLaMA-7B and LLaMA-1B models. Ta-
bles 5 and 6 show the perplexity changes for both
models across different token counts. Our ap-
proach achieves relatively favorable performance
even with fewer tokens, illustrating the relationship
between training tokens and complexity (PPL). Per-
formance tends to stabilize after approximately 8
billion training tokens.

Tokens (B) 22 38 54 7.0 7.8 8.6

PPL 7.384 7.323 7.481 7.488 7.445 7.422

Table 5: Effect of token count on LLaMA-1B DSMoE
model performance

Tokens (B) 2.4 32 4.8 6.4 8.0 9.6

PPL 4.091 4.029 3.994 3.975 3.929 3.916

Table 6: Effect of token count on LLaMA-7B DSMoE
model performance
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