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Abstract

When evaluating large language models
(LLMs) with multiple-choice question answer-
ing (MCQA), it is common to end the prompt
with the string “Answer:” to facilitate auto-
mated answer extraction via next-token prob-
abilities. However, there is no consensus on
how to tokenize the space following the colon,
often overlooked as a trivial choice. In this
paper, we uncover accuracy differences of up
to 11% due to this (seemingly irrelevant) tok-
enization variation as well as reshuffled model
rankings, raising concerns about the reliability
of LLM comparisons in prior work. Surpris-
ingly, we are able to recommend one specific
strategy – tokenizing the space together with
the answer letter – as we observe consistent and
statistically significant performance improve-
ments. Additionally, it improves model calibra-
tion, enhancing the reliability of the model’s
confidence estimates. Our findings underscore
the importance of careful evaluation design and
highlight the need for standardized, transpar-
ent evaluation protocols to ensure reliable and
comparable results.

1 Introduction

Leaderboards for evaluating large language mod-
els (LLMs) often include multiple-choice question
answering (MCQA) tasks: the model is shown a
question together with several candidate answers
and must pick the correct one. To make automatic
answer extraction easier, a widely used conven-
tion is to end the prompt with the literal string
“Answer:” and look at the next-token probabilities
for the option labels (usually: A/B/C/D). This seem-
ingly trivial formatting decision immediately poses
another: should there be a space after the colon in
the prompt, or should the space be included as part
of the answer option token?

Recent studies have highlighted the significant
performance variation that can arise from minor
changes in prompt design (Zheng et al., 2024;
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Figure 1: Illustration of a prompt tokenized with
Llama 3.1. The final token representing the prediction
depends on the tokenization of the space (“D”, without
space; or “␣D”, with space).

Pezeshkpour and Hruschka, 2024). However, little
attention has been given to the role of tokenization,
particularly the tokenization of the empty space
character immediately preceding the answer la-
bel – after the string “Answer:␣” (see Figure 1).
More importantly, we note that practice is cur-
rently split: some recent papers include the lead-
ing space in the prompt (Santurkar et al., 2023;
Wang et al., 2024a,b), while others omit it and tok-
enize it together with the letter (Zheng et al., 2024;
Hendrycks et al., 2021), and no community-wide
convention has emerged. Even widely used evalua-
tion frameworks differ in their convention (Habib
et al., 2023; Gao et al., 2024).

Surprisingly, we find significant differences in
performance depending on the choice of the lead-
ing space tokenization. When the leading space
is tokenized together with the label letter, we
observe consistent, statistically significant gains
in both accuracy and calibration across a wide
range of LLMs and datasets. This seemingly ir-
relevant tokenization choice alone shifts accuracy
by as much as 11% – a larger effect than previ-
ously observed prompt formatting variations such
as option order permutation. Moreover, we find
that the choice of tokenization convention even
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alters model rankings. When the space is tok-
enized before the letter, Llama 3.1 70B Instruct
tops our leaderboard; when the space is tokenized
together with the letter, Qwen 2.5 72B moves into
first place.

Our experiments result in a clear recommenda-
tion: tokenize the space together with the letter,
and observe model rankings exclusively for this
configuration to ensure fair comparisons. More
generally, these findings underscore the need for
unified evaluation frameworks and greater trans-
parency, particularly for closed-source models, so
LLM comparisons remain fair and meaningful.

2 Related Work

LLM Evaluation with MCQA Evaluating gen-
erative LLMs presents a significant challenge due
to the open-ended nature of their outputs. Re-
cent approaches have explored human evaluation
and LLM-as-a-judge methods (Chiang and Lee,
2023; Chen et al., 2024), but these techniques
are highly subjective and unreliable. To address
this, multiple-choice question answering has been
widely adopted, as it enables automated, quantita-
tive assessment of LLM capabilities.

There are multiple ways of automatically extract-
ing an LLM’s answer in MCQA tasks. Previous
work have shown that better performance can be
achieved by allowing the model to generate a free-
form answer, followed by using a secondary LLM
to extract the final choice (Wang et al., 2024b; Lyu
et al., 2024). However, this approach is computa-
tionally expensive and can yield inconsistent results
across different secondary models. Given that an-
swer options are identified by letters (or labels),
one of the most commonly used methodologies is
to compute the model probabilities for the next to-
ken and get the highest label as the predicted choice
(Hendrycks et al., 2021; Santurkar et al., 2023).

Sensitivity to Prompt Details Recent studies
have demonstrated that LLM performance in
MCQA is highly sensitive to prompt details, often
showing biases toward certain labels and answer
order (Pezeshkpour and Hruschka, 2024; Zheng
et al., 2024; Alzahrani et al., 2024). However, little
attention has been given to the tokenization of the
space character preceding the answer label, and
there are discrepancies in the literature. Some stud-
ies tokenize this space as an individual token (e.g.,
Santurkar et al., 2023; Wang et al., 2024a,b; Pal
and Sankarasubbu, 2024), while others tokenize it

together with the answer label (e.g., Zheng et al.,
2024; Hendrycks et al., 2021).

Complementarily to this body of research, we
focus on a largely overlooked and apparently irrele-
vant factor: the tokenization of the space character
immediately preceding the answer label.

3 Space or No Space?

The literature has yet to converge on a single con-
vention: even widely used evaluation frameworks
such as Lighteval (Habib et al., 2023) from Hug-
ging Face exhibit inconsistencies in how the lead-
ing space in the prompt is tokenized across different
datasets. We begin by presenting the key arguments
supporting each approach and identifying the prior
works that have adopted them.

General Setting A MCQA prompt consists of a
question and a set of answer choices, each associ-
ated with a distinct letter label as in Figure 1. It fin-
ishes with the string “Answer:”, and the LLM pre-
diction is obtained as t̂ = argmaxt∈{A,B,... } P (t |
S), i.e., selecting the choice whose label token t
has the highest next-token conditional probability
on the prompt S. This allows for an efficient and
automated extraction of model answers for perfor-
mance assessment.

Letter Token Without Space Given that the t
label tokens presented in the list of options in the
prompt are tokenized as a single letter (without the
leading space; see Figure 1), it seems plausible
to analyze the probability of the next token as a
single letter as well (i.e., tokenizing the leading
space as “Answer:␣”, before the actual token of
the letter label). This tokenization represents the
exact same token as the one in the corresponding
option in the prompt (more details in Appendix A),
and there is a body of research that tokenizes this
way (Santurkar et al., 2023; Wang et al., 2024a,b;
Pal and Sankarasubbu, 2024).

Letter Token With Space However, the previ-
ous is not the default tokenization: if we include
the final answer letter in the prompt and tokenize
it, the last token would be “␣t”. Thus, tokenizing
the space together with the letter also seems a rea-
sonable approach. This convention is also used in
prior work (Zheng et al., 2024; Hendrycks et al.,
2021).
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4 Experimental Setup

The goal of our experiments is to analyze potential
differences when tokenizing the option labels as
single letters versus as letters preceded by a space
(i.e., getting the model predictions from the “X”1

or “␣X” tokens, respectively). We look at it from
two different perspectives: (1) performance, where
we evaluate how accurate the model is in its pre-
dictions; and (2) calibration, where we assess how
reliable the model predictions are.

Datasets Our main experiments are conducted
on MMLU (Hendrycks et al., 2021), one of the
most widely used benchmarks for LLM evalua-
tion (OpenAI et al., 2024; Grattafiori et al., 2024).
MMLU contains multiple-choice questions from 57
different fields, providing a comprehensive set for
interdisciplinary knowledge assessment. To ensure
our findings are not specific to a single benchmark,
we additionally evaluate on five other commonly
used MCQA datasets (listed in Appendix B.1).

Models We evaluate 15 LLMs from various fami-
lies, sizes, and capabilities (listed in Appendix B.2).
All models are run with random sampling disabled
(i.e., greedy decoding) for deterministic outputs
and reproducibility.

Prompts To ensure our findings are robust and
not limited to a single prompt template, we experi-
ment with a variety of prompt formulations. These
include zero-shot and few-shot settings, chain-of-
thought (CoT) prompting, alternative formats for
multiple-choice options, and prompts in different
languages. Further details are provided in Ap-
pendix B.3.

Evaluation For measuring performance, we re-
port accuracy. As for calibration, we report the
expected calibration error (ECE; Pakdaman Naeini
et al., 2015), which measures the weighted average
discrepancy between a model’s prediction confi-
dence and its actual accuracy across confidence
bins. The formula of ECE is as follows:

ECE =

M∑

m=1

|Bm|
N

∣∣∣∣
1

|Bm|
∑

i∈Bm

1{ŷi = yi}
︸ ︷︷ ︸

acc(Bm)

− 1

|Bm|
∑

i∈Bm

pi

︸ ︷︷ ︸
conf(Bm)

∣∣∣∣ ,

where M is the number of confidence bins, N is the
total number of instances, Bm is the set of instances
whose predicted confidence falls into bin m, ŷi and

1Where “X” is one of the option letters (A, B, C, D).

yi are the predicted and true labels for instance i,
pi is the model’s confidence for its predicted label
on instance i, acc(Bm) is the empirical accuracy
in bin m, and conf(Bm) is the average confidence
in bin m. In our experiments, M = 10 bins (i.e.,
we have 10 bins, comprising 10% accuracy each).

Statistical Significance To assess whether the
choice of space tokenization strategy leads to sta-
tistically meaningful differences in performance,
we conduct statistical tests comparing results from
both setups. For accuracy, we use McNemar’s test
(McNemar, 1947) and, for calibration, we apply a
paired bootstrap resampling test on the ECE (more
details in Appendix B.4). In both cases, we con-
sider differences significant when p < 0.05.

Probability Extraction To obtain the model’s
predicted probabilities, we pass the prompt through
the LLM and extract the next-token logits of the
options letters. The logits are then converted into
normalized probabilities, producing a probability
distribution over all possible answers. This allows
us to analyze not only the most likely answer but
also how the model distributes probability mass
(confidence) across all options, which is important
for evaluating calibration.

5 Results

We evaluate our two tokenization schemes,
which we denote: (1) Letter token (i.e.,
last line of the prompt is tokenized as
[“Answer”,“:”,“␣”,“X”]); and (2) Space–
Letter token (i.e., last line of the prompt is
tokenized as [“Answer”,“:”,“␣X”]). We analyze
the probability of the tokens underlined in red.
Table 1 shows the zero-shot results for all models
on the MMLU dataset.

Performance While the place where the space
preceding the answer letter is tokenized might seem
completely irrelevant, we observe noteworthy ac-
curacy gains in all models when tokenizing the
space within the same token as the actual letter.
These improvements are statistically significant (ex-
cept for Gemma 3 12B and Mistral 7B). This might
seem counterintuitive, as these tokens are not the
same as the ones in the options list of the prompt.

These performance differences have crucial prac-
tical implications: even by evaluating only a hand-
ful of models, we show noticeable changes in a hy-
pothetical leaderboard. By only changing where
the space is tokenized, the top-performing model
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Accuracy (↑) ECE (↓)

Model “X” “␣X” “X” “␣X”

Llama 2 7B 37.25 38.88* 2.16 1.15*

Llama 3.1 8B 61.47 63.93* 2.58 0.50*

Llama 3.1 8B Inst 67.28 68.73* 4.19 3.77*

Llama 3.1 70B 76.16 76.64* 1.47 1.16*

Llama 3.1 70B Inst 82.31 82.60* 3.91 4.87
Gemma 3 4B 56.25 57.95* 7.40 1.74*

Gemma 3 4B Inst 57.43 57.77* 20.34 20.36
Gemma 3 12B 71.17 71.31 2.18 0.91*

Mistral 7B v0.3 60.17 60.28 1.40 0.51*

Mistral 7B Inst v0.3 59.70 60.05* 12.83 11.98*

Mistral Small 24B 77.28 77.66* 0.79 0.74
Qwen 2.5 7B 69.38 70.99* 2.88 3.05
Qwen 2.5 72B 81.93 83.24* 1.10 0.72
Qwen 3 8B 72.82 74.62* 2.95 1.95*

GPT Neo 2.7B 23.65 24.39* 12.00 4.05*

Table 1: Zero-shot performance on MMLU when tok-
enizing the answer letter as either a single letter (“X”)
or as a space plus letter (“␣X”). * indicates a statisti-
cally significant improvement (p < 0.05). The top-
performing model for each tokenization is underlined,
and the top-performing tokenization strategy for each
model is bolded.

changes (from Llama 3.1 70B Instruct to Qwen 2.5
72B). This indicates that such a subtle tweak could
significantly alter LLM leaderboards.

Calibration Additionally, the ECE is lower for
the large majority of models when tokenizing the
space with the letter, with many of the differences
being significant under the paired bootstrap resam-
pling test. We find model answers being up to
4 times more reliable by only changing the tok-
enization of the leading space (see Gemma 3 4B).
For illustrating the calibration of the models, Fig-
ure 2 shows the reliability diagrams for the Gemma
3 model. The main calibration gains come from the
30% confidence bin onwards – which, after tweak-
ing the tokenization, become closer to the perfect
calibration. These improvements are crucial for en-
hanced performance, as even minor changes near
the model’s decision boundary can greatly affect
predictions.

5.1 Few-Shot and Chain-of-Thought Results

Few-Shot In the few-shot scenario, we include
5 example questions and answers in the prompt
before the target question, using the same tokeniza-
tion for every answer as in the final (evaluated)
token. This approach is widely used to help models
better understand the task format and expected out-
put (OpenAI et al., 2024; Grattafiori et al., 2024).
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(b) Space–Letter token (“␣X”).

Figure 2: Reliability diagrams for Gemma 3 4B.

Accuracy (↑) ECE (↓)

Setting “X” “␣X” “X” “␣X”

Zero-shot 61.47 63.93* 2.58 0.50*

Few-shot 63.90 65.78* 2.24 0.37*

Chain-of-Thought 69.64 70.11 6.36 3.75*

Table 2: Performance of Llama 3.1 8B on MMLU under
different prompt settings.

The results in Table 2 show that the accuracy and
calibration improvements from space–letter tok-
enization persist in the few-shot setting, confirming
that the impact of space tokenization is robust even
when the model is provided with explicit demon-
strations of the answer format.

Chain-of-Thought We further test the effect of
space tokenization under CoT prompting, where
the model is encouraged to reason step-by-step be-
fore providing its answer. Table 2 shows that, while
calibration still improves significantly, the absolute
accuracy gains are not – this is reasonable since, af-
ter the reasoning chain, extracting the answer label
is more straightforward and thus less sensitive to
the empty space tokenization.

5.2 Robustness to Prompt Variations

Recent work has demonstrated that LLMs are
highly sensitive to subtle changes in prompt phras-
ing and structure. To evaluate the robustness of our
findings, we experiment with a range of prompt
formulations (see Appendix B.3.2 for details on
these perturbations). Table 3 shows that the impact
of empty space tokenization is consistent across all
prompt variations and in fact exceeds the effects
of other prompt modifications such as changing
option labels or their order.2 Furthermore, Ap-
pendix C.2 presents results for MMLU in five dif-

2Numeric labels yield identical results because “␣n” is
tokenized as [“␣”, “n”], so the final token is the same for both
tokenization strategies.
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Accuracy (↑) ECE (↓)

Prompt Template “X” “␣X” “X” “␣X”

Original 61.47 63.93* 2.58 0.50*

Parentheses (“␣(A)”) 62.07 64.18* 1.92 1.07*

Numbers (“␣1”) 62.21 62.21 1.94 1.94
Space in option list 61.89 63.25* 1.86 0.74*

Choices before question 44.52 48.02* 6.82 2.74*

Permutations (avg.) 61.53 63.37* 2.98 0.56*

Table 3: Performance of Llama 3.1 8B on the MMLU
benchmark with different prompt templates.
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Figure 3: Mean accuracy improvement (left) and ECE
reduction (right) from tokenizing the space with the an-
swer letter, averaged across all models for each dataset.
Error bars represent 95% confidence intervals.

ferent languages – including some not natively sup-
ported by the models – and our findings remain
robust in all cases.

5.3 Results on Other Datasets

We further validate the generality of the effect by
evaluating all models on five additional widely
used MCQA datasets (ARC Challenge (Clark et al.,
2018), ARC Easy (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), OpenbookQA (Mihaylov
et al., 2018), and TruthfulQA (Lin et al., 2022)).
Figure 3 summarizes the average accuracy improve-
ment and ECE reduction (delta aggregated across
models) for each dataset, while the full per-model
results are reported in Appendix C.3. The trends
are consistent with the previous findings: tokeniz-
ing the space together with the answer letter system-
atically increases accuracy while (in most cases)
lowering calibration error. Notably, even the largest
model in our study (Qwen 2.5 72B) exhibits a very
substantial accuracy gain of over 11% on the Hel-
laSwag dataset under the space–letter tokenization
(“␣X”), underscoring that the effect is not confined
to smaller or less capable models.

6 Conclusion

In this work, we uncover a subtle yet impactful
detail in the MCQA evaluation of LLMs: the to-
kenization of the space preceding the answer let-
ter. Despite the lack of a standardized convention
for this tokenization – often dismissed as an ir-
relevant choice – we show that it has significant
implications for both model performance and re-
liability. Our experiments reveal that tokenizing
the space together with the option letter leads to
consistent improvements in accuracy and calibra-
tion, with performance gains reaching up to 11%.
More strikingly, this minor tokenization change is
sufficient to alter the relative rankings of models
on leaderboards, raising important concerns about
the comparability of prior LLM evaluation results.
We encourage future work to consider these low-
level details carefully to ensure fair and meaningful
model comparisons.

Limitations

Our evaluation focuses on open-weight models, as
we require access to all next-token logits, which are
not provided for proprietary, API-based models. To
allow for extensive experimentation with different
models under our computational constraints, we
use small- to medium-sized LLMs (up to 72B) and
observe similar trends across all of them. Testing
our findings with large-scale LLMs remains for
future work.

Ethics Statement

Our work highlights a noteworthy discrepancy
in the current literature on LLM evaluation with
MCQA and demonstrates significant performance
improvements by tokenizing the empty space to-
gether with the subsequent answer letter token.
However, these improvements do not fully elim-
inate inherent risks, and LLMs remain susceptible
to errors. Therefore, we caution against relying
solely on LLMs in critical settings, such as medical
advice, without appropriate human oversight and
domain-specific validation.
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A Space or No Space? Detailed
Motivation of Both Approaches

In Section 3 we discuss the two current approaches
in the literature for the tokenization of the empty
space preceding the answer letter. Here, we provide
a more in-depth analysis of the rationale for both
approaches.

A.1 Letter Token Without Space: Token
Similarity

This approach involves tokenizing the space inde-
pendently in the prompt template, and looking at
the probability of the model generating the label
tokens “t” (without leading space). Many studies
tokenize this way (Santurkar et al., 2023; Wang
et al., 2024b,a; Pal and Sankarasubbu, 2024). The
main potential reason is that the “t” tokens are
exactly the same as the ones representing the corre-
sponding options in the prompt (see Figure 1). A
recent study highlights this exact match between
the tokens in the options list and in the final an-
swer as an important aspect (Gu et al., 2025). To
quantify the strength of this argument, Figure 4
shows the token embedding similarity of the option
letters.

Consider a MCQA task whose correct choice
is “X”. When computing the model probabilities
for each option (final token), the embeddings of
the tokens “␣X” (correct option with space) and
“␣Y” (incorrect option with space) compared to “X”
(ground truth token) are much more similar among
them (≈ 0.6 vs. ≈ 0.2, respectively) than if we
compare the tokens “X” (correct option without
space) and “Y” (incorrect option without space)
to “X” (1.0 vs. ≈ 0.3, respectively). Therefore, it
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Figure 4: Cosine similarity of the Llama 3.1 token em-
beddings of the options, with and without space tok-
enization.

seems reasonable to use the same token as in the
list of options in the prompt (i.e., “t” tokens) since
the embeddings of the letter labels are more easily
distinguishable. In a situation where the model is
in doubt between the two options, this could allow
clearer decision boundaries among the choices.

A.2 Letter Token With Space: Model’s
Default Tokenization

On the other hand, this other approach involves to-
kenizing the leading space together with the option
letter, extracting the model predictions from the
probabilities of the “␣t” tokens. The rationale for
this choice is that it represents the default tokeniza-
tion of the model after including the letter in the
prompt – if we tokenize the string “Answer: X”,
the last token would be “␣X”. Thus, this tokeniza-
tion aligns better with what the model would ex-
pect to see, so it seems a plausible approach as
well. This convention is also used in prior studies
(Zheng et al., 2024; Hendrycks et al., 2021), and
has been adopted for other tasks beyond MCQA,
such as classification (Sanz-Guerrero and von der
Wense, 2025).

B Detailed Experimental Setup

B.1 Datasets

Table 4 contains the list of datasets used in this
study. All of them are evaluated using the default
test set from Hugging Face3, the size of which is
specified in the table.

3https://huggingface.co/datasets

Dataset |Test|
MMLU (Hendrycks et al., 2021) 14,042
AI2 ARC Easy (Clark et al., 2018) 2,365
AI2 ARC Challenge (Clark et al., 2018) 1,172
HellaSwag (Zellers et al., 2019) 10,003
OpenbookQA (Mihaylov et al., 2018) 500
TruthfulQA (Lin et al., 2022) 817

Table 4: Datasets (and their sizes) used in this paper.

Model

Llama 2 7B (Touvron et al., 2023)
Llama 3.1 8B (Grattafiori et al., 2024)
Llama 3.1 8B Instruct (Grattafiori et al., 2024)
Llama 3.1 70B (Grattafiori et al., 2024)
Llama 3.1 70B Instruct (Grattafiori et al., 2024)
Gemma 3 4B (Gemma Team et al., 2025)
Gemma 3 4B Instruct (Gemma Team et al., 2025)
Gemma 3 12B (Gemma Team et al., 2025)
Mistral 7B v0.3 (Jiang et al., 2023)
Mistral 7B Instruct v0.3 (Jiang et al., 2023)
Mistral Small 24B (Mistral AI, 2025)
Qwen 2.5 7B (Qwen et al., 2025)
Qwen 2.5 72B (Qwen et al., 2025)
Qwen 3 8B (Yang et al., 2025)
GPT Neo 2.7B (Black et al., 2021)

Table 5: LLMs evaluated in this paper.

B.2 Models
Table 5 contains the list of models used in this study.
All of them are downloaded from the Hugging Face
model hub4, and their size is specified in the table.

B.3 Prompts
B.3.1 Main Prompt Templates
Figures 5 and 6 show the prompts used for base
and instruction-tuned models, respectively. The dif-
ference between the two prompts is the inclusion
of special tokens ({system token}, {user token},
and {assistant token}) in the instruction-tuned mod-
els, which are model-specific and represent the
expected usage of these models, aligning with con-
versational interactions. In the figures, the relevant
space tokens are marked as ␣. The last line of the
prompt is the one that changes between the two
tokenization strategies. The probability for each
option is extracted from the next-token logits of the
tokens after the arrow (→), which are underlined
in red.

B.3.2 Prompt Variations
Recent work has shown that LLMs are highly sen-
sitive to subtle changes in prompt phrasing and
structure (Pezeshkpour and Hruschka, 2024; Zheng

4https://huggingface.co/models
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MCQA Main Prompt (Base models)

“The following are multiple choice questions
(with answers).
Question: {question}
A. {option A}
B. {option B}
C. {option C}
D. {option D}
Answer:␣” → “X” // “Answer:” → “␣X”

Figure 5: Prompt used for base models. The relevant
space tokens are marked as ␣. We analyze the prob-
abilities of the tokens after the arrow (→), which are
underlined in red. “X” denotes the option label (A/B/C/D).

MCQA Main Prompt (Instruction models)

{system token}
“You are a helpful assistant for
multiple-choice questions. Always answer
strictly in the format “Answer: X”, where X
is the letter of the chosen answer (A, B, C,
or D). Do not include any other text or
explanation.”
{user token}
“Question: {question}
A. {option A}
B. {option B}
C. {option C}
D. {option D}”
{assistant token}
“Answer:␣” → “X” // “Answer:” → “␣X”

Figure 6: Prompt used for instruction-tuned models.
The relevant space tokens are marked as ␣. We ana-
lyze the probabilities of the tokens after the arrow (→),
which are underlined in red. “X” denotes the option
label (A/B/C/D). The {system token}, {user token}, and
{assistant token} are model-specific special tokens.

et al., 2024; Alzahrani et al., 2024). To ensure that
our findings are robust to such variations, we ex-
periment with a range of prompt formulations, as
analyzed in Section 5.2 (Table 3). Here, we provide
the exact prompts used for each variation.

Figure 7 shows the prompt variation with a space
before each option in the list. This modification en-
sures that the final answer token (“␣X”) matches the
format of the options in the list (“␣A”, “␣B”, etc.).
Figure 8 shows the prompt variation with paren-
theses around the option labels. Figure 9 shows
the prompt variation with numeric option labels
(1/2/3/4). Figure 10 shows the prompt variation
with the list of options before the question.

Prompt Variation: Space in Option List

“The following are multiple choice questions
(with answers).
Question: {question}
␣A. {option A}
␣B. {option B}
␣C. {option C}
␣D. {option D}
Answer:␣” → “X” // “Answer:” → “␣X”

Figure 7: Prompt variation with a space before each
option in the list. The relevant space tokens are marked
as ␣. We analyze the probabilities of the tokens after the
arrow (→), which are underlined in red. “X” denotes the
option label (A/B/C/D).

Prompt Variation: Parentheses

“The following are multiple choice questions
(with answers).
Question: {question}
(A) {option A}
(B) {option B}
(C) {option C}
(D) {option D}
Answer:␣” → “(X)” // “Answer:” → “␣(X)”

Figure 8: Prompt variation with parentheses around the
option labels. The relevant space tokens are marked as
␣. We analyze the probabilities of the tokens after the
arrow (→), which are underlined in red. “X” denotes the
option label (A/B/C/D).

Prompt Variation: Numbers

“The following are multiple choice questions
(with answers).
Question: {question}
1. {option A}
2. {option B}
3. {option C}
4. {option D}
Answer:␣” → “n” // “Answer:” → “␣n”

Figure 9: Prompt variation with numeric option labels.
The relevant space tokens are marked as ␣. We ana-
lyze the probabilities of the tokens after the arrow (→),
which are underlined in red. “n” denotes the option
label (1/2/3/4).
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Prompt Variation: Choices Before Question

“The following are multiple choice questions
(with answers).
A. {option A}
B. {option B}
C. {option C}
D. {option D}
Question: {question}
Answer:␣” → “X” // “Answer:” → “␣X”

Figure 10: Prompt variation with the list of options be-
fore the question. The relevant space tokens are marked
as ␣. We analyze the probabilities of the tokens after the
arrow (→), which are underlined in red. “X” denotes the
option label (A/B/C/D).

B.4 Statistical Tests
Accuracy: McNemar’s Test For accuracy, we
use McNemar’s test (McNemar, 1947), which as-
sesses whether the number of examples correctly
answered only under the “␣X” tokenization is sig-
nificantly greater than those only correct under the
“X” tokenization.

Calibration: Paired Bootstrap Resampling Test
For calibration, we apply a paired bootstrap resam-
pling test on the ECE. We resample the evaluation
examples with replacement and recompute the ECE
difference for each bootstrap sample, estimating the
probability that one tokenization strategy leads to
significantly lower ECE.

C Additional Results

C.1 Effect of Option Order Permutations
Motivated by recent works showing that LLMs are
sensitive to the order of options in MCQA prompts
(Zheng et al., 2024; Pezeshkpour and Hruschka,
2024), we experiment with 5 different random
shufflings of the options in the prompt. These re-
sults are averaged in Table 3 under “Permutations
(avg.)”, and the individual results for each shuf-
fling are reported in Table 6. We observe that not
only the improvements from tokenizing the space
with the letter (compared across columns) are con-
sistent, but also that this effect is larger than the
differences caused by changing the order of the
options (compared across rows).

C.2 Performance across Languages
Table 7 demonstrates that the accuracy and calibra-
tion improvements from space–letter tokenization
(“␣X”) are robust across multiple languages. For

Accuracy (↑) ECE (↓)

Option order “X” “␣X” “X” “␣X”

Original 61.47 63.93* 2.58 0.50*

Permutation 1 61.78 63.86* 2.86 0.64*

Permutation 2 61.43 62.89* 3.29 0.41*

Permutation 3 62.11 63.95* 2.51 0.61*

Permutation 4 61.28 63.29* 2.93 0.52*

Permutation 5 61.07 62.85* 3.32 0.61*

Table 6: Performance of Llama 3.1 8B on the MMLU
benchmark with different random option orders.

Accuracy (↑) ECE (↓)

Language “X” “␣X” “X” “␣X”

Spanish 54.0 56.5* 3.7 1.1*

German 52.9 55.2* 3.4 1.2*

French 53.2 56.3* 3.9 1.1*

Hindi 41.8 45.5* 6.4 2.1*

Chinese 47.6 51.9* 7.2 2.1*

Table 7: Performance of Llama 3.1 8B on the MMLU
benchmark in different languages.

all tested languages, including Spanish, German,
French, Hindi, and Chinese, tokenizing the space
together with the answer letter consistently yields
higher accuracy and lower ECE. Notably, even in
Chinese – a language not natively supported by
Llama 3.1 (Grattafiori et al., 2024) – we observe
a substantial gain of over 4 accuracy points and a
reduction of 5 ECE points. This confirms that the
effect is not limited to English prompts and gen-
eralizes to multilingual settings, regardless of the
model’s native language capabilities.

C.3 Performance across Datasets
Below we provide the complete per-model, per-
dataset results that complement the aggregated
deltas shown in Figure 3 of the main paper. We
observe a consistent trend in favor of tokenizing
the space together with the answer letter across
datasets and model families. Even our largest eval-
uated model, Qwen 2.5 72B, shows a substantial
gap of 11.7 accuracy points (on HellaSwag), in-
dicating that larger models are also susceptible to
such tokenization effects.
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Acc (↑) ECE (↓)

Model Dataset “X” “␣X” “X” “␣X”

Llama 2 7B ARC Challenge 43.9 46.0* 2.6 2.2
ARC Easy 57.6 61.5* 7.9 9.0
HellaSwag 26.8 29.4* 8.2 3.7*

OpenbookQA 36.6 39.4* 3.3 2.9
TruthfulQA 23.3 24.7 4.9 3.7*

Llama 3.1 8B ARC Challenge 75.8 78.8* 1.3 1.3
ARC Easy 90.4 91.6* 2.1 1.9
HellaSwag 46.8 52.8* 4.9 2.6*

OpenbookQA 73.2 77.4* 2.4 1.0*

TruthfulQA 43.9 46.0* 7.8 7.1

Llama 3.1 8B Inst ARC Challenge 82.1 82.7 1.8 1.5
ARC Easy 93.2 93.5 0.9 0.2*

HellaSwag 51.4 59.3* 6.4 1.9*

OpenbookQA 81.4 84.4* 1.9 2.4
TruthfulQA 56.1 57.8* 8.7 8.3

Llama 3.1 70B ARC Challenge 91.8 91.9 1.4 1.2
ARC Easy 97.2 97.5 1.5 1.3
HellaSwag 65.4 68.5* 2.7 3.0
OpenbookQA 89.4 90.8 3.0 2.7
TruthfulQA 57.6 67.4* 4.6 2.1*

Llama 3.1 70B Inst ARC Challenge 93.0 94.2* 2.0 0.3*

ARC Easy 97.7 98.1 2.0 0.8*

HellaSwag 64.9 68.1* 3.1 1.2*

OpenbookQA 93.6 94.2 3.8 2.1*

TruthfulQA 73.6 75.8* 2.6 2.6

Gemma 3 4B ARC Challenge 70.6 74.5* 5.2 1.5*

ARC Easy 86.2 88.6* 2.9 0.8*

HellaSwag 37.3 46.9* 8.9 3.9*

OpenbookQA 58.8 65.4* 6.0 2.3*

TruthfulQA 31.0 32.9 15.0 10.1*

Gemma 3 4B Inst ARC Challenge 76.9 77.0 10.7 10.6
ARC Easy 89.6 89.9 4.7 4.8
HellaSwag 49.9 50.4 23.2 22.9
OpenbookQA 74.0 74.2 12.3 11.9
TruthfulQA 46.4 47.0 20.4 19.8

Gemma 3 12B ARC Challenge 89.0 89.3 0.9 1.4
ARC Easy 95.5 96.0 1.6 0.6*

HellaSwag 50.8 53.9* 4.7 1.8*

OpenbookQA 83.4 84.8* 4.7 3.4
TruthfulQA 51.4 55.0* 6.8 3.1*

Acc (↑) ECE (↓)

Model Dataset “X” “␣X” “X” “␣X”

Mistral 7B v0.3 ARC Challenge 75.6 76.7 1.9 1.8
ARC Easy 88.5 88.7 2.1 2.0
HellaSwag 46.7 47.8 2.6 3.3
OpenbookQA 72.4 73.4 3.0 2.9
TruthfulQA 45.0 45.4 5.3 3.9*

Mistral 7B Inst v0.3 ARC Challenge 78.4 78.6 6.3 5.7
ARC Easy 88.3 88.9 3.1 2.7
HellaSwag 60.0 61.1 9.6 8.9
OpenbookQA 77.2 77.6 5.9 5.0
TruthfulQA 48.6 49.9* 13.1 13.0

Mistral Small 24B ARC Challenge 92.2 92.7 1.4 1.2
ARC Easy 97.7 97.8 1.9 1.7
HellaSwag 55.4 56.0 4.1 3.9
OpenbookQA 86.2 86.4 3.3 4.4
TruthfulQA 67.3 68.2 1.5 1.5

Qwen 2.5 7B ARC Challenge 88.3 88.7 1.4 0.4*

ARC Easy 95.4 96.7* 1.6 0.9*

HellaSwag 59.6 63.0* 1.2 0.6*

OpenbookQA 86.2 89.0* 2.5 1.7*

TruthfulQA 60.8 63.3* 2.4 3.2

Qwen 2.5 72B ARC Challenge 95.6 95.8 2.3 0.4*

ARC Easy 98.5 98.8 1.8 0.4*

HellaSwag 76.7 78.0* 3.7 2.7*

OpenbookQA 95.8 96.4 4.5 2.0*

TruthfulQA 63.3 75.0* 3.2 1.9*

Qwen 3 8B ARC Challenge 90.5 92.1* 1.1 1.0
ARC Easy 97.3 97.6 1.5 1.3
HellaSwag 63.4 68.0* 3.5 2.1*

OpenbookQA 85.6 85.6 2.3 2.8
TruthfulQA 60.2 64.9* 3.2 3.0

GPT Neo 2.7B ARC Challenge 23.8 24.7 9.4 3.0*

ARC Easy 24.6 26.7* 10.0 2.8*

HellaSwag 26.2 27.0* 14.1 4.8*

OpenbookQA 24.8 26.2* 12.3 2.9*

TruthfulQA 22.4 22.8 7.5 4.4*

Table 8: Full results of all models on all datasets tokenizing the space before (Letter token; “X”) or together with the
letter (Space–Letter token; “␣X”). * means significantly better (higher for accuracy; lower for ECE). Top-performing
tokenization strategy for each model is bolded.
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