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Abstract

Automated Essay Scoring (AES) systems
now attain near–human agreement on
some public benchmarks, yet real-world
adoption—especially in high-stakes examina-
tions—remains limited. A principal obstacle is
that most models output a single score without
any accompanying measure of confidence
or explanation. We address this gap with
conformal prediction, a distribution-free
wrapper that equips any classifier with
set-valued outputs enjoying formal coverage
guarantees. Two open-source Large Language
Models—Llama-3 8B and Qwen-2.5 3B—are
fine-tuned on three diverse corpora (ASAP,
TOEFL11, Cambridge-FCE) and calibrated
at a 90% risk level. Reliability is assessed
with UAcc, an uncertainty-aware accuracy that
rewards models for being both correct and
concise. To our knowledge, this is the first
work to combine conformal prediction and
UAcc for essay scoring. The calibrated models
consistently meet the coverage target while
keeping prediction sets compact, indicating
that open-source, mid-sized LLMs can already
support teacher-in-the-loop AES; we discuss
scaling and broader user studies as future
work.

1 Introduction

Automated Essay Scoring (AES) has evolved
rapidly—from linear regressors built on hand-
crafted features (Phandi et al., 2015), through
CNN–LSTM hybrids that capture local and
long-range coherence (Taghipour and Ng, 2016),
to transformer encoders such as R2BERT that
pair BERT representations with joint regres-
sion–ranking objectives and reach state-of-the-art
agreement on ASAP essays (Yang et al., 2020).
The latest step is the move to (open-source) Large
Language Models (LLMs), e.g., fine-tuned Llama
variants now approach human-human agreement
on several AES benchmarks (Xiao et al., 2025).

Headline accuracy, however, is not enough for high-
stakes settings such as TOEFL1 or IELTS2, where
a single mis-scored script can determine admis-
sion or visa status. Exam boards need calibrated
confidence. Common approaches to measuring un-
certainty include Monte-Carlo dropout (Gal and
Ghahramani, 2016), deep ensembles (Lakshmi-
narayanan et al., 2017) and Bayesian neural net-
works (Goan and Fookes, 2020). These methods
are effective but either multiply inference cost or
offer no finite-sample guarantees.

Conformal prediction (CP) (Angelopoulos and
Bates, 2021) provides such guarantees by wrap-
ping any classifier with a set-valued output that
contains the true label with user-chosen probability.
CP has improved reliability in tasks from surrogate
models (Gopakumar et al., 2024) to question an-
swering, yet it has not been applied to AES, and
no study has linked calibration quality to scoring
usefulness. We bridge that gap with UAcc—an
uncertainty-aware accuracy that rewards models
that are correct and selective (Ye et al., 2024).

In this paper, we fine-tune two state-of-the-art
LLMs (Llama-3 8B (Dubey et al., 2024) and Qwen-
2.5 3B (Yang et al., 2024)) on three public AES
benchmarks (ASAP (Kaggle, 2012), TOEFL11
(Daniel Blanchard, 2014), Cambridge-FCE (Yan-
nakoudakis et al., 2011)). Each scorer is then cal-
ibrated with conformal prediction so that its pre-
diction set is guaranteed, by construction, to con-
tain the true score in at least 90 % of future es-
says. We evaluated these calibrated models with the
uncertainty-aware accuracy UAcc, alongside stan-
dard accuracy and quadratic-weighted κ. Across all
corpora, the models meet the 90% coverage guaran-
tee while keeping prediction sets tight, showing that
uncertainty-aware AES is already practical with
mid-sized, openly licensed LLMs. By uniting mod-
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2https://ielts.org/
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ern language models, distribution-free calibration,
and an uncertainty-sensitive metric, we provide the
first comprehensive picture of trustworthy essay
scoring across multiple proficiency tests.

2 Background

This work combines a standard essay-scoring
model with conformal prediction so that every pre-
diction comes with a statistically valid notion of
confidence.

2.1 Essay-scoring task
An essay x must receive one label y from a fixed
set of K possible scores (e.g. the integers 2–12
for ASAP, or the three bands low/med/high for
TOEFL). A neural scorer f takes the essay text
and outputs a probability for each label; we denote
that distribution by p̂(y | x).

2.2 Conformal prediction (CP)
Conformal prediction turns those probabilities into
a prediction set Cα(x) ⊆ {1, . . . ,K} that is guar-
anteed to contain the true score with high proba-
bility. Formally, for a user-chosen risk level α (we
use α = 0.1), CP ensures

Pr[y ∈ Cα(x)] ≥ 1− α (1)

so the true score falls outside the set in at most 10%
of future essays.

How conformal sets are constructed. To build
a prediction set using conformal prediction, the
data is first split into three parts: a training set for
fitting the model, a calibration set for estimating
uncertainty, and a test set for evaluation.

For a given model f and input essay x, the score
assigned to each possible label y is defined as

s(x, y) = 1− p̂(y | x) (2)

where p̂(y | x) is the model’s predicted probabil-
ity. This is known as the least-ambiguous classifier
(LAC) score—lower scores indicate higher confi-
dence.

Using the calibration set, the conformal algorithm
computes a threshold qα such that at most an α
fraction of calibration scores exceed it. Then, for
any new essay x, the prediction set is formed by in-
cluding all labels with scores below this threshold:

Cα(x) = {y ∈ Y | s(x, y) ≤ qα} (3)

This guarantees that the prediction set contains the
true label with probability at least 1− α.

2.3 Metrics
We evaluate models using both standard and
uncertainty-aware criteria. Quadratic-weighted κ
(QWK) measures agreement with human raters
while penalising larger score discrepancies more
heavily than near misses, which is natural for ordi-
nal rubrics. In addition to accuracy and QWK, we
report three key metrics specific to conformal pre-
diction: (i) Coverage, the proportion of test essays
for which the true label is contained in the predic-
tion set Cα(x); (ii) Average set size, measuring
how many labels are typically included—smaller is
better; and (iii) UAcc which balances correctness
and conciseness via

UAcc = Accuracy ×
√

K

avg. |Cα(x)|
(4)

where K is the number of classes. UAcc penalises
large or overly cautious prediction sets, rewarding
models that are both accurate and selective.

3 Experimental Setup

3.1 Models and tokenisation
We experiment with two openly licensed generative
LLMs: Llama-3 8B and Qwen-2.5 3B. Both are
loaded via HuggingFace Transformers with 4-bit
quantisation; special tokens and maximum context
length follow the model cards. For each corpus
we prepend a short instruction—“Read the essay
and output a single score:”—and rely on the tok-
enizer to convert either the integer label (ASAP) or
the band token low/medium/high (TOEFL11, FCE)
into a single ID, so that the final token distribution
can be treated as a 3- or 11-way classifier without
adding new parameters.

3.2 Fine-tuning
Training is performed on a single Nvidia A100-
40GB GPU for eight epochs with AdamW (learn-
ing rate 1× 10−5). We use a global batch size of
8 and a fixed random seed (42) to ensure repro-
ducibility.

3.3 Calibration and test split
After fine-tuning, the original validation + test por-
tion of each corpus is split once into equal-sized
calibration and test sets (15 % / 15 % of the full
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Corpus Train Cal Test Labels
ASAP P1 1 248 268 267 11-way (2–12)
TOEFL11 8 470 1 815 1 815 low / med / high
Cambridge-FCE 1 742 373 373 low / med / high

Table 1: Dataset sizes after a 70 / 15 / 15 train–calibration–test split. These are the number of essays in each split

data; exact counts in Table 1). Calibration essays
never influence model weights.

3.4 Conformal prediction
For every essay–label pair we compute the least-
ambiguous classifier score s(x, y) = 1− p̂(y | x),
where p̂ is the model’s softmax probability. The
(1−α) quantile of these scores on the calibration set
with α = 0.1 yields the threshold qα. At inference
time we return all labels whose scores fall below
qα, guaranteeing that the prediction set contains the
true label in at least 90 % of future essays.

3.5 Evaluation metrics
We report conventional accuracy and QWK to-
gether with three uncertainty-aware measures in-
troduced in Section 2: Coverage, the empirical
proportion of essays whose true label lies in the
prediction set; Average set size, a proxy for infor-
mativeness; and UAcc, which trades off accuracy
against set size.

3.6 Datasets
Table 1 lists the three corpora and the statistics
derived from our 70 / 15 / 15 train–calibration–test
split.

ASAP Prompt 1 Essays written by secondary-
school students and graded on an eleven-point scale
(2–12). We keep the full scale, as retaining an
intermediate label space allows us to study how
uncertainty behaves when the number of possible
scores increases—something neither TOEFL11 (3
classes) nor FCE (3 bands) can reveal.

TOEFL11 Internet-based TOEFL essays pre-
labelled low, medium or high.

Cambridge-FCE Scripts scored holistically
1–40. To align with TOEFL11 and keep predic-
tion sets interpretable, we divide the range into
equal-width thirds—1–18 (low), 19–30 (medium)
and 31–40 (high). This heuristic balances the three
classes and prevents prediction sets from balloon-
ing to forty labels; exploring finer buckets is left
for future work.

4 Results and Discussion

4.1 Calibrated performance and set
compactness

Across all three corpora, the calibrated Llama
models achieve the highest QWK, confirming that
stronger back-bones still translate into better agree-
ment with human graders even after quantisation
and LoRA fine-tuning (Hu et al., 2022). Crucially,
they do so while returning the tightest prediction
sets: roughly 2.7 labels on the 11-way ASAP
rubric and fewer than two labels on the three-class
TOEFL11 and FCE tasks. Those concise sets lift
UAcc above competing systems that share the same
point accuracy. In other words, the Llama scorers
are not merely correct; they are confident enough
to commit to a smaller subset of possible scores,
which reduces the burden on any downstream hu-
man reviewer.

4.2 UAcc and operational impact

Because UAcc rescales accuracy by
√
K/|C|, a

system can gain either by raising raw accuracy or
by shrinking its prediction sets. On ASAP, Llama-2
and Qwen differ by only four accuracy points (0.54
vs 0.50), yet Llama’s sets are 0.8 labels tighter,
boosting UAcc from 0.88 to 1.08. In practice that
means nearly 20 % fewer essays would be flagged
for manual review at the same error rate—an oper-
ationally significant saving.

4.3 Accuracy vs. F1 under class imbalance

Accuracy can be misleading whenever the label
distribution is skewed. F1 balances precision and
recall, revealing whether a model simply exploits
the majority label or performs consistently across
bands. In our results the gap between accuracy and
F1 is small, confirming that the calibrated LLMs
do not over-predict a single band; nonetheless, re-
porting F1 guards against potential imbalance and
strengthens the claim that the models generalise
across proficiency levels.
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Dataset Model QWK Acc. F1 Coverage Avg. |C| UAcc
ASAP P1 Qwen-2.5 3B 0.69 0.50 0.45 0.91 3.51 0.88

Llama-2 7B 0.82 0.54 0.52 0.91 2.74 1.08
Llama-3 8B 0.80 0.54 0.51 0.91 2.81 1.07

TOEFL11 Qwen-2.5 3B 0.69 0.77 0.76 0.89 1.32 1.16
Llama-3 8B 0.70 0.77 0.77 0.89 1.29 1.17

Cambridge-FCE Qwen-2.5 3B 0.16 0.65 0.62 0.95 2.30 0.74
Llama-3 8B 0.28 0.66 0.64 0.88 1.74 0.87

Table 2: Calibrated performance on three corpora.

4.4 Coverage and label-space effects

Empirical coverage lies within one percentage
point of the 90% target on every dataset, demon-
strating that a single conformal wrapper gener-
alises from an 11-point rubric (ASAP) to 3-labeled
(TOEFL11, FCE) despite the shift in prompt style,
score range and proficiency level. The larger pre-
diction sets observed on ASAP reflect the richer
label space: with eleven possible scores the model
must sometimes hedge between adjacent grades, a
phenomenon less common in the three-band cor-
pora.

4.5 ASAP Prompt 1 baselines in context

Table 3 summarises published ASAP Prompt 1
QWK results and situates our numbers alongside
prior work.

4.6 Why FCE QWK is lower than TOEFL11

The absolute QWK numbers on FCE are markedly
lower than on TOEFL11, even though both datasets
use the same low/medium/high mapping. Two fac-
tors help to explain the gap. First, the FCE essays
are mapped post-hoc from a 40-point holistic scale,
and quadratic penalises any band disagreement
proportionally to the original distance on that un-
derlying scale; a one-band slip therefore receives
a much heavier penalty than in TOEFL11, whose
native rubric already has three discrete labels. Sec-
ond, the FCE corpus is almost one order of mag-
nitude smaller than TOEFL11, magnifying the im-
pact of label noise and leaving less data for both
fine-tuning and calibration. Taken together, these
artefacts depress QWK even when coverage and
UAcc remain competitive.

4.7 Takeaways

Overall, these findings show that mid-sized, openly
licensed LLMs already deliver high scoring accu-
racy together with calibrated, interpretable uncer-

tainty which are key prerequisites for deployment
in high-stakes assessment. The consistent edge of
Llama-3 over its smaller Qwen counterpart con-
firms that parameter count and pre-training data
still matter, yet the margin is small enough to keep
lower-footprint models in serious contention wher-
ever hardware or licensing constraints apply. Sin-
gleton prediction sets indicate high certainty; larger
sets flag scripts for human review. We plan a small
teacher-in-the-loop study in follow-up work.

5 Conclusion

We set out to answer whether modern large lan-
guage models can score essays and express cal-
ibrated uncertainty in a way that is practical
for high-stakes assessment. By wrapping two
LLMs—Llama-3 8B and Qwen-2.5 3B—with
conformal prediction and judging them with the
uncertainty-aware metric UAcc, we showed that
a single, distribution-free calibration step deliv-
ers near-perfect coverage (90 %) across three very
different corpora. The stronger Llama backbone
achieves the best trade-off between agreement with
human graders (QWK) and prediction-set tightness,
yet the gap to the smaller Qwen model is mod-
est—evidence that trustworthy AES does not re-
quire flagship-scale models. Taken together, these
results provide the first end-to-end demonstration
that mid-sized, openly licensed LLMs can power
calibrated, human-in-the-loop essay scoring sys-
tems today, while laying the groundwork for fu-
ture studies on model size, finer FCE banding, and
rubric-aware prompting.

Future work will probe the trade-off of model size
and performance more systematically: we plan to
train a spectrum of model sizes (1B to 13B) from
several families to quantify when accuracy and
UAcc begin to show diminishing returns. On the
data side, we will experiment with finer-grained
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Model (paper) Training epochs / runs QWK (ASAP Prompt 1)
EASE (SVR) (Taghipour and Ng, 2016) — 0.781
LSTM (10×) (Taghipour and Ng, 2016) 10 runs 0.808
Ensemble CNN+LSTM (Taghipour and Ng, 2016) 10 runs 0.821
R2BERT (Yang et al., 2020) 30 epochs 0.817
Fine-tuned GPT-3.5 (Xiao et al., 2025) 10 epochs 0.740
Fine-tuned LLaMA-3 (2-pt) (Xiao et al., 2025) 10 epochs 0.714
Our LLaMA-3 8B (8 ep) 8 epochs 0.800
Our LLaMA-2 7B (8 ep) 8 epochs 0.823

Table 3: Published ASAP Prompt 1 baselines vs. our systems.

buckets for the FCE corpus and, more generally,
with ordinal-aware conformal scores that respect
the underlying scale. Finally, we intend to con-
dition prompts on essay characteristics—length,
discourse structure to see whether rubric-aware
prompting can tighten prediction sets still further
without sacrificing coverage.

Limitations

This study is confined to English and to three pub-
lic essay corpora, two of which we deliberately
reduce to a three-band rubric for comparability. Al-
though conformal prediction delivers the promised
90 % coverage under these conditions, the guar-
antee relies on calibration and test data being ex-
changeable; topic drift, candidate demographics
or language transfer effects in a real exam session
could weaken reliability.

Our choice of equal-width bands for the 1–40
Cambridge-FCE scale is a heuristic that balances
class counts but may mask finer proficiency distinc-
tions. Likewise, we retain ASAP’s full 11-point
rubric to explore class-rich uncertainty, yet that
decision limits direct comparison across datasets.

Additionally, our equal-width three-band mapping
for FCE (1–18/19–30/31–40) may blur top-end dis-
tinctions. As future work we will test finer buckets
(e.g., four–five bands) and explore ordinal-aware
conformal scores.

Finally, from a practical standpoint, even 4-bit
LoRA fine-tuning of an 8B-parameter model re-
quires a high-end GPU; institutions with modest
hardware may still prefer smaller models. While
calibrated prediction sets indicate how sure the
model is, they do not explain why a script is low,
medium or high; integrating rubric-aligned ratio-
nales is an important next step toward truly inter-
pretable AES.
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