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Abstract

Large vision-language models (LVLMs) have
achieved impressive results in vision-language
tasks. However, LVLMs suffer from hallucina-
tions caused by language bias, which neglects
images while over-relying on text. We identify
two reasons for the bias: 1). Different training
scales between the LLM pretraining and LVLM
alignment stage. 2). The learned inference
bias due to short-term dependency of text data.
Therefore, we propose LACING, designed to
address such bias with MuLtimodal DuAl-
attention MeChanlsm (MDA) aNd Soft-Image
Guidance (SIG). Specifically, MDA adopts a
parallel dual-attention mechanism that con-
structs separate attention for visual and text
inputs to enhance integration of visual inputs
across model. SIG uses a learnable soft visual
prompt during training and inference to re-
place visual inputs, designed to compel LVLMs
to prioritize text inputs during inference. Exper-
iments across different model architectures and
scales demonstrate that LACING effectively
debiases LVLMs from their language bias, en-
hancing visual comprehension and reducing
hallucinations without additional resources.'

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023;
Dubey et al., 2024) represent a significant mile-
stone in natural language processing (Yang et al.,
2024; OpenAl, 2022; Team, 2023). By incorporat-
ing visual encoders into LLMs (Liu et al., 2023;
Bai et al., 2023), the development of Large Vision-
Language Models (LVLMs) (OpenAl, 2024; Team,
2023) has been accelerated, enabling them to han-
dle both visual and text inputs. This facilitates vari-
ous applications using LVLMs such as autonomous
driving (Xu et al., 2024), image creation (Labs
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et al., 2025; Wu et al., 2025a,b; Chen et al., 2024a)
and medical assistants (Li et al., 2023b).

State-of-the-art LVLMs, despite their advanced
capabilities in handling both modalities, often pro-
duce erroneous or irrelevant responses to input im-
ages (Chen et al., 2024c; Lan et al., 2024). he main
reason behind such hallucinations is referred to as
language bias (Zhao et al., 2024b), i.e., models
sometimes “ignore” visual inputs and generate text
responses solely based on text inputs. However,
prior studies have not comprehensively explored
the origins of such bias. We suggest that this bias
may emerges for the following two reasons:

1. Different training scales between pretrain-
ing and multimodal alignment stage: The LLM
backbone in LVLMs is pre-trained on on exten-
sive text corpus, while the multimodal alignment
stage of LVLMs involves significantly fewer sam-
ples and shorter training duration. For instance,
Llama3 (Dubey et al., 2024) is pre-trained with 15T
tokens, whereas the multimodal alignment training
for LLaVA-Series (Liu et al., 2023, 2024c,d) em-
ploys only about 558k—1.3M examples. This scale
discrepancy causes the pretraining distribution to
dominate the generation process in LVLMs (Pi
et al., 2024), resulting in insufficient utilization
of visual inputs. As shown in Figure 2, LVLMs
allocate minimal attention to visual tokens in over
90% layers (Chen et al., 2024b). Conversely, as
discussed in § F, models such as Chameleon (Team,
2024), pretrained with balanced scales of textual
and visual tokens, exhibit significantly reduced
bias, further supporting this hypothesis.

2. The learned inference bias due to the
short-term dependency of text data: Intuitively,
a word in a text sequence exhibits a stronger asso-
ciative bond with adjacent words than those further
apart (Alabdulmohsin et al., 2024; Daniluk et al.,
2017; Yan et al., 2024), i.e., the short-term depen-
dency of text data. LLMs pre-trained on large-
scale text corpora are more easily capturing and
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Figure 1: Overview of LACING, consisting of Multimodal Dual Attention (bottom) and Soft-Image Guidance
(above) to mitigate language bias. MDA proposes a parallel dual-attention mechanism that constructs two separate
attention for visual and text inputs. SIG implements a learnable soft visual prompt during training to replace visual
inputs, which maintains input patterns while compelling model to prioritize text inputs during inference.

memorizing such short-term dependency (Yuan
et al., 2025), which typically assign higher atten-
tion weights to adjacent tokens. However, this
learned pattern may be problematic in multi-modal
contexts. In current LVLMs, visual features are typ-
ically concatenated with text inputs to form input
context. As generation progresses, the model in-
creasingly focuses on nearby generated text tokens
while progressively neglecting fixed-position visual
inputs (Zhang et al., 2024), as shown in Figure 4.

These two reasons lead to a systemic bias in
LVLMs, originating from both training and in-
ference stages. Consequently, a critical question
arises: How can we effectively mitigate language
bias of LVLMs from both training and inference
perspectives? Therefore, we propose LACING, a
systemic framework designed to address the lan-
guage bias of LVLMs with MuLtimodal DuAl-
attention MeChanIsm aNd Soft-Image Guidance.

To address training scale gaps in LVLMs, which
leads to neglect of visual inputs across most lay-
ers (Chen et al., 2024b), we propose Multimodal
Dual-Attention Mechanism (MDA). Specifically,
MDA introduces a parallel dual-attention mecha-
nism that separately computes attention weights for
each modality, and then fuses them to form the final
attention map. This design ensures model to main-
tain substantial attention to visual inputs across all
layers, promoting more effective visual-text inte-
gration. Crucially, unlike previous methods that

apply bidirectional attention to visual inputs within
a shared attention matrix (Xie et al., 2024; Zhou
et al., 2024a), MDA builds parallel attention map
that compute modality-specific attention scores sep-
arately. This separation enables flexible attention
configurations; for instance, visual inputs can adopt
either causal or bidirectional attention. In our de-
sign, we employ bidirectional attention for visual
inputs to better capture global visual feature, while
retaining causal attention for text to preserve the
language modeling capabilities of LLMs.

To mitigate learned inference bias in LVLMs, we
propose Soft-Image Guidance (SIG), designed to
enhance visual guidance by addressing the model’s
over-reliance on textual inputs (i.e., language bias).
At core of SIG is a learnable soft visual prompt,
which replaces visual inputs during both training
and inference. It serves as a modality-aware place-
holder, preserving input patterns (e.g., the input
length and modalities), while implicitly compelling
model to prioritize text inputs. Unlike prior meth-
ods (Leng et al., 2023; Zhang et al., 2024) that
remove visual inputs or inject random noise, SIG
maintains input consistency without introducing un-
controlled perturbations. During multimodal align-
ment stage, visual inputs are randomly replaced
with soft prompt, allowing model to learn from
complete and visual-substituted inputs. At infer-
ence, we replace visual inputs with well-learned
soft prompt to form multimodal-null input. Each
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token’s final output is computed by contrasting
model’s output distributions from original and
multimodal-null inputs, ensuring each token in re-
sponses accounts for visual input more critically
and thereby reducing language bias.

Our proposed MDA and SIG form a systematic
framework for mitigating language bias in LVLMs,
with each component complementing the other to
further enhance overall performance. Comprehen-
sive experiments across various model architec-
tures and scales validate the effectiveness of LAC-
ING. We observe significant improvements, partic-
ularly in free-form generation and visual halluci-
nations reduction (e.g., 11.8-point gain on LLaVA-
Bench (Liu et al., 2023) and a 40% improvement on
Object Hall (Rohrbach et al., 2019; Yu et al., 2024)).
Notably, LACING delivers consistent improvement
without additional resource requirements beyond
standard multimodal alignment setups (Liu et al.,
2024c,d). Our analysis further confirms the efficacy
of MDA in enabling LVLM:s to fully utilize visual
inputs, and robustness of SIG for reducing halluci-
nations and improving visual comprehension.

2 Related Work

2.1 Language Bias in LVLMs

Despite the impressive capabilities of LVLMs (Ope-
nAl, 2024; Team, 2023; McKinzie et al., 2024;
Wang et al., 2024a; Li et al., 2024; ?), these mod-
els still struggle with generating responses irrel-
evant to the input images (Lan et al., 2024; Liu
et al., 2024b), e.g., hallucinating non-existent ob-
jects (Zhou et al., 2024c). Zhao et al. (2024b) first
identify this issue in LVLMs and name it as lan-
guage bias, i.e., LVLMs often ignore visual inputs
and solely rely on text inputs, leading to hallucina-
tions. Chen et al. (2024c¢) observe that LVLMs of-
ten answer questions using only LLM-derived tex-
tual knowledge. Chen et al. (2024b) further show
that attention to visual inputs diminishes signifi-
cantly in deeper layers, while Zhang et al. (2024)
find that models increasingly prioritize text as gen-
eration progresses. These findings collectively in-
dicate that LVLMs assign disproportionately low
attention to visual inputs, limiting their ability to
effectively utilize image information. Therefore,
to address this challenge, we propose a systematic
framework, LACING, that mitigates language bias
from both training and inference perspectives.

2.2 Addressing Language Bias in LVLMs

Given the language bias of LVLMs, they exhibit
similar hallucination issues as LLMs (Huang et al.,
2023), as well as modality-specific hallucinations
such as object hallucination (Rohrbach et al., 2019;
Li et al., 2023c). As noted by Leng et al. (2023),
this stems from the dominant influence of the
LLM’s pretraining distribution, making hallucina-
tion a prominent symptom of language bias. Recent
efforts to mitigate hallucination fall into two main
categories. The first includes training-intensive
methods such as LRV (Liu et al., 2024a), LLaVA-
BPO (Pi et al., 2024), LLaVA-RLHF (Sun et al.,
2023), and RLHF-V (Yu et al., 2024), which rely
on supervised fine-tuning or reinforcement learn-
ing with preference data. While effective, these
methods typically necessitate substantial training
data and computational resources. To address this,
training-free methods have been proposed, includ-
ing VCD (Leng et al., 2023), IBD (Zhu et al., 2024),
VDD (Zhang et al., 2024), and ICD (Wang et al.,
2024b). These methods contrast outputs with those
from image-free inputs (or with distorted images)
to reduce influence of textual LLMs. However,
these methods may introduce inconsistencies be-
tween training and inference, limiting their effec-
tiveness. Inspired by classifier-free guidance (Ho
and Salimans, 2022), which combines conditional
and unconditional signals for image generation, we
propose a novel approach that addresses language
bias from both training and inference perspectives
and targets broader bias effects beyond object hal-
lucination, improving general LVLM performance.

3 Method

3.1 Multimodal Dual-Attention Mechanism

Most LVLMs project bidirectional visual inputs
into unidirectional LLLM space using a relatively
small amount of multimodal data (Liu et al., 2023,
2024c; Li et al., 2024) compared to vast pretraining
data scales of LLMs (Dubey et al., 2024). LVLMs
treat visual inputs as a different form of text in-
puts in an autoregressive manner. The mismatch in
both modeling and training scale leads LVLMs to
partially adapt to data distribution changes using
only shallow layers during training with limited
data (Zhang et al., 2024). Consequently, LVLMs
remains dominated by LLLM’s pretraining distribu-
tion and lacks effective attention to visual inputs
in deeper layers. Shown in Figure 2, LVLMs (Bai
et al., 2023; Wang et al., 2024a; Liu et al., 2024d;
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Figure 2: Average attention scores for output tokens
towards text and visual tokens across different layers of
encoder-based LVLMs (Liu et al., 2024c) and encoder-
free LVLMs (Diao et al., 2024), showing that only the
first two layers apply considerable attention to visual
tokens. In contrast, deeper layers largely neglect them.

Diao et al., 2024) exhibit considerable attention
toward visual inputs only in the first two lay-
ers (Chen et al., 2024b), while deeper layers retain
their original distributions, causing deeper layers
of LVLMs to ignore visual inputs. This pheromone
has been observed across various LVLMs, in-
cluding encoder-based LVLMs, such as LLAVA-
Series (Liu et al., 2023, 2024c,d), QwenVL (Bai
et al., 2023) and Qwen2VL (Wang et al., 2024a),
and even encoder-free LVLMs like EVE (Diao
et al., 2024) and Fuyu (Bavishi et al., 2023).

To address this issue, we propose Multimodal
Dual-Attention Mechanism (MDA), which in-
troduces a parallel dual-attention mechanism that
preserves separate attention metrics for visual and
text inputs in the LVLMs. It enforces LLMs to al-
locate sufficient attention toward visual inputs and
encourages LVLMs to fully leverage their LLM
backbone for visual comprehension during training.
This separation enables flexible attention configu-
rations; for instance, visual inputs can adopt either
causal or bidirectional attention. In our design,
MDA retains causal attention for text inputs while
independently calculating bidirectional attention
towards visual inputs. As illustrated in Equation 1,
given multimodal inputs S = {(s1,82,...,SN), Sn
means the token in inputs. To independently cal-
culate attention weights across two modalities, we
define two attention masks: mask M7 for visual
tokens Z and mask M for text tokens 7 :

1, ifs;j el
M ;5 — ’ J )
z[i, 7] { 0, otherwise,
1, if T & @
. it s; € 1< j
I\/[ — ’ J ’
7[i:7] {0, otherwise,

Layer 16 Layer 16

1
1078
§
=
§
107
T

Visual Tokens Text
b) MDA

T
T
Weight:

Visual Tokens
13

Visual Tokens

Att

[Text
[Text

Visual Tokens Text
a) LLaVA-1.5

Figure 3: Attention allocation of a standard LVLM
(LLaVA-1.5) and model trained with MDA. Text and vi-
sual tokens are marked in and , respectively.

We use the attention masks to calculate attention
weights of visual(W<7) and text tokens(W):

Wz = softmax (QKT/\/@G) MI) ,

T 2
W = softmax (QK /\/@@ M7—> ,

where Q, K is query, key and in self-attention of
LVLMs. Finally, the two attention weights (W7)
and (W), are integrated and multiplied by V,
the value in attention mechanism, to derive final
attention score A based on MDA.

A=(Wz+Wp)V. 3)

Parallel computation of attention weights guaran-
tees each token separately receives attention from
both visual and text inputs, balancing their contri-
butions. It allows visual inputs to remain relevance
across all layers, avoiding shallow adaptation and
language bias. MDA ensures that visual informa-
tion is processed with bidirectional attention to cap-
ture spatial coherence, while text tokens continue
to follow autoregressive patterns, critical for main-
taining coherent language generation, as shown in
Figure 3. To support this design choice, we present
a comparison between causal and bidirectional at-
tention for visual inputs in § E.4.

3.2 Soft-Image Guidance

Due to the sequential nature of language modeling,
which prioritizes coherence and continuity, LVLMs
tend to focus on nearby text tokens, often at the ex-
pense of the visual information that may be distant
or disparate, as shown in Figure 4.

Inspired by classifier-free guidance (Ho and Sal-
imans, 2022) effectively combining the conditional
and unconditional score to control the image gener-
ation quality, we propose the Soft-Image Guidance
(SIG), designed to enhance the guidance of visual
inputs during LVLMs’ response generation and
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Figure 4: Attention allocation to visual and text tokens.
Attention to visual tokens (a) decreases as response
generates, while attention to text tokens (b) increases.

mitigate the inference bias of LVLMs. To enhance
the guidance of visual inputs in LVLMs, we for-
mulate the visual comprehension mathematically.
We consider the conditional probability p(y; | v)
of generating a response token ¥; given the visual
input v. By applying Bayes’ theorem, we have:

p(y: |v) = W @

Then we take the logarithm of both sides of Eq. (4):
log p(y: | v) = logp(v | yt) + logp(y:) — logp(v) (5)

In Eq. (5), p(y¢) is unconditional probability of
generating token y; without visual input.

To amplify influence of visual input v on text
generation, we introduce a scaling parameter A
for conditional probability p(v | ;). We adjust
p(v | y¢) to obtain an enhanced version p(y; | v):

log p(y: | v)och - log p(v | yi) + log p(y:) — logp(v) (6)

To express log p(y; | v) with known quantities, we
expand log p(v | y;) using Bayes’ theorem:

logp(v | y¢) = logp(y: | v) + logp(v) —logp(y:) (1)
Substituting Eq. (7) into Eq. (6), we obtain:

log p(y: | v)ocA (log p(ye | v) + logp(v) — log p(y))

8
+ log p(y:) — log p(v). ®

Since v is given (fixed), log p(v) is constant for
yrand can be omitted, we simplify Eq. (8) to:

log p(y: | v)ocA(log p(y: | v) — logp(y:)) + logp(y:) (9)

Algorithm 1 Joint Training of LVLM with SIG

Require: P: Model; X, V: Training dataset
1: repeat
2 (x,v) ~(X,V) > Sample multimodal input data
3: v <« e with probability # = Replace visual input
with soft prompt e
4: Lcross—enlropy = _E(x,v) Z Yi log P(X7 V)

5:  Update P and €
6: until converged

Eq. (9) demonstrates that influence of visual in-
put v on text generation can be amplified by ad-
justing scaling parameter A, once given conditional
probability p(y; | v) of original inputs and un-
conditional probability p(y;) without visual inputs.
This formulation highlights a major challenge in
enhancing visual guidance for LVLMs: accurately
calculating unconditional probability p(y;) of gen-
erating token ¥; in the absence of visual input.

Previous approaches attempt to ascertain such
probabilities probability by either providing the
model with text-only input (Zhang et al., 2024)
or by injecting randomly generated noise to mask
the image (Leng et al., 2023), thereby utilizing
the model’s output as the unconditional probability
p(y¢). Nonetheless, simply removing the visual
inputs may disrupt input patterns(e.g., the input
length and modalities), as visual tokens typically
far surpass text tokens in quantity (Chen et al.,
2024b; Zhang et al., 2024). Concurrently, adding
random noise to distort images relies can introduce
uncontrollable and unstable informational pertur-
bations. The extra, unforeseen noise introduced
by these inputs may lead the LVLMs to behave
more like random probability generators, thereby
complicating the approximation of p(y;).

SIG first employs a learnable soft visual prompt
€ to replace the visual input, thereby forming a
multimodal-null input for the model. The learnable
soft visual prompt € will be the jointly trained with
the LVLM. As outlined in Algorithm 1, we replace
visual input with e with probability 6 during train-
ing. The soft visual prompt € serves a dual purpose,
acting both as a placeholder to maintain the input
pattern and as an indicator to make the model pri-
oritize text input. This dual functionality ensures a
consistent input pattern for LVLMs in both training
and inference, allowing the model to produce gen-
erate interpretable output and balancing the visual
and text inputs. After training, we can directly use
the € to query the model and extract the approxima-
tion of p(y,). Finally, during inference, we contrast

19682



Obj Hall

MMHall

Model Model Size LLaVABench? MM-VET?
Res | Obj | Score 1 Hall |

LRVT (Liu et al., 2024a) 7B 32.30 22.30 / / / 31.70
LLaVA-1.5" (Liu et al., 2024c) 7B 46.71 25.08 2.19 59.00 64.40 31.10
VCD¥ (Leng et al., 2023) 7B 47.40 25.24 2.12 59.00 65.30 30.90
VDD-None? (Zhang et al., 2024) 7B 46.71 25.19 222 56.00 66.00 31.70
ICD* (Wang et al., 2024b) 7B 47.40 25.00 2.18 59.00 64.70 31.10
Less-is-more¥ (Yue et al., 2024) 7B 40.30 17.80 2.33 50.00 60.90 /
OPERAY (Huang et al., 2024) 7B 45.10 22.30 2.15 54.20 60.30 /
HA-DPO? (Zhaoetal., 2024c)  ~~ 72 39907 71990 T T 198 T 6040 T 67200 /.
POVID® (Zhou et al., 2024b) 7B 48.10 24.40 2.08 56.20 62.20 /
LLaVA1.5-7B-BPO° (Pi et al., 2024) 7B 31.90 15.10 / / 71.60 36.80
LACING o 72: 2786 1422 253 49.00 7220 3520
A, compare to LLaVA-1.5 7B 40.36%  43.30% 15.53% 16.95% 12.11% 13.18%
LLaVAT (Liu et al., 2023) 13B 63.00 29.50 / / 70.80 26.40
Muffin" (Lou et al., 2024) 13B 50.50 24.50 / / 68.80 /
QWEN-VLT (Bai et al., 2023) 10B 40.40 20.70 / / 52.10 /
LLaVA-1.5" (Liu et al., 2024c) 13B 47.06 23.33 2.54 50.00 72.50 36.10
VCD¥ (Leng et al., 2023) 13B 46.37 23.10 2.60 49.00 73.60 36.90
VDD-None? (Zhang et al., 2024) 13B 44.64 22.23 2.38 55.00 73.00 36.10
ICD* (Wang et al., 2024b) 13B 45.52 21.93 2.41 54.00 72.50 36.20
LLaVA-RLHF® (Sunetal,2023) =~ | 1337 3810 © 1890 T 2537 7 757000 0T 7T 6150 "7 I
RLHF-V® (Yu et al., 2024) 13B 12.20 7.50 2.45 51.00 51.40 /
LLaVA1.5-13B-BPO° (Pi et al., 2024) 13B 27.30 12.90 / / 74.40 41.40
LACING T 138 2721 1410~ 265 4800 8430 39.90
A, compare to LLaVA-1.5 13B 42.18%  39.56% 4.33% 4.00% 16.28% 10.53%

Table 1: Comparison across multiple benchmarks, highlighting highest score in bold and second highest underlined.
Baselines are categorized as: T (LVLMs), i (training-free), and o (reinforcement learning-based).

output distributions from original and multimodal-
null inputs based on Equation 9 to get the final
output. Specifically, logits £, of generated tokens
are recalculated by adjusting the logits ¢, of the
multimodal-null inputs with the scaling parameter
A, based on logits /. of original inputs as follows:

Oy =Ly + (Lo — £,) x X (10)

Eq. (10) facilitates a more balanced and effec-
tive integration of visual inputs, enhancing visual
comprehension while addressing the language bias.

4 Experiments

4.1 Implementation Details

To ensure fair comparison and validate the effective-
ness of our approach, we train LVLMs from scratch
and evaluate against strong baselines. Given
availability of open-sourced multimodal alignment
datasets, we select two representative LVLMs with
different architectures and model scales: LLaVA-
1.5 (Liu et al., 2024¢) and LLaVA-Next (Liu et al.,
2024d) as our base model. We strictly follow their
training settings, including the same dataset and
model backbone. The model is trained on 8 A100
GPUs, each with 40 GB of memory. Details of
scaling parameter A\ and replacement probability 6
are shown in § B.3. Additional information, includ-
ing extra costs discussion, training and experiment
details, can be found in § E, § B.1, § B, and § D.

4.2 Evaluation Setup

We conduct experiments across three categories:
Visual Comprehension: MMBench(Liu et al.,
2024e) evaluates fine-grained abilities of LVLMs,
assessed with accuracy. TextVQA (Singh et al.,
2019) employs VQA accuracy (Agrawal et al.,
2016) as metric for questions with text within im-
ages. We send models with pure images for evalua-
tion. MM-VET (Yu et al., 2023) evaluates LVLMs
with GPT-4 in free-form question-answering.
Open-ended Generation: LLaVA-Bench (Liu
et al., 2023) uses GPT-4 to compare generated an-
swers with reference answers.

Visual Hallucination: MMHal-Bench (Sun et al.,
2023) evaluates hallucinations and response infor-
mativeness, with GPT-4 comparing model outputs
to human responses and object labels. Object Hall-
Bench (Rohrbach et al., 2019) detects object hallu-
cinations by comparing model outputs with COCO
labels (Lin et al., 2015). We follow same setup as
(Yu et al., 2024), which adds diverse prompts with
detailed image descriptions for evaluations.

4.3 Experimental Results

We evaluate our method across benchmarks in Ta-
ble 2, comparing with baseline models: (1) LVLMs
after multimodal alignment training(f); (2) training-
free methods for mitigating hallucinations(f); and
(3) reinforcement learning methods(o). LACING
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Obj Hall

Method Model Size MMBench? TextVQAT LLaVABench?
Res | Obj |
Greedy Sampling
LLaVA-1.5 7B 64.61 46.05 64.40 46.71 25.08
VCD 7B 64.69 (+0.08)  46.05 (+ 0.00) 65.30 (+ 0.90) 47.40 (+ 0.69) 25.24 (+ 0.16)
VDD-None 7B 64.52 (- 0.09) 44.47 (- 1.58) 66.00 (+ 1.60) 46.71 (+ 0.00) 25.19 (+ 0.10)
w. SIG 7B 66.92 (+2.31)  46.77 (+ 0.72) 70.60 (+ 6.20) 30.36 (- 16.35) 15.16 (- 9.92)
Nucleus Sampling
LLaVA-1.5 7B 56.96 35.41 63.00 56.66 29.75
VCD 7B 60.91 (+3.95)  40.67 (+5.26) 65.30 (+ 2.30) 49.83 (- 6.83) 27.44 (- 2.31)
VDD-None 7B 6297 (+ 6.01)  42.62 (+7.21) 66.50 (+ 2.50) 57.34 (+ 0.86) 28.22 (- 1.53)
w. SIG 7B 63.49 (+ 6.53)  39.40 (+ 3.99) 68.40 (+ 5.40) 29.14 (- 27.52)  15.62 (- 14.13)

Table 2: Comparison of SIG with training-free methods designed to mitigate hallucinations under various decoding
strategies. Performance gap compared to the base model(LLaVA-1.5) are noted in parentheses. Red denotes
improvements, ; green indicates negative effects. Additional results for other model sizes are in § E.2.

consistently outperforms across all benchmarks.
Notably, over LLaVA-1.5 (Liu et al., 2024c), which
shares same training data and architecture, LAC-
ING achieves double-digit percentage gains across
different model sizes(indicated by A), demonstrat-
ing strong scalability. LACING also surpasses
training-free methods such as VCD (Leng et al.,
2023), VDD (Alabdulmohsin et al., 2024) and
ICD (Wang et al., 2024b), achieving nearly 20
points reduction on Obj Hall. The underperfor-
mance of these methods further indicates that
adding randomly generated noise on input images
or simply remove images during the inference
injects the unexpected information that was not
present during training, thereby diminishing robust-
ness of their methods. Compared to reinforcement
learning-based methods, which require extensive
training resources and additional high-quality feed-
back data, LACING remains effective and cost-
efficient while delivering superior results. While
RLHF-V achieves best score on Obj Hall, likely
due to overfitting from overlap with its training
data, base model, and benchmark (Yu et al., 2024;
Lou et al., 2024). In contrast, LACING outper-
forms RLHF-V by a wide margin in other tasks
(e.g., +32.9 on LLaVABench). Overall, our model
demonstrates lower hallucination rates and higher
visual comprehension scores without requiring ad-
ditional resources, showcasing the effectiveness of
our proposed method. For thorough evaluations,
we conduct experiments across various benchmarks
in § E.1, including ScienceQA (Lu et al., 2022),
POPE (Li et al., 2023c), SeedBench (Li et al.,
2023a), and MMVP (Tong et al., 2024), showing
consistent improvements. We also perform LAC-
ING on LLaVA-Next to demonstrate the generaliza-
tion across different model architectures in § E.3.

4.4 Analysis Results

Effect of SIG in Decoding Perspective To dis-
tinguish LACING from prior works, we investigate
effectiveness of SIG in different decoding strate-
gies. As shown in Table 2, existing training-free
methods, like VCD (Leng et al., 2023) and VDD-
None (Zhang et al., 2024), only yield gains under
Nucleus Sampling (Holtzman et al., 2020), while
SIG consistently improves performance under both
Greedy and Nucleus Sampling. It is further vali-
dated across different model sizes in § E.2.

VCD contrasts outputs from original and dis-
torted visual inputs, while VDD uses text-only in-
puts. However, Adding random noise or omitting
visual inputs at inference create discrepancies not
present during training, leading to degraded perfor-
mance and reduced robustness, especially on bench-
marks like MMBench, where outputs are short and
deterministic. Greedy Sampling, which selects
most probable token, offers limited tolerance for
the introduced noise, making these methods less ef-
fective. By contrast, Nucleus Sampling introduces
randomness by sampling from a probability distri-
bution, which mitigate sensitivity to noise, making
these methods appear effective. However, this ran-
domness may harm performance in tasks requiring
precise outputs (e.g., multi-choice QA), often un-
derperforming compared to Greedy Sampling.

In contrast, SIG replaces visual inputs with a
learnable soft visual prompt that preserves input
patterns while compelling model to prioritize text
inputs. It ensures consistency between training
and inference, enabling SIG to deliver robust gains
under both decoding strategies. Additional compar-
isons in § E.2 further demonstrate SIG’s effective-
ness against IBD (Zhu et al., 2024), ICD (Wang
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Model LLaVABench
Complex Conv Detail All

LLaVA-1.5 75.50 54.10 56.60 64.40
w. FastV 79.80 54.10 46.70 63.90
A +4.30 +0.00 -9.90 -0.50
MDA 83.20 59.70 59.20 70.30
w. FastV 10.70 10.20 10.40 10.50
A -72.50 -49.50 -48.80 -59.80

Table 3: Performance on LLavaBench between LLaVA-
1.5 and those with MDA, with and without FastV.

etal., 2024b), VDD-UNK (Zhang et al., 2024), and
a variant using a blank image.

How do LVLMs Treat Visual Inputs with MDA?
To evaluate the effectiveness of MDA in mitigat-
ing language bias caused by training scale dispari-
ties, we analyze how LVLMs process visual inputs
across layers. To assess whether MDA addresses
this issue, we adopt the pruning method proposed
by Chen et al. (2024b) on LLaVA-1.5 with MDA
by pruning half of the visual tokens in deeper lay-
ers and measuring performance on LLaVA-Bench.
Prior work (Chen et al., 2024b) shows that pruning
visual tokens in deeper layers has minimal impact
on standard LVLMs, indicating poor utilization of
visual inputs at those layers. In contrast, our results
in Table 3 show a significant performance drop
when pruning is applied to the model with MDA,
confirming that visual information is effectively uti-
lized throughout all layers—not just shallow ones.
MDA ensures comprehensive attention to visual in-
puts across the model’s layers, thereby facilitating
LVLMs in fully exploiting its visual comprehen-
sion capabilities. The 7.7-points improvement for
complex tasks on LLaVABench in Table 3 validate
this conclusion, as complex tasks generally require
deeper layers for precise understanding (Ben-Artzy
and Schwartz, 2024; Jin et al., 2024).

Ablation Study To understand contributions of
each component, we conduct an ablation study
across multiple benchmarks in Table 4 on the 7B
model under different decoding strategies. Remov-
ing MDA (“ w/o MDA ”) causes a significant drop
in performance, particularly on LLavaBench and
MM-VET. This suggests that MDA is crucial for
enabling the model to effectively integrate visual
information across the model. Excluding the SIG
(““ w/o SIG ) also leads to a notable performance
decrease across all benchmarks. Both components
individually contribute to substantial improvements
over the baseline LLaVA-1.5 model. Even when

Sampling Model TextVQA LLavaBench MM-VET

LLaVA-1.5 46.05 64.40 31.10
LACING 46.94 72.20 33.50
Greedy -w/o. MDA 46.77 70.60 32.00
-w/o. SIG 46.03 70.30 32.80
LLaVA-1.5 35.41 63.00 29.80
LACING 42.05 72.20 35.20
Nucleus  -w/o. MDA 39.40 68.40 33.30
-w/o. SIG 36.40 67.80 30.50

Table 4: Ablation study on under different decoding
strategy across multiple benchmarks on 7B model.

one component is removed, the model still outper-
forms the baseline. To further validate LACING,
we conduct ablation studies across various model
sizes on multiple benchmarks in § E.5.

Effectiveness on Different Model Architecture
To validate robustness of LACING, we conduct ad-
ditional experiments on other model architectures.
We use LLaVA-NEXT (Liu et al., 2024d) as base
model, which supports dynamic resolution. Due
to training data availability, we leverage training
data from fully open-sourced version of LLaVA-
NEXT (Chen and Xing, 2024). Results show that
our approach applies to LLaVA-NEXT as well,
proving its versatility across different architectures
and training methods. See § E.3 for details.

Effect of Bidirectional Attention in MDA for Vi-
sual Inputs. To validate our design choice and
highlight that the core strength of MDA lies in its
parallel dual-attention mechanism, we compare at-
tention strategies for visual inputs in § E.4. Results
show that even with causal attention, MDA outper-
forms the baseline, confirming the effectiveness of
the dual-attention design. Bidirectional attention
yields greater gains, aligning better with the spatial
nature of visual data and justifying its use in MDA.

Parameter-Efficient Tuning. While our primary
focus is full-model retraining to ensure fair and
rigorous comparisons across methods, we also ex-
plore a lightweight alternative through parameter-
efficient tuning. Specifically, we apply our pro-
posed method in § E.6, accompanied by a detailed
discussion, to demonstrate its effectiveness.

Parameter Study. We conduct the parameter
study in § B.3 with the detailed discussion.

Human Evaluation and Case Study. The hu-
man evaluation on LLaVABench and a practical
case study are detailed in § H and § I, respectively,
demonstrating effectiveness of LACING.
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5 Conclusion

This paper tackles the language bias in LVLMs,
which often leads to neglect of visual inputs and
hallucinatory responses. We identify two primary
sources of this bias: gap in training scales between
the pretraining and multimodal alignment, and
learned inference bias. To reduce language bias, we
introduced Multimodal Dual-Attention Mechanism
(MDA) and Soft-Image Guidance (SIG). MDA en-
hances the integration of visual inputs across all
layers. SIG proposes a novel decoding strategy
to mitigate over-reliance on adjacent text tokens,
using a learnable soft visual prompt. Our work
highlights the importance of addressing language
biases from both training and inference perspec-
tives, paving the way for more advanced LVLMs.

6 Limitation

Despite the promising results demonstrated by
LACING in addressing the language bias of
LVLMs, several limitations must be acknowledged.
First, although we validate the effectiveness of
our method on two representative LVLMs that
has different architecture—LLaVA-1.5 and LLaVA-
Next—more extensive evaluation across a wider
range of LVLM architectures is still lacking. This
is primarily because our method targets the mul-
timodal alignment stage that post-trains an LLM-
based backbone into an LVLM, requiring fair com-
parisons that retrain models from scratch. How-
ever, for more advanced LVLMs such as Qwen-
VL-2.5 and InternVL-3, the data and training de-
tails for their multimodal alignment stages are not
fully open-sourced, making it infeasible to apply or
evaluate our approach directly. Nevertheless, lan-
guage bias is commonly observed across various
LVLMs (Zhao et al., 2024b; Chen et al., 2024c¢,b)
and even the SOTA LVLMs (Wang et al., 2024a)
exhibits such phenomena. Therefore, inspired by
this common observation and the consistent gains
observed across model sizes and different in our
experiments, we anticipate the implementation and
effectiveness of LACING on diverse LVLMs. Ad-
ditionally, due to resource constraints, we are un-
able to acquire LVLMs that achieve a similar scale
of training between the LLM pretraining stages
and the LVLM alignment stage to accurately val-
idate the source of language bias. Finally, while
LACING has significantly reduced hallucinations
in LVLMs and enhanced visual comprehension ca-
pabilities, there remains a possibility for it to pro-

duce hallucinations or disseminate misinformation.
Therefore, it still should be employed with caution
in critical applications. Consequently, future re-
search could involve broadening our approach to
include a wider spectrum of LVLMs with different
architectures and training them using a compara-
ble training scale to observe the manifestations of
language bias.
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A Appendix

This Appendix is organized as follows.

* In § B, we show implementation details of our
method: training details(§ B.1), datasets(§ B.2)
and hyperparameters(§ B.3).

* In § C, we present the related work of this paper,
focusing on the language bias in LVLMs(§ C.1)
and the method to address such bias(§ C.2).

* In § D, we present the details of our experi-
ments and evaluation. Specifically, dataset and
metric(§ D.1), baselines(§ D.2) and GPT-4 Ver-
sion(§ D.3)

* In § E, we provide the additional experiments,
including the evaluations across wide-range of
benchmarks(§ E.1), baselines(§ E.2), different ar-
chitecture(§ E.3), different design choice(§ E.4),
different model size(§ E.5) and parameter effi-
cient training using LACING § E.6.

* In § F, we analyze early-fusion LVLMs like
Chameleon, trained from scratch with a balanced
mix of text and visual tokens, distinguishing
them from the LVLMs discussed in this paper.

* In § G, we detail the experiments and provide
an in-depth discussion on the impact of hyper-
parameters, specifically the replace probability
0(§ G.1) and the scaling parameter \(§ G.2).

* In § H, we present a human evaluation of LAC-
ING versus LLaVA-1.5 across LLaVABench.

* In § I, we present more qualitative results.

e In § J, we visualized the attention distribution
across different layers in LLaVA-1.5 and LAC-
ING.

B Training Details

To make fair compression, we adopt the same train-
ing settings as LLaVA-1.5 (Liu et al., 2024¢), main-
taining consistency in hyperparameters, training
dataset, data preprocessing, and model architec-
ture. The only differences lies in the introduction
of the multimodal dual-attention mechanism and
the learnable soft visual prompt for soft-image guid-
ance.

B.1 Training

Following the setting of LLaVA-1.5 (Liu et al.,
2024c), we employ CLIP-ViT-L-14-336 (Radford
et al., 2021) as the visual encoder, paired with a
two-layer MLP adapter to project visual embed-
dings from the encoder to the LLM backbone.
Vicuna-1.5 (Chiang et al., 2023) serves as the LLM
backbone. All of the experiments are conducted
on the 8 x A100 GPUs, each with 40 GB of mem-
ory. We employ the Deepspeed Zero2 (Rajbhandari
et al., 2020) and Deepspeed Zero3 (Rajbhandari
et al., 2020) for training the 7B and 13B model,
respectively.

In addition to these standard components of
LLaVA-1.5, our method includes two significant
modifications to the model architecture. Firstly, we
adopt the multimodal dual-attention mechanism
proposed in this paper, replacing the vanilla self-
attention in the LLM. This modification slightly
increases the computational cost due to the dual-
attention calculation. We further incorporate a
learnable soft visual prompt for soft-image guid-
ance. We maintain a learnable embedding with
dimensions [lyisual, ALLM], Where lyisyal is the Vi-
sual embedding length and Ay is the LLM hid-
den state size. In our practice, the learnable soft
visual prompt has a size of [576,4096] for a 7B
model and [576, 5120] for a 13B model, which cor-
respondingly adds 2.36M and 2.95M parameters to
the 7B and 13B models. Compared to the billion-
level parameters of these LVLMs, the additional
parameters account for only 0.03% and 0.02%,
respectively, which are minimal and negligible.
Therefore, compared to LLaVA-1.5, our method
does not require additional training resources or
computational costs, thereby demonstrating the ef-
ficiency of our approach. Practically speaking, the
time cost of our method is approximately identical
to that of LLaVA-1.5 under the same setting.

B.2 Data

We strictly follows the data setting of LLaVA-1.5
for both pretraining and finetuning. Specifically,
the LLaVA-558K (Liu et al., 2023) for pertrain-
ing and a mixture of instruction-following data for
finetuning shown in Table 5.

B.3 Hyperparameters

We utilize the identical set of hyperparameters as
the original LLaVA-1.5 (Liu et al., 2024c), with the
exception of specifying the replacement probability
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Dataset Data Size
LLaVA (Liu et al., 2023) 158K
ShareGPT (ShareGPT, 2023) 40K
VQAV2 (Goyal et al., 2017) 83K
GQA (Hudson and Manning, 2019) 72K
OKVQA (Marino et al., 2019) 9K
OCRVQA (Mishra et al., 2019) 80K
A-OKVQA (Schwenk et al., 2022) 66K
TextCaps (Sidorov et al., 2020) 22K
RefCOCO (Kazemzadeh et al., 2014) | 48K
VG (Krishna et al., 2017) 86K
Total 665K

Table 5: Instruction-following Data Mixture Used for
Finetuning (Liu et al., 2024c).

o n......

Figure 5: Model performance on LLaVABench across
various scaling parameter \.

0 for training with soft-image guidance. Detailed
training hyperparameters for both stages are pro-
vided in Table 6. During the inference, we use the
hyperparameter A to control the guidance of the
visual inputs on the response generation. As illus-
trated in Figure 5, we report the performance of the
13B model on LLaVABench across various the scal-
ing parameter A, thereby demonstrating the impact
of different A\ scales on model performance. The
optimal performance of our method under various
A values is reported in the experiments.

C Related Work

C.1 Language Bias in LVLMs

Despite the impressive capabilities of LVLMs (Ope-
nAl, 2024; Team, 2023; McKinzie et al., 2024,
Wang et al., 2024a; Li et al., 2024; Wu et al., 2025¢;
Chen et al., 2025; Zhao et al., 2025), similar like the
hallucination (Huang et al., 2023; Si et al., 2025c)
of LLMs (Dubey et al., 2024; OpenAl, 2024; Team,
2023; Zhao et al., 2024a; An et al., 2025), these
models still struggle with generating responses ir-
relevant to the context images (Lan et al., 2024; Liu
et al., 2024b), e.g., hallucinating non-existent ob-
jects (Zhou et al., 2024c). Zhao et al. (2024b) first

Hyperparameter Pretrain Finetune
batch size 256 128

Ir le-3 2e-5

Ir schedule cosine decay cosine decay
Ir warmup ratio 0.03 0.03
weight decay 0 0
optimizer AdamW AdamW
DeepSpeed stage 2 3
replace prob. 6 10% 10%

Table 6: Hyperparameters of LACING, which are
the same as the original LLaVA-1.5 (Liu et al., 2024c),
except that we set the replace probability 6§ for training
with soft-image guidance.

identify this issue in LVLMs and name it as lan-
guage bias, i.e., LVLMs often ignore visual inputs
and solely rely on text inputs, leading to hallucina-
tions. Similarly, Chen et al. (2024c) observe that
LVLMs can derive answers directly from the world
knowledge embedded in LLMs or deduce them
solely from the textual input, even in the absence
of visual information. Chen et al. (2024b) further
analyzes the attention distribution of prominent
LVLMs, revealing an inefficient attention mech-
anism wherein attention computation over visual
inputs is extremly inefficient in the deeper layers
of LVLMs. Moreover, Zhang et al. (2024) note that
LVLMs tend to allocate more attention to text in-
puts and increasingly prioritize them, with attention
to visual inputs diminishing as the length of gen-
erated text increases. These findings collectively
indicate that LVLMs assign disproportionately low
attention to visual inputs, limiting their ability to
effectively utilize image information.

C.2 Addressing Language Bias in LVLMs

Given the language bias of LVLMs, they exhibit
similar hallucination issues as LLMs (Si et al.,
2025b; Huang et al., 2023; Si et al., 2025a), as
well as modality-specific hallucinations such as ob-
ject hallucination (Rohrbach et al., 2019; Li et al.,
2023c). As noted by Leng et al. (2023), this stems
from the dominant influence of the LLM’s pre-
training distribution, making hallucination a promi-
nent symptom of language bias. Recent efforts
have been proposed to mitigate the hallucination in
LVLMs. LRV (Liu et al., 2024a) attempts to apply
supervised fine-tuning on a well-designed visual
preference dataset. LLaVA-BPO (Pi et al., 2024)
proposes pipeline to gather preference datasets for
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Model SCIQA1T POPE? SeedBench? MMVP?
LLaVA-1.5 70.12 8738 8426 8621 58,60 66.10 37.30 26.00
VCD 70.12 87.39 8425 8621 5993  65.62 3841 26.00
LACING 71.26 87.74 85.60 86,50 6135 6746  38.19 32.00

Table 7: Experiments with more benchmarks across 7B model

preference learning to mitigate hallucination. Ad-
ditionally, LLaVA-RLHF (Sun et al., 2023) and
RLHF-V (Yu et al., 2024) introduce reinforce-
ment learning for LVLM to reduce hallucinations.
While effective, these methods typically necessi-
tate substantial training data and computational
resources. To address this, training-free methods
have been proposed, including VCD (Leng et al.,
2023), IBD (Zhu et al., 2024), VDD (Zhang et al.,
2024), and ICD (Wang et al., 2024b). These meth-
ods contrast outputs with those from image-free in-
puts (or with distorted images) to reduce influence
of textual LLMs. However, these methods may
introduce inconsistencies between training and in-
ference, limiting their effectiveness.

D Detailed Experimental Settings

D.1 Dataset and Metric

MMBench (Liu et al., 2024e) provides a pro-
gressive evaluation framework, advancing from
perception to reasoning, and covers 20 fine-grained
abilities. It is assessed through multiple-choice
question answering, using accuracy as the metric.

MMBench (Liu et al., 2024¢e) provides a pro-
gressive evaluation framework, advancing from
perception to reasoning, and covers 20 fine-grained
abilities. It is assessed through multiple-choice
question answering, using accuracy as the metric.

TextVQA  (Singh et al., 2019) is designed for
visual question answering involving text within
images. It employs VQA accuracy as the evalua-
tion metric. Unlike LLaVA-1.5 (Liu et al., 2024c¢),
which includes OCR results of the images in the
question, our approach provides the model solely
with the image and the question. This setup aims to
assess the model’s visual comprehension abilities
without supplementary textual data.

MM-VET (Yu et al., 2023) evaluates mul-
timodal understanding across six core vision-
language capabilities over 128 tasks. The eval-
uation is conducted using GPT-4 to assess model

performance in a free-form question-answering for-
mat. MM-Vet defines 16 integrations derived from
combinations of these core capabilities, providing a
structured assessment of models’ abilities to handle
complex multimodal tasks.

LLaVABench (Liu et al., 2023) is utilized
for evaluating open-ended generation capabilities.
This benchmark consists of 60 tasks focused on
LLaVA’s visual instruction-following and question-
answering abilities in natural environments. It
employs GPT-4 as the evaluator to compare the
model’s generated answers with reference an-
swers, ensuring a comprehensive assessment of
the model’s generative performance.

Object HalBench (Rohrbach et al., 2019) de-
tects object hallucinations by comparing model
outputs with COCO image labels (Lin et al., 2015).
Yu et al. (2024) further augment this benchmark
by adding eight diverse prompts with detailed im-
age descriptions for stable evaluations. We follow
the same evaluation setup and use GPT-4 as the
evaluator. We report the two metrics in this bench-
mark: The response-level hallucination rate and the
object-level hallucination rate.

MMHall-Bench (Sun et al., 2023) evaluates hal-
lucinations and response informativeness. It em-
ploys GPT-4 to compare model output with human
response and several object labels to get the final
scores.

D.2 Baselines

General LVLMs that have undergone multi-
modal alignment training. Specifically, we uti-
lize LLaVA (Liu et al., 2023), Qwen VL (Bai
et al., 2023), LLaVA-1.5 (Liu et al., 2024c), Muf-
fin (Lou et al., 2024), and LRV (Liu et al., 2024a)
as representative baselines. These LVLMs are pre-
dominantly trained with multimodal data for align-
ment (Liu et al., 2023; Bai et al., 2023; Lou et al.,
2024) and fine-tuned using high-quality instruction
data (Liu et al., 2024c,a), thereby achieving excep-
tional performance in various multimodal tasks.
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Model MMBench TextVQA

Greedy Sampling

LLaVA-1.5 (Liu et al., 2024¢) 64.61 46.05

-w. Two epoch 65.63 45.83
w. SIG 66.92 46.77
-w. Two epoch 66.58 47.15

Nucleus Sampling

LLaVA-1.5 (Liu et al., 2024c) 56.96 35.41
-w. Two epoch 60.82 36.70
w. SIG 63.49 39.40
-w. Two epoch 62.97 41.27

Table 8: Performance comparison of models undergoes
training for one or two epochs across MMBench and
TextVQA.

For example, LRV (Liu et al., 2024a) employs
supervised fine-tuning on an expertly crafted vi-
sual preference dataset to mitigate hallucinations
in LVLMs. Typically, these models integrate a pre-
trained visual encoder with a large language model
through an alignment module.

Training-free methods designed to mitigate hal-
lucination of LVLMs. VCD (Leng et al., 2023)
contrast model outputs generated from original
inputs and distorted visual input to reduce over-
reliance on statistical bias and unimodal priors. Si-
miliarly, VDD (Zhang et al., 2024) contrast model
outputs from original inputs and inputs without vi-
sual inputs to reduce the influence of textual LLM:s.
OPERA (Huang et al., 2024) introduces a penalty
term on the model logits during the beam-search
decoding to mitigate the over-trust toward a few
summary tokens. Less-is-more (Yue et al., 2024)
proposes a selective end-of-sentence (EOS) special
token supervision loss coupled with a data filtering
strategy to improve the model’s capacity for timely
termination of generation, thereby mitigating hallu-
cinations.

Reinforcement Learning-based method aimed
at aligning LVLM outputs with human intentions
to mitigate hallucination of LVLMs. Specifically,
POVID (Zhou et al., 2024b) addresses halluci-
nations in VLLMs using Al-generated feedback.
It first prompts GPT-4V to add hallucinations to
correct answers and use distorts images to in-
voke the VLLM’s inherent hallucination tenden-
cies. The model is then trained with this gener-
ated data using direct preference optimization ap-
proaches (Rafailov et al., 2024) to mitigate hallu-
cinations. HA-DPO (Zhao et al., 2024c) propose
a pipeline for constructing positive and negative
sample pairs and adopt the direct preference op-
timization (Rafailov et al., 2024) using the con-
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Figure 6: Model performance on MMHall-Bench across
various scaling parameter \.

structed dataset to reduces hallucination. RLHF-
V (Yu et al., 2024) employs the Muffin (Lou et al.,
2024) as the LLLM backbone and collects 1.4k fine-
grained correctional human feedback. The model
is trained using this dataset through the proposed
dense direct preference optimization method to re-
duce hallucination. LLaVA-BPO (Pi et al., 2024)
proposes a pipeline to gather preference datasets
and conduct preference learning to mitigate this
type of hallucination.

D.3 GPT-4 Version

For all evaluations conducted using the GPT-
4(evaluation for Object HalBench, MMHall-Bench,
LLaVABench, and MM-VET), we utilized the
GPT-4 API in October 2024. It ensures consis-
tency with prior research (Yu et al., 2023, 2024;
Sun et al., 2023; Liu et al., 2023). According to the
documentation provided by OpenAI”, GPT-4 API
currently points to GPT-4-0613 API.

E Additional Experiments

E.1 Additional Evaluations across other
benchmarks

To further demonstrate the generalizability of LAC-
ING, we conducted experiments on additional
benchmarks, including ScienceQA, POPE, Seed-
Bench, and MMVP. The results presented in Ta-
ble 7 consistently show improvements, confirming
the effectiveness of our method.

E.2 Comparison Between SIG and Other
Methods

Table 9 compares SIG with other training-free base-
lines, including a variant using a blank image in-
stead of the learnable soft-image prompt. The re-
sults show that SIG outperforms all baselines, with

Zhttps://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4
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Method LLaVABench!  MM-VET? MMHall Obj Hall
Score 1 Hall | Res | Obj |
LLaVA-1.5 (Liu et al., 2024c) 64.40 31.10 2.19 59 4671  25.08
IBD (Zhu et al., 2024) 64.60 31.10 2.24 58 4631  24.16
ICD (Wang et al., 2024b) 64.70 31.10 2.18 59 4740  25.00
VDD-UNK (Zhang et al., 2024) 65.30 31.00 222 56 4671 24.82
SIG-blank 68.40 31.50 242 52 3441 1780
SIG 70.60 32.00 2.47 50 3036 15.16
Table 9: Comparison of SIG with other baselines on 7B model
Method Model Size ~ MMBench? TextVQA 1 LLaVABench?t Obj Hall
Res | Obj |
Greedy Sampling
LLaVA-1.5 13B 67.74 48.66 72.50 47.06 2333
VCD 13B 6838 (+0.64)  48.63(-0.03)  73.60 (+1.10) 4637 (-0.69)  23.10 (- 0.23)
VDD-None 13B 68.56 (+0.82)  47.31(-1.35)  73.00 (+0.05)  44.64(-2.42)  22.23 (- 1.10)
w. SIG 13B 70.19 (+ 2.45) 4874 (+0.07) 7470 (+2.20)  28.27(-18.79)  15.21(-8.12)
Nucleus Sampling
LLaVA-1.5 13B 62.11 38.92 68.10 50.52 25.74
vCD 13B 6538 (+3.27)  4356(+4.64) 7070 (+2.60)  49.83(-0.69)  24.23 (- 1.51)
VDD-None 13B 66.32(+421) 4599 (+7.07)  7140(+3.30)  47.90(-2.62)  23.25 (- 2.49)
w. SIG 13B 64.77 (+2.66) 4031 (+1.39)  72.00 (+3.90)  30.55(-19.97)  17.45(- 8.29)

Table 10: Comparison of SIG with training-free methods under different decoding strategies in 13B model. Perfor-
mance gap compared to the base model(LLaVA-1.5) are noted in parentheses. Red denotes positive improvements,

while green indicates negative effects.

the learnable prompt significantly surpassing the
blank-image variant while adding only 0.02-0.03%
more parameters.

Table 10 compares SIG with other training-free
baselines for the 13B model. The results confirm
that while prior training-free approaches improve
performance only with Nucleus Sampling, SIG
demonstrates effectiveness across all decoding set-
tings.

E.3 Evaluation Across Different Model
Architectures

To ensure a fair comparison, we train the LVLM
from scratch using our method and evaluate its per-
formance against baseline models. Given the avail-
ability of training data, we select LLaVA-1.5 (Liu
et al., 2024c) as our base model and strictly adhere
to its training settings, including the same dataset
and model backbone. To further validate the robust-
ness of our approach, we conduct additional exper-
iments across various model architectures. Specif-
ically, we use LLaVA-NEXT (Liu et al., 2024d)
as the base model, which supports dynamic resolu-
tion. Due to training data availability, we leverage
the dataset from the fully open-sourced version of
LLaVA-NEXT (Chen and Xing, 2024) and adhere
to its training settings. We set the Vicuna-1.5 (Chi-
ang et al., 2023) language model backbone and

ViT-L-14-336 (Radford et al., 2021) as the visual
encoder. Our preliminary results, presented in Ta-
ble 11, indicate that similar performance trends
hold across additional LVLMs. This underscores
that our approach is not limited to a specific archi-
tecture or training setup.

Model Obj Hall MMHall MM-VET 1
Res | Obj | Score 1 Hall |

LLaVA-Next  13.81 7.50 2.67 51.00 37.6

LACING 7.92 4.29 2.84 49.00 42.2

Table 11: Performance of LACING on LLaVA-Next.

E.4 Comparison of Different Attention
Mechanism for Visual Inputs in MDA

Method MM-VET 1 LLavaBench {
LLaVA-1.5 31.10 64.40
Causal Attn. 31.90 69.60
Bi-Attn.(MDA) 32.80 70.30

Table 12: Comparison of different visual attention strate-
gies in MDA.

To validate our design choice and highlight that
the core strength of MDA lies in its parallel dual-
attention mechanism, we compare different atten-
tion strategies for visual inputs in Table 12. The
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results show that even when using only causal atten-
tion, MDA still yields performance gains over the
baseline, confirming the effectiveness of the dual-
attention design. However, bidirectional attention
achieves more significant improvements, aligning
more naturally with the spatial characteristics of vi-
sual data. This further supports our motivation for
adopting bidirectional attention for visual inputs in
MDA.

E.5 Ablation Studies Across Different Model
Size

To further validate our method, we conduct abla-
tion studies across various model sizes on multiple
benchmarks. Specifically, we perform an ablation
study on the 13B model across multiple bench-
marks to analyze the impact of different compo-
nents. Table 13 presents the results, demonstrating
that our approach outperforms the baseline and
its ablated variants across both MMBench and
LLaVABench, under both greedy decoding and
sampling strategies.

MMBench LLaVABench

Greedy Sampling Greedy Sampling

LLaVA-1.5 67.74 62.11 72.5 68.1
w.o. SIG 68.73 65.55 76.7 75.5
w.o. MDA 68.99 64.77 74.7 72.0
LACING 70.01 66.92 78.5 76.6

Table 13: Ablation study on 13B models.

E.6 Parameter-Efficient Tuning with
LACING

While our primary focus has been on full-model
retraining to ensure fair and rigorous comparisons
across methods, we also recognize the importance
of lightweight and practical alternatives. Inspired
by prior works (Meng et al., 2023) highlighting the
role of Feed-Forward Networks (FFN) in retaining
knowledge for large language models, we explore
a targeted fine-tuning strategy where only the FFN
layers are updated. This design reduces the num-
ber of trainable parameters to approximately 7%
of the full model (500M vs. 7B), thus offering a
computationally efficient alternative.

We conduct experiments on LLaVA-1.5 (Liu
et al., 2024c), comparing the baseline, our full
retraining method (LACING), and the FFN-only
fine-tuning variant. As shown in Table 14, this
lightweight strategy achieves performance that
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Figure 7: Average attention scores for output tokens
towards text and visual tokens across different layers of
early-fusion LVLMs (Chameleon (Team, 2024)).

is highly competitive with full retraining, while
requiring significantly fewer computational re-
sources. Specifically, FFN-only fine-tuning yields
only marginally lower performance than full re-
training, underscoring the robustness of our ap-
proach even under practical constraints.

Method LLaVABench1 MM-VET 1
LLaVA-1.5 64.40 31.10
LACING (Full Retrain) 72.20 35.20
LACING (FFN-tuning) 71.20 34.00

Table 14: Performance comparison of full retraining and
FFN-only-tuning strategies using LACING on LLaVA-
1.5.

These findings demonstrate that LACING re-
mains highly effective even when applied in a
lightweight fine-tuning setting, providing strong
empirical evidence for its practicality in resource-
constrained scenarios. We will further elaborate on
these results in the main revision.

F Analysis of Early-fusion LVLMs

The performance of LVLMs is often hindered by
the disparity in training scales between the LLM
pretraining phase and the subsequent LVLM align-
ment stage. This imbalance results in suboptimal
utilization of visual inputs, as evidenced by the at-
tention distributions: only the initial layers demon-
strate significant attention to visual tokens, while
the deeper layers tend to neglect them. In contrast,
early-fusion LVLMs, such as Chameleon (Team,
2024), which are trained from scratch using a bal-
anced mix of visual and textual tokens, exhibit a
more effective modality fusion. As shown in Fig-
ure 7, this balanced training approach enables the
model to allocate attention more uniformly across
modalities, thereby mitigating the issues associ-
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ated with scale disparities during pretraining and
alignment.

Following pervious work (Zhao et al., 2024b),
we measure performance gaps on image-required
vs.non-image-required questions gathered from
Science QA (Lu et al., 2022) dataset to evaluate
language bias. As shown in Table 15, although
showing better fusion, Chameleon, as well as other
LVLMs still remains substantial language bias.

G Parameter Study

Model Don’tReq Req  Gap
LLaVA 56.78 72.84 16.06
EVE 68.13 4533 22.80
Chameleon 56.12 37.33 18.79

Table 15: Language Bias Evaluation.

G.1 Influence of the Replace Probability ¢

In the soft-image guidance we proposed, we inter-
mittently replace the visual input with a learnable
soft visual prompt at a predetermined probability
rate to give the model an input without visual input
during training. This introduces segments of train-
ing data that remain unseen by the LVLMs during
training. Consequently, we make the model that
undergoes training for two epochs as a baseline to
ensure comprehensive exposure to all samples in
the training dataset. Subsequently, we evaluate the
model after one and two epochs of training on the
same benchmarks to determine the impact of visual
input replacement. The results presented in Table 8
indicate that neither the number of training epochs
nor the visual input replacement significantly im-
pacts model performance, as it remains consistent
across various settings and does not exhibit a clear
trend of performance variation related to different
training settings. To further establish the appropri-
ate value of the replace probability §, we present
an experiment in Table 16 to identify the optimal
value for this parameter.

G.2 Impact of the Scaling Parameter A

Another essential hyperparameter is the scaling pa-
rameter A\, which is employed in soft-image guid-
ance to regulate the guidance of the visual inputs
towards the response generateion. Therefore, To as-
sess the effect of varying \ values comprehensively,
we examine our method’s performance on MM-
Bench, LLaVABench and Hall-Bench with differ-
ent A values, which can be divided into two distinct

Overall BRG¥E]
AR 71.36 - 69.35 68.84 68.34
cpP 76.35 76.35 76.69 76.69 76.69 76.69

FP-C 55.94 55.94 55.94 55.94 55.94 55.24

FP-S 70.99 71.33 72.01 72.01 72.01 71.33
LR 30.51 30.51 30.51 31.36 32.20 EER)

RR 63.48

Normalized Score

Figure 8: Model performance on MMBench across var-
ious scaling parameter .

0 5% 10% 15% 20%
MMBench 66.32 6692 66.75  65.64
LLaVABench  67.00 70.60 67.80  66.90

Table 16: Performance of SIG on MMBench and
LLavaBench across different replace probability 6

scenarios: multi-choice generation and open-end
generation. The experimental results, illustrated
in Figure 8, Figure 5, and Figure 6, suggest that
an optimal value for the scaling parameter A lies
between 1.5 and 2.0. This range provides suitable
visual guidance without impairing the text genera-
tion capabilities of LVLMs.

H Human Evaluation on LLaVABench

To better illustrate the efficacy of our method, a
further human evaluation has been undertaken to
compare the model performance of LACING ver-
sus LLaVA-1.5 (Liu et al., 2024c). Specifically, we
evaluate the model perofrmance on LLaVABench,
which consists of 60 instances. We invited three
human participants (all of them are Ph.D. students
or Master students) to compare the responses gen-
erated by the models. For each comparison, three
options were provided (Win, Tie, and Lose), with
the final results determined by the majority vote of
the participants. Figure 9 showcases the effective-
ness of our method.

During the human evaluation, the participants
adhere the following principles to make the deci-
sion:
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3 Ours Wins [ Tie 3 LLaVA-1.5 Wins
7B 0.48 0.30 0.22
13B 0.65 0.18 0.17
0% 20% 40% 60% 80% 100%
Proportion

Figure 9: Human evaluation on LLaVABench.

Principles of Human Evaluation for
LLaVABench

You are asked to evaluate the responses gen-
erated by different models. Your evaluation
should adhere to the following principles:
1. Correctness: Assess whether responses
address the key points outlined in the
reference answer and image. For reference
answers with multiple key points, evaluate
how many of these the response accurately
addresses and score accordingly. Addition-
ally, ensure that the response provides the
necessary information for the user.

2. Faithfulness: Examine any additional
information in the answer to verify its
accuracy and relevance to the question
and image. If this information is incorrect
or not relevant to the question and image,
points should be deducted.

3. Coherence: Evaluate the fluency and
coherence of the responses. Also, consider
deducting points for overly verbose
responses or those that are excessively
generalized.

Finally, please make a decision among 3
opinions, including Win, Tie, and Loss.

If the majority voting of three participants not
yield a decisive outcome, we will engage in fur-
ther discussions among the involved participants
and subsequently conduct another vote to deter-
mine the final result. The human evaluation results
in Figure 9 shows that LACING can generate re-
sponses that consistently outperformed baseline
models across all three evaluation criteria. These
results highlight the model’s ability to deliver high-
quality answers that are both factually accurate and
contextually relevant, while maintaining fluency

Question: What type of fruit is this?

LLaVA: The image shows a group of unripe lychee
fruits.

fruits.

VDD: The fruit in the image is a lychee or
rambutan, which is characterized by its purple
color and unique appearance.

VCD: The image shows a group of unripe lychee X

Ours: The image shows purple mangosteen with
white interiors. The fruit has been cut open to
show the inside of one of the mangosteen. «

Figure 10: Comparison of LACING with other baselines
on a sample from LLaVABench. Hallucinated responses
and our corrections are highlighted in red.

Question: Is there any strawberry-flavored yogurt in
the fridge?

LLaVA: Yes, there is a container of strawberry-flavored X
yogurt in the refrigerator.

VCD: Yes, there is a container of strawberry-flavored
yogurt in the refrigerator.

VDD: Yes, there is strawberry-flavored yogurt in the
refrigerator among other food items.

Ours: No, there is no strawberry-flavored yogurt in the
fridge. However, there are fresh strawberries stored in
the refrigerator next to carrots. V

Figure 11: Comparison of LACING with other baselines
on a sample from LLaVABench. LACING demonstrates
a reduction in object hallucination and an enhancement
in fine-grained visual comprehension, such as the iden-
tification of fresh strawberries in the refrigerator.

and coherence.

I Case Studies

To deliver a thorough evaluation of the effective-
ness of our methods in mitigating visual halluci-
nations and enhancing the visual comprehension
of LVLMS, we present a case study in this section.
We compare the open-ended generation results of
our methods against several baseline models utiliz-
ing samples from LLaVABench. The evaluations
of the case studies on the 13B model are illustrated
in Figure 10, Figure 11, Figure 12, and Figure 13.
Case studies demonstrate that LACING effectively
reduces hallucinations while generating accurate
responses, showcasing fine-grained visual compre-
hension abilities.

J Comparison of Attention Allocation
with Standard LVLMs

To provide a clear illustration of our proposed mul-
timodal dual-attention mechanism and distinguish
the attention allocation towards visual tokens and
text tokens between our model and the standard
LVLM, we visualized the attention distribution
across different layers in LVLMs in Figure 14 and
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' Question: Which iconic movie
scene is being parodied in
. the meme?

LLaVA: The meme is parodying the iconic scene from the movie "The Lion King" where Simba is
lifted up by Rafiki, who holds him above the Pride Rock. In the meme, a man is holding a
small dog, and the dog is positioned in a way that it appears to be lifted up by the man,
mimicking the scene from "The Lion King." This humorous and creative adaptation of the
original scene adds a playful twist to the image.

VCD: The meme is parodying the iconic scene from the movie "The Lion King" where Simba is
lifted up by Rafiki, who holds him above the Pride Rock. In the meme, a man is holding a
small dog, and the dog is positioned in a way that it appears to be lifted up by the man,
mimicking the scene from "The Lion King." This humorous and creative adaptation of the
original scene adds a playful twist to the image.

rVDD: The meme parodies the iconic scene from the movie "The Lion King" where Simba holds a
baby animal, likely a lion cub, in his hands. In this particular meme, a man, possibly Elon
Musk, is portrayed as the character Simba, holding a small dog in his arms. This creative
and humorous adaptation of the original scene adds a modern twist by incorporating a well-
\known person, Elon Musk, into the parody.

D D D

Ours: The meme in the image is a parody of a scene from the Lion King, where Rafiki holds up
a baby lion while Simba adoringly looks up at him. Elon Musk is portrayed as Rafiki, smiling
as he looks up at the puppy he's holding. The meme has skillfully combined elements from the
\Lion King and a photograph of Elon Musk to create an amusing and entertaining scene.

Q_,

Figure 12: Comparison of LACING with other baselines on a sample from LLaVABench. LACING effectively
recognizes the individual in the meme and provides a thorough description, guiding to accurate responses to the
question.

Figure 15, comparing the standard LVLM (LLaVA-
1.5) with MDA. We get the attention allocation of
LVLMs shown in this paper, such as Figure 14, and
Figure 15, using the data from LLaVABench. We
select 30 samples from the LLaVABench to query
the LVLMs and examine the attention allocation
during generation. We report the avg scores in
Figure 2 and Figure 4 of the main paper.
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MONDAY.

Question: Please explain the
meme in detail.

JUST_MONDAY.

[:LLaVA: The image features a small dog lying on a wooden floor, possibly a deck, with a caption |

above it. The caption reads "Monday. Just Monday. . ." The dog appears to be relaxed and
enjoying its time on the wooden surface. The scene captures a moment of leisure and contentment
for the dog, as it spends its day indoors.

VCD: The image features a small brown dog lying on a wooden floor, appearing to be sleeping or
resting. The dog is positioned in the center of the scene, occupying a significant portion of
the image. The floor appears to be made of wood, giving the scene a cozy and warm atmosphere.

The image is accompanied by a caption that reads, "Monday. Just... Monday." This caption adds

a humorous touch to the scene, as it suggests that the dog is expressing its feelings about

the start of the week. The combination of the dog's relaxed posture and the caption creates a
lighthearted and amusing meme.

VDD: The image features a small brown dog lying on a hardwood floor on its side, taking up a
significant portion of the floor. The caption above the dog reads "Monday. Just... Monday!". In

the background, there are chairs placed at various positions, adding to the overall setting of

the scene. The combination of the dog's playful position and the caption's clever wordplay

creates a light-hearted and relatable meme.

Ours: The image is a Monday motivation meme featuring a small tan dog lying on a hardwood floor.
The caption reads, "Monday. Just... Monday." The meme expresses the sentiment of feeling down
or unenthusiastic about the start of the work week, as mondays are often associated with work,

school, and other responsibilities. The dog in the image symbolizes a sense of relaxation and
leisure, contrasting with the more stressful start of the week.

Figure 13: Comparison of LACING with other baselines on a sample from LLaVABench. LACING is the only model
capable of successfully articulating the idea that the meme is trying to convey, by contrasting image information and
questions.
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Figure 14: Comparison of Attention Maps across the 1st to 16th Layer in LLaVA and LACING.
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Figure 15: Comparison of Attention Maps across the 17th to 32nd Layer in LLaVA and LACING.
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