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Abstract

Connecting audio encoders with large language
models (LLMs) allows the LLM to perform var-
ious audio understanding tasks, such as auto-
matic speech recognition (ASR) and audio cap-
tioning (AC). Most research focuses on train-
ing an adapter layer to generate a unified au-
dio feature for the LLM. However, different
tasks may require distinct features that empha-
size either semantic or acoustic aspects, mak-
ing task-specific audio features more desirable.
In this paper, we propose Prompt-aware Mix-
ture (PaM) to enhance the Speech LLM that
uses multiple audio encoders. Our approach
involves using different experts to extract dif-
ferent features based on the prompt that indi-
cates different tasks. Experiments demonstrate
that with PaM, only one Speech LLM surpasses
the best performances achieved by all single-
encoder Speech LLMs on ASR, Speaker Num-
ber Verification, and AC tasks. PaM also out-
performs other feature fusion baselines, such
as concatenation and averaging. Our code
will be available at: https://github.com/
shanweiqiao/PaM

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across various natural lan-
guage processing tasks (OpenAI, 2023), paving the
way for developing multimodal models (Li et al.,
2023; Xu et al., 2025; Wang et al., 2024b). In recent
work, there has been a growing focus on merging
speech encoders with LLMs, so that the LLM can
understand the spoken content without the need
for explicit transcription, promoting tasks such as
direct speech translation (Chen et al., 2024b) and
named entity recognition from speech (Li et al.,
2024). Much of this work leverages adapter lay-
ers like attention layers (Yu et al., 2024), adaptive
CTC downsamplers (Ling et al., 2023), and con-
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Figure 1: ASR and Audio Caption tasks favor different
encoders and layers of features. The x-axis corresponds
to each layer of the encoder, while the bar chart illus-
trates the fine-grained layer importance, based on the
normalized weight across layers from all encoders. The
dotted lines indicate the average (AVG) importance of
different encoders.

volutional layers (Fathullah et al., 2023) to down-
sample and map speech features into the LLM’s
embedding space. Beyond semantic understanding
tasks, Speech LLMs have been extended to en-
compass a broader range of applications, including
audio event detection and audio captioning (Chu
et al., 2024).

Multitasking requires that the input audio fea-
tures contain as much relevant information as
possible, representing the input speech, which
may include speech content, noise, and speaker-
specific characteristics. When fine-tuning self-
supervised speech encoders, researchers assign
learnable weights to each layer and observe that
different downstream tasks prioritize different lev-
els of features (Chen et al., 2022). In our Speech
LLM framework, a similar trend is evident, where
different tasks prioritize different encoders and fea-
ture levels (Figure 5). These biases arise from the
inherent differences in the tasks themselves. For
instance, the automatic speech recognition (ASR)
task focuses solely on the speech content, disregard-
ing other factors such as speaker characteristics and
background noise. In contrast, tasks like audio cap-
tioning (AC) may rely on these additional factors
that ASR intentionally excludes.

Consequently, researchers have proposed us-
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ing multiple encoders to extract more robust fea-
tures. For instance, WavLLM (Hu et al., 2024)
employs both the WavLM (Chen et al., 2022) and
the Whisper (Radford et al., 2022) encoder, while
SALMONN (Tang et al., 2024) integrates the Whis-
per encoder and the BEATs (Chen et al., 2023).
However, these approaches consider all encoders
equally important and merge the features from dif-
ferent encoders based on a simple concatenation
method across all tasks. As demonstrated in our ex-
periments (Table 1), such conventional approaches
can enhance performance in some tasks (e.g., audio
captioning) but degrade others (e.g., ASR). More-
over, MoWE (Zhang et al., 2024) employs a strong
encoder and multiple weaker encoders via the Mix-
ture of Experts (MoE) approach. However, MoWE
only utilizes the input audio to control the routing
mechanism, without incorporating task-specific in-
formation in prompts, which leads to suboptimal
results (Table 11).

In this paper, we introduce Prompt-aware Mix-
ture (PaM), a novel method based on MoE for merg-
ing multiple encoders to enhance Speech LLMs.
Our approach integrates a prompt-aware routing
mechanism, emphasizes feature fusion, and con-
siders the relative importance of each encoder
for different tasks, aiming to improve all down-
stream performance. PaM employs three distinct
audio encoders: the Whisper encoder, WavLM, and
Wav2Vec2 (Baevski et al., 2020). We train a set
of experts for prompt-aware feature fusion, com-
prising one shared expert and four task-specific
experts. On each task, an expert learns the optimal
weights for each encoder and its respective layers,
and subsequently maps the resulting features to the
embedding space of the Qwen2.5 model (Team,
2024). The embedding of the prompt is utilized to
determine the appropriate routing. Notably, in PaM,
the routing guides the selection of the fusion pa-
rameters rather than the choice of the encoder. Ex-
periments are conducted across three tasks: ASR,
speaker number verification (SNV), and AC. On
all datasets, including LibriSpeech (Panayotov
et al., 2015), AMI (Kraaij et al., 2005), AIR-Bench
(SNV) (Yang et al., 2024), and AudioCaps (Kim
et al., 2019), PaM achieves relative improvements
of 15%, 25%, 3.4%, and 7.6%, respectively, in
comparison to the best-performing single-encoder
Speech LLM, and achieves a better average rank on
all tasks compared with conventional approaches.
Our contributions can be summarized as follows:

• We propose a novel multi-encoder Speech
LLM, which effectively leverages features
from every layer of each encoder.

• We introduce PaM, a method based on MoE
that incorporates a prompt-aware routing
mechanism to assign distinct weights to each
encoder and its layers based on the task.

• We conducted comprehensive experiments
demonstrating that PaM significantly en-
hances the overall performance of all down-
stream tasks. Additionally, we present de-
tailed feature importance analyses and explore
various combinations of speech encoders and
LLMs.

2 Method

In this section, we begin with an overview of the
proposed PaM method (Figure 2). We then elabo-
rate on the details of the encoder fusion process ex-
ecuted by a single expert, and describe the prompt-
aware routing method.

2.1 Overall Architecture

The architecture of the proposed PaM method is de-
picted in Figure 2 (left). As described in Equation 1,
the LLM accepts the text prompt Xprompt, which
includes task-related information, along with the
speech features Haudio as input, and subsequently
generates the response Y.

Y = LLM(Xprompt,Haudio) (1)

To obtain Haudio, we employ three encoders: the
Whisper encoder, WavLM, and Wav2Vec2. For
each encoder, the hidden states are initially pro-
cessed by a feed-forward network (FFN) as de-
scribed in Equation 21, resulting in the feature of
each encoder, denoted as Hi.

Hi = FFNi(Encoderi(Xaudio)) (2)

Next, as shown in Equation 3, we combine these
features using a fusion method based on MoE,
which includes a shared expert and N routed ex-
perts, where the number of routed experts corre-
sponds to the number of predefined tasks. During

1The FFN module projects the hidden states from the en-
coder’s dimension to the LLM’s dimension, and maps the
features from each encoder into a unified space that is shared
across all encoders.
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Figure 2: The architecture of the proposed PaM method. The output feature Hprompt of the prompt Xprompt guides
the routing of the MoE structure adapter, which incorporates a fixed shared expert (denoted as expert S) and a
single routed expert (denoted as expert i ∈ [1, N ], where N represents the total number of routed experts). For
each expert, the last hidden states from all encoders hLi−1

i are concatenated with K fused hidden states (K being a
hyperparameter, with the default value K = 3) derived from a fusion weight matrix W. Subsequently, a feedforward
network (FFN) is applied to align with the dimensions of the LLM.

inference, only one routed expert is selected, based
on the task indicated by the prompt.

Haudio = Expertshare(H{1,2,3})

+
N∑

j=1

Gj(Xprompt)× Expertj(H{1,2,3}) (3)

Overall, each expert processes the features from all
encoders (H{1,2,3}) for feature fusion. The shared
expert extracts common features for all tasks, while
the routed expert performs task-specific feature fu-
sion. The routing is determined by the user input,
which is the prompt.

2.2 Multi-layer Fusion
We describe the multi-layer fusion process in Fig-
ure 2 (right). Different encoders exhibit distinct
strengths. For example, WavLM is excellent at ex-
tracting speaker information (Chen et al., 2022),
while Wav2Vec2 excels in capturing semantic con-
tent (Baevski et al., 2020). The Whisper en-
coder (Radford et al., 2022), trained on a vast
amount of data, provides superior features for AC
and ASR in noisy environments2. Additionally,
features from different layers contain varying lev-
els of information. Deeper layers hold high-level
semantic information, whereas lower layers may
contain fine-grained acoustic details. Thus, for fea-
ture fusion, we consider features from all layers
of all three encoders. Specifically, for the feature
Hi from a single encoder, it includes hidden states

2These biases in the ability of different encoders on dif-
ferent tasks are also consistent with the results of our single-
encoder baselines shown in Table 1

from all Li Transformer (Vaswani et al., 2017) lay-
ers as well as h0

i , the hidden states following the
convolutional layers (Equation 4).

Hi = {h0
i ,h

1
i , . . .h

Li−1
i } (4)

As illustrated in Equation 5, we consider the hid-
den states h

{0,1,...,(Li-2)}
i to derive the fused hid-

den states hfused
k . For each hidden state hl

i of all
three encoders, a set of scalar weights containing∑3

i (Li − 1) elements is assigned to control its rel-
ative importance. We denote a set of scalar weights
as {wl

i,k|i ∈ [1, 3], l ∈ [1, Li − 1]} and then use it
to generate fused hidden states hfused

k . To maintain
the diversity of the fusion feature, we utilize K
sets of scalar weights. Thus, the dimension of the
whole learnable matrices is W ∈ RK×(

∑3
i (Li−1)).

hfused
k =

3∑

i=1

Li−1∑

l=1

wl
i,k · hl

i (5)

Finally, we concatenate the last hidden states of the
three encoders Hlast = {hLi−1

i |i ∈ [1, 3]} with the
K fused hidden states hfused

{1,...,K} along the feature
dimension. Afterward, we apply an FFN to com-
press the feature dimension to match the dimension
of the LLM embedding (Equation 6)3.

hfinal = Concat(Hlast,hfused
{1,...,K})

Expert(·) = FFN(hfinal) (6)
3We leverage both the final and fused hidden states, which

are commonly used in semantic-related tasks (e.g., ASR) and
acoustic-related tasks (e.g., audio captioning). The subse-
quent FFN module projects the concatenated features to the
dimension of the LLM input embeddings, ensuring alignment
between the feature space of speech features and text features.
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The parameters in our fusion method are indepen-
dent among the routed experts. The use of fusion
weight matrices highlights multi-level feature fu-
sion, while the final concatenation followed by the
FFN provides more fine-grained feature fusion.

2.3 Prompt Aware Routing

A prompt refers to a text segment that provides
context or objectives for generation, which can typ-
ically be categorized into several distinct types ac-
cording to task. For instance, speech-related tasks,
sound-related tasks, and speech chat tasks (Yang
et al., 2024). In this paper, we investigate three
tasks: ASR, SNV, and AC. We utilize distinct ex-
perts for each task. For effective routing, the router
must identify the task type based on the prompt.
We employ a simple classification approach (Equa-
tion 7 and 8) wherein we use the last hidden states
Hprompt of the prompt from the LLM, followed by
an FFN and Softmax activation, to obtain the task
posteriors P(Task|Hprompt).

Hprompt = LLM(Xprompt) (7)

P(Task|Hprompt) = Softmax(FFN(Hprompt)) (8)

As shown in Equation 9, we select the routed ex-
pert with the Top-1 probability by the indicator
function.

Gj =

{
1 if j ∈ Top-1(P(Task|Hprompt))

0 otherwise
(9)

To train the FFN, we create diverse prompts for
each task using the LLM. Specifically, we manually
write several prompts for each task and instruct
ChatGPT to rewrite these prompts. We list the
examples of these prompts in Appendix A.1. It is
important to note that the audio features follow the
prompt because we use the prompt to guide feature
extraction and fusion. This approach differs from
other works, where the audio features <|AUDIO|>
can be positioned before the prompt.

2.4 Training Objective

The training loss function, as illustrated in Equa-
tion 10, is the sum of the cross-entropy loss LG for
prompt-aware routing and the cross-entropy loss
Lllm between the LLM’s output Y and the ground
truth Ŷ. Ŷ.

L = LG(P(Task|Hprompt),Task)

+ Lllm(Y, Ŷ) (10)

3 Experimental Setups

3.1 Datasets and Evaluation Metrics

We assess the efficacy of our method across three
audio-to-text tasks: automatic speech recognition
(ASR), speaker number verification (SNV), and
audio captioning (AC). We list the detailed infor-
mation on training data in Appendix A.2. In to-
tal, the training data contains 450 hours of audio
signals. The test dataset includes LibriSpeech-test-
clean, LibriSpeech-test-other, AMI, the SNV test
set from AIR-Bench, and the test set of AudioCaps
along with its corresponding QA version from Au-
dioBench (Wang et al., 2024a), which contains di-
verse questions. ASR tasks focus on semantics.
The LibriSpeech test set originates from audio-
books, demonstrating ASR performance in a clean
scenario. AMI, a real meeting corpus containing
spontaneous talk, reflects ASR performance in a
more challenging, real-world scenario. SNV and
AC test sets can indicate the Speech LLM’s abil-
ity to understand speaker and acoustic information.
We evaluate the performance using word error rate
(WER) for ASR tasks, accuracy for SNV, and ME-
TEOR (Banerjee and Lavie, 2005) for AC. Addi-
tionally, we list the results on AC and AC QA tasks
with more metrics in Appendix A.4.

3.2 Model Architecture and Training

We train our model based on Huggingface Trans-
formers Library4. Our model consists of three au-
dio encoders, a pre-fusion adapter for each encoder,
a PaM fusion module, and an LLM. In our main
experiments, the encoders are Whisper-Small en-
coder, WavLM-Base-Plus, and Wav2Vec2-Base-
960h5, each with approximately 100 million pa-
rameters. We downsample the features from the
Whisper encoder by a factor of two, resulting in
a frame length of 40ms, consistent with the frame
length of Wav2Vec2 and WavLM. The pre-fusion
adapter is an FFN that transforms the encoder’s
hidden dimension DE to the LLM’s hidden dimen-
sion DLLM. Each expert in the PaM fusion module
includes a fusion weight matrix (R3L×3) and a lin-
ear layer (R6DLLM×DLLM) to fuse features from all
encoders. Here, L represents the number of layers
in the encoder, which is 12 for all encoders in our
experiments. For the fused features, we set K = 3,

4https://github.com/huggingface/transformers
5The links to the pretrained models and datasets used can

be found in Appendix A.2. The implementation details of
baseline methods are available in Appendix A.3.
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Model
LibriSpeech AMI SNV AudioCaps AudioCaps QA

AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Single-encoder Baselines
- Whisper (Radford et al., 2022) 9.61 16.73 16.27 18.8% 32.96 15.04 5.67
- WavLM (Chen et al., 2022) 5.59 10.57 18.97 41.4% 27.14 12.77 5.50
- Wav2Vec2 (Baevski et al., 2020) 4.30 9.46 26.69 39.0% 23.81 11.20 5.33

Multi-encoder Baselines
- WavLLM (Hu et al., 2024) 4.95 (- 0.65) 9.19 (+0.27) 15.29 (+0.98) 39.2% (- 2.20) 34.93 (+1.97) 16.35 (+1.31) 2.67
- SALMONN (Tang et al., 2024) 5.04 (- 0.74) 9.70 (- 0.24) 19.04 (- 2.77) 49.4% (+8.00) 34.86 (+1.90) 15.97 (+0.93) 3.50
- Average 4.76 (- 0.46) 10.43 (- 0.97) 17.20 (- 0.93) 45.5% (+4.10) 33.22 (+0.26) 15.53 (+0.49) 3.67

PaM (Ours) 3.65 (+0.65) 7.07 (+2.39) 12.79 (+3.48) 42.8% (+1.40) 35.47 (+2.51) 15.70 (+0.66) 1.67

Table 1: Comparison of the proposed PaM method with single and multi-encoder baselines. Values in the brackets
indicate performance improvement (green) or degradation (red) compared to the best single encoder result. The
AVG rank column shows the average rank on each task. Smaller ranks indicate better performance.

corresponding to the number of last hidden states.
We utilize four routed experts, each corresponding
to a specific task category: ASR-clean, ASR-noisy,
SNV, and AC. For each category, we generate 50
prompts using ChatGPT (OpenAI, 2023)6. For the
LLM model, we select the Qwen2.5-3B (Team,
2024). In Section 4, we also experiment with other
encoders, including Hubert-Base-LS960, Whisper-
Large-v3, and WavLM-Large.7

We list the training and inference parameters in
Appendix A.6.

4 Results

4.1 Main Results

As demonstrated in Table 1, we compare the pro-
posed PaM method with single and multi-encoder
baselines. Each encoder exhibits distinct advan-
tages. When utilizing a single encoder, the Speech
LLM with the Whisper encoder performs best on
the AMI dataset and AC tasks. The primary rea-
son is that the Whisper model is trained on vast
speech data, exposing it to diverse acoustic condi-
tions. Consequently, it excels in challenging ASR
and AC tasks in real-world environments and noisy
conditions. The WavLM encoder, trained on multi-
speaker speech signals, provides the best features
for the SNV task. The Wav2Vec2 encoder per-
forms best on the LibriSpeech dataset mainly be-
cause it was pretrained on this dataset. However,
since the LibriSpeech dataset consists of clean au-
diobooks, the Speech LLM with the Wav2Vec2
encoder shows poor performance on the AMI and
AudioCap datasets.

6We provide a few examples of the prompts we used in
Appendix A.11

7Additionally, we add the BEATs model, which performs
well on the AC task, to further enhance PaM in Appendix A.5.

We reimplemented the feature fusion methods
of WavLLM and SALMONN, training the Speech
LLM with the three audio encoders in our setups.
Both methods use concatenation but are followed
by different projection layers: WavLLM with a lin-
ear layer and SALMONN with a Q-former layer.
Additionally, we implemented a simple averaging
method that directly computes the average of the
features from the three encoders. Compared to
the best performance of single encoder baselines,
all three fusion methods achieve better METEOR
scores on AC tasks. However, performance may
degrade on other tasks. For example, we observed
performance degradation for all three methods on
the LibriSpeech test-clean subset. This is expected
since the same features are used for all tasks. Fea-
tures containing more useful acoustic information
for AC tasks may lack useful semantic information
for ASR tasks.

PaM consistently outperforms all single encoder
baselines, delivering performance improvements
across all tasks. This consistent improvement can
be attributed to the MoE structure adapter, which
provides unique features tailored for each task.
Compared to other fusion methods (i.e., concate-
nation and averaging), PaM achieves significantly
lower WERs on the LibriSpeech and AMI datasets
and similar performance on SNV and AC tasks.

4.2 Feature Importance

In Figure 3, we visualize the fusion weights for
each expert, excluding the shared expert, which
can be interpreted as the fusion weight for each
task. We sum the weights for every four layers to
enhance clarity, resulting in the total weight for
shallow, middle, and deep layers. Generally, dif-
ferent tasks require different features, so each ex-
pert has distinct fusion weights. Specifically, when
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Encoders LibriSpeech AMI SNV AudioCaps AudioCaps QA AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Whisper+X 4.42 8.92 13.96 43.70% 35.41 16.11 4.5
WavLM+X 4.07 7.97 18.47 47.47% 32.48 15.01 5.5
Wav2Vec2+X 3.42 7.20 18.18 45.13% 32.33 15.02 4.3
HuBERT+X 3.87 8.21 19.49 36.90% 31.82 15.08 6.8

Whisper+X+Y 4.22 8.11 13.79 49.77% 35.37 16.31 3.0
WavLM+X+Y 3.72 7.99 16.35 38.73% 34.23 15.82 4.0
Wav2Vec2+X+Y 3.77 6.90 16.90 42.63% 34.23 15.82 3.8
HuBERT+X+Y 4.03 7.96 17.13 44.17% 34.18 16.13 4.0

Table 2: Results with different combinations of encoders. The first and last four rows represent combinations of two
and three encoders respectively. Each row’s results are the average performance of a fixed encoder paired with all
possible combinations of one or two other encoders, highlighting the unique strengths of each encoder.
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Figure 3: The weights for each encoder and its layers.

the expert for ASR-clean is activated, it mainly
focuses on features from WavLM and Wav2Vec2,
especially the deep layers. When the expert for
ASR-noise is activated, it primarily focuses on fea-
tures from the Whisper encoder and WavLM. For
SNV and AC tasks, all three encoders have similar
fusion weights. For the SNV task, features from
the middle layers are more important, while for the
AC task, shallow layers contribute more.

4.3 Combinations of Encoders

In Table 2, we extend our investigation to encom-
pass more combinations of encoders, including two
and three encoders, and incorporate the HuBERT
encoder. To highlight the strengths of each encoder,
we calculate the performance by keeping one en-
coder fixed and varying the other encoders, then
computing the average. The average (AVG) rank
reflects the overall performance across multitasks.
It is evident that using three encoders significantly
outperforms using two encoders in all combina-
tions, thereby demonstrating the effectiveness of

employing more encoders for Speech LLMs.
We can observe that different encoders offer

varying benefits, which proves that the task-specific
encoders can significantly improve the perfor-
mance on the corresponding tasks. For example,
when Whisper is used, regardless of how many en-
coders are employed, the Speech LLM achieves
the lowest WER on AMI and the highest ME-
TEOR scores on AudioCaps. On the other hand,
Wav2Vec2 provides an advantage for recognizing
speech signals in LibriSpeech. This indicates that
when selecting encoders for Speech LLM, it is es-
sential to consider the domain, downstream tasks,
and the capabilities of each encoder. We suggest
using a robust general domain model like Whisper
in combination with domain-specific encoders such
as Wav2Vec2.

4.4 Larger Encoders and LLMs
We aim to further enhance performance by re-
placing the encoders in the proposed method
with their larger versions (Table 3). Specifically,
we replace the Whisper-Small encoder with the
Whisper-Medium encoder, Wav2Vec2-Base-960h
with Wav2Vec2-Large-960h, and WavLM-Base-
Plus with WavLM-Large. Our observations indi-
cate that on the LibriSpeech-clean dataset, perfor-
mance does not significantly improve and may even
slightly degrade. However, for the SNV and AC
tasks, performance consistently improves, suggest-
ing that more challenging sound-related tasks ben-
efit more from better encoders. Additionally, we
observe that when all encoders are replaced with
their larger versions, we achieve the best perfor-
mance across almost all tasks, albeit at the cost of
increased computation.

In our investigation of other LLMs, including
Qwen2.5-7B, LLaMA3.2-3B, and LLaMA3.1-8B,
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Models LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Base PaM 3.65 7.07 12.79 42.8% 35.47 15.70

PaM with Larger Encoders
- ① Whisper-Medium 3.93 7.93 12.43 47.5% 35.61 15.58
- ② WavLM-Large 3.75 6.43 12.10 45.6% 35.95 16.71
- ③ Wav2Vec2-Large 3.74 6.49 15.06 47.6% 35.50 16.74
- ① + ② + ③ 3.58 5.93 11.51 56.9% 36.94 16.50

PaM with Different LLMs
- Qwen2.5-7B 3.68 8.36 15.26 43.7% 35.46 15.71
- LLaMA3.2-3B 4.98 11.57 15.57 50.5% 35.83 16.34
- LLaMA3.1-8B 4.85 8.87 15.01 50.8% 35.81 15.82

Table 3: Results with larger encoders and various LLMs. To enhance performance, we replaced the Base version’s
encoders and experimented with different LLMs.

we observed some improvements in certain tasks.
However, the overall performance was not superior
to that of Qwen2.5-3B. The potential reason for
this is that we used short audios samples, and both
the prompts and answers were brief, thereby not
fully utilizing the strong semantic understanding
capabilities of the larger LLMs. Consequently, we
opted to use Qwen2.5-3B in this paper. It is im-
portant to emphasize that for Speech LLMs, the
extracted features may be more critical than the
LLM itself for many downstream tasks. In addition,
we also compare the concatenation fusion strategy
(WavLLM) and PaM using larger LLMs based on
the LLaMA3.1-8B and Qwen2.5-7B. We find that
the performance of the concatenation fusion strat-
egy is inconsistent across different base models of
similar size, whereas PaM maintains stability, as
detailed in Appendix A.7.

4.5 Parameters of the Adapter
In PaM, we employ multiple experts, merge and
concatenate various features. Consequently, the
number of parameters is slightly higher than that
of the baseline concatenation and average meth-
ods. To ensure a fair comparison, we reduce the
dimensionality within PaM, resulting in only 29M
total parameters, similar to the baselines. PaM
outperforms the baseline across almost all tasks,
with similar overall parameters. Notably, during
inference, PaM activates only 26M parameters, in
contrast to the 37M parameters activated by the con-
catenation method, demonstrating the efficiency of
PaM. In this configuration, each expert contains
only 0.9M parameters, which is smaller than other
components of the model, such as the LLM and
encoders. Consequently, PaM can be further en-
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Figure 4: Performance comparison of a smaller PaM
(29M parameters) with Concatenation (37M parameters)
and Average (24M parameters).

hanced by increasing the number of experts with
minimal impact on computational cost.

5 Discussions

Ablation study and routing method: To further
validate the effectiveness of PaM, we conducted
an ablation study, such as PaM without the shared
expert, as detailed in Appendix A.8. We also com-
pare PaM against a learnable routing approach
without task information, commonly employed in
MoE models. The results indicate that PaM is
more efficient and better suited to handling mul-
tiple downstream tasks than conventional routing
and fusion strategies. Moreover, Table 3 highlights
the strengths of each encoder. These findings en-
courage researchers to select encoders tailored to
their downstream tasks for the Speech LLM. While
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we did not incorporate this prior knowledge into
the routing mechanism, leveraging it presents a
promising direction for future work.
Other further work: 1.More and Unseen Tasks.
Although our experiments involve three tasks and
five datasets, they are representative as they en-
compass both semantic and acoustic-related tasks.
We believe PaM can be extended to other tasks,
which we will validate in future work. 2.Leverage
Multimodal LLMs. Features across various en-
coders hinder initialization from pretrained multi-
modal LLMs in our work (Appendix A.9). We will
explore strategies to more effectively leverage pre-
trained multimodal LLMs, such as (Lai et al., 2024).
3.Efficiency. Improving the efficiency of LLMs
has attracted much attention. Enhancing the compu-
tational efficiency of speech LLMs presents another
promising avenue for exploration (Appendix A.9).

6 Related Works

Audio Encoders: Audio encoders can be clas-
sified into supervised and self-supervised models.
Supervised models typically employ ASR tasks to
train an end-to-end model with an audio encoder
and a text decoder. By omitting the decoder, the
encoder can serve as a feature extractor (Radford
et al., 2022; Baevski et al., 2020). Self-supervised
models can be trained on unlabeled speech signals.
For instance, Wav2Vec2 (Baevski et al., 2020) and
HuBERT (Hsu et al., 2021) were trained to predict
the pseudo-discrete targets at masked time steps.
WavLM (Chen et al., 2022) is a variant of HuBERT,
designed to facilitate speaker identity extraction by
using multi-speaker signals. Different model archi-
tectures, training methods, and data can result in
encoders with distinct properties and advantages,
making the mixture of audio encoders effective for
Speech LLMs.

Speech LLM: To construct end-to-end speech
LLMs, a natural approach is to extract discrete
tokens from continuous speech signals and then
expand the vocabulary of text LLMs to under-
stand these speech tokens (Rubenstein et al., 2023b;
Veluri et al., 2024; Ma et al., 2024a). An alterna-
tive is to use an adapter layer to directly convert
the continuous speech features into the continuous
embedding space of the LLM. For example, Qwe-
nAudio (Chu et al., 2024) employs average pooling
to downsample speech features, followed by two
linear layers for projection. SALMONN (Tang
et al., 2024) utilizes the Q-former (Yu et al., 2024),

a cross-attention-based adapter, to achieve a higher
compression ratio. In parallel, to achieve high com-
pression, Soundwave replaces cross-attention with
a lightweight self-attention module that treats the
inputs as queries (Zhang et al., 2025). Compared
to previous works, our adapter handles more en-
coders and generates different features based on the
prompt, rather than a single feature for all prompts.

Mixture of Experts: MoE has attracted grow-
ing interest, which replaces the FFN sub-layer in
Transformer models with multiple experts (Shazeer
et al., 2017). These MoE methods typically employ
massive experts and extremely sparse activation
routing, increasing model size while maintaining
constant inference costs, without explicitly consid-
ering the specialization of individual experts (Fe-
dus et al., 2022; Lepikhin et al., 2020). However,
the vast scale of these models presents significant
challenges for deployment. In contrast, the ear-
liest MoE research introduced a data-dependent,
trainable combining method (Jacobs et al., 1991;
Masoudnia and Ebrahimpour, 2014), which aims
to decompose complex tasks into simpler sub-tasks,
each managed by a dedicated expert. Such works
have inspired recent advances in developing modu-
lar models called expert specialization (Ma et al.,
2018; Gupta et al., 2022), providing solutions for
deploying large-scale MoE models (Lu et al., 2024)
and enabling individual experts to learn and decom-
pose diverse knowledge (Dai et al., 2024). Inspired
by these insights, we propose a specialized fusion
method based on MoE integrating multiple audio
features to enhance Speech LLMs.

7 Conclusion

In conclusion, we propose PaM, a feature fusion
method designed to provide a Speech LLM with
diverse features from multiple encoders based on
users’ input prompts. Experimental results indi-
cate that PaM surpasses both single-encoder and
multi-encoder baselines across a variety of tasks
and datasets. We provide a detailed analysis of the
feature importance of different encoders, demon-
strating that PaM effectively leverages different en-
coders and levels of features for distinct tasks. Ad-
ditionally, we present comprehensive experimental
results for the selection and combination of en-
coders. For future work, we intend to expand the
training data and incorporate additional tasks.
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8 Limitations

Owing to resource constraints, our training data
is limited to several hundred hours. It would be
preferable to implement our method in larger-scale
experiments to facilitate comparison with existing
strong Speech LLMs such as Qwen-Audio (Chu
et al., 2024) on a more comprehensive benchmark
like Air-Bench (Yang et al., 2024). Additionally,
we train the PaM model from scratch using a prede-
fined list of audio encoders. It would be beneficial
to investigate the addition of new encoders to an
already trained Speech LLM to enhance its perfor-
mance on new tasks or in new domains. We leave
this for future work.
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A Appendix

A.1 Prompt Example

ASR 1. Hear the audio clip and transform it
into text format. <|AUDIO|>
2. Listen to the following audio and
create a corresponding text transcript.
<|AUDIO|>

Speaker
Number

1. How many speakers’ contributions
are in this recording? <|AUDIO|>

Verification 2. What is the number of speakers in
this spoken content? <|AUDIO|>

AC 1. Listen to this audio and provide a
detailed description. <|AUDIO|>
2. Analyze the recording and summa-
rize its contents. <|AUDIO|>

Table 4: Examples of prompts for different tasks.

A.2 Details of Models and Datasets
In this paper, we leverage multiple audio encoders
and LLM to construct the end-to-end speech LLM.
Our training dataset is sourced from commonly
used open-source datasets, totaling approximately
450 hours of audio data, corresponding to 313,208
samples, as outlined in Table 5. For SNV, we ran-
domly concatenate individual utterances to form
new speech signals with the number of speakers
ranging from one to four.

Data Source Task Hours Sample

Librispeech-clean-100 ASR 100h 28539(Panayotov et al., 2015)

AMI (Kraaij et al., 2005) ASR 100h 108502

Common Voice V4 (Part) SNV ∼150h 137041(Ardila et al., 2019)

Audio Caption AC 100h 39126(Kim et al., 2019)

Table 5: The complete training dataset.

In our paper, we adopt multiple pre-trained audio
encoders and LLMs, and we list the architecture
settings for all models we used in our experiments
in Table 6. Notably, for the Whisper model, we
only used its encoder part as an audio feature ex-
tractor.

A.3 Details of Baseline Implementation
In our work, we compare our method against two
types of baselines. The first baseline consists of
models using a single encoder, while the second
baseline involves fusing multiple audio encoders,

either as in previous work (Hu et al., 2024; Tang
et al., 2024) or through an averaging operation.

For the single encoder baseline, we train the
model using the same settings as in our method.
For the second baseline, we train the model us-
ing the open-source codebases from WavLLM and
SALMONN. We integrate the adapter components
from these repositories into our code and train the
baseline model using our training data, employ-
ing the same pre-trained audio encoders and LLMs
as in our method. During training, we applied
the same hyperparameters as our method. Since
we use different encoders and LLMs compared
to the baselines, we adjust the dimensions of the
adapter to match the specific audio encoder and
LLM we used while maintaining other dimensions
independent of the audio encoders and LLM un-
changed. Notably, we trained SALMONN adapter
with query length=32 (as training with the original
setting query length=1 failed) to ensure comparable
performance with the other baseline methods.

A.4 Results on Audio Caption with More
Metrics

Due to the multiple evaluation metrics for the AC
task, we evaluated the AC and AC QA tasks using
more metrics in Table 7, including CIDEr, SPICE
(with coco-caption toolkit), FENSE metric, and
Sentence-BERT8. We found that different models
exhibited similar performance trends across almost
all metrics.

A.5 PaM with More Encoders

We added the BEATs encoder to our framework,
resulting in a total of four encoders, and found
that it significantly improved the performance of
our system on the AC task (Table 8). Although
adding the new encoder had limited impact on the
AMI and SNV tasks, incorporating the BEATs en-
coder improved the system’s average rank across
downstream tasks (Table 9). We plan to conduct ad-
ditional experiments with the EAT encoder (Chen
et al., 2024a) in future work.

8We used the FENSE open-source repository GitHub and
scored the entire dataset with eval_system.py. For the SBERT
model, we loaded the paraphrase-mpnet-base-v2 model, and
for the echecker, we used echecker_clotho_audiocaps_base.
However, we encountered a bug when loading the
echecker model, which had an unexpected key en-
coder.embeddings.position_ids. To resolve this, we set
strict=False. Additionally, we included results based on simi-
larity using the SBERT model.
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Audio Encoder Models Enc Param Layers dmodel dffn dk H Norm

openai/whisper-small 88M 12 768 3072 64 12 Pre
microsoft/wavlm-base-plus 94M 12 768 3072 64 12 Post
facebook/wav2vec2-base-960h 94M 12 768 3072 64 12 Post
openai/whisper-medium 307M 24 1024 4096 64 16 Pre
microsoft/wavlm-large 315M 24 1024 4096 64 16 Post
facebook/wav2vec2-large-960h 315M 24 1024 4096 64 16 Post

Large Language Models Lora Param Layers dmodel dffn dk H Norm

Qwen/Qwen2.5-3B 7M 36 2048 11008 128 16 Pre
Qwen/Qwen2.5-7B 10M 28 3584 18944 128 28 Pre
meta-llama/Llama-3.2-3B 9M 28 3072 128256 128 24 Pre
meta-llama/Llama-3.1-8B 13M 32 4096 14336 128 32 Pre

Table 6: The settings of the pre-trained model we used in our experiments. For the audio encoder models, we utilize
only the encoder component and freeze all parameters. For the LLMs, we freeze the base model parameters and
apply LoRA adapters to fine-tune the model.

Models AudioCaps AudioCaps QA

METEOR↑ FENSE↑ SBERT↑ CIDEr↑ SPICE↑ METEOR↑ FENSE↑ SBERT↑ CIDEr↑ SPICE↑

Single-encoder Baselines
- Whisper 32.96 0.108 0.596 0.431 0.158 15.04 0.105 0.402 0.205 0.083
- WavLM 27.14 0.106 0.500 0.290 0.122 12.77 0.104 0.337 0.127 0.049
- Wav2Vec2 23.81 0.096 0.414 0.205 0.095 11.20 0.092 0.282 0.073 0.038

Multi-encoder Baselines
- WavLLM 34.93 0.109 0.640 0.569 0.175 16.35 0.108 0.448 0.303 0.109
- SALMONN 34.86 0.109 0.631 0.542 0.158 15.97 0.108 0.432 0.254 0.093
- Average 33.22 0.108 0.615 0.471 0.166 15.53 0.108 0.425 0.229 0.093

PaM 35.47 0.111 0.644 0.581 0.183 15.70 0.108 0.428 0.267 0.087

Table 7: More results based on various metrics on the AC task. The SBERT represents Sentence-BERT.

A.6 Details of Training and Inference
Parameters

We train our model for five epochs with a learning
rate of 5e-5, 2000 warmup steps, and bf16 preci-
sion. We freeze all encoders and the LLM, only
train adapters and the fusion modules. For the
LLM, we apply LoRA (Hu et al., 2022) with a rank
of 32 and an alpha of 64, adding LoRA only to the
q_proj and k_proj. Each task has the same proba-
bility during training. During the inference stage,
we select the last checkpoint on the validation set
and perform greedy search.

A.7 WavLLM and PaM with Larger LLM

We experiment with WavLLM (concatenation) and
PaM under a larger scale LLM based on Qwen2.5-
7B and Llama3.1-8B, as shown in Table 10. We
found that PaM consistently outperforms concate-
nation on LibriSpeech. However, in noisier ASR
scenarios such as AMI, concatenation performs bet-
ter. On tasks like SNV, AC, and AC QA, concate-
nation’s performance is not stable. In the Qwen-
based speech large language model, the perfor-
mance on these three tasks is better than PaM,
but in the Llama-based model, the performance

on these tasks is significantly worse than PaM.
We note that the concatenation method in the

Llama-based model performs significantly worse
on SNV, with only 3.1% accuracy. This is because
it becomes difficult to follow the instructions of
the SNV task during the inference stage. After
further experiments, we found that the concatena-
tion method becomes progressively less effective
on SNV. This suggests that the method struggles to
achieve a balance between multitasking as training
progresses.

A.8 Ablation Experiments of Routing Method
We adopt a prompt-aware routing method to better
utilize the information in the prompt based on the
LLM, as described in Equations 7 and 8. To fur-
ther evaluate the impact of different routing strate-
gies, we conducted ablation experiments on various
forms of routing methods, as presented in Table 11.

• Audio-based Routing Method. The routing
method employed in most of the MoE mod-
els, such as Switch Transformers (Fedus et al.,
2022), DeepSeekMoE (Dai et al., 2024), and
MoWE (Zhang et al., 2024), which use the
current layer input as the routing module in-
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Prompt-aware Mixture (PaM) LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

- PaM 3.65 7.07 12.79 42.8% 35.47 15.70
- PaM (BEATs) 3.76 7.22 13.11 49.2% 35.70 16.36

Table 8: Results of PaM with more encoders.

Model Whisper WavLM Wav2Vec2 WavLLM SALMONN Average PaM (audio-based) PaM (prompt-aware) PaM (BEATs)

AVG Rank 7.7 7.5 7.3 4.5 5.0 5.3 3.5 2.5 1.7

Table 9: Average result rank in all downstream tasks of different models.

put, and optimize the routing module directly
based on the loss of outputs. However, this ap-
proach ignores information from task labels.

G = Top-k(Softmax(X)) (11)

We set k = 1 in the Top-k function, consistent
with the configuration used in our PaM setup.
In our model, the MoE layer is positioned
after multiple encoders, since we use the fused
features from multiple encoders as the routing
inputs.

X = FFN(Concat(Hlast)) (12)

In addition, we also performed ablation experi-
ments with our PaM routing method.

• Without Shared Expert. We maintain
the full model configuration but remove the
shared expert.

• Without Task Label. We retain the use of
task-related information extracted from the
LLM prompt as input to the routing mod-
ule, without any additional labeling informa-
tion. Specifically, we remove the auxiliary
loss term LG(P(Task|Hprompt),Task) in Equa-
tion 10. In contrast to the audio-based rout-
ing method, this variant of the PaM routing
method uses the prompt feature Xprompt as
input but without the task label.

We found that the PaM routing method outper-
forms audio-based routing on most ASR and AC
QA tasks, especially SNV tasks. This suggests that,
in our setting, PaM is superior to the basic MoE
routing method for fusing multi-encoder features.

For the PaM without shared experts, we found
that it still outperforms the single model baseline
and maintains better or comparable performance

compared to the multi-encoder baseline on almost
all tasks. Compared to PaM without shared ex-
perts, PaM with shared experts gains on several
tasks but is slightly weaker on AC QA and SNV.
This suggests that while shared experts may slightly
degrade performance on a few tasks, they can sig-
nificantly improve the overall effectiveness of the
PaM model.

Compared to PaM without task labels and PaM,
we found that PaM achieved improvement on most
of the tasks, which further illustrates the effec-
tiveness of incorporating task information in the
prompt when handling multiple downstream tasks.

A.9 Initialization setup for LLM

We initialize the LLM module in PaM from the
open-source base model, following the setup used
widely in prior work (Hu et al., 2024; Ma et al.,
2024b; Tang et al., 2024; Rubenstein et al., 2023a).
An interesting alternative is to initialize our LLM
module with the LLM module in a pretrained mul-
timodal model like Qwen-Audio. We are not adapt-
ing such a setup because Qwen-Audio’s feature
alignment was specifically designed for Whisper’s
encoder, which can potentially "overfit" to features
from Whisper. Our new experiments in Table 12
reveal that the feature spaces of Wav2Vec2 and
WavLM are relatively similar, while Whisper’s fea-
ture space shows greater divergence. This pattern is
also reflected in the weight distribution in Figure 3,
where Wav2Vec2 and WavLM appear more closely
aligned and significantly different from Whisper.
Therefore, using other encoders and restructuring
the projector module would still require re-adapting
the LLM to comprehend new features.

A.10 All Detailed Results

The detailed results of our experiments with mul-
tiple encoders are summarized in Table 13. We
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Models LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Qwen2.5-7B
- WavLLM 5.13 10.81 13.66 51.1% 36.27 16.55
- PaM 3.68 8.36 15.26 43.7% 35.46 15.71

LLaMA3.1-8B
- WavLLM 6.38 14.08 13.95 3.1% 34.91 14.76
- PaM 4.85 8.87 15.01 50.8% 35.81 15.82

Table 10: Results based on our PaM adapter and WavLLM with larger LLMs.

Models
LibriSpeech AMI SNV AudioCaps AudioCaps QA

AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

MoE (audio-based) 4.12 8.32 11.21 26.0% 35.66 15.61 3.17
PaM (with one expert) 4.27 10.04 13.77 45.8% 35.76 16.47 2.83
PaM (without shared) 4.31 7.89 13.43 45.2% 35.27 16.35 3.33
PaM (without task label) 3.97 7.97 13.14 43.5% 35.54 15.42 3.17
PaM (ours) 3.65 7.07 12.79 42.8% 35.47 15.70 2.50

Table 11: Ablation results on our routing method and the results based on the audio-based routing method

observe that, in most cases, the audio encoder that
performed well on a single task also enhanced the
performance of the fusion model on that task. In
cases where performance degradation occurs on
a specific task when using the corresponding en-
coder, the fusion model consistently includes the
HuBERT audio encoder, suggesting that incorpo-
rating the HuBERT model may have a detrimental
effect. This could be attributed to the fact that the
HuBERT model is trained on a smaller pre-trained
dataset compared to other audio encoders. Notably,
even in this case, fusing four audio encoders yields
comparable results to fusing three encoders on the
AVG Rank, indicating that incorporating more en-
coders can still lead to performance improvements.

A.11 Prompts in Training and Inference Stage

In practice, large speech-language models typically
address downstream tasks using prompts that are
semantically explicit but textually diverse, as illus-
trated in Figure 5(a). Unlike classical MoE routing
methods that rely on hidden states, or other ap-
proaches such as predefined task labels (e.g., “Task
ID = 3”) (Kudugunta et al., 2021), and random rout-
ing (Zuo et al., 2021), our model leverages natural
language prompts to route inputs to the appropriate
expert.

These prompts vary in phrasing but convey the
same task intent. We utilize the semantic under-
standing capabilities of a pretrained LLM to extract

task information from these prompts, rather than
depending on fixed task labels. As an example, in
our ASR task, we trained the routing module using
50 diverse prompts (Figure 5(b)). During evalua-
tion, the model was tested on 200 prompts, 150 of
which were unseen during training (Figure 5(c)).
Our prompt-based router, powered by the LLM,
achieved 100% expert selection accuracy, demon-
strating strong generalization to previously unseen
prompts.

A.12 Efficiency
The low decoding efficiency of LLMs is due to
repeated invocations of the entire decoder stack
during autoregressive generation. Several methods
have been proposed to address this issue, includ-
ing speculative sampling (Leviathan et al., 2023)
and KV-cache compression (Zhang et al., 2023).
Recently, researchers have explored using LLMs
as encoders (Luo et al., 2025), thereby leveraging
their knowledge while improving decoding effi-
ciency. Additionally, enhancing the computational
efficiency and performance of adapters in end-to-
end speech models through optimized FFN dimen-
sion design (Zheng et al., 2023) represents a viable
solution.
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Cosine similarity emb 1 2 3 4 5 6 7 8 9 10 11 12

Whisper & WavLM -0.91 -0.76 -0.79 -0.83 -0.83 -0.85 -0.89 -0.89 -0.89 -0.84 -0.69 -0.38 -0.85
Whisper & Wav2Vec2 -0.90 -0.73 -0.77 -0.80 -0.81 -0.84 -0.89 -0.89 -0.89 -0.85 -0.75 -0.69 -0.86
WavLM & Wav2Vec2 0.99 0.13 0.26 0.44 0.52 0.60 0.95 0.99 0.99 0.52 0.06 -0.38 0.48

Table 12: The cosine similarity of the hidden states between the layers of different encoders.

Encoders Whisper WavLM Wav2Vec2 HuBERT
LibriSpeech AMI SNV AudioCaps AudioCaps QA Avg

AVG Rank
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑ ↓ ↑

1
√

- - - 9.61 16.73 16.27 18.8% 32.96 15.04 14.20 22.27 11.67
1 -

√
- - 5.59 10.57 18.97 41.4% 27.14 12.77 11.71 27.10 11.50

1 - -
√

- 4.30 9.46 26.69 39.0% 23.81 11.20 13.48 24.67 11.67
1 - - -

√
7.47 13.85 Fail 31.1% 23.94 11.28 Fail 22.10 14.00

Best-1 4.30 9.46 16.27 41.4% 32.96 15.04 13.13 24.04

2
√ √

- - 5.07 9.50 13.59 49.5% 35.47 16.16 9.38 33.71 6.00
2

√
-

√
- 3.82 7.55 13.51 38.4% 35.43 15.55 8.29 29.79 5.83

2
√

- -
√

4.37 9.70 14.79 43.2% 35.33 16.62 9.62 31.72 6.50
2 -

√ √
- 3.17 6.76 19.60 61.2% 31.70 14.89 9.84 35.93 5.83

2 -
√

-
√

3.96 7.64 22.24 31.7% 30.28 13.99 11.28 25.32 10.33
2 - -

√ √
3.27 7.29 21.43 35.8% 29.85 14.62 10.66 26.76 9.00

Best-2 3.17 6.76 13.51 61.2% 35.47 16.62 9.85 36.65

3
√ √ √

- 3.65 7.07 12.79 42.8% 35.47 15.70 7.83 31.32 4.00
3

√ √
-

√
4.42 10.26 13.47 47.4% 35.32 16.62 9.38 33.11 6.50

3
√

-
√ √

4.58 6.99 15.11 59.1% 35.33 16.62 8.89 37.02 5.50
3 -

√ √ √
3.09 6.64 22.80 26.0% 31.90 15.14 10.84 24.35 7.67

Best-3 3.09 6.64 12.79 59.1% 35.47 16.62 9.24 31.45

4
√ √ √ √

3.94 7.28 14.06 57.3% 35.37 16.79 8.43 36.49 4.00

Table 13: Detailed results of incorporating different combinations of audio encoders.

Typical prompts for ASR tasks

P1: Convert the audio speech into a text transcript.

P2: Write an accurate version of the audio content in text.

P3: Capture what is being said in this audio as text.

(a)

Prompts used during our training stage

P1: Convert the audio speech into a text transcript.

P2: Listen to the following audio and create a corresponding text transcript.

P3: Transform the speech into a text document.

P4: Listen to the audio and generate a text version of it.

P5: Create a text version based on the audio speech provided.

(b)

Prompts used during our inference stage

P1: Transcribe what is said in the audio into written text. (unseen)

P2: Extract the words from the audio and write them down. (unseen)

P3: Produce a typed version of the audio’s spoken content. (unseen)

P4: Capture what is being said in this audio as text. (unseen)

P5: Hear the provided audio and provide a written text version.

(c)

Figure 5: Example of prompts.
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