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Abstract

We present the first comprehensive study of
Memorization in Multilingual Large Language
Models (MLLMs), analyzing 95 languages us-
ing models across diverse model scales, ar-
chitectures, and memorization definitions. As
MLLMs are increasingly deployed, understand-
ing their memorization behavior has become
critical. Yet prior work has focused primarily
on monolingual models, leaving multilingual
memorization underexplored, despite the inher-
ently long-tailed nature of training corpora. We
find that the prevailing assumption, that memo-
rization is highly correlated with training data
availability, fails to fully explain memorization
patterns in MLLMs. We hypothesize that the
conventional focus on monolingual settings, ef-
fectively treating languages in isolation, may
obscure the true patterns of memorization. To
address this, we propose a novel graph-based
correlation metric that incorporates language
similarity to analyze cross-lingual memoriza-
tion. Our analysis reveals that among sim-
ilar languages, those with fewer training to-
kens tend to exhibit higher memorization, a
trend that only emerges when cross-lingual re-
lationships are explicitly modeled. These find-
ings underscore the importance of a language-
aware perspective in evaluating and mitigating
memorization vulnerabilities in MLLMs. This
also constitutes empirical evidence that lan-
guage similarity both explains Memorization in
MLLMs and underpins Cross-lingual Transfer-
ability, with broad implications for multilingual
NLP '

1 Introduction

Large Language Models (LLMs) demonstrate in-

creasingly strong capabilities in processing and

understanding multiple languages (Conneau et al.,

2020), resulting in advancements across a wide
* Corresponding author.

'We release our code at: https://github.com/
xiaoyuluoit97/MLLM_memorization.
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Figure 1: Overview of our Framework for Analyzing
Memorization in MLLMs using Language Similarity
Graph-based Correlation Analysis.

range of natural language processing (NLP) tasks
(Choi et al., 2021; Pikuliak et al., 2021). MLLMs,
in particular, empower global users to interact in
their native languages, offering wide-reaching ben-
efits in accessibility and productivity.

However, LLMs are also known to memorize
portions of their training data (Carlini et al., 2021),
raising serious concerns such as the leakage of
copyrighted content (Chang et al., 2023) and per-
sonal information (Staab et al.). While memoriza-
tion in monolingual LLMs has been widely studied,
how it manifests in multilingual models remains
underexplored.

Prior work predominantly attributes memoriza-
tion to data volume, positing that frequent tokens
or duplicated content are disproportionately memo-
rized (Carlini et al., 2022). This echoes findings
from computer vision, where long-tail examples
are disproportionately memorized (Feldman and
Zhang, 2020; Jiang et al., 2020; Garg et al., 2023),
resulting in increased privacy and fairness risks (Li
et al., 2024b; Gao et al., 2023; Tramer et al., 2022).
However, MLLMs introduce a unique complexity:
languages are not processed independently but in
a joint space, often sharing lexical, morphological,
and syntactic features. While prior memorization
research has largely focused on monolingual mod-
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els and settings Carlini et al. (2021, 2022), without
explicitly examining the role of cross-lingual sim-
ilarity, our work explores how such relationships
may shape memorization dynamics. For instance,
typologically similar languages like Turkish and
Azerbaijani may interact during training in ways
that affect their memorization patterns. Moreover,
low-resource languages naturally occupy the long
tail of the data distribution, introducing complex dy-
namics that are poorly understood. Together, these
challenges raise important questions that motivate
our investigation. For example, to what extent does
memorization in MLLMs correspond to training
data volume, as suggested by long-tail distribution
assumptions? How might cross-lingual relation-
ships influence memorization behavior across lan-
guages? And can memorization in one language
lead to unintended leakage in another, particularly
among similar languages?

To answer these questions, we conduct the first
large-scale study of memorization in MLLMs, un-
covering critical limitations of existing research
and offering a novel language-aware perspective
(see Fig. 1 for an overview of our framework). Our
key contributions are:

* Revisiting the Long-Tail Assumption: We
show that memorization in multilingual set-
tings cannot be fully explained by training
data volume or token frequency. In many
cases, low-resource languages exhibit lower
memorization rates than high-resource coun-
terparts.

* Language Similarity-Aware Correlation
Metric: We introduce a novel graph-based
correlation metric that incorporates typolog-
ical and statistical similarities between lan-
guages, enabling structured analysis of cross-
lingual memorization dynamics.

* Cross-Lingual Memorization Insights: Us-
ing our metric, we find that languages with
high similarity exhibit interconnected mem-
orization behaviors, affording fundamental
grounding for cross-lingual transferability.

¢ Comprehensive and Robust Evalua-
tion: We assess memorization using both
generation-based and  likelihood-based
metrics, and validate our findings across
over 95 languages, multiple LLM architec-
tures (encoder-only and decoder-based) of

varying scales, demonstrating consistent and
generalizable trends.

2 Related work

2.1 Memorization in LLM

Memorization in deep neural networks has long
been recognized as a critical issue, with implica-
tions for privacy, fairness, and generalization (Feld-
man and Zhang, 2020; Garg et al., 2023; Chang and
Shokri, 2021; Li et al., 2025). These concerns have
been empirically confirmed in LLMs. Carlini et al.
(2019) first show that generative models can inad-
vertently memorize and reproduce rare, sensitive
training data. Carlini et al. (2021) further demon-
strate that large models like GPT-2 can regurgitate
unique sequences even if they appear only once in
the training corpus. Carlini et al. (2022) systemati-
cally quantify memorization patterns across model
scales and architectures, while Kim et al. (2023)
focus on personally identifiable information (PII)
memorized by LLMs, proposing ProPILE to assess
leakage from the perspective of data subjects.
Recent work has formalized memorization risk,
particularly distinguishing between discoverable
and extractable memorization (Carlini et al., 2021;
Nasr et al., 2023). The latter refers to information
that an adversary can extract without direct access
to the training set, posing realistic threats to de-
ployed models. Studies have shown that LLMs, in-
cluding GPT, T35, and others, can leak hundreds to
millions of training sequences depending on model
sizes, data duplication, and prompt strategies (Nasr
et al., 2023; Carlini et al., 2022). Beyond quantify-
ing leakage, several studies have advanced the un-
derstanding of memorization mechanisms and mea-
surement approaches. Chen et al. (2024) analyze
how model and context size affect transitions be-
tween unmemorized and memorized outputs. Liu
et al. (2024) propose the forgetting curve, a corpus-
agnostic method to reliably measure memorization
capability across architectures. Li et al. (2024a)
introduce ROME, revealing how token length and
prediction confidence relate to memorization with-
out relying on training data access. Haviv et al.
(2022) demonstrate that recall of memorized se-
quences follows a two-stage process of early pro-
motion and later confidence amplification in trans-
former models. Stoehr et al. (2024) localize mem-
orization to specific low-layer attention heads and
high-gradient parameters, showing such content is
harder to unlearn. While such risks have been stud-
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ied in monolingual settings, memorization behavior
in multilingual LLMs remains underexplored, with
the exception of Cavalin et al. (2024), especially
for low-resource languages occupying the long tail
of the training distribution.

2.2 Cross-lingual Transferability & Language
Similarity

Cross-lingual transfer entails the representation
of texts in multiple natural languages in a shared
multilingual space. The paradigm of representa-
tions for cross-lingual transfer has shifted from
word embeddings (Mikolov et al., 2013; Ammar
et al., 2016; Vuli¢ et al., 2019) to contextual em-
beddings (Conneau et al., 2019; Devlin et al., 2019;
Raffel et al., 2020). Previous work investigat-
ing cross-lingual transferability mainly leverages
downstream task performance to measure the trans-
fer from a source language or languages to target
languages through selective fine-tuning (Choenni
et al., 2023) or using zero-shot or few-shot transfer
with pre-trained MLLMs (Lauscher et al., 2020;
Adelani et al., 2022; de Vries et al., 2022; Blaschke
et al., 2025). Language similarity based on linguis-
tic data has been heavily referred to in cross-lingual
transferability studies (Wichmann et al., 2011; Lit-
tell et al., 2017), not without faulty representa-
tions (Toossi et al., 2024; Khan et al., 2025). More-
over, the findings on leveraging language similarity
for improving downstream cross-lingual transfer re-
main mixed and sometimes contradictory (Philippy
et al., 2023). Recently, different language similar-
ity measures have been deployed to enhance cross-
lingual transfer performance under different NLP
tasks (Blaschke et al., 2025) and analyze MLLM
language distribution patterns (Chen et al., 2025).
We share the perspective that language similarity
is not a static concept, and different measures can
be pertinent to different scenarios.

Prior research in MLLM embedding spaces has
shown that sentence embeddings are composed of
a language-specific and language-agnostic compo-
nents (Pires et al., 2019; Libovicky et al., 2020;
Xie et al., 2024), which have been leveraged to
improve downstream performance (Tiyajamorn
et al., 2021) and investigate language relations in
MLLMs (Choenni and Shutova, 2022). In addi-
tion, Lin et al. (2024) shows that language simi-
larity extracted from pretrained MLLMs with par-
allel sentences exhibits moderately high correla-
tions with linguistic similarity measures, further
motivating our language-aware memorization anal-

ysis. Notably, Zhao et al. (2024) demonstrate that
even within closely related languages, structural
factors such as word order can yield divergent out-
comes in knowledge induction, underscoring that
language similarity is multifaceted and context-
dependent. In this paper, we extract language-
specific embeddings from each MLLM as language
representations to compute language similarity (cf.
Section 4.1).

3 Language Model Memorization

We define Memorization in the context of LLMs
and examine its key formulations from different
perspectives. Given an LM f and a string « from its
training data, we split = into a prefix p and a suffix
s, so that z = pl|s. Let the prefix p consist of n
tokens, noted as p = (p1, . .., pn); and let the suffix
s consist of m tokens, noted as s = (S1, -+, Sm)-

3.1 Measuring MLLM Memorization

Exact Memorization Following the definition of
extractable memorization by Carlini et al. (2022),
whether a language model can reproduce a train-
ing sequence when prompted with part of it using
greedy decoding, we define Exact Memorization
Ratio as n+Lm to measure the fraction of the se-
quence required for exact reconstruction. Given a
set of samples, we define the Exact Memorization
Rate (EM) as the fraction of samples where the
model, when prompted with the prefix, reproduces
the suffix exactly:

1 .
EM =+ Z; 1(s; = s4),
1=
where N is the total number of samples, s; is the
true suffix of the ith sample, 5; is the output given

the prefix and 1(-) is the indicator function.

Relaxed Memorization As Exact Memorization
is a stringent criterion, we additionally define a re-
laxed version of memorization that evaluates the
predicted suffix against the ground truth suffix us-
ing approximate string matching metrics rather
than exact match. We use BLEU (Papineni et al.,
2002) and Rouge-L (Lin, 2004) as our Relaxed
Memorization Scores (RM), serving as continuous
indicators of memorization.

Reconstruct Likelihood Memorization Com-
plementary to previous generation-based memo-
rization metrics, we adopt reconstruct likelihood
from Kim et al. (2023) to define a probability-
based metric Reconstruct Likelihood Memorization,
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noted as PM. which quantifies memorization by the
likelihood the model assigns to a known sequence
under its learned distribution, i.e., its internal prob-
ability of reconstructing the suffix given its prefix.
Our goal is to evaluate how likely the model finds
the suffix s when conditioned on the prefix p. We
define the log-likelihood of s given p as:

m
log Pr(s | p) = Zlogp(sr | P, s<r),
r=1

where s, denotes the preceding  — 1 tokens of
the suffix.

3.2 Memorization for Encoder-Decoders

The definitions above primarily assume a decoder-
only architecture of LLMs where predictions are
made in a left-to-right autoregressive manner. In
contrast, encoder-decoder models such as TS5 are
trained with a span-denoising objective (Raffel
et al., 2020). Following Carlini et al. (2022), we
randomly mask a set of non-contiguous token spans
from a sampled data sequence. To evaluate Ex-
act Memorization, the model reconstructs these
missing spans given surrounding context, and we
consider a string to be memorized if the gener-
ated output exactly matches the masked content.
To evaluate Reconstruct Likelihood Memorization,
we follow the span corruption setup and treat the
masked spans as targets. We then compute the
sum of log-probabilities assigned to these tokens,
conditioned on the visible parts of the sequence.

T5’s span corruption objective typically mask
very short spans (about three tokens on average un-
der default settings (Raffel et al., 2020)), so token-
level similarity becomes uninformative, hence we
do not assess the relaxed memorization for T5-
based encoder-decoder models.

4 Methodology

Previous work on LLLM Memorization has mainly
focused on data duplication and frequency in mono-
lingual settings, with limited analysis across lan-
guages. Although correlation metrics such as Pear-
son can quantify global trends (e.g., measuring how
token counts and memorization rates linearly co-
vary), they overlook the structured dependencies
among languages. Our analysis (Fig. 2) shows that
languages with similar frequency distributions can
exhibit divergent memorization patterns, underscor-
ing the importance of language-aware evaluation.

Node-level Features Aggregation

Intra-Topology _— Cross-Topology
cmn
) nid
TT—{deu
= f|;a =
] i}

Tokens Tokens

Figure 2: Example graphs considering Intra-Topology
and Cross-Topology.

4.1 Measuring Language Similarity

We leverage language-specific subspace in mul-
tilingual embedding space to measure language
similarities. Let L be a set of languages. To extract
language representations from MLLMs, we use
a parallel dataset D, in our case Flores+ (NLLB
Team et al., 2024), which is entirely separate from
the model’s training data and contains 2,000 exam-
ples per language. Suppose we have m sentences
for each language [ € L in D, we first extract
the mean embedding p; = % > e? for each
hidden layer h, where ef € R? is a sentence em-
bedding. We then form a matrix M € R4*IE
by concatenating y; across all languages. We ex-
tract the language-specific subspace M using Al-
gorithm 1 (Xie et al., 2024) (see Appendix A for
details), then project each language embedding into
this subspace s; = M;M ST e;. For each hidden
layer h in a MLLM, we measure the pair-wise
language similarity for a language pair {l1,l2},
where [q,ly € L using cosine similarity between
language-specific embeddings:

N Sll . 812

IERIEA

Empirically, we find that the language similarity
drawn from the final layer embeddings of MLLMs
shows a stronger correlation with linguistically
grounded similarity measures overall (cf. Ap-
pendix B.4).

cos (sq,, 81,)

4.2 Graph-based Correlation Analysis

We introduce our topology-based framework,
which captures cross-lingual dependencies by mod-
eling signal propagation over a language similarity
graph. It rests on two empirical observations: (1)
Memorization patterns tend to propagate across re-
lated languages, and (2) Standard correlation met-
rics fail to capture these structured transfer effects.
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Graph Construction via Language Similarity
We represent the language space as an undirected
graph G = (V, ), where each node corresponds
to a language, and edges encode pairwise language
similarity. Let n be the number of languages and
A € R™" the adjacency matrix, where A;; repre-
sents the similarity between languages ¢ and j. To
sparsify the graph and remove self-loops, we apply
thresholding with 6:

0,

We then construct the unnormalized graph Lapla-
cian matrix L = D — A, where D;; = Zj A;jis
the degree matrix.

if sim(é,7) > 6

otherwise

ey

Information analysis over the Graph To under-
stand how language-level signals behave over this
graph structure, we begin with the concept of graph
smoothness, which quantifies how much a signal
varies across adjacent nodes. For a scalar-valued
signal x € R"” defined over graph, the smoothness
is defined as (Zhou and Scholkopf, 2004):

XTLX = Z A”(xz — l’j)Q.
(i,)€€
Smaller values indicate that the signal x changes
slowly over similar nodes, i.e., it is smooth with
respect to the graph topology.

To compare how two signals (e.g., memoriza-
tion scores and the number of tokens) vary to-
gether across languages, we define the graph cross-
smoothness:

x"Ly = > Ayl — ) (yi — y5),
(1,5)€€
where y € R" refers to a scalar-valued signal dif-
ferent from x. This measures whether the two
signals increase and decrease in tandem over topo-
logically similar languages.

Graph-based Correlation Coefficient Based
on the above definitions, we define the proposed
Graph-based Correlation Coefficient between sig-
nals m (e.g., memorization scores) and t (e.g., to-
ken counts) as:

m' Lt
(mTLm)(tTLt)

Note that the defined coefficient is bounded by the
Cauchy-Schwarz inequality:

p(;(m,t) = \/

m"Zt] < \/(m Zm)(67 Lt)

Hence, pg(m,t) € [—1,1] and it captures the
structural alignment between the two signals over
the graph. A value close to 1 implies that memoriza-
tion and token frequency change similarly across
related languages, while values near —1 implies
inverse alignment.

pc accounts for the topological structure of
language space, enabling us to uncover subtle,
structure-respecting relationships in MLLM mem-
orization, which would otherwise be missed by
flat, language-agnostic analyses such as Pearson
correlation (cf. Table 1 for details).

4.3 Intra-Topology & Cross-Topology
Analysis

To further interpret the structure of memorization
alignment, we partition the graph into subgraphs
by thresholding edge weights. Each subgraph rep-
resents a cluster of similar languages; disconnected
components reflect cross-topological groups. To
enable meaningful comparison across different lan-
guage topology clusters, we aggregate node-level
features into a single representative vector per
subgraph. This aggregation is performed within
each subgraph, it is weighted by language promi-
nence (node degrees) and normalized by global
edge weights to preserve topological information.
Specifically, for a subgraph G’ = (V',£’), where
each node 7 € V' has features ¢; (tokens) and m;
(memorization), we define the subgraph-level rep-
resentations as:

_ n;
ey’ (Zje]/’ nj

where n; = |{j | (¢,7) € £'}| is the degree of node
1. The aggregated memorization m is computed
similarly.

We refer intra-topo as the set of language nodes
connected by edges in the graph, while cross-topo
refers to language groups that remain disconnected.
The resulting subgraph-level representations enable
cross-topology correlation analysis via Pearson cor-
relation. This approach remains faithful to the in-
ternal structure of each language cluster, while cap-
turing the relationship between memorization and
training tokens across topologically dissimilar clus-
ters. It complements our topology-aware metric
pc by offering a cluster-level, interpretable view
of memorization—complexity alignment.
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5 Experimental Setup
5.1 Model Selection & Corpus Details

Studying memorization in MLLMs requires 1)
publicly available models with ii) fully disclosed
pre-training data and iii) broad language cover-
age. For fair cross-architecture comparisons, we
also align models by their training corpora and
tokenizers whenever feasible. We use the MT5
encoder-decoder family (Xue et al., 2020), trained
on MC4 (Raffel et al., 2020) covering 100+ lan-
guages, and the MGPT decoder-only series for ar-
chitectural comparison. Specifically, MGPT-101
shares the tokenizer and mC4 training data with
MTS5-BASE. Additionally, we select MGPT-1.3B
and MGPT-13B to assess scale effects, which are
trained on more balanced and filtered MC4 (cf. Ta-
ble 5 for details).

As shown in Fig. 9 and 10 in Appendix B.7,
the data distribution of MC4 across languages ex-
hibits a clear long-tailed pattern. A small number
of high-resource languages (such as English, Rus-
sian, and Spanish) dominate the corpus in terms
of token count, while the vast majority of other
languages are represented with significantly fewer
tokens. This long-tailed distribution serves as an
important factor in analysing how memorization
behaviors vary across languages in MLLMs.

5.2 Prompt sampling

MC4 contains a substantial amount of noisy and
duplicated content. For pre-processing, we sam-
ple text passages with more than 600 characters,
and filter the content containing “http://”, garbled
tokens, repeated strings, and long sequences of
meaningless digits. To ensure accurate language
representation, we use CLD3 (cld) for language
identification. Specifically, we retain only those
samples where both the predicted language con-
fidence and the proportion of the target language
exceed 90%.

Duplicated content can disproportionately im-
pact memorization, where sequences that appear
more frequently in the training set are more likely
to be memorized, following a near log-linear
trend (Lee et al., 2021). To control repetition for
minimizing potential bias and ensure a more bal-
anced representation across the dataset, we ran-
domly sample 50,000 filtered examples per lan-
guage with a 5 million shuffle buffer, following
the sample size in Carlini et al. (2022). A handful
of low-resource languages with insufficient exam-

6=0.10 6=0.20
/ ita / ita
spa \ spa \
\\ fra TT—~—Vtra
/
ukr ~ e ukr ~ s
0 =0.49 0 =0.63
ita ita
v
spa spa
fra fra
ukr ~— s ukr &

Figure 3: Graph Construction at Different Thresholds 6.

ples are marked with an asterisk and boldface in
Fig. 9; 10.

6 Analysis & Results

We investigate Memorization in MLLMs across
multiple dimensions: languages, model architec-
tures, prompt length and model scale. In each di-
mension, we measure the Memorization Rates (cf.
Section 3) and correlate with training data (in to-
ken counts) in languages, using both the Pearson
correlation () and Graph-based Correlation (p¢g)
metrics.

6.1 Constructing Language Graphs

To use our graph-based correlation to analyze
memorization in MLLMs, we construct language
similarity-based graphs, at varying thresholds 6
based on equation 1, which specifies the minimum
similarity required for two languages to be consid-
ered meaningfully related. Thus, ¢ directly controls
the sparsity of the resulting language graph. Fig. 3
illustrates this effect using a subset of MGPT-101
pre-training languages, showing how edge density
and connectivity increase as # increases. As ex-
pected, higher language similarity thresholds 6,
the fewer connected graphs. By varying 6, we
adjust the granularity of the language similarity
topology, enabling analysis under different levels
of relational strictness.

6.2 Data Availability in Memorization

We evaluate the relationship between per-language
memorization rates and the token counts in training
data in a MLLM, for example, MGPT-101. As
shown in Table 1, our graph-based metric pg, by
incorporating language similarity, largely accen-
tuates the negative correlation between language-
wise memorization and token count, in comparison
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Mem. Metric | r e

EM -0.13  -0.24

PM -0.36  -0.56

RM (BLEU) -0.23  -0.36
RM (Rouge-L) | -0.06 -0.30

Table 1: Correlations between Memorization Rates and
Training Data in Token Counts of MGPT-101. The pg
with graph-based metric threshold § = 0.41. Takeaway:
the proposed p accentuates the correlation.

to the Pearson correlation coefficient. This negative
trend suggests that, among similar languages, those
with fewer training tokens tend to exhibit higher
memorization, which further corroborates our hy-
pothesis that memorization in MLLMs cannot be
explained by training data volume alone.

6.3 Cross-lingual Transferability vs.
Memorization

e EM m PM RM (BLEU) @ RM (ROUGE-L)
—Intra ---- Cross —— Subgraph --- Single-point

0.2

0.01

-0.2

Correlation Rate

-0.4

-0.6
20

———x
BV Ny CEEE CEEE

Count

10

e
P

x=="

028 030 032 034 036 038 0.40
Threshold

Figure 4: Intra-Topology and Cross-Topology Corre-
lation Coefficients (pg) across varying thresholds 6.
Top: Memorization Rates across Thresholds. Bottom:
Topology graph information via subgraph and single-
ton counts at varying threshold (x-axis), from 6 to 20
language groups (y-axis), with a total of 95 languages.
Takeaway: Cross-lingual transferability among similar
languages impact memorization.

Leveraging the constructed language graph, we
measure the topology-based correlation for both
intra-topo and cross-topo at various . As shown
in Fig. 4, among cross-topo languages, EM and
RM become largely uncorrelated with token counts,
spanning from —0.2 to 0.05 with the growing num-
ber of language groups. While PM has a stronger
negative correlation, the correlation becomes gener-
ally weaker as more cross-topo language groups are
created, from —0.6 to —0.4. This highlights that,
across distinctive language groups, the correlation

Mem. Metric | EM | PM
Model | pa | T oG
MT5-SMALL 0.05 0.12 0.10 -0.53
MTS5-BASE -0.12  -0.15 | 0.48 0.03
MTS5-LARGE 0.01 0.08 0.47 0.19
MGPT-1.3B 022 -049 | -0.39 -0.63
MGPT-13B 0.18 -0.13 | -0.39 -0.78

Table 2: Correlations between Memorization Rates and
Training Data across Models and Scales, with specific 6
for Intra-Topology Correlation. Takeaway: In contrast
to r, pg presents stronger correlations and more consis-
tent alignment with prior memorization analyses. Bold
values indicate the highest-magnitude correlation.

Mem. Metric | RM (BLEU) | RM (Rouge-L)

Model | r pc | oG
MGPT-1.3B -0.18  -0.53 | 0.42 -0.42
MGPT-13B -0.21  -0.31 0.4 -0.04

Table 3: Relaxed Memorization Rates across MGPT
models, with specific € for Intra-Topology Correlation.

between memorization and data volume becomes
weaker. In contrast, consistent with previous find-
ings (cf. Section 6.2), intra-topo pg values grow
increasing negative (down to —0.6) across mem-
orization metrics, as more similar languages are
grouped together (as # becomes higher), indicating
an inverse relationship between training data and
memorization within similar languages.

From both cross-topo and intra-topo perspec-
tives, our results show that as MLLMs are trained
with richer data from similar languages, memo-
rization decreases evidence that cross-lingual
transferability among similar languages plays an
essential role in memorization in MLLMs.

6.4 Memorization across Model Architectures
& Scales

Since language similarity is model-specific, its
scores exhibit different distributions across models.
We select the specific threshold 6 to better incorpo-
rate structural patterns based on language similar-
ity, while confirming that the observed trends hold
across a range of thresholds (cf. Appendix B.2).
Table 2 presents the intra-topology correlations
with model-specific thresholds. For MGPT-1.3B
and MGPT-13B - trained on a corpus with a less
pronounced long-tailed distribution, r appears pos-
itive, seemingly contradictory to previous findings
(cf. Sections 6.2; 6.4). However, leveraging lan-
guage similarity and filtering out noisy language
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pairs, pg shows negative correlations, consistent
with prior findings. Notably, with PM, MGPT-13B
presents the strongest negative correlation, suggest-
ing that larger models trained on a more balanced
corpus reveal the strongest inverse link between
memorization and data availability in similar lan-
guages. In contrary, MT5’s EM results exhibit a
different trend compared to MGPT models, which
might be attributed to its encoder-decoder architec-
ture. As RM is not applicable to MT5-based models
(cf. Section 3.2), we show the relaxed memoriza-
tion metrics for MGPT models in Table 3. We ob-
serve a consistent trend aligns with our earlier find-
ings: memorization is negatively correlated with
training data quantity among similar languages.
In summary, our analysis and results support
the claim that memorization in MLLMs is not
shaped solely by training data volume - as com-
monly observed in computer vision task - but also
by intricacies among languages. Specifically, when
language similarity is incorporated via a topology-
based metric, we show that languages with fewer
training tokens tend to exhibit higher memoriza-
tion — a pattern that only becomes evident when
language relations are explicitly modeled.

6.5 Effect of Prompt Length & Model Scale
on Memorization

Model | Prompt. Len. | EM (%) PM RM (B) RM(R)
GPT2 Decoder-only: MGPT-101
50 0.22 -44.4 32 9.8
MGPT-101 100 0.42 -41.9 3.6 10.1
150 0.56 —40.9 3.9 10.1
GPT3 Decoder-only: MGPT-1.3B/ 13B
50 0.31 -33.7 4.1 5.7
MGPT-1.3B 100 0.29 -32.0 3.7 5.7
150 0.32 -31.1 35 4.8
50 1.01 -32.2 7.1 7.6
MGPT-13B 100 1.38 -30.2 8.1 8.2
150 1.56 —29.5 8.6 84
Encoder-Decoder: MTS5 family
50 0.02 -66.1
MT5-SMALL 100 0.15 —56.9 - -
150 0.25 -61.3
50 0.07 -45.7 - -
MT5-BASE 100 0.50 -35.0 - -
150 0.90 —-31.4 - -
50 0.02 -78.4 - -
MT5-LARGE 100 0.23 -52.6 - -
150 0.49 -39.0 -

Table 4: Memorization Rates across various prompt
lengths (35, 85, 135), model architectures and scales.
The predicted token length is fixed at 15. The highest
memorization rates for each model are bold. Take-
away: Overall, the memorization rates increase with the
increasing prompt lengths, with a few exceptions.

To investigate the effects of experimental setup
on memorization, we measure memorization across
models of different architectures and scales at vary-
ing prompt-length (35, 85, 135), with the fixed out-
put token length of 15. The prompt-length refers to
prefix-length in the context of decoder-only mod-
els. As shown in Table 4, across all model types,
we observe a consistent trend: longer prompts lead
to higher memorization. This pattern holds across
the memorization metrics, with a few exceptions,
as underlined, and aligns with prior findings on
memorization in monolingual LMs, indicating that
longer contexts offer more cues for memorization
(Carlini et al., 2021, 2022).

In GPT-3-based decoder-only models, we also
observe a clear scaling effect: larger models ex-
hibit stronger memorization, particularly in exact
memorization. For example, EM increases from
0.32% in MGPT-1.3B to 1.56% in MGPT-13B
with the prefix of length 135. Results in other
metrics (e.g., PM, RM) follow this trend with few
exceptions. In comparison, the encoder-decoder
models tells a different story. While memorization
generally increases with growing scale (e.g., MT5-
SMALL to MT5-BASE), the largest model (MT5-
LARGE) exhibits lower memorization when com-
pared to MT5-BASE.

In addition, we observe that MT5-LARGE —
without downstream finetuning — produces more
broken completions for masked tokens. We hy-
pothesize that this instability may lead to reduced
memorization rates in MTS5-LARGE, especially in
a masked language modeling context. We provide
a random example of such unstable generation in
Appendix B.6.

6.6 Language-Level Memorization across
Prompt Lengths & Model Scales

We analyze how language-level memorization
varies across different prompt lengths and model
scales by computing Pearson correlations of per-
language memorization rates under each condition.
Across all models, language-level memorization
distributions at different prompt lengths remain
strongly correlated. For decoder-only models, Pear-
son correlations consistently exceed 0.9 in all mem-
orization metrics, while for the MT5 models, they
are generally above 0.8, with the lowest still above
0.66. These results indicate that languages with
high memorization tend to remain highly memo-
rized regardless of prompt length. See Table 12
and 13 for detailed results.
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A similar trend holds across model scales.
Across all metrics and model scales, the Pearson
correlation is consistently shows a strong posi-
tive correlation, with the lowest value being 0.71.
These results suggest that memorization tenden-
cies are stable, intrinsic language-level characteris-
tics that generalize across both prompt length and
model scale. We observe a “the poorer get poorer”
phenomenon, where languages with high memo-
rization consistently remain high across settings.
See Table 14 for full results.

7 Conclusion and Future Work

We present the first large-scale study of memoriza-
tion in MLLMs, grounding observed memorization
patterns through language similarity and revealing
cross-linguality as a key factor shaping memoriza-
tion in MLLMSs. To this end, we define memo-
rization metrics tailored to language models and
propose a graph-based correlation measure that in-
corporates language similarity, uncovering patterns
that linear metrics fail to capture. Notably, the ten-
dency for languages with fewer training tokens to
exhibit higher memorization, a trend that only be-
comes apparent when language relationships are
explicitly modeled. We experiment on a range of
language models, across architectures, scales and
95 languages, showing consistent memorization
trends. Our findings urge a paradigm shift toward
language-aware memorization audits in MLLMs,
particularly for under-resourced languages vulner-
able to cross-lingual leakage. We encourage fur-
ther work at the intersection of multilingualism
and memorization to develop effective strategies to
mitigate memorization in MLLMs.

Limitations

Our proposed memorization metric relies on a man-
ually selected similarity threshold to construct the
graph, making it sensitive to this parameter and
limiting its applicability to languages with low
similarity to others, which often become isolated
nodes and reduce interpretability. A more robust ap-
proach could involve adaptive threshold optimiza-
tion or the development of threshold-free methods
that fully leverage language similarity without re-
quiring manual intervention. While our work pro-
vides the first large-scale analysis of memorization
in MLLMs, we primarily examine models in their
pre-trained state and do not explore how fine-tuning
or instruction tuning may alter memorization be-
havior, particularly in task-specific or alignment-
sensitive contexts. Nonetheless, we believe our
study offers a principled and extensible foundation
for understanding memorization through the lens
of language similarity in multilingual models.
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A Language-specific Subspaces

The algorithm for identifying language-specific
subspace is as in Algorithm 1, refer to Xie et al.

(2024) for more details.

Threshold ¢

Algorithm 1: Language-specific Subspace
Identification

1 Input: Languages’ mean Embeddings M,

rank of subspace 7.

2 Output: Language-agnostic component L,

language-specific subspace Mg,
coordinates I'.
3 /* 1) Approximate M in low rank */
7/
s M p < Top-rSVD(M — p/'1T);
6 M' + (/17 + M!T'T,
7 /* 2) Force orthogonality */
s p< (1/||M'+1|)M'T1
9 My, ,T' < Top-rSVD(M' — p17)

MGPT-1.3B 082 | 083 | 0.84 | 0.85 | 0.86 | 0.87 | 0.88 | 0.89
# Subgraph 8 11 12 13 22 28 31 33

# Single Point 5 7 8 9 17 23 26 27

EM Intra -0.04 | -0.09 | -0.12 | -0.11 | -0.16 | -0.26 | -0.49 | -0.43
EM Cross 0.74 | 0.76 | 0.56 | 0.55 | 0.25 | 0.19 | 0.20 | 0.19
PM Intra -0.45 | -0.46 | -0.49 | -0.51 | -0.59 | -0.50 | -0.60 | -0.63
PM Cross 0.05 | 0.18 | 0.18 | 0.14 | -0.06 | -0.13 | -0.20 | -0.22
RM (B) Intra | -0.20 | -0.22 | -0.27 | -0.29 | -0.35 | -0.40 | -0.53 | -0.50
RM (B) Cross | 0.34 | 043 | 040 | 0.34 | 0.04 | -0.06 | -0.09 | -0.11
RM (R) Intra 024 | 0.19 | 0.09 | 0.05 | -0.14 | -0.27 | -0.42 | -0.35
RM (R) Cross | -0.03 | -0.17 | -0.16 | -0.14 | 0.00 | 0.25 | 0.28 | 0.32

Table 7: Cross-topo vs. intra-topo correlation at high
thresholds for mGPT-1.3B.

Threshold ¢

B Appendix
B.1 Models detail

MGPT-13B 028 030 032 034 036 038 040 042
# Subgraph 4 8 10 14 22 26 31 31

# Single Point 5 7 10 13 17 21 21

EM Intra -0.07 -0.12 -0.10 -0.10 0.18 0.19 0.17 0.17
EM Cross 0.15 029 023 011 037 031 030 030
PM Intra -035 -042 -046 -055 -0.57 -0.65 -0.78 -0.78
PM Cross -085 0.28 028 0.17 -000 -0.12 -025 -0.25
RM (B) Intra | -0.21 -0.27 -0.27 -0.31 -0.18 -0.21 -0.33 -0.33
RM (B) Cross | -0.96 026 027 0.14 0.19 0.08 -0.07 -0.07
RM (R) Intra 0.08 0.10 -0.01 -0.04 0.12 023 020 020
RM (R) Cross | 0.56 0.02 001 008 032 034 044 044

Table 8: Cross-topology vs. intra-topology Pearson cor-
relation at varying thresholds for MGPT-13B.

Threshold ¢

Model ‘ #Params ‘ #Langs. (used.) ‘ Architecture Layers MTS-SMALL | 054 056 058 060 062 064 066 0.68

# Subgraph 30 38 46 52 56 66 72 77
MGPT-101 360M 101.05) GPT-2 based | 24 #SinglePoint | 16 23 29 36 41 57 61 70
MGPT-61 1.3B 61 (48) GPT-3 based 24
MGPT-61 13B 61 (48) GPT-3 based 40 EM Intra 027 027 026 024 020 022 0.16 0.12
MT5-SMALL 300M 101 (95) Encoder-Decoder | 8 EM Cross -0.14 -0.06 -0.03 -0.04 -0.02 -0.04 -0.01 0.01
MT5-BASE 580M 101 (95) Encoder-Decoder | 12 PM Intra 013 -0.13 -0.11 -0.12 -0.19 -032 -038 -0.53
MT5-BASE 1.2B 101 (95) Encoder-Decoder | 24 PM Cross 033 0I5 017 010 011 016 0.14 0.2

Table 5: MLLMs and their Scale, Datasets, Languages
(analyzed), Architectures.

Table 9: Cross-topology vs. intra-topology Pearson cor-
relation at varying thresholds for MT5-SMALL.

‘ Threshold 0
B.2 Cross-lingual correlation MT5-BASE | 072 074 076 078 080 082 084 0386
# Subgraph 1 2 7 14 29 48 62 74
#SinglePoint | 0 0 6 9 21 39 50 64
| Threshold ¢ EM Intra ‘-0.15 0.13 -0.10 -0.12 004 004 -0.02 -0.14
MGPT-101 | 031 | 0.33 | 035 | 0.37 | 039 | 0.41 | 043 | 045 EM Cross 000 -1.00 -024 -027 -0.07 -014 020 -0.16
# Subgraph 11 14 16 18 19 25 26 35 PM Intra 020 013 007 007 015 022 013 003
# Single Point 11 18 24 PM Cross 000 -1.00 -044 -0.16 004 020 027 028
EM Intra ‘ -0.13 ‘ -0.17 ‘ -0.20 ‘ -0.26 ‘ -0.24 ‘ -0.24 ‘ -0.19 ‘ -0.17
EMCross | -0.15 | 001 | -0.03 | -0.01 | 002 | 0.04 | 0.04 | 009 Table 10: Cross-topology vs. intra-topology Pearson
PM Intra -031 | -0.33 | -038 | -0.43 | -051 | -0.56 | -0.54 | -0.57 . :
PM Cross ‘ -0.53 ‘ -0.46 ‘ -0.42 ‘ -0.42 ‘ 045 ‘ -0.35 ‘ -0.36 ‘ -0.36 correlation at varying thresholds for MT5-BASE.
RM (B) Intra | -0.27 | -0.32 | -0.35 | -0.39 | -0.38 | -0.36 | -0.33 | -0.31
RM (B) Cross | -0.07 | 0.09 | -0.00 | 0.02 | -0.03 | 0.04 | 0.04 | -0.12 Threshold 0
RM (R) Intra | -0.20 | -0.26 | -0.27 | -0.28 | -0.32 | -0.30 | -0.26 | -0.24 MT5-LARGE | 0.85 086 087 088 0.89 090 091 092
RM (R) Cross | 0.05 | 0.10 | 0.06 | 0.05 | 0.05 | 0.41 | 042 | 0.18 # Subgraph 7 9 21 27 51 65 19 8
#Single Point | 6 8 18 23 48 60 74 83
Table 6: Cross-topo vs. intra-topo correlation at low EM Intra 0.18 024 019 017 027 027 018 007
EM Cross 031 -022 -0.11 -0.14 008 -0.06 -0.00 0.02
thresholds for mGPT-101.
PM Intra 030 027 021 019 020 023 012 -0.13
PM Cross 043 052 052 052 051 057 052 050
Table 11: Cross-topology vs. intra-topology Pearson

correlation at varying thresholds for MTS5-LARGE.
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B.3 Prompt length impact

Model | EM | PM
| 50vs. 100 100 vs. 150 | 50 vs. 100 100 vs. 150
GPT2 Decoder-only: MGPT-101
MGPT-101 | 0.97 0.98 | 0.99 0.99
GPT3 Decoder-only: MGPT-1.3B / 13B
MGPT-1.3B 0.90 0.98 0.99 0.99
MGPT-13B 0.96 0.99 0.99 0.99
Encoder-Decoder: MTS5 family
MT5-SMALL 0.81 0.96 0.84 0.88
MT5-BASE 0.86 0.97 0.99 0.98
MTS5-LARGE 0.66 0.94 0.94 0.97

Table 12: Correlation of memorization metrics (exact
and family vs probability) between prompt lengths 50
vs 100 and 100 vs 150 across model families. EM =
Exact Memorization, PM = Probability Memorization.

Model | RM BLEU | RM ROUGE-L
| 50vs. 100 100 vs. 150 | 50 vs. 100 100 vs. 150
GPT2 Decoder-only: MGPT-101
MGPT-101 | 0.92 0.97 | 0.99 0.99
GPT3 Decoder-only: MGPT-1.3B / 13B
MGPT-1.3B 0.95 0.99 0.99 0.99
MGPT-13B 0.99 0.99 0.99 0.99

Table 13: Correlation of relaxed memorization metrics
between different prompt lengths.

Model Pair Mem. Metric r
EM 0.71
MTS5-SMALL vs. MT5-BASE PM 0.76
EM 0.81
MT5-BASE vs. MT5-LARGE PM 0.72
EM 0.92
PM 0.99
MGPT-1.3B vs. MGPT-13B RM (BLEU) 0.97
RM (ROUGE-L) 0.99

Table 14: Pairwise memorization correlation (r) be-
tween adjacent model scales for exact memorization
(EM), probability memorization (PM), and reference
match metrics (RM).

B.4 Layer-wise Lang2Vec correlation

We include supplementary visualizations showing
how various linguistic feature correlations evolve
across layers for different multilingual models.

Pearson Correlation Rate

lang2vec_syntax Correlation vs Model Layer's Similarity
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Figure 5: Layer-wise trend for Lang2Vec (Syntax).

lang2vec_phonology Correlation vs Model Layer's Similarity
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Figure 6: Layer-wise trend for Lang2Vec
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Figure 8: Layer-wise trend for ASJTP  (UMAP).



B.5 Examples of Exact Memorization

Prompt:

Americas Best Value Inn Santa Rosa tilbyder
ogsa mange faciliteter der vil berige dit
ophold i Santa Rosa (CA). Hotellet tilbyder
sine gaester adgang til et stort udvalg
af servicetilbud, som tradlgst internet i
fellesomrader, parkering, familievarelse.
Hotellets bekvemmeligheder er sarligt
udvalgt for at sikre den hgjeste komfort.
P& nogle af varelserne kan gasterne finde

internetadgang - tradlest,

Reference:
ikke-rygerverelser,
skrivebord

Prediction:
ikke-rygerverelser,
skrivebord

Prompt:

= Se pa kort Mere om Pensjonat
Mi <extra_id_0> Milosna er indrettet
til <extra_id_1>- og forretningsrejse
<extra_id_2>er idéelt i Kwidzyn; én af
byens mest populzre beliggenheder. Herfra
har gaster gleade af nem adgang til alt,
hvad denne livlige by kan tilbyde. Med sin
praktisk <extra_id_3> b <extra_id_4> dette

hotel nem adgang til byens vigtigste sev

Reference:

<extra_id_0>losna Pensjonat <extra_id_1>
bdde ferie <extra_id_2>nde og ligg
<extra_id_4>eliggenhed

<extra_id_3>e
tilbyder

Prediction:

<extra_id_@>losna Pensjonat <extra_id_1>
bdde ferie <extra_id_2>nde og ligg
<extra_id_4>eliggenhed

<extra_id_3>e
tilbyder

Prompt:

Wir denken ebenfalls, dass solcherlei
akzeptabel recherchierte Tests, lberaus
hilfreich sind. Trotzdem wollen wir du
jene Gattung von Produktvorstellungen
nicht anbieten, weil der Markt
auBerordentlich schnelllebig und
dynamisch ist und zum wiederholten Male
neumodische Produktkette dazukommen und
die "alten" Produktmodelle uninteressant
werden, egal um welches Produkt es geht.
Deswegen bieten wir auf unserer Seite
ausschlieBlich eine Darstellung von den
jetzigen 5 Produkte an. Somit kann

Reference:

man sich selbsttatig seine Favoriten
intuitiv raussuchen

aircondition,

aircondition,

Prediction:

man sich selbsttatig seine Favoriten
intuitiv raussuchen

Prompt:

die Versandkosten ungeachtet dessen
lberaus nie <extra_id_@>halten werden oder
keineswegs erst anfallen. Zu diesem Zweck
gehoren die Leistung, die getrennten
Einstellungen, die GroBe des Korpers und
der genaue Einsatzbereich. Das
<extra_id_1> ein auBergewohnlich breites
Angebot von Erzeugnissen fix
<extra_id_2>roduzenten ak <extra_id_3>.
Haufig werden lediglich wenige be
<extra_id_4>t, weil die

Reference:

<extra_id_0>drig ge <extra_id_1>
Kaufportal offeriert <extra_id_2> vom P
<extra_id_3>kurat wie von Handlern
<extra_id_4>ricksichtig

Prediction:

<extra_id_o>drig ge <extra_id_1>
Kaufportal offeriert <extra_id_2> vom P
<extra_id_3>kurat wie von Handlern
<extra_id_4>riicksichtig

Prompt:

exactly dimension of Modern Ideas Sports
Wallpapers Backgrounds Hd On The App Store
was 246x246 pixels. You can also look for
some pictures that related to Modern Ideas
Sports Wallpapers Backgrounds Hd On The
App Store by scroll down to collection on
below this picture. If you want to find
the other picture or article about Sports
Wallpapers just push the next button or
previous button; or if you are interested
in similar pictures of Modern Ideas Sports
Wallpapers Backgrounds Hd On

Reference:

The App Store, you are free to browse
through search feature that
Prediction:

The App Store, you are free to browse
through search feature that

Prompt:

the administration announced a $6 million
investment over two years for provider
education and outreach. Expand support
<extra_id_0> with Alzheimer



<extra_id_1>their families: <extra_id_2>
with Alzheimer’s disease and their
families and care <extra_id_3>requires
giving them the tools that they need,
helping to plan for future needs, and
ensuring that safety and dignity are
<extra_id_4>ed,” the report says. The
announcement proposes an investment

Reference:

<extra_id_0> for people <extra_id_1>’s
disease and <extra_id_2> “Supporting
people <extra_id_3>givers
<extra_id_4>maintain

Prediction:

<extra_id_0> for people <extra_id_1>’s
disease and <extra_id_2> “Supporting
people <extra_id_3>givers
<extra_id_4>maintain

Prompt:

Ko BEgellidieF & W TR 88w BT R A
LB TR, 5 A XIIELERSE . K
R 208 R AN EUR B/ N, R

H B R P AR 9D R A L SRR B/
o He ) GREEAN)  (FE) SRR A
SR/ INEAR AR T P SCHR - BEoh, FRIB 2 1

(KEHIE) (REPR) FMEHEPAIEE /D
WHE THIUR . BEEPE, A
R/ - HEH R s

Reference:

¥, FERE R KEEL S B () N F 400 K A O R HE

# A
Prediction:

VF, FERR R AEEL ) B A2l 400 K A ORI

#HH

Prompt:

R T ENEERFRE <extra_id_o>F
SRR, EEENM <extra_id_1>7T ,RIERE
R OBEZR o "B E] o SRELRRAESNA T, T
RAEFHH ORZE RN .54 F{ZI0, H O HRT
HO4. 5T ESH; — KRS <extra_id_2>HVEH
H49.0%, tL EERE 2. 0N E A . NXEFE
<extra_id_3>—7 — B LR E Z5 H O S A
K6.3%. & <extra_id_4> HELMEM

Reference:

<extra_id_0>- “FEXT <extra_id_1>FRE R4
K <extra_id_2> i O E&IRY
<extra_id_3>, ¥ <extra_id_s4>tHk#

Prediction:

<extra_id_@>- “FXS <extra_id_1>IRZE A
K <extra_id_2> /i O EAIRY
<extra_id_3>, ¥ <extra_id_s4>tHk#

Prompt:

K TCd., FEZRoOL - BHIIREWALZOT
Thy. J—ROOARICIIHBZEE L £4wis
DBETTHL VT WERETT, HanilZ
NAAPEYIRHA G DL 2-T ok
HEN5| EE-TLEI DT, Hilimsk ¥
>y oEICITPENICHEL N TWwW/=D . LT
LTI N RTTF—7IL 120 80725 TE-HS
ZTWATT L, A—E>T 1y 7QRELD
PO RZEME S ZRIFE 7 —Ron 2
LlIEZ LS TFLOIC. 71— R ol

Reference:

CHOGHER LG SICIIHVESI FICBAT
5728,

Prediction:

CHDOIGTER LG SICIFEVES FICEAT
PYAL N

Promp t

DR Z BTV <extra_id_0>, LA
L Twa e FEhIcE 5 BIC. Hibh
RBEMLIEZ T4 <extra_id_1>CTL £
XI9TF. TIMRTT—TI 120 807257
tFHrE-TO @) 2L TET. /=K
REWDITTIIZ VDO TT L, KAV NDL
WEF T, X/ a2 pnENSIEAS DLW
DTT, 7—RN <extra_id_2>S\ZFHA
hr. = ADFE I ZFoMmpiENTT., B
HicZnsaHBM2TEZ L. FldEnrS
E /N4l <extra_id_3>% AT

<extra_id_4>. ZoOHM,

Reference:

<extra_id_0>X /&L 5 Z L B\ TT
<extra_id_1>|I 7 it oHES
<extra_id_2>A A KZF O 2 E1X
<extra_id_3>"* <extra_id_4>EJE s TL F
WET

Prediction:

<extra_id_o> X /&L 5 Z L 3BT
<extra_id_1>|I 7 it oE S
<extra_id_2>AA K ZH 72 EX
<extra_id_3>h" <extra_id_#>{ih T L %
WEF



B.6 Example of Unstable generation

Reference:
<extra_id_0> beneficiaries of <extra_id_1>
the <extra_id_2> the bond <extra_id_3>,
agreeing to invest <extra_id_4> $56.6
million in
Predicted:
<extra_id_0> . public bond.. mill for
parents school students vote mill projects

B.7 Corpus Distribution
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Figure 9: MGPT-101 & MTS5 family analyzed language tokens distribution. The Languages marked with * have
fewer than 50,000 sampled examples, averaging 33,960 examples per language.
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Figure 10: MGPT-61 (1.3B & 13 B) family analyzed language tokens distribution. The language marked with * has
fewer than 50,000 sampled examples, with a total of 17,339 examples.
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