
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1926–1939
November 4-9, 2025 ©2025 Association for Computational Linguistics

Router-Tuning: A Simple and Effective Approach for Dynamic Depth

Shwai He1 Tao Ge2 Guoheng Sun1 Bowei Tian1

Xiaoyang Wang2 Dong Yu2

1University of Maryland, College Park 2Tencent AI Lab, Bellevue, WA
shwaihe@umd.edu

Abstract

The Mixture of Depths (MoD) was introduced
to improve computational efficiency by dynam-
ically skipping less important layers, reduc-
ing redundant computation while maintaining
model capacity. Despite its promise, existing
MoD approaches remain under-explored and
face two main challenges: (1) high training
costs due to the need to train the entire model
along with the routers that determine which
layers to skip, and (2) performance degrada-
tion when important layers are bypassed. In
response to the first issue, we propose Router-
Tuning, which fine-tunes only the routers on
a small dataset, drastically reducing the com-
putational overhead associated with full model
training. For the second challenge, we inves-
tigate Router-Tuning across different architec-
tures and granularities, demonstrating its ef-
fectiveness on Attention layers and MoE lay-
ers. This method preserves the model’s perfor-
mance while significantly enhancing compu-
tational and memory efficiency. Extensive ex-
periments demonstrate that our approach deliv-
ers competitive results while dramatically im-
proving the computation efficiency, e.g., 21%
speedup and only a 0.2% performance drop.
The code is released at https://github.com/
CASE-Lab-UMD/Router-Tuning.

1 Introduction

Large Language Models (LLMs) have shown
promising performance across various domains
(OpenAI et al., 2024; Team, 2024; DeepSeek-AI
et al., 2024). However, the continuous increase in
model size leads to substantial computational costs
in real-world applications, making computation
reduction a critical research focus for improving
LLM efficiency (Sun et al., 2024; Lin et al., 2024).
A promising approach to this challenge is the Mix-
ture of Depths (MoD) (Raposo et al., 2024), which
dynamically allocates computational resources for
specific inputs. Instead of uniformly applying all

layers to every input, MoD selectively activates
only a subset of the model’s layers, skipping those
deemed less important. This targeted activation sig-
nificantly reduces computational overhead while
maintaining performance.

Despite its potential, current MoD methods are
still underexplored and face several critical chal-
lenges. On the one hand, the involvement of ad-
ditional router networks, which decide which lay-
ers to skip, often requires extra extensive training:
Raposo et al. (2024) train the entire model from
scratch while Tan et al. (2024) performs costly con-
tinual training. This creates a significant barrier to
efficiently integrating MoD with existing LLMs.
Furthermore, most prior MoD implementations
(Raposo et al., 2024; Tan et al., 2024) have been ap-
plied to transformer blocks and MLP layers, which
are sensitive to skipping. As a result, omitting
important components often leads to significant
performance degradation (He et al., 2024b).

These challenges prompt us to reflect on the two
key questions: (1) How can we implement dynamic
depth to improve efficiency without incurring exces-
sive training costs? (2) How can we preserve model
performance in the presence of dynamic depth?

To tackle the first challenge, we introduce
Router-Tuning, a novel method that fine-tunes only
the router network without updating the backbone
model’s parameters. As each router network is a
lightweight, single-layer projector that accounts for
less than 0.01% of the total parameters, the training
overhead is minimal and even significantly lower
than that of parameter-efficient finetuning methods
(Houlsby et al., 2019a; He et al., 2021) like LoRA
(Hu et al., 2022). Router-tuning requires only a
small-scale dataset and fewer training steps, elimi-
nating the need for large-scale pretraining or exten-
sive continual training. Meanwhile, by freezing the
backbone, Router-Tuning contributes to mitigat-
ing catastrophic forgetting and better retaining the
original model performance (Houlsby et al., 2019b;

1926

https://github.com/CASE-Lab-UMD/Router-Tuning
https://github.com/CASE-Lab-UMD/Router-Tuning

Liu et al., 2024; Qiao and Mahdavi, 2024). These
properties make Router-Tuning a highly efficient
and scalable solution for dynamic adaptation.

To address the second challenge, we conduct
a comprehensive investigation of target modules
(e.g., Block, MLP, Attention, MoE), and various
granularities (e.g., token and sequence). For dense
transformer architectures, we propose Attention
with Dynamic Depths, which selectively applies
dynamic depth to attention layers. By focusing
on attention layers known to exhibit high redun-
dancy (He et al., 2024b), Router-Tuning not only
preserves model accuracy but also alleviates com-
putational and memory bottlenecks. In the case of
Mixture-of-Experts (MoE) layers (Shazeer et al.,
2017; Fedus et al., 2022), where efficiency is often
hindered by the computational cost of activating
multiple expert networks, we apply Router-Tuning
at the expert level to enhance overall efficiency.

Through extensive experiments, we demonstrate
the effectiveness of our approach across multiple
open-source language models, including Llama
(Touvron et al., 2023), Mistral (Jiang et al., 2023),
Qwen (Bai et al., 2023), Deepseek-MoE (Dai et al.,
2024), and OLMoE (Muennighoff et al., 2024).
Router-Tuning requires less than half an hour on
an Nvidia RTX A6000, making it 1000 times faster
than DLO (Tan et al., 2024). Router-Tuning main-
tains a high percentage of the original model’s per-
formance while significantly reducing memory us-
age and accelerating inference, achieving, for ex-
ample, a 21% inference speedup with only a 0.2%
performance degradation. Furthermore, Router-
Tuning can be seamlessly integrated with LoRA
fine-tuning, further enhancing both efficiency and
performance.

In short, our contributions are as follows:

• We introduce Router-Tuning, a lightweight
method that fine-tunes only the router using
a small dataset, effectively addressing the
high computational cost of training the entire
model with routers.

• We systematically investigate routing scopes,
deployment granularities, and model archi-
tectures, demonstrating the effectiveness of
Router-Tuning on Attention and MoE layers.

• Through comprehensive experiments, Router-
Tuning achieves competitive performance
while delivering substantial improvements in
training and inference efficiency.

2 Related Work

Layer Redundancy While increasing the depth
of large language models has demonstrated promis-
ing performance across a wide range of tasks (Ope-
nAI et al., 2024; Team, 2024), it also introduces
layer redundancy (Gromov et al., 2024; He et al.,
2024b), posing efficiency challenges. To address
this issue, several approaches have been proposed
to reduce model depth (Men et al., 2024) while
maintaining comparable performance. Surpris-
ingly, removing redundant layers has been shown to
preserve performance while significantly reducing
memory and computational costs (Gromov et al.,
2024; He et al., 2024a,b). Specifically, Gromov
et al. (2024) suggest dropping continuous Trans-
former blocks, and He et al. (2024b) propose fine-
grained layer dropping to further improve the effec-
tiveness of layer reduction. However, these static
techniques fail to account for the varying com-
plexity of different input sequences, where exces-
sive layer removal can significantly degrade perfor-
mance on more complex tasks. Instead of statically
removing unimportant layers, our approach focuses
on dynamically skipping these layers based on the
specific inputs.

Dynamic Depth Dynamic Depth, which allo-
cates different layers based on the specific input,
is an effective technique for accelerating inference
while preserving performance (Han et al., 2021,
2022). Recent works primarily implement dynamic
depth through two key methods: Early-Exit (Bae
et al., 2023; Elhoushi et al., 2024) and Mixture
of Depths (MoD) (Raposo et al., 2024). Early-
exit strategies terminate computation in later lay-
ers once sufficient confidence is achieved, effec-
tively reducing redundant computations. In con-
trast, MoD offers greater flexibility by dynamically
skipping less critical layers, enhancing adaptability
and representational capacity. Despite their ad-
vantages, both Early-Exit and MoD often involve
significant training overhead. For instance, Lay-
erSkip (Elhoushi et al., 2024) and MoD (Raposo
et al., 2024) require training models from scratch or
extensive continual training, while Tan et al. (Tan
et al., 2024) extends pre-trained model training over
long schedules to achieve optimal performance. To
overcome these limitations, we propose Router-
Tuning, an efficient approach to dynamic layer
skipping that requires minimal additional offline
training, providing a more cost-effective solution.

1927

3 Methodology

In this section, we first review the challenges asso-
ciated with deploying Mixture of Depths and then
introduce Router-Tuning, addressing the implemen-
tation of Mixture of Depths from both design and
training perspectives.

3.1 Motivation

The Mixture of Depths (MoD) framework (Raposo
et al., 2024), which dynamically adjusts layer depth
based on input complexity to enhance computa-
tional efficiency, was originally designed for inte-
gration during the pretraining phase, where trans-
former models are trained from scratch with MoD-
enabled layers. More recently, Tan et al. (2024)
applied MoD to pretrained Llama models (Tou-
vron et al., 2023) through continual training. While
these approaches have demonstrated promising re-
sults, training with MoD remains computation-
ally expensive and time-consuming, posing chal-
lenges for scalability and real-world deployment.
A more efficient alternative is to apply MoD di-
rectly to existing pretrained models, followed by
lightweight fine-tuning of a subset of parameters
(Houlsby et al., 2019b; Hu et al., 2022), signifi-
cantly reducing both computational costs and train-
ing time.

On the other hand, MoD has typically been im-
plemented at the transformer block level. However,
skipping entire transformer blocks has shown to
be suboptimal to maintain the performance. In-
spired by He et al. (2024b), we recognize that each
transformer block contains layers of varying impor-
tance. Aggressively skipping entire blocks risks
omitting critical layers, potentially degrading per-
formance. Instead, skipping fine-grained layers of-
fers a more effective strategy for preserving model
accuracy. Moreover, unlike blocks that generally
share the same architecture, individual layers im-
pose different computational costs. For instance,
in dense transformer models, attention layers are
particularly expensive, with computational com-
plexity scaling quadratically with sequence length
and additional memory needed for KV cache stor-
age. In contrast, in MoE models, MLP layers hold
the majority of the parameters, leading to substan-
tial communication and computation overhead.

Building on these insights, we propose Router-
Tuning, a cost-effective formulation of MoD that
achieves a favorable trade-off between performance
and computational costs.

3.2 Router-Tuning for Dynamic Depth
In this part, we propose Router-Tuning to address
the challenges outlined in Section 3.1. As illus-
trated in Figure 1, Router-Tuning incorporates an
additional trainable router that determines whether
to skip the layer. Specifically, Router-Tuning can
be deployed in two levels: (1) token-level, where
layers are dynamically skipped for individual to-
kens, and (2) sequence-level, where layers are dy-
namically skipped for the entire sequence. Given
an input x ∈ RL×d, the router first computes an
importance score for the input:

R(x)i =

{
GATE(xi), Token-level
GATE(1

L

∑L
i=1 xi), Sequence-level

, (1)

where R is a scoring router that assesses the im-
portance score of the input, GATE is the gating
function GATE(x) = Sigmoid(Wx). Based on
the computed importance scores, we further apply
a binarized mask M to determine whether to skip
a token or an entire sequence:

M =

{
1, if R(x) ≥ τ

0, otherwise
, (2)

where τ is the threshold. The score is set to zero for
skipped inputs and one for retained inputs, ensuring
stable outputs (Tan et al., 2024).

To enable a differentiable and trainable binary
decision process, we utilize the straight-through
estimator (STE) (Bengio et al., 2013), which allows
gradients to propagate through the binary selection
mechanism via ∂M

∂R = 1. The final output of MoD
is then computed as follows:

y = M ⊙ F (x) + x, (3)

where F denotes a given layer and y is the output.
This formulation ensures that the router is fully
trainable through the gradient calculations:

∂y

∂W
=

∂y

∂M

∂M

∂R

∂R

∂W
. (4)

During inference, without the need for gradient
calculations, we further enhance computational ef-
ficiency by completely bypassing computations for
skipped inputs:

y =

{
F (x) + x, if R(x) ≥ τ

x, otherwise
. (5)

This dynamic routing mechanism ensures that com-
putation is performed only when necessary, thereby
enhancing the computational efficiency.

1928

𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 ≥ 𝝉

𝑭(⋅)Input 𝒙 Output 𝒚+

Router 𝑹

𝑹 𝒙 < 𝝉

Figure 1: Overview of Router-Tuning. Router-Tuning involves a trainable router to determine whether a given
layer F (·) (e.g., Attention and MLP) would be skipped. Inputs with routing scores lower R(x) than the threshold τ
are skipped, and only the router R is trainable in the whole model.

3.3 Extension to Mixture of Experts

Mixture of Experts (MoE) employs sparse acti-
vation, dynamically selecting expert networks for
each input, which delivers promising performance
in various tasks (Jiang et al., 2024; Dai et al., 2024;
Muennighoff et al., 2024). However, MoE also
exhibits significant redundancy, allowing certain
experts or layers to be skipped with minimal impact
on performance (Lu et al., 2024; He et al., 2024a).
Building on this, we extend Router-Tuning to MoE
layers by implementing dynamic skipping within
each expert:

Êi(x) =

{
Ei(x), if R(x) ≥ τ

0, otherwise
, (6)

where Ei denotes the i-th expert and Êi(x) is the
corresponding output denotes the corresponding
output, bypassing the skipped tokens. Given a col-
lection of n experts, {E1,E2, . . . ,En}, the overall
output of the MoE layer is as follows:

K = TopK(Softmax(G(x)), k), (7)

y =
∑

i∈K
G(x)i · Êi(x), (8)

where K denotes the indices of the top-k selected
experts, and G(x)i represents the selection score
for the i-th expert. By dynamically skipping ex-
perts within each layer, Router-Tuning significantly
reduces computation costs.

3.4 Training Objectives

Given the computationally intensive nature of train-
ing entire LLMs and the constraints of real-world
computational resources, our goal is to implement
dynamic depth while minimizing both computa-
tional costs and time overhead. To achieve this,
we focus exclusively on fine-tuning the routers, as
illustrated in Figure 1, thereby eliminating the need
for costly full-model training.

Specifically, we optimize two training objectives:
improving task-specific performance and lowering
MoD capacity (the proportion of non-skipped in-
puts). On the one hand, Router-Tuning is designed
to maintain the performance of the original model,
which we enforce using the loss term Ltask during
fine-tuning. On the other hand, the model is en-
couraged to skip more tokens or sequences (i.e.,
reduce MoD capacity) to enhance efficiency. To
achieve this, we introduce another loss term LMoD,
which drives the model to reduce MoD capacity
to a desired target sparsity level s, thereby lower-
ing computational costs and accelerating inference.
The overall training objective is as follows:

L = Ltask + λ · LMoD, (9)

LMoD = ReLU(∥M∥0 − s), (10)

where L represents the standard loss function (e.g.,
cross-entropy), while LMoD is an l0-norm regular-
ization term that reduces MoD capacity. The co-
efficient λ acts as a scaling factor to balance the
trade-off between task performance and efficiency.

4 Experiment Setup

Models We conduct experiments on Llama (Tou-
vron et al., 2023; Grattafiori et al., 2024), Qwen
(Bai et al., 2023), and Mistral (Jiang et al.,
2023) due to their competitive performance and
widespread adoption. Additionally, we leverage
OLMoE (Muennighoff et al., 2024) and Deepseek-
MoE (Dai et al., 2024) as the backbone to deploy
Router-Tuning on the Mixture of Experts.

Datasets For the training dataset, we used Llama-
Pro (Wu et al., 2024), given it spanning general in-
struction, math, and code for the SFT process and
offering a wealth of instruction data with varying
complexity levels. To evaluate model performance,
we report normalized zero-shot or few-shot accu-
racy on the LM-Harness benchmark. The number

1929

of shots for each task is detailed in Table 1, which
includes multiple tasks: ARC-C (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021),
OBQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2019), RTE (Wang et al., 2019), WinoGrande (ai2,
2019) and GSM8K (Cobbe et al., 2021). The eval-
uation code is based on EleutherAI’s LM Harness
framework (Gao et al., 2023).

Table 1: Experimental settings for evaluation tasks.
“Norm” refers to the normalization performed with re-
spect to the length of the input.

Task Number of few-shot Metric

BoolQ 0 Accuracy
RTE 0 Accuracy
OBQA 0 Accuracy (Norm)
PIQA 0 Accuracy (Norm)
MMLU 5 Accuracy
WinoGrande 5 Accuracy
GSM8K 5 Exact Match
HellaSwag 10 Accuracy (Norm)
ARC-C 25 Accuracy (Norm)

Hyperparameters We set τ as 0.5, which corre-
sponds to the midpoint of the sigmoid function. To
ensure that training starts from dense models, we
initialize W to zero, ensuring that R(x) ≥ τ ini-
tially, i.e., training from dense models. To achieve
the desired MoD capacity, we perform a grid search
over the learning rate from {1e-5, 2e-5, 5e-5, 1e-4,
2e-4} and the scale factor λ from {0, 0.1, 0.01,
0.001}, respectively.

5 Main Results

In this section, we evaluate the effectiveness of
Router-Tuning on transformer architectures with
the deployment details in Appendix 4.

5.1 Performance of Router-Tuning
Router-Tuning achieves superior performance
on Attention layers We first compare deploying
Router-Tuning to different modules, e.g., Block,
MLP, and Attention, as shown in Table 2. Based
on the observation that deeper layers are more re-
dundant than shallow layers (Gromov et al., 2024;
He et al., 2024b), we focus on deploying Router-
Tuning to the deepest layers except the last one,
leaving other layers unchanged.

While previous studies have primarily explored
layer dropping or skipping to Block and MLP lay-
ers (Bae et al., 2023; Gromov et al., 2024), skipping

ARC-C MMLU OBQA RTE
Dataset

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

MLP/Layer Drop MLP/Router-Tuning Attn/Layer Drop Attn/Router-Tuning

Figure 2: Comparison between Router-Tuning and
Layer Drop on MLP and Attention layers under a fixed
25% overall skipping ratio.

these modules significantly degrades performance
when applied at either token or sequence level. In
contrast, applying dynamic depth to Attention lay-
ers maintains the performance of original models,
e.g., 69.4 v.s. 69.7 in Llama-3-8B. These findings
reinforce our motivation to target Attention layers,
and we utilize Router-Tuning on Attention layers
by default unless stated otherwise.

Router-Tuning improves over static layer drop-
ping While statically dropping attention layers
(He et al., 2024b) has demonstrated promising per-
formance, its static nature lacks flexibility and lim-
its representational power. Here, we further inves-
tigate the improvements offered by the dynamic
mechanism. Figure 2 compares Router-Tuning
with static Layer Drop (He et al., 2024b), where
Router-Tuning consistently achieves superior per-
formance. For more complex tasks that are more
sensitive to layer skipping, as shown in Figure 3,
we compare Router-Tuning with Layer Drop on
attention layers (i.e., “Attention Drop”) under the
same computation budget, e.g., dropping 4 lay-
ers versus deploying MoD to 8 layers with 50%
capacity. Under the same skipping ratios, Router-
Tuning significantly outperforms Attention Drop
on the GSM8K benchmark (Cobbe et al., 2021),
e.g., 6.5% when the skipping ratio is 25.0%. In Fig-
ure 4, we further visualize the layer-wise skipping
ratios of MoD versus Attention Drop. Unlike static
approaches that permanently remove certain layers,
Router-Tuning maintains the utilization of all lay-
ers by adaptively distributing skipping ratios across
them. This flexible allocation strategy contributes
to improved performance.

Router-Tuning outperforms dynamic skipping
methods Table 3 compares Router-Tuning with
dynamic skipping baselines, including DLO (Tan
et al., 2024) and Skip Transformer (Peroni and

1930

Table 2: Router-Tuning at different granularities. We compare deployments on Attention, Block, and MLP layers.
The number of skippable layers is capped at 16, with 50% MoD capacity. SpeedUp denotes inference-time speedup.

Llama-3-8B

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 58.1 81.3 82.1 65.3 45.0 80.5 67.2 77.7 69.7

Router-Tuning

Blocktoken 1.24× 44.2 77.9 63.1 64.4 34.0 70.4 65.4 71.6 61.4
Blockseq 1.26× 44.5 78.0 62.6 64.6 34.2 70.3 65.3 71.2 61.3

MLPtoken 1.05× 45.3 77.8 65.1 62.8 33.7 71.9 66.8 72.4 62.0
MLPseq 1.06× 45.1 77.7 65.4 62.4 33.4 71.6 66.4 72.1 61.8

Attntoken 1.18× 56.4 79.8 81.0 65.3 45.2 79.9 64.6 77.3 68.7
Attnseq 1.21× 56.6 80.5 80.7 65.1 44.6 80.5 69.7 77.7 69.4

Llama-3-8B-Instruct

Method Granularity Speedup ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline – 1.00× 62.1 83.2 78.8 65.7 42.8 78.7 67.5 75.9 69.3

Router-Tuning

Blocktoken 1.24× 44.6 80.9 54.1 60.2 31.2 64.8 67.7 65.1 58.6
Blockseq 1.26× 44.7 81.2 54.5 60.6 32.4 64.6 67.1 64.8 58.7

MLPtoken 1.05× 41.4 74.9 59.3 64.8 31.6 67.8 66.4 68.4 59.3
MLPseq 1.06× 41.8 75.1 59.3 64.5 31.2 68.2 66.7 68.8 59.5

Attntoken 1.18× 60.2 82.9 76.8 65.8 42.6 78.6 67.7 76.6 68.9
Attnseq 1.21× 60.4 83.3 76.9 65.7 43.0 78.2 68.2 76.9 69.1

12.5% 25.0%
32

36

40

44

48

P
er

fo
rm

an
ce

 (%
)

Attention Drop Router-Tuning

Figure 3: Comparison with Attention Drop on
GSM8K tasks under identical skipping ratios.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

0

20

40

60

80

100

S
ki

pp
in

g
R

at
io

 (%
)

Layer Drop Router Tuning

Figure 4: Layer-wise Skipping Ratios for Attention
layers after Layer Drop and Router-Tuning.

Bertsimas, 2024). Following the setup of baselines,
we conduct the comparison on the token level for
MLP layers. Router-Tuning consistently outper-
forms these methods across most tasks, despite
operating under the router-only training constraint.
On the one hand, Router-Tuning freezes the model
backbones, which contributes to avoiding the risks
of catastrophic forgetting (Houlsby et al., 2019b;
Liu et al., 2024; Qiao and Mahdavi, 2024). Addi-
tionally, Router-Tuning is trained end-to-end with-
out being constrained by precomputed labels (e.g.,
token-level similarity scores in DLO) or stochas-
tic gating mechanisms. This design enables more

flexible and stable learning, while preserving the
pretrained capabilities of the backbone.

Table 3: Performance comparison against dynamic
dropping baselines, including DLO (Tan et al., 2024)
and Skip Transformer (Peroni and Bertsimas, 2024).

Method ARC-C HellaSwag MMLU WinoG Avg.

DLO 44.5 64.2 62.1 71.3 60.5
Skip Transformer 44.7 64.4 62.4 71.5 60.8
Router-Tuning 45.3 65.1 62.8 72.4 61.4

5.2 Efficiency Improvements
In this part, we measure the efficiency in both train-
ing and inference, focusing on computational and
memory usage.

Table 4: Comparison of training strategies of achiev-
ing dynamic layer skipping. The training time for MoD
is left blank as it was not conducted on LLaMA-3-8B.

Method Target Modules Granularity Training Stage Trainable Training Time

MoD (Raposo et al., 2024) Block Token Pretraining Full Model –
DLO (Tan et al., 2024) MLP Token Continual Pretraining Full Model 36h on NVIDIA A100
Router-Tuning Block / MLP / Attn Token / Sequence Finetuning Router 15m on NVIDIA A6000

Training Efficiency The training efficiency of
our method lies in two perspectives: trainable
parameters and training steps. Since the router
projects the input from dimension d to 1, the num-
ber of trainable parameters is d×1 per layer, and the
total number of trainable parameters is fewer than
0.01% of the whole model. Additionally, Router-
Tuning only requires a few steps, which is verified
in Section 6. Consequently, as shown in Table 4,
Router-Tuning can be completed in under 15 min-
utes on a single NVIDIA A6000 GPU—over 1000
times faster than DLO (Tan et al., 2024), which

1931

performs large-scale training on full models and
takes 36 hours on NVIDIA RTX A100 GPUs.

Inference Speedup We also evaluate the run-
time speed improvements achieved with Router-
Tuning. The inference speed is measured through-
out the entire generation process, including prefill-
ing and generation. To ensure that our results accu-
rately reflect the performance gains, we adhere to
two key principles: (1) all operations are performed
on a single Nvidia RTX A6000 Ada GPU, eliminat-
ing any communication overhead from multi-GPU
setups; and (2) we set the maximal sequence length
as 2048 and increase batch sizes to fully utilize the
GPU for each model.

As shown in Table 2, skipping attention lay-
ers yields a more substantial speedup than skip-
ping MLP layers, which is primarily due to the
quadratic complexity of the attention mechanism
and the memory overhead associated with KV-
cache (Zhang et al., 2023; Singhania et al., 2024;
He et al., 2024b). On the other hand, different gran-
ularities contribute to different levels of speedup.
This variation is primarily due to attention layers,
where fine-grained token-level MoD introduces dif-
fering token lengths within a batch, necessitating
padding operations to standardize sequence lengths.
Instead, the speedups at the sequence level surpass
those at the token level, with Router-Tuning achiev-
ing a 21% improvement in inference speed. There-
fore, we set Router-Tuning on the sequence level
for attention layers as the default setting.

KV Cache The KV cache stores intermediate
representations of attention layers, accelerating in-
ference by eliminating redundant computations but
incurring substantial memory overhead. Our ap-
proach, which selectively skips attention layers,
significantly reduces KV cache size—for instance,
achieving an 8GB reduction when processing an in-
put sequence of length 2048 with a batch size of 64
on Llama-3-8B. In contrast, DLO (Tan et al., 2024)
operates exclusively on MLP layers and retains the
full KV cache, providing no memory savings.

6 Ablation Studies

Compatibility across different models Since
Router-Tuning can be seamlessly integrated into
pretrained language models, we extend our evalu-
ation to diverse architectures, including Llama-2
(Touvron et al., 2023), Mistral (Jiang et al., 2023),
and Qwen2.5 (Bai et al., 2023), covering a wide

range of model sizes. As shown in Table 5, we
deploy Router-Tuning in half of the attention lay-
ers while maintaining the total MoD capacity at
50%. Across all models, Router-Tuning preserves
performance compared to their original counter-
parts, demonstrating its effectiveness and adapt-
ability across different architectures.

0 4 8 12 16 20 24
Number of MoD Layers

67

69

71

73

P
er

fo
rm

an
ce

 (%
)

Qwen2.5-7B: 73.4

Mistral-7B: 70.3

Qwen2.5-7B Mistral-7B

Figure 5: Ablation study on the impact of varying the
number of MoD layers on overall model performance.

Impact of number of MoD layers In the main
experiments, we deployed half of the layers with
MoD. In Figure 5, we further explore the effect of
the number of MoD layers. Our results indicate that
applying MoD to up to half of the attention layers
still maintains comparable performance. A similar
trend is observed in Figure 6 for smaller models.
However, when further increasing the number of
MoD layers, performance starts to degrade. We
attribute this decline to the transformation of im-
portant shallow layers, which negatively impacts
overall performance (Men et al., 2024; He et al.,
2024a,b). Therefore, preserving the density of shal-
low layers while applying MoD to deeper layers
ensures its effectiveness.

Qwen-2.5-1.5B
w/ R.T.-10

w/ R.T.-14

Qwen-2.5-3B
w/ R.T.-12

w/ R.T.-16
56

58

60

62

64

66

Av
er

ag
e

P
er

fo
rm

an
ce

63.4 63.2 62.8

67.7 67.4
66.7

Figure 6: Performance of Router-Tuning on small
models, where “R.T.” denotes Router-Tuning and the
postfix “-n” indicates that MoD is applied to n layers.

Influence of Training Dataset In Table 6, we
next examine the impact of using different training
datasets for Router-Tuning. We consider a variety

1932

Table 5: Ablation study of Router-Tuning across multiple model architectures and scales, highlighting its
robustness and consistent improvements.

Models Speedup OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-2-13B 1.00× 45.2 80.5 65.0 76.2 80.7 59.4 82.2 54.6 68.0
w/Router-Tuning 1.22× 45.4 80.6 64.6 76.2 80.5 59.3 82.2 54.7 67.9

Qwen-2.5-14B 1.00× 45.6 82.2 79.1 80.4 85.3 67.2 84.3 79.7 75.5
w/Router-Tuning 1.18× 45.4 82.4 77.9 78.5 85.0 66.2 83.8 78.0 74.7

Qwen-2.5-7B 1.00× 47.2 79.6 81.2 76.6 84.6 63.7 80.2 74.1 73.4
w/Router-Tuning 1.19× 47.0 80.1 76.9 76.1 83.2 62.3 79.8 73.3 72.3

Mistral-7B 1.00× 44.4 82.2 68.2 79.0 82.2 60.6 83.2 62.4 70.3
w/Router-Tuning 1.24× 44.0 81.8 67.6 78.2 81.7 59.9 82.6 61.8 69.7

0 1K 2K 5K 10K
Number of Training Samples

40

50

60

70

80

P
er

fo
rm

an
ce

 (%
)

HellaSwag MMLU OBQA WinoGrande

Figure 7: Effect of varying the number of training sam-
ples on performance.

of datasets, including Alpaca (Taori et al., 2023),
Evol-Instruct (Xu et al., 2023), ShareGPT (Zheng
et al., 2023), and Llama-Pro (Wu et al., 2024).
Since Router-Tuning only fine-tunes the routers
while keeping the backbone of the language models
intact, changes in the training dataset do not signif-
icantly impact performance. However, Llama-Pro,
which incorporates diverse training data from vari-
ous domains, provides slightly better performance
due to its broader data coverage.

On the other hand, due to the small number
of trainable parameters, Router-Tuning does not
require a large amount of training samples. As
shown in Figure 7, MoD layers are initially dense-
activated and then sparsified. Although the initial
sparsification steps lead to a drop in performance,
subsequent Router-Tuning facilitates performance
recovery. Notably, just 5K training samples are
sufficient to effectively train the routers.

7 MoE and LoRA Integration

In this section, we further explore the integration of
Router-Tuning with other architectures and training
techniques. First, we implement Router-Tuning on
mainstream MoE architectures. Then, we combine
Router-Tuning with LoRA fine-tuning to enhance
both efficiency and performance.

Table 6: Effectiveness across different training
datasets, where Router Tuning demonstrates robust-
ness to the varying datasets.

Dataset HellaSwag MMLU OBQA WinoGrande Avg.

Baseline 82.1 65.3 45.0 77.7 67.5

Alpaca 79.8 62.2 43.8 77.4 65.8
Evol-Instruct 80.4 64.0 44.4 77.6 66.6
ShareGPT 80.6 63.3 45.4 76.7 66.5
Llama-Pro 80.7 65.1 44.6 77.7 67.0

Router-Tuning on MoE The Expert’s redun-
dancy in MoE has been widely demonstrated in
recent works (Lu et al., 2024; He et al., 2024a), e.g.,
the model still maintains comparable performance
after removing certain layers. Therefore, we fur-
ther extend Router-Tuning to MoE, where we take
OLMoE (Muennighoff et al., 2024) and DeepSeek-
MoE (Dai et al., 2024) as the backbones and equip
each Expert network with Router-Tuning. Since
these models deploy MoE at the token level, we di-
rectly apply the token-level Router-Tuning to these
models. Here, we compare Router-Tuning with Ex-
pert Drop (He et al., 2024a) that statically drops less
important experts. To ensure a fair comparison, we
fix the overall skipping ratio of Router-Tuning to
25%, and drop the bottom 25% of experts globally
by importance score in the Expert Drop baseline.

In Table 7, instead of removing a subset of ex-
perts like Expert Drop, Router-Tuning maintains
the potential of all experts, which contributes to
a superior performance. In Figure 8, we further
investigate how Router-Tuning affects the infer-
ence behavior of expert networks by visualizing
the expert load within a specific layer from two per-
spectives: the number of tokens initially assigned
to each expert (“Assigned Tokens”) and the number
of tokens that pass the router and are actually exe-
cuted (“Executed Tokens”). Router-tuning prompts
the experts to skip less important tokens and signif-
icantly lower the load of overloaded experts, which

1933

Table 7: Performance of Router-Tuning on Mixture of Experts, where we take Expert Drop (He et al., 2024a) as
the baseline of static dropping for comparison.

Models SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

DeepSeek-MoE 1.00× 43.6 80.5 62.8 73.4 72.4 52.7 79.9 44.5 63.7
w/Expert Drop 1.11× 42.2 80.2 59.9 70.0 74.0 48.1 75.6 38.9 61.1
w/Router-Tuning 1.10× 43.2 80.4 61.2 71.4 72.1 50.8 77.3 42.8 62.4

OLMoE 1.00× 45.6 80.1 53.7 71.2 74.7 54.5 79.4 52.5 64.0
w/Expert Drop 1.13× 34.0 66.6 51.6 59.3 67.6 39.0 40.5 42.7 50.2
w/Router-Tuning 1.12× 40.4 76.2 53.2 70.2 71.3 52.0 77.9 50.1 61.4

Table 8: Effectiveness of Router-Tuning integrated with LoRA finetuning, compared to deploying Router-
Tuning and LoRA separately.

Model Method SpeedUp OBQA PIQA RTE WinoGrande BoolQ ARC-C HellaSwag MMLU Avg.

Llama-3-8B

Baseline 1.00× 45.0 80.5 67.2 77.7 81.3 58.1 82.1 65.3 69.6

R.T. 1.21× 44.6 80.5 69.7 77.7 80.7 56.6 80.7 65.1 69.5
LoRA 1.00× 46.6 82.0 68.0 77.9 83.9 61.8 81.6 65.9 71.0

LoRA + R.T. 1.21× 47.2 82.2 67.4 77.8 83.9 61.5 81.7 65.8 70.9

Mistral-7B

Baseline 1.00× 44.4 82.2 68.2 79.1 82.2 60.6 83.2 62.4 70.3

R.T. 1.24× 44.2 81.9 68.5 78.6 81.7 60.4 82.5 61.8 70.0
LoRA 1.00× 45.2 83.0 68.9 79.4 84.7 60.7 83.7 62.8 71.1

LoRA + R.T. 1.24× 45.7 83.1 68.7 79.3 84.3 60.9 83.4 62.9 71.2

1 8 15 22 29 36 43 50 57 64
Expert Index

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

No
rm

al
ize

d
Ex

pe
rt

Lo
ad

Assigned Tokens
Executed Tokens

Figure 8: Normalized expert load before and after
applying router-based filtering, denoted as “Assigned
Tokens” and “Executed Tokens”, respectively. Expert
load values are normalized by the mean number of as-
signed tokens.

alleviates the imbalanced distribution of token as-
signments. Consequently, this approach fosters a
more balanced utilization across the entire set of
experts (Fedus et al., 2022; He et al., 2025) and
thus enhances the efficiency.

Integration with LoRA Router-Tuning enables
dynamic depth to improve computational efficiency,
whereas parameter-efficient fine-tuning (PEFT)
methods aim to update a small subset of param-
eters to enhance downstream task performance. To
examine whether Router-Tuning is complementary
to PEFT, we propose jointly conducting Router-
Tuning with LoRA fine-tuning (Hu et al., 2021),
targeting improvements in both efficiency and task
performance. As shown in Table 8, this joint train-
ing strategy preserves the efficiency benefits of
Router-Tuning while maintaining the performance

gains achieved by LoRA. Together, the integra-
tion of Router-Tuning and LoRA offers a more ad-
vanced fine-tuning paradigm that further enhances
overall model capability.

8 Conclusion

In this work, we investigate the dynamic depth
mechanism from both design and training perspec-
tives. We propose Router-Tuning, which effectively
implements dynamic depth by fine-tuning only a
minimal number of parameters in just a few steps.
Additionally, we explore Router-Tuning across a
variety of modules and granularities to evaluate
its effectiveness across a wide range of models
and tasks. These advancements provide valuable
insights and practical solutions for deploying dy-
namic depth and enhancing the efficiency of large
language models.

Limitations

Despite the progress achieved in this work, sev-
eral limitations remain. First, while we have ad-
vanced MoD through Router-Tuning, other, poten-
tially more sophisticated training strategies may
further improve performance and merit future in-
vestigation. Second, due to computational resource
constraints, our experiments were limited to a small
set of models and tasks. Extending this approach
to a broader range of architectures and applications
would provide deeper insight into its generalizabil-
ity and full potential.

1934

References
2019. Winogrande: An adversarial winograd schema

challenge at scale.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. 2023. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5910–5924.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. Preprint, arXiv:2309.16609.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
Preprint, arXiv:1308.3432.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint,
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models. CoRR, abs/2401.06066.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed A Aly, Beidi Chen, and Carole-Jean
Wu. 2024. Layerskip: Enabling early exit inference
and self-speculative decoding.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Preprint,
arXiv:2101.03961.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence

1935

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961

Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-

hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik

1936

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
Preprint, arXiv:2403.17887.

Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng,
Jiaying Liu, and Jingdong Wang. 2022. On the con-
nection between local attention and dynamic depth-

wise convolution. In International Conference on
Learning Representations.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. 2021. Dynamic neural net-
works: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(11):7436–7456.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Shwai He, Weilin Cai, Jiayi Huang, and Ang Li.
2025. Capacity-aware inference: Mitigating the
straggler effect in mixture of experts. Preprint,
arXiv:2503.05066.

Shwai He, Daize Dong, Liang Ding, and Ang Li.
2024a. Demystifying the compression of mixture-
of-experts through a unified framework. Preprint,
arXiv:2406.02500.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.
2024b. What matters in transformers? not all atten-
tion is needed. Preprint, arXiv:2406.15786.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019a. Parameter-efficient transfer learning for nlp.
Preprint, arXiv:1902.00751.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019b.
Parameter-efficient transfer learning for nlp. ArXiv,
abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

1937

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://openreview.net/forum?id=L3_SsSNMmy
https://arxiv.org/abs/2503.05066
https://arxiv.org/abs/2503.05066
https://arxiv.org/abs/2406.02500
https://arxiv.org/abs/2406.02500
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1902.00751
https://api.semanticscholar.org/CorpusID:59599816
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024. Awq: Activation-aware weight quantization
for llm compression and acceleration. Preprint,
arXiv:2306.00978.

Shuo Liu, Jacky Keung, Zhen Yang, Fang Liu, Qilin
Zhou, and Yihan Liao. 2024. Delving into parameter-
efficient fine-tuning in code change learning: An
empirical study. Preprint, arXiv:2402.06247.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024. Not all experts are equal: Efficient expert
pruning and skipping for mixture-of-experts large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6159–6172,
Bangkok, Thailand. Association for Computational
Linguistics.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language mod-
els are more redundant than you expect. Preprint,
arXiv:2403.03853.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. Preprint, arXiv:1809.02789.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld,
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi,
Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling
Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim
Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith,
Pang Wei Koh, Amanpreet Singh, and Hannaneh
Hajishirzi. 2024. Olmoe: Open mixture-of-experts
language models. Preprint, arXiv:2409.02060.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,

Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,

1938

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://arxiv.org/abs/2402.06247
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://doi.org/10.18653/v1/2024.acl-long.334
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060

Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Matthew Peroni and Dimitris Bertsimas. 2024. Skip
transformers: Efficient inference through skip-
routing. In NeurIPS 2024 Workshop on Fine-Tuning
in Modern Machine Learning: Principles and Scala-
bility.

Fuli Qiao and Mehrdad Mahdavi. 2024. Learn more,
but bother less: parameter efficient continual learning.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
Preprint, arXiv:2404.02258.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
Preprint, arXiv:1701.06538.

Prajwal Singhania, Siddharth Singh, Shwai He, So-
heil Feizi, and Abhinav Bhatele. 2024. Loki: Low-
rank keys for efficient sparse attention. ArXiv,
abs/2406.02542.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2024. A simple and effective pruning approach for
large language models. Preprint, arXiv:2306.11695.

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng,
Yu Cheng, and Tianlong Chen. 2024. Dlo: Dynamic
layer operation for efficient vertical scaling of llms.
Preprint, arXiv:2407.11030.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemini Team. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao
Wang, Ye Feng, Ying Shan, and Ping Luo. 2024.
Llama pro: Progressive llama with block expansion.
Preprint, arXiv:2401.02415.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora-
cle for efficient generative inference of large language
models. In Thirty-seventh Conference on Neural In-
formation Processing Systems.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

1939

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=gdMJlwTcSQ
https://openreview.net/forum?id=ZxtaNh5UYB
https://openreview.net/forum?id=ZxtaNh5UYB
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/2404.02258
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://api.semanticscholar.org/CorpusID:270226131
https://api.semanticscholar.org/CorpusID:270226131
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2407.11030
https://arxiv.org/abs/2407.11030
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.02415
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

