
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 19266–19297
November 4-9, 2025 ©2025 Association for Computational Linguistics

Multi-Document Event Extraction Using Large and Small Language
Models

Qingkai Min1,2, Zitian Qu3, Qipeng Guo4, Xiangkun Hu5, Zheng Zhang6, and Yue Zhang2*

1 Zhejiang University 2 School of Engineering, Westlake University
3 Tsinghua University 4 Shanghai AI Lab 5 Fudan University 6 NYU Shanghai

{minqingkai, zhangyue}@westlake.edu.cn

Abstract

Multi-document event extraction aims to ag-
gregate event information from diverse sources
for a comprehensive understanding of complex
events. Despite its practical significance, this
task has received limited attention in existing
research. The inherent challenges include han-
dling complex reasoning over long contexts
and intricate event structures. In this paper, we
propose a novel collaborative framework that
integrates large language models for multi-step
reasoning and fine-tuned small language mod-
els to handle key subtasks, guiding the overall
reasoning process. We introduce a new bench-
mark for multi-document event extraction and
propose an evaluation metric designed for com-
prehensive assessment of multiple aggregated
events. Experimental results demonstrate that
our approach significantly outperforms existing
methods, providing new insights into collabo-
rative reasoning to tackle the complexities of
multi-document event extraction.1

1 Introduction

Event extraction refers to the process of identify-
ing and structuring event-related information from
unstructured text. This involves detecting specific
triggers, participants, and associated temporal and
spatial attributes, thereby converting free-form text
into structured data (Li et al., 2013). Event extrac-
tion supports downstream tasks like summarization,
knowledge base construction, and question answer-
ing. The task has evolved from focusing on events
within individual sentences to handling events at
the document level (Yang et al., 2018; Xu et al.,
2021; Yang et al., 2021). This shift breaks sentence
boundaries to collect information across multiple
parts of a document, enabling more comprehensive
and coherent event representations.

*Corresponding author
1The code and dataset are publicly available at

https://github.com/taolusi/MEET.

Doc3

A strong earthquake

struck Indonesia's Aceh

province on Tuesday at

07:37a.m.UTC… and

dozens of villagers

were injured .

D-Event2

Trigger injured

Time on Tuesday

Location1 Indonesia’s Aceh

province

Location2 western tip of

Sumatra island

Human more than 200

Non-

human

quake

D-Event1

Trigger injuring

Time early Tuesday

Location the northern

Indonesian

province of Aceh

Human dozens

Non-

human

6 . 1 -magnitude

earthquake

D-Event3

Trigger injuring

Time on Tuesday at

07:37a.m.UTC

Human dozens of

villagers

Non-

human

earthquake

M-Event1

Trigger injured

Time1 on Tuesday

Time2 on Tuesday at

07:37a.m.UTC(3:3

7a.m.EDT)

Location1 in Indonesia’s

Aceh province

Location2 western tip of

Sumatra island

Human1 dozens of villagers

Human2 more than 200

Non-

human

6.1-magnitude

quake

A powerful 6 . 1 -

magnitude earthquake

strikes the northern

Indonesian province of

Aceh early Tuesday,

killing at least three

people and injuring

dozens more across the

affected region .

Doc1

Officials say … and

more than 200 injured

by the quake , which

struck the western tip

of Sumatra island in

Indonesia’s Aceh

province on Tuesday.

Doc2

Figure 1: An example of multi-document event extrac-
tion, showing how injury-related information is aggre-
gated from multiple sources, with overlapping argu-
ments highlighted in the same color.

In real-world scenarios, users typically acquire
information from multiple documents originating
from different sources. This multi-document per-
spective is critical because different documents
may provide unique, yet essential, details that com-
plement each other to offer a more complete picture
of an event. As shown in Figure 1, the three docu-
ments discuss the same earthquake, with Document
3 providing a more specific timestamp—“07:37
a.m. UTC”—compared to the other two. Mean-
while, Document 2 provides the exact number of
injured individuals, stating “more than 200”. These
varying details demonstrate how information from
different sources can come together to offer a more
comprehensive understanding of the event.

Despite its practical significance, multi-
document event extraction remains an underex-
plored area of research (Ji and Grishman, 2008;

19266

https://github.com/taolusi/MEET

Ji et al., 2009; Gao et al., 2024). Compared to
document-level event extraction, this task presents
considerable challenges, primarily due to the
longer input contexts, increased inconsistencies
in expression, terminology, and detail introduced
by multiple documents, as well as the higher
volume of events, which complicates the coref-
erence aggregation process. At the core of these
challenges is the high demand placed on models’
reasoning capabilities, as they must integrate and
align information across a large, complex space.

We tackle the challenges of multi-document
event extraction by introducing ECB++, a new
benchmark dataset built on ECB+ corpus (Cybul-
ska and Vossen, 2014), which provides separate an-
notations for cross-document entity and event coref-
erence. To facilitate the consolidation of event-
specific information, ECB++ augments the dataset
with fine-grained, document-level argument anno-
tations. Notably, for events mentioned across mul-
tiple sources in ECB++, arguments extracted from
a single document account for only 53.4% of the
total on average. To address the new evaluation
challenge of matching multiple events, we propose
CEAF-MEE, a novel metric that extends existing
document-level event extraction metrics, which typ-
ically focus on single-event evaluation. It aligns
predicted and reference event structures at both
the event and argument levels through maximum
bipartite matching.

Multi-document event extraction challenges for
both small language model (SLM) supervised fine-
tuning pipeline2 and large language model (LLM)
sequence-to-sequence generation. SLM pipeline
suffers from error propagation across subtasks;
for example, document-level argument extraction
has an F1 score below 70%, and cross-document
event coreference resolution remains below 80%.
Sequence-to-sequence LLMs, on the other hand,
often lack explicit rationales, which affects both
performance and interpretability (Wei et al., 2022).
This is further complicated by the nature of our
task, which requires reasoning across potentially
hundreds of events spread across documents, re-
sulting in long and intricate chains of aggregation
that cannot be easily captured in a single sequence.
We provide illustrative examples in Appendix A.

Recent work has increasingly explored LLMs for
information extraction tasks, often combining their

2In this work, SLM refers to smaller pre-trained language
models, like BERT and RoBERTa, which are more cost-
effective for fine-tuning on specific tasks.

general abilities with the task-specific adaptabil-
ity of SLMs (Wan et al., 2023; Ma et al., 2023;
Chen et al., 2024; Min et al., 2024; Zhu et al.,
2024). Following this line, we propose a collab-
orative framework that leverages the complemen-
tary strengths of LLMs and SLMs: a pipeline of
fine-tuned SLMs handle core subtasks and provide
structured intermediate outputs, while LLM agents
perform multi-step reasoning with a holistic under-
standing of these outputs and the global context.

Specifically, our framework consists of two pri-
mary reasoning stages. In the event composition
stage, the system creates cross-document clusters
by aligning events and their associated arguments.
This stage is formulated as a heuristic search over
a large combinatorial space, where an LLM agent
incrementally performs the composition by inte-
grating SLM-generated structures with a broader
contextual understanding. In the subsequent event
consolidation stage, a separate LLM agent itera-
tively conducts cluster-level reasoning to consoli-
date each cluster into a single, coherent event rep-
resentation—selecting a representative trigger and
resolving redundant, or irrelevant arguments.

Experimental results show that our collaborative
framework significantly outperforms both pipeline-
based methods and LLM sequence-to-sequence ap-
proaches. Analysis reveals that our model excels at
resolving both event coreference and argument con-
solidation, highlighting its effectiveness in tackling
the complex reasoning demands of the task. The
relatively modest scores underscore the inherent
complexity and challenges of the task.

To our knowledge, this is the first work to in-
tegrate the large and small language models for
multi-step reasoning in event extraction. We hope
our framework and benchmark will support further
progress in information extraction research.

2 Task and Benchmark

2.1 Terminology and Task Definition

Key Event Concepts
Event Trigger: A word or phrase in the text that
signals the occurrence of an event, e.g., injuring
and injured in Figure 1.
Event Argument: An entity or event fulfilling a
specific semantic role, such as time, location, or
participants (human or non-human). To support
nested structures, events can also serve as argu-
ments of other events—for example, in Figure 1,
quake is the non-human agent of the injured event.

19267

Document-Level Event: A structured event table
from a single document, consisting of a trigger and
several arguments. This is illustrated by D-Event1,
D-Event2, and D-Event3 in Figure 1.
Multi-Document Event: A structured table com-
bining event data from multiple documents about
the same occurrence, unifying diverse triggers and
overlapping arguments into a canonical form. This
is illustrated by M-Event1 in Figure 1.

Task Definition
Input: A set of documents D = {d1, d2, . . . , dn},
possibly thematically related.
Output: A set of multi-document events Ê =
{ê1, ê2, . . . , êm}, where each event êi = (t̂i, Âi)
consists of a canonical trigger t̂i and a set of argu-
ments Âi = {âi,1, âi,2, . . . , âi,ki}.

2.2 Benchmark Dataset ECB++
Dataset Creation We build our dataset upon the
Event Coreference Bank Plus (ECB+) (Cybulska
and Vossen, 2014), a widely-used public bench-
mark for cross-document event and entity corefer-
ence resolution. ECB+ provides event triggers, en-
tity mentions, and both event and entity coreference
chains. To enable event argument consolidation,
we extend ECB+ by annotating event arguments at
document level, resulting in structured events. By
integrating these document-level events with the
original cross-document event and entity corefer-
ence chains, we create ECB++, a comprehensive
multi-document event representation.

We adopt FrameNet (Baker et al., 1998) as the
guiding schema for annotating event arguments.
FrameNet is a lexical resource that defines seman-
tic roles for participants in various event types, en-
suring both consistent and semantically precise an-
notation of event arguments. Following Li et al.
(2021), the annotation was first performed by three
linguistics students and subsequently reviewed by
an instructor to ensure high-quality output. The
Inter-Annotator Agreement (IAA) reached 83.4%,
confirming the quality of the dataset. The annota-
tion guidelines can be found in Appendix B.1.

Dataset Analysis The ECB++ dataset consists of
982 news articles spanning 43 topics, such as earth-
quakes, criminal cases, and corporate acquisitions.
Each topic contains 23–25 documents, with an av-
erage of 60 events per topic. Notably, one-quarter
of the events are mentioned in at least three docu-
ments, highlighting the need for both event aggre-
gation and the ability to handle event-dense scenar-

Dataset Split Train Dev Test

Topics 25 8 10
Avg. # Docs per Topic 23.0 24.5 20.6
Avg. # Events per Topic (M/S) 16.44/44.6 16.1/35.0 18.2/62.3
Avg. # Docs per Event (M/S) 3.7/1 4.6/1 3.4/1
Avg. # Args per Event (M/S) 4.2/2.4 4.0/2.2 3.7/2.1

Table 1: Dataset statistics. “M/S” denotes values for
events mentioned in multiple vs. single documents.

Figure 2: Distribution of single-document arguments
(annotated) and multi-document arguments (aggregated)
per event by number of documents mentioning the event.

ios.3 Each topic is divided into two subtopics, each
focusing on a distinct yet related seminal event.
This design allows documents from both subtopics
to be presented together as input, facilitating event
aggregation across documents in realistic and com-
plex conditions. More detailed statistics are shown
in Table 1.

We further examine the importance of event con-
solidation by comparing the number of arguments
in single-document settings with those in multi-
document settings, as shown in Figure 2. As more
documents mention the same event, the proportion
of arguments derived from multi-document aggre-
gation increases, emphasizing the need for event ag-
gregation. We also conduct a quantitative analysis
of argument distribution across documents, reveal-
ing considerable redundancy in events mentioned
in multiple documents. While 1,230 arguments
(≈40%) appear in only a single document, the ma-
jority—1,866 arguments (≈60%)—are mentioned
in two or more documents (e.g., 632 in 2 docs, 350
in 3, 222 in 4, etc.), further emphasizing the need
for advanced aggregation techniques, rather than
simple merging. Detailed statistics are in provided
Table 6 in Appendix B.2.

3Events mentioned in a single document are more frequent
than in multiple documents due to ECB+’s original annota-
tions. This pattern reflects the inherent nature of news report-
ing, where each article typically contains unique content.

19268

2.3 Evaluation Metric

Multi-document event extraction poses a unique
challenge: unlike document-level tasks, which typ-
ically evaluate a single event, our task requires
matching multiple events. We propose CEAF-
MEE, a metric specifically designed for multi-
event evaluation. CEAF-MEE is inspired by CEAF-
REE and its variants (Du et al., 2021; Chen et al.,
2023), developed to evaluate argument alignment
within individual events.

CEAF-MEE tackles the multi-event matching
problem using a two-level bipartite matching. At
the first level, predicted events are aligned with
reference events. For predicted events p ∈ P and
reference events r ∈ R, CEAF-MEE finds a one-
to-one alignment g∗ that maximizes the sum of
similarity scores ϕ(p, r) across all matched event
pairs. The similarity function ϕ measures the match
quality of an event pair by averaging trigger and
argument scores. The trigger score quantifies the
span overlap of the two event triggers. The argu-
ment score is computed via a second-level bipartite
matching over multiple arguments, where the edge
weights correspond to the span overlap between
predicted and reference arguments. The final argu-
ment score is obtained by averaging the scores of
matched argument pairs.

Given the optimal alignment g∗, precision and
recall are computed as:

Precision =

∑
(p,r)∈g∗ ϕ(p, r)∑
p∈P ϕ(p, p)

,

Recall =

∑
(p,r)∈g∗ ϕ(p, r)∑
r∈R ϕ(r, r)

.

3 Method

We first introduce the key sub-tasks and their
pipeline organization (Section 3.1), followed by
the SLM- and LLM-based implementations (Sec-
tion 3.2). We then explore LLM sequence-to-
sequence approaches (Section 3.3), and finally
present a collaborative framework integrating LLM
reasoning with SLM specialization (Section 3.4).

3.1 Task Decomposition and Pipeline Design

We design a modular pipeline that builds upon the
standard event extraction task and extends it to
better suit the multi-document setting.
1. Event Trigger Detection
Input: A document di ∈ D.

Output: A set of triggers Ti =
{ti,1, ti,2, . . . , ti,pi}, each ti,j is a text span.

2. Cross-Document Event Coreference Resolu-
tion
Input: The complete set of event triggers T =
{t1, t2, . . . , tp} extracted from all documents.
Output: A set of event clusters CT =
{CT,1, CT,2, . . . , CT,m}, each cluster CT,k con-
tains triggers referring to the same real-world event.

3. Document-Level Event Argument Extraction
Input: A document di ∈ D and its corresponding
triggers Ti = {ti,1, . . . , ti,pi}.
Output: A set of document-level events Edi =
{ei,1, . . . , ei,pi}, where each event ei,j =
(ti,j , Ai,j) consists of a trigger ti,j ∈ Tdi and its
associated arguments Ai,j = {ai,j,1, ai,j,2, . . . }.

4. Cross-Document Argument Coreference Reso-
lution
Input: The full set of event arguments A =⋃

i,j Ai,j extracted from all documents in D.
Output: A set of argument clusters CA =
{CA

1 , C
A
2 , . . . , C

A
l }, each cluster CA

k contains ar-
guments referring to the same real-world referent.

5. Event Canonicalization
Input: A set of event clusters CT and a set of ar-
gument clusters CA.
Output: A set of multi-document events Ê =
{ê1, ê2, . . . , êm}, where each event êi = (t̂i, Âi)
consists of a canonical trigger t̂i representing clus-
ter CT,i, and a set of canonical arguments Âi aggre-
gated from the relevant argument clusters in CA.

The overall structure can be summarized as:4

D → Td →
{

CT

Ed = (t, A) → CA
→ Ê

3.2 Pipeline Approaches

SLM SFT-based Pipeline We build a modular
pipeline using state-of-the-art SLMs, each fine-
tuned for a specific subtask. Document-level mod-
ules operate on individual documents, while cross-
document modules process concatenated document
pairs. Event canonicalization, which requires inte-
grating information across multiple documents and
exceeds SLM input limits, is approximated with
a frequency-based heuristic that selects the most
common surface form for triggers and arguments.
Model architectures are detailed in Appendix C.1.

4The presented pipeline is one reasonable task flow, though
alternative orders may be valid.

19269

Sub-step 2Sub-step 1 Sub-step 1

LLM Reasoning Stage II: Event Consolidation

Event

Coreference

Resolution

SLM-based Pipeline

Trigger

Detection

Argument

Extraction

Argument

Coreference

Resolution

Event-to-cluster

assignment

LLM Reasoning Stage I: Event Composition

Argument

alignment

Step i-1

Trigger

selection

Argument

consolidation

D-Event1 D-Event2 D-Event4 D-Event5D-Event3 D-Event1 D-Event2 D-Event4 D-Event5D-Event3 M-Event2 M-Event2

M-Event1

Step i Step i+1 Step i-1

Sub-step 2

Step i Step i+1

Figure 3: Our collaborative framework. D-Event denotes document-level events, and M-Event denotes aggregated
multi-document events. In each event table, – represents the trigger; other icons represent arguments. Icons with the
same shape indicate the same role, while those with the same color refer to the same underlying referent.

LLM ICL-based Pipeline In parallel, we im-
plement a pipeline variant that replaces fine-tuned
SLM modules with large language models driven
via in-context learning. Each subtask is handled by
a dedicated prompt, avoiding the substantial com-
putational cost that would be required to fine-tune
the large models. Prompting details are provided
in Appendix C.2.

3.3 LLM Sequence-to-Sequence Generation

Unlike the modular pipeline above, this approach
treats multi-document event extraction as a direct
sequence-to-sequence generation task. It bypasses
intermediate steps such as trigger detection, argu-
ment extraction, and coreference resolution, rely-
ing on the LLM to produce final event outputs di-
rectly. We explore two variants: in-context learn-
ing (ICL), where the model is prompted with in-
structions and a few examples, and supervised
fine-tuning (SFT), where the model is trained with
instructions and labeled data. Both variants gener-
ate canonicalized events without requiring explicit
intermediate processing. Prompting details are pro-
vided in Appendix C.3.

3.4 Collaborative Framework with LLM
Reasoning

Our framework, as illustrated in Figure 3, starts
with a fine-tuned SLM-based pipeline that gener-
ates initial event clusters—each corresponding to
multiple document-level events—and their associ-
ated argument clusters. This is followed by two
primary LLM-driven reasoning stages: event com-
position and event consolidation.

3.4.1 Reasoning Stage I: Event Composition
In the first reasoning stage, an LLM agent conducts
a multi-step heuristic search over possible event
compositions, jointly clustering document-level
events and aligning their arguments. Guided by
the initial clusters from the SLM pipeline and the
global context, the agent iterates over all document-
level events e ∈ ⋃

d∈D Ed, assigning each event to
an event cluster C ′

T and simultaneously iterating
over its associated arguments to update the corre-
sponding argument clusters C ′

A.

Event-to-cluster assignment For each event e,
the LLM evaluates its compatibility with each
candidate event cluster C ′

i ∈ C ′
T , where C ′

i ⊆⋃
d∈D Ed contains multiple document-level events.

The LLM assigns a discrete relevance score si ∈
{1, 2, 3, 4, 5} to reflect contextual alignment, trig-
ger synonymy, and argument overlap. This deci-
sion is framed as a comparative ranking task, where
the LLM integrates global context with structural
cues from the SLM predictions. If the highest score
exceeds a threshold θ, e is merged into the corre-
sponding cluster C ′

i∗ ; otherwise, a new cluster is
initialized for e.

To improve LLM efficiency, we adopt two strate-
gies to reduce the candidate cluster search space.
First, in core event–based cluster initialization,
core events are selected as seeds based on their con-
nectivity within the SLM-predicted cluster, applied
to clusters with at least three document-level events.
Second, in trigger-based cluster grouping, event
clusters are organized into coarse buckets based
on trigger synonymy, identified by the LLM agent.
The LLM then restricts its reasoning to the relevant

19270

bucket, avoiding unnecessary comparisons with
unrelated clusters.

Argument alignment Once an event e is as-
signed to an event cluster C ′

i∗ , each of its arguments
akj ∈ Ae is evaluated for alignment with each
candidate argument cluster CA′

j ∈ C ′
A,i∗ , where

C ′
A,i∗ ⊆ C ′

A denotes the set of argument clusters
associated with C ′

i∗ . If a suitable argument cluster
is identified, the argument is merged into it; other-
wise, a new argument cluster is created. The LLM
considers both role-level semantic compatibility
and coreference cues derived from the initial SLM
predictions. Crucially, the LLM is encouraged to
override SLM predictions when contextually jus-
tified—for example, aligning arguments with dif-
ferent SLM-assigned roles but semantically equiv-
alent referents, or rejecting SLM-suggested links
that conflict with the broader discourse context.

Through iterative reasoning, both the event clus-
ter structure C ′

T and argument clusters C ′
A gradu-

ally evolve toward greater internal coherence.

3.5 Reasoning Stage II: Event Consolidation

In the second reasoning stage, a separate LLM
agent builds upon the intermediate event and argu-
ment clusters C ′

T and C ′
A from the previous stage

to iteratively perform cluster-level reasoning. The
agent consolidates these clusters into a set of canon-
ical events Ê = {ê1, ê2, . . . , êm}. Each reasoning
step comprises two subtasks:

Trigger selection The LLM agent selects a
canonical trigger t̂i from the set of candi-
date triggers ti,1, ti,2, . . . , ti,m, which are ex-
tracted from the constituent document-level events
ei,1, ei,2, . . . , ei,m ⊆ C ′

i.

Argument consolidation The LLM agent jointly
assesses all argument clusters C ′

A,i ⊆ C ′
A linked

to C ′
i. It first evaluates the relevance of each argu-

ment cluster to the event, filtering out those that
lack semantic coherence. Subsequently, the LLM
iteratively selects a canonical argument from each
retained cluster, which together compose the final
argument set Âi. The relevance evaluation primar-
ily focuses on two types of errors propagated from
earlier stages: argument extraction errors, which
involve filtering out arguments that are semanti-
cally or factually inconsistent with the event’s core
meaning; and argument coreference errors, which
require removing redundant arguments that refer to
the same underlying referent.

This process jointly analyzes all argument clus-
ters, leveraging the LLM’s ability to generalize
from the majority of trustworthy arguments while
revising outliers, ensuring semantic consistency
and eliminating redundancy without relying on its
internal standards.

All prompting details are in Appendix C.4. To
further clarify the components of our method, we
provide a running example in Appendix C.5.

4 Experiments

4.1 Experimental Setup
Model Details All LLM ICL experiments
are conducted using the DeepSeek-V3
model (DeepSeek-AI, 2024) with the tem-
perature set to 0 to reduce randomness. Each
ICL experiment is run three times, and we report
the average results. LLM SFT experiments are
conducted with the Qwen-3-14B model (Qwen-
Team, 2025). For SLMs in the pipeline, we use the
default configurations from the original papers,
with details in Appendix C.1.

Evaluation Metric For CEAF-MEE, we evaluate
trigger and argument matches using both exact and
head match. Exact match requires full span overlap,
while head match follows Li et al. (2021), allowing
partial matches by comparing the head words of
predicted and gold spans. If the head words align,
the prediction is considered correct. We extract
head words using the spaCy NLP toolkit (Honnibal
et al., 2020) with the en_core_web_sm model.

4.2 Main Results
The overall performance comparison is shown in
Table 2. Our collaborative method significantly
outperforms all baselines in both exact and head
match metrics, demonstrating its effectiveness for
the task. Nevertheless, the relatively low absolute
scores underscore the inherent difficulty of the task.
Specifically, we observe the following:

First, when comparing the pipeline and seq2seq
approaches, we observe that, regardless of whether
SFT or ICL is employed, the pipeline consistently
outperforms seq2seq. In terms of exact match F1,
the pipeline achieves 10% higher performance with
SFT and 4.3% higher with ICL. This difference is
primarily driven by recall, with the SFT pipeline
achieving 14.8% higher recall and the ICL pipeline
achieving 8.2% higher recall. These results sug-
gest that the pipeline method we designed is better
suited to capture the full range of requirements

19271

Method
Exact match Head match

P R F1 P R F1

Pipeline
SLM SFT 31.4 45.0 35.6 36.6 52.5 41.6
LLM ICL 14.2 13.0 12.5 23.1 21.0 20.2

Seq2seq
LLM SFT 27.8 30.2 26.6 34.0 36.9 32.7
LLM ICL 32.9 4.8 8.2 42.5 6.0 10.2

Our collaborative 37.7 48.4 41.2 43.6 55.8 47.6

Table 2: Multi-document event extraction results on
ECB++. Our Collaborative method outperforms the
baselines with statistically significant gains in both exact
and head match F1 (paired t-test, p < 0.01).

for this complex task, while seq2seq-based meth-
ods face significant challenges when generating di-
rectly. These trends hold true for both exact match
and head match metrics.

Next, when comparing SFT with ICL, SFT
clearly outperforms ICL, with a 23.1% higher ex-
act match F1 in the pipeline setting and an 18.4%
improvement in seq2seq. This improvement is pri-
marily due to the significantly higher recall scores
achieved by SFT (by 20–30%), highlighting the im-
portance of supervised learning, which enables the
model to better accommodate the task’s compre-
hensive requirements. In contrast, the instruction-
following and example-driven nature of ICL is in-
sufficient to meet the task’s complex and nuanced
requirements. These trends remain consistent for
both exact match and head match metrics.

Additionally, SFT achieves 17.2% higher pre-
cision in the pipeline setting compared to ICL,
whereas in the seq2seq case, ICL outperforms SFT
in precision. This further suggests that seq2seq SFT
methods face significant difficulties in handling the
task’s complexity, which can potentially undermine
the effectiveness of the underlying LLM.

Finally, our collaborative method demonstrates
improvement over both the pipeline and seq2seq ap-
proaches. Compared to the SLM pipeline method,
our approach boosts exact match F1 by 5.6% and
head match F1 by 6%. Notably, recall improves by
3.5% over the SLM pipeline, suggesting that our
collaborative framework enhances the initial SLM
outputs by learning from these predictions and in-
corporating more comprehensive global reasoning.
Moreover, precision increases by 3.8% over LLM
ICL, highlighting that our multi-step effectively
leverages the LLM’s capabilities while preserving
its inherent strengths. This allows our method to
improve the SLM predictions without diminishing
the LLM’s core performance.

Figure 4: Disentangled evaluation. “Overall” denotes
the original evaluation, “Coref.” measures event coref-
erence, and “Consol.” assesses argument consolidation.

4.3 Disentangled Analysis

Multi-document event extraction involves both link-
ing coreferential events and consolidating informa-
tion across events, particularly focusing on argu-
ments. To disentangle these components and as-
sess them independently, we perform an evaluation-
stage decomposition. In the standard evaluation,
predicted events are aligned with gold events us-
ing both triggers and arguments as matching cri-
teria. Under this decomposition, event corefer-
ence resolution is evaluated by removing all ar-
guments and considering only triggers. Event argu-
ment consolidation is assessed on matched event
pairs—excluding unmatched events that would oth-
erwise receive a zero score—thereby isolating the
quality of argument integration while minimizing
the influence of coreference errors.

As shown in Figure 4, the overall score is sub-
stantially lower than the separate coreference and
consolidation scores, highlighting the inherent com-
plexity of the task. The consolidation score re-
mains lower than the coreference score, emphasiz-
ing the difficulty of integrating argument informa-
tion across multiple documents. Our collaborative
approach outperforms the fine-tuned SLM pipeline
by 8% F1 points on coreference evaluation and 4%
F1 points on consolidation evaluation (under both
exact and head match settings), demonstrating its
effectiveness in addressing the key challenges of
multi-document event extraction.

4.4 Ablation Study

To better understand the contribution of each com-
ponent, we start with the complete reasoning pro-
cess and progressively ablate key modules. To
enable more fine-grained analysis, we treat the sub-
steps of event composition—event assignment and
argument alignment—as stage 1.1 and stage 1.2,

19272

Model Variant Exact F1 Head F1

SLM pipeline 35.6 41.6
Full collaborative model 41.2 47.6
- stage 1.1 36.5 42.6
- stage 1.2 & stage 2 39.3 45.2
- stage 2 39.9 46.0
- stage 1.2 41.0 47.1

Table 3: Step-by-step ablation of reasoning modules in
the collaborative framework.

respectively, and ablate them individually.
From Table 3, we observe that event assignment

(stage 1.1) is of primary importance, as its removal
leads to the most drastic performance decline, re-
sulting in a 5% drop in the head F1 score. This step
not only corrects event coreference but also lays
the foundation for subsequent event consolidation.
Next, argument alignment across events (stage 1.2)
and cluster-level argument consolidation (stage 2)
play crucial roles in final event canonicalization,
with their removal causing a 2.6% decrease over-
all. More specifically, removing stage 1.2 alone
leads to a 1.6% drop, while removing stage 2 alone
results in a 0.5% decrease. These results indicate
that the two components contribute complementar-
ily, each having a positive impact on the overall
performance.

A detailed case study illustrating the impact of
these components is provided in Appendix D.

4.5 Extended Analysis of LLM Capabilities
LLM Self-Consistency We adopt a self-
consistency strategy within our method, inspired
by Yao et al. (2023), sampling each reasoning step
three times, and using a dedicated LLM agent
to select the most plausible output via a voting
prompt. As shown in Table 4, unlike prior studies
where self-consistency yields substantial gains,
our approach yields only marginal improvements.
We attribute this to two main factors. First,
our carefully designed prompts help reduce
sampling variance, producing relatively stable
outputs. Second, a relatively simple voting prompt
design—such as “analyze the choices below, con-
clude which better follows the instruction”—lacks
clear evaluative criteria in our task, making it
less effective at consistently resolving subtle
differences between outputs.

Chat Model vs. Reasoning Model We com-
pare two LLM backbones, DeepSeek-V3 (chat) and
DeepSeek-R1 (reasoning) (DeepSeek-AI, 2025),

Method
Exact match Head match

P R F1 P R F1

Collaborative 37.7 48.4 41.2 43.6 55.8 47.6
+ self-consistency 38.1 48.3 41.3 43.6 55.9 47.7
+ reasoning-backbone 36.0 47.2 39.6 42.0 55.2 46.3

Table 4: Effect of LLM self-consistency and reasoning
backbone on model performance.

Figure 5: Impact of LLM model size on seq2seq SFT
performance.

on our method. As shown in Table 4, R1 performs
consistently worse. This may be attributed to a mis-
alignment between the model’s internal reasoning
and our task-specific logic. A basic observation
is that, even when explicitly instructed to return
“none” if no suitable cluster is found, R1 frequently
returns a similar cluster instead.

Impact of Model Size on LLM seq2seq SFT
We evaluate different Qwen3 LLMs (8B and 14B)
as backbones for the seq2seq SFT approach, with
results illustrated in Figure 5. The performance
gap between Qwen3-8B and Qwen3-14B is rela-
tively small, especially when compared to the gap
with the SLM pipeline and our method. This sug-
gests that simply increasing model size may be
insufficient to address the structural and contextual
complexity of the task. Due to GPU memory limi-
tations, we were unable to fine-tune larger models
such as Qwen3-32B.

4.6 Computational Efficiency

We assess the efficiency of different methods in
terms of computational resources and time. The
SLM-based pipeline operates efficiently on a sin-
gle GPU (e.g., NVIDIA V100), with each module
training in a few hours and the entire process com-
pleting within a dozen hours.

Our collaborative method, which augments the
SLM pipeline with LLMs for multi-step reasoning,
is divided into two stages. The first stage requires a
large search space, but we optimize it as detailed in

19273

our method, significantly reducing both time and
computational cost. In total, the combined time for
both stages is under 12 hours, depending on the
performance of the DeepSeek API.

For other LLM-based methods, the LLM
seq2seq SFT method, training a 14B model on 8
NVIDIA 80GB A100 GPUs, takes several hours.
The LLM seq2seq ICL and LLM pipeline ICL
methods, both utilizing the DeepSeek API, require
a few hours and about a dozen hours, respectively.

5 Related Work

Event Extraction In recent years, deep learn-
ing has significantly advanced the field of event
extraction. Most existing approaches rely on fine-
tuning pretrained language models such as BERT
or RoBERTa to model event-related semantics and
dependencies within text (Wadden et al., 2019;
Yang et al., 2019; Li et al., 2020; Sheng et al., 2021).
Some methods further incorporate components like
graph neural networks to better model the interac-
tions among events and their arguments (Cao et al.,
2021; Sun et al., 2022). Nevertheless, event extrac-
tion remains a challenging task due to the complex-
ity of its underlying schema—requiring accurate
identification of event types, triggers, and multi-
ple argument roles within intricate contexts. For
example, document-level role-filler extraction on
MUC-4 yields only around 50% F1 (Du and Cardie,
2020), while argument extraction on WikiEvents
barely exceeds 60% (Lin et al., 2025).

Combination of LLM and SLM for IE Large
language models have shown strong capabilities in
understanding and reasoning across a wide range
of NLP tasks—e.g., translation, summarization,
and even math problem solving—often with just
a few examples (Wang et al., 2023; Zhang et al.,
2023; Xu et al., 2024; Laban et al., 2023). How-
ever, LLM-based in-context learning still gener-
ally underperforms compared to supervised SLMs
such as RoBERTa in the domain of information ex-
traction (Han et al., 2023; Li et al., 2023a; Huang
et al., 2024). This gap largely stems from the in-
herent complexity of IE tasks, whose definitions
often vary across different settings and datasets,
making it difficult to fully specify the task using
only a natural language instruction and a few exam-
ples (Peng et al., 2023). To address this limitation,
recent work has explored combining LLMs with
SLMs to leverage their complementary strengths.
Specifically, LLMs offer broad generalization capa-

bilities and strong contextual understanding across
diverse tasks, while SLMs provide better efficiency
and can be fine-tuned for high accuracy on specific
tasks. By integrating these advantages, such hy-
brid approaches aim to achieve more robust and
adaptable performance (Wan et al., 2023; Ma et al.,
2023; Xu et al., 2023; Li et al., 2023b; Min et al.,
2024; Chen et al., 2024; Nath et al., 2024; Ding
et al., 2024; Zhu et al., 2024; Ye et al., 2024).

Cross-document Event Reasoning Early work
has explored extending the scope of event beyond
single documents. Ji and Grishman (2008) lever-
ages clusters of topically related documents to en-
hance ACE event extraction by combining global
cross-document evidence with local predictions. Ji
et al. (2009) further introduces the task of cross-
document event extraction and tracking, linking
events involving the same centroid entity along
a timeline. While exploring cross-document rea-
soning, they do not fully address event-level ag-
gregation—consolidating partial event information
across sources into coherent representations.

Recently, Gao et al. (2024) introduced a Chinese
dataset, CLES, for cross-document event extrac-
tion. While it shares the high-level objective of
event aggregation with our work, the two differ sig-
nificantly in task formulation and dataset character-
istics. Specifically, they merge related events into
broad conceptual units, abstracting from trigger-
level details, whereas we maintain fine-grained
trigger annotations to model sub-events like “autho-
rized”, “launched”, and “killed” within an airstrike.
Additionally, CLES is constructed from Chinese
Wikipedia and leverages entity linking to a knowl-
edge base for argument aggregation, whereas our
ECB++ dataset is based on English news articles
and uses coreference resolution to capture non-
canonical mentions such as “the child” or “she”.

6 Conclusion

We investigate the task of multi-document event
extraction, focusing on the key challenge of event
aggregation. To support this, we establish a new
benchmark and design a tailored evaluation metric.
To address the complexity of event alignment and
consolidation, we propose a collaborative frame-
work: SLM components manage key local subtasks,
while LLM components perform global reasoning.
The multi-step reasoning process explicitly gen-
erates rationales by integrating outputs from the
SLMs and leveraging long-context understanding.

19274

Limitations

While our framework yields notable gains over ex-
isting baselines, it still depends considerably on the
performance of fine-tuned SLMs for handling local
subtasks. Errors from SLM agents can propagate
to later stages, limiting the overall effectiveness of
the system. Moreover, the current setup enforces
a relatively fixed division of roles: SLMs are re-
sponsible for local decisions, while LLMs perform
global reasoning. This separation may limit the
adaptability of the system. Future work could ex-
plore more dynamic interaction between LLMs and
SLMs—not only allowing LLMs to intervene in
local decisions when needed, but also using LLM
rationales and predictions to guide and refine the
fine-tuning of SLMs.

Additionally, due to GPU memory limitations,
we were unable to fine-tune larger models such
as Qwen3-32B. Fine-tuning LLMs is an important
research direction. A potential avenue for improve-
ment lies in fine-tuning decomposed intermediate
steps rather than fine-tuning sequence-to-sequence
generation. This approach could help alleviate the
resource challenges associated with training LLMs,
while still benefiting from the refined reasoning at
each step.

Ethical Considerations

We adhere to the ACL Code of Ethics and ensure
that no private or non-public data is used in this
work. Our research relies on the widely-used, pub-
licly available dataset ECB+ (Cybulska and Vossen,
2014) and focuses on objectively extracting event
information.

Acknowledgments

We would like to thank anonymous reviewers for
their insightful comments to help improve the pa-
per. This work has been supported by the National
Natural Science Foundation of China (NSFC) Key
Project under Grant Number 62336006 and the Na-
tional Natural Science Foundation of China (NSFC)
Key Project under Grant Number 62161160339.

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, Volume 1, pages 86–90,

Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin
Li, and Philip S. Yu. 2021. Knowledge-preserving
incremental social event detection via heterogeneous
gnns. In Proceedings of the Web Conference 2021,
WWW ’21, page 3383–3395, New York, NY, USA.
Association for Computing Machinery.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar
Joshi, and Ido Dagan. 2021. Cross-document coref-
erence resolution over predicted mentions. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 5100–5107, Online.
Association for Computational Linguistics.

Wei Chen, Lili Zhao, Zhi Zheng, Tong Xu, Yang Wang,
and Enhong Chen. 2024. Double-checker: Large
language model as a checker for few-shot named
entity recognition. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
3172–3181, Miami, Florida, USA. Association for
Computational Linguistics.

Yunmo Chen, William Gantt, Weiwei Gu, Tongfei Chen,
Aaron White, and Benjamin Van Durme. 2023. Itera-
tive document-level information extraction via imita-
tion learning. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1858–1874, Dubrovnik,
Croatia. Association for Computational Linguistics.

Agata Cybulska and Piek Vossen. 2014. Using a sledge-
hammer to crack a nut? lexical diversity and event
coreference resolution. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC‘14), pages 4545–4552, Reyk-
javik, Iceland. European Language Resources Asso-
ciation (ELRA).

DeepSeek-AI. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bowen Ding, Qingkai Min, Shengkun Ma, Yingjie Li,
Linyi Yang, and Yue Zhang. 2024. A rationale-
centric counterfactual data augmentation method for
cross-document event coreference resolution. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 1112–1140, Mexico City,
Mexico. Association for Computational Linguistics.

19275

https://doi.org/10.3115/980845.980860
https://doi.org/10.1145/3442381.3449834
https://doi.org/10.1145/3442381.3449834
https://doi.org/10.1145/3442381.3449834
https://doi.org/10.18653/v1/2021.findings-acl.453
https://doi.org/10.18653/v1/2021.findings-acl.453
https://doi.org/10.18653/v1/2024.findings-emnlp.180
https://doi.org/10.18653/v1/2024.findings-emnlp.180
https://doi.org/10.18653/v1/2024.findings-emnlp.180
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://doi.org/10.18653/v1/2023.eacl-main.136
https://aclanthology.org/L14-1646/
https://aclanthology.org/L14-1646/
https://aclanthology.org/L14-1646/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2024.naacl-long.63
https://doi.org/10.18653/v1/2024.naacl-long.63
https://doi.org/10.18653/v1/2024.naacl-long.63

Xinya Du and Claire Cardie. 2020. Document-level
event role filler extraction using multi-granularity
contextualized encoding. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8010–8020, Online. Association
for Computational Linguistics.

Xinya Du, Alexander Rush, and Claire Cardie.
2021. GRIT: Generative role-filler transformers for
document-level event entity extraction. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 634–644, Online. Association
for Computational Linguistics.

Qiang Gao, Zixiang Meng, Bobo Li, Jun Zhou, Fei
Li, Chong Teng, and Donghong Ji. 2024. Harvest-
ing events from multiple sources: Towards a cross-
document event extraction paradigm. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 1913–1927, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang,
Lu Liu, and Xiang Wan. 2023. Is information extrac-
tion solved by chatgpt? an analysis of performance,
evaluation criteria, robustness and errors. arXiv
preprint arXiv:2305.14450, page 48.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu
Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei Chang,
Nanyun Peng, and Heng Ji. 2024. TextEE: Bench-
mark, reevaluation, reflections, and future challenges
in event extraction. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
12804–12825, Bangkok, Thailand. Association for
Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Heng Ji, Ralph Grishman, Zheng Chen, and Prashant
Gupta. 2009. Cross-document event extraction and
tracking: Task, evaluation, techniques and chal-
lenges. In Proceedings of the International Con-
ference RANLP-2009, pages 166–172, Borovets, Bul-
garia. Association for Computational Linguistics.

Philippe Laban, Wojciech Kryscinski, Divyansh Agar-
wal, Alexander Fabbri, Caiming Xiong, Shafiq Joty,
and Chien-Sheng Wu. 2023. SummEdits: Measuring
LLM ability at factual reasoning through the lens
of summarization. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9662–9676, Singapore. Associa-
tion for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023a. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. arXiv preprint arXiv:2304.11633.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 829–838, Online. Association
for Computational Linguistics.

Junpeng Li, Zixia Jia, and Zilong Zheng. 2023b. Semi-
automatic data enhancement for document-level re-
lation extraction with distant supervision from large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5495–5505, Singapore. Associa-
tion for Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Xingjian Lin, Shengfei Lyu, Xin Wang, Qiuju Chen,
and Huanhuan Chen. 2025. Generation-augmented
and embedding fusion in document-level event argu-
ment extraction. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 4078–4084, Abu Dhabi, UAE. Association for
Computational Linguistics.

Yubo Ma, Yixin Cao, Yong Hong, and Aixin Sun. 2023.
Large language model is not a good few-shot informa-
tion extractor, but a good reranker for hard samples!
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10572–10601, Sin-
gapore. Association for Computational Linguistics.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: Prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

19276

https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2024.findings-acl.114
https://doi.org/10.18653/v1/2024.findings-acl.114
https://doi.org/10.18653/v1/2024.findings-acl.114
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2024.findings-acl.760
https://doi.org/10.18653/v1/2024.findings-acl.760
https://doi.org/10.18653/v1/2024.findings-acl.760
https://aclanthology.org/P08-1030/
https://aclanthology.org/P08-1030/
https://aclanthology.org/R09-1032/
https://aclanthology.org/R09-1032/
https://aclanthology.org/R09-1032/
https://doi.org/10.18653/v1/2023.emnlp-main.600
https://doi.org/10.18653/v1/2023.emnlp-main.600
https://doi.org/10.18653/v1/2023.emnlp-main.600
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://doi.org/10.18653/v1/2023.emnlp-main.334
https://aclanthology.org/P13-1008/
https://aclanthology.org/P13-1008/
https://aclanthology.org/P13-1008/
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://aclanthology.org/2025.coling-main.274/
https://aclanthology.org/2025.coling-main.274/
https://aclanthology.org/2025.coling-main.274/
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466

6759–6774, Dublin, Ireland. Association for Compu-
tational Linguistics.

Qingkai Min, Qipeng Guo, Xiangkun Hu, Songfang
Huang, Zheng Zhang, and Yue Zhang. 2024. Syner-
getic event understanding: A collaborative approach
to cross-document event coreference resolution with
large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2985–
3002, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Abhijnan Nath, Shadi Manafi Avari, Avyakta Chelle,
and Nikhil Krishnaswamy. 2024. Okay, let‘s do this!
modeling event coreference with generated rationales
and knowledge distillation. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 3931–3946, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li, Yun-
jia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng, Bin Xu,
Lei Hou, and 1 others. 2023. When does in-context
learning fall short and why? a study on specification-
heavy tasks. arXiv preprint arXiv:2311.08993.

Qwen-Team. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Jiawei Sheng, Shu Guo, Bowen Yu, Qian Li, Yiming
Hei, Lihong Wang, Tingwen Liu, and Hongbo Xu.
2021. CasEE: A joint learning framework with cas-
cade decoding for overlapping event extraction. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 164–174, Online.
Association for Computational Linguistics.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng
Fu, Cheng Ji, and Philip S Yu. 2022. Graph struc-
ture learning with variational information bottleneck.
Proceedings of the AAAI Conference on Artificial
Intelligence, 36(4):4165–4174.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
GPT-RE: In-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3534–3547, Singapore.
Association for Computational Linguistics.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang,
Dian Yu, Shuming Shi, and Zhaopeng Tu. 2023.

Document-level machine translation with large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16646–16661, Singapore. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Runxin Xu, Tianyu Liu, Lei Li, and Baobao Chang.
2021. Document-level event extraction via heteroge-
neous graph-based interaction model with a tracker.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3533–3546, Online. Association for Computational
Linguistics.

Xin Xu, Yuqi Zhu, Xiaohan Wang, and Ningyu Zhang.
2023. How to unleash the power of large language
models for few-shot relation extraction? In Proceed-
ings of the Fourth Workshop on Simple and Efficient
Natural Language Processing (SustaiNLP), pages
190–200, Toronto, Canada (Hybrid). Association for
Computational Linguistics.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,
Zhengxiao Du, Zhao Wenyi, Jie Tang, and Yux-
iao Dong. 2024. ChatGLM-math: Improving math
problem-solving in large language models with a
self-critique pipeline. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
9733–9760, Miami, Florida, USA. Association for
Computational Linguistics.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and
Jun Zhao. 2018. DCFEE: A document-level Chi-
nese financial event extraction system based on au-
tomatically labeled training data. In Proceedings
of ACL 2018, System Demonstrations, pages 50–55,
Melbourne, Australia. Association for Computational
Linguistics.

Hang Yang, Dianbo Sui, Yubo Chen, Kang Liu, Jun
Zhao, and Taifeng Wang. 2021. Document-level
event extraction via parallel prediction networks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6298–
6308, Online. Association for Computational Lin-
guistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284–

19277

https://doi.org/10.18653/v1/2024.acl-long.164
https://doi.org/10.18653/v1/2024.acl-long.164
https://doi.org/10.18653/v1/2024.acl-long.164
https://doi.org/10.18653/v1/2024.acl-long.164
https://doi.org/10.18653/v1/2024.naacl-long.218
https://doi.org/10.18653/v1/2024.naacl-long.218
https://doi.org/10.18653/v1/2024.naacl-long.218
https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/2021.findings-acl.14
https://doi.org/10.18653/v1/2021.findings-acl.14
https://doi.org/10.1609/aaai.v36i4.20335
https://doi.org/10.1609/aaai.v36i4.20335
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.emnlp-main.214
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2021.acl-long.274
https://doi.org/10.18653/v1/2021.acl-long.274
https://doi.org/10.18653/v1/2023.sustainlp-1.13
https://doi.org/10.18653/v1/2023.sustainlp-1.13
https://doi.org/10.18653/v1/2024.findings-emnlp.569
https://doi.org/10.18653/v1/2024.findings-emnlp.569
https://doi.org/10.18653/v1/2024.findings-emnlp.569
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/P18-4009
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522

5294, Florence, Italy. Association for Computational
Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

Junjie Ye, Nuo Xu, Yikun Wang, Jie Zhou, Qi Zhang,
Tao Gui, and Xuanjing Huang. 2024. Llm-da:
Data augmentation via large language models for
few-shot named entity recognition. arXiv preprint
arXiv:2402.14568.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023.
Extractive summarization via ChatGPT for faithful
summary generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 3270–3278, Singapore. Association for Com-
putational Linguistics.

Mengna Zhu, Kaisheng Zeng, JibingWu JibingWu, Li-
hua Liu, Hongbin Huang, Lei Hou, and Juanzi Li.
2024. LC4EE: LLMs as good corrector for event
extraction. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 12028–12038,
Bangkok, Thailand. Association for Computational
Linguistics.

19278

https://doi.org/10.18653/v1/2023.findings-emnlp.214
https://doi.org/10.18653/v1/2023.findings-emnlp.214
https://doi.org/10.18653/v1/2024.findings-acl.715
https://doi.org/10.18653/v1/2024.findings-acl.715

A Illustrative Examples of SLM Errors
and LLM Rationales

As noted in the introduction, multi-document event
extraction challenges for both small language
model supervised fine-tuning pipeline and large
language model sequence-to-sequence generation.
This appendix provides concrete illustrations to
clarify (i) representative errors arising in SLM
pipeline subtasks and (ii) what kinds of explicit
rationales are required for LLM reasoning to sup-
port performance and interpretability but are not
easily supplied through prompts.

A.1 SLM Pipeline Errors

We illustrate two representative sources of errors
in SLM pipeline:

(a) Document-level argument extraction. This
component has an F1 score below 70%. For exam-
ple, given the following source sentence:

“A strong earthquake rattled Indonesia’s
West Papua province Wednesday just
days after a powerful quake levelled
buildings and killed one person... The
6.1-magnitude quake was the latest in
a series of dozens of powerful tremors
to have hit the region since 7.6 and 7.5
magnitude quakes that struck off the
provincial capital Manokwari on Sun-
day... Wednesday’s shallow quake hit
at 7:48 am (2248 GMT Tuesday)...”

The SLM system outputs are shown in Table 5.

(b) Cross-document event coreference. This
component has an F1 score below 80%. Consider
the following text:

“Earlier this morning, an earthquake(1)
with a preliminary magnitude of 2.0
struck near The Geysers, according to
the USGS. The earthquake(2) struck at
about 7:30 a.m. and had a depth of 1.4
miles, according to the USGS. The 4.2-
magnitude earthquake(3) was recorded
at approximately 9:27 a.m. Sunday, ac-
cording to the US Geological Survey,
which originally had rated the quake(4)
as 4.4 in magnitude.”

All four mentions (1–4) refer to the same seismic
event trigger, but the SLM pipeline linked only

(1) and (2), leaving (3) and (4) unclustered. In a
separate report on the same topic:

“A 4.2-magnitude earthquake(5) shook
a remote area of eastern Sonoma County
on Sunday morning, the largest in a flurry
over the weekend, according to the U.S.
Geological Survey.”

Here, SLM correctly linked (5) to quake (4)
but still failed to reconnect mentions (3) and (4)
back into the main event cluster, resulting in a frag-
mented representation.

A.2 Explicit Rationales Required for LLMs

To illustrate the structured reasoning process, we
present one representative iteration from Reasoning
Stage I of Event Composition.

Input: Event Clusters and Candidate Event
(AXXX refers to the argument cluster id predicted
by SLM):

Event Cluster 1 (EC1)

Trigger: injured
Human Participant: dozens (A777)
Non-Human Participant: quake (A768)
Time: Tuesday (A784)
Location: in a region (A783)

Event Cluster 2 (EC2)

Trigger: injured
Human Participant: others (A781)
Non-Human Participant: quakes (A768)
Time: Sunday (A764)
Location: Papua, eastern Indonesia (A848)

Candidate Event

Trigger: injuring
Human Participant: dozens (A777)
Non-Human Participant: quake (A768)
Location: across the affected region (A798)

19279

Argument Role Prediction Gold Standard Match?

Human Participant person one person No (incomplete)
Non-Human Participant 7.6 quake No (role confusion)
Time Wednesday on Sunday No (misaligned)
Location Indonesia’s West Papua province Indonesia’s West Papua province Yes

Table 5: Examples of argument extraction errors in the SLM pipeline.

Sub-step 1: Event-to-cluster assignment
Feature Comparison

Context
EC1: Same event: 6.1 quake in Aceh
EC2: Different event: Quake in Papua
Decision: EC1 aligned
Trigger
EC1: injuring ≈ injured
EC2: injuring ≈ injured
Decision: Both match
Human Participant
EC1: dozens (A777)
EC2: others (A781)
Decision: Exact match with EC1
Non-Human Participant
EC1: quake (A768)
EC2: quakes (A768)
Decision: Shared across both
Time
EC1: (missing) vs. Tuesday (A784)
EC2: (missing) vs. Sunday (A764)
Decision: No contradiction with EC1
Location
EC1: region (A798) vs. region (A783)
EC2: region (A798) vs. Papua (A848)
Decision: Consistent with EC1

LLM Decision

Relevance Level: e (Same news, synony-
mous triggers, consistent arguments)
Action: Merge the candidate event into EC1

Sub-step 2: Argument alignment
Argument Alignment

Human Participant: dozens (A777)
LLM Reasoning: Exact match confirms
identity
Non-Human Participant: quake (A768)
LLM Reasoning: Exact match confirms
same entity
Location: in a region, across the affected
region (A783, A798)
LLM Reasoning: Semantically similar, in-
ferred same location
Time: Tuesday (A784)
LLM Reasoning: Candidate lacks explicit
time but does not contradict Tuesday; in-
ferred same

19280

B Dataset Details

B.1 Annotation Guidelines
B.1.1 Event Definition
In line with the TimeML specification, we define an
event as a situation that “happens or occurs”. Fol-
lowing the ECB+ guidelines, we categorize events
into several fine-grained types:

1. Occurrence: These events describe things
that happen in the world, such as die, crash,
build, merge, sell, land, arrive, distribute,
eruption, explosion.

2. Perception: Actions involving the perception
of another event, e.g., see, hear, watch, feel,
glimpse, behold, listen, overhear.

3. Reporting: Actions related to reporting by
people or organizations, such as say, report,
tell, announce, explain, cite, state.

4. Aspectual: These events focus on different
facets of event development, such as begin,
finish, stop, continue, capturing initiation, cul-
mination, and continuation.

5. State: Denotes states of being or circum-
stances, including expressions like be on
board, hope, live, shortage, was an actor, the
crisis, peace. Often appears in predicative
constructions (e.g., to be + nominal/adjectival
phrase).

6. Causative: Describes causal actions, such as
cause, lead to, result, facilitate, induce, pro-
duce, bring about.

7. Generic: Used for generic events not an-
chored in specific time or space.

Each event is represented as a trig-
ger–arguments structure, where:

• Trigger: A word or phrase signaling the oc-
currence of the event.

• Arguments: Entities or events fulfilling spe-
cific semantic roles.

The arguments typically include:

• Time: When something happens or holds true.

• Location: Where something happens or holds
true.

• Participants: Who or what is involved, di-
vided into:

– Human Participants
– Non-Human Participants

The example below shows a structured event
representation:

Event Components Value

Trigger injured
Time on Tuesday
Location 1 in Indonesia’s Aceh province
Location 2 western tip of Sumatra island
Human Participant dozens of villagers
Non-Human Participant 6.1-magnitude quake

B.1.2 Annotation of Event Arguments
Our annotation process builds on the Event Coref-
erence Bank Plus (ECB+), a widely used public
benchmark for cross-document event coreference
resolution. The ECB+ corpus contains 982 news
articles spanning 43 topics, including earthquakes,
criminal cases, and corporate acquisitions.

The objective of our annotation is to identify
arguments for each event mention in a document.
The event triggers are inherited directly from the
ECB+ dataset, ensuring consistency with the origi-
nal event coreference annotations.

To streamline the process, we developed a cus-
tom web-based annotation tool. During each anno-
tation session, annotators were presented with:

• A target event pre-annotated from ECB+.

• A full document containing the event.

• A list of candidate arguments, which included:

– Entities (from ECB+).
– Other event mentions from the same doc-

ument (from ECB+).

Annotators are instructed to select the arguments
that semantically fit the target event from the pro-
vided candidate set. To ensure consistency and
semantic accuracy, the following procedures were
followed:

• Annotators were required to consult the
FrameNet database (https://framenet.
icsi.berkeley.edu/framenet_search)
to identify the appropriate semantic frame
corresponding to each target event.

19281

https://framenet.icsi.berkeley.edu/framenet_search
https://framenet.icsi.berkeley.edu/framenet_search

• Based on the selected frame, annotators de-
termined which roles needed to be filled and
matched these with candidate arguments from
the document.

• Annotators are encouraged to select all candi-
dates that satisfied the semantic constraints of
the identified frame.

This two-tiered approach—anchoring event se-
mantics in FrameNet and constraining annotation
to document-internal candidate sets—ensures high
annotation quality and interpretability.

About FrameNet
FrameNet is a lexicographic database based on
frame semantics, a linguistic theory that describes
meaning through conceptual structures called
frames. Each frame represents a typical situation
(e.g., an injury event) and defines the semantic roles
(called frame elements) that participants play in that
situation.

For example, the “injured” event corresponds
to the “Injury” frame, which describes an event
where an Agent causes harm to a Victim. The
corresponding semantic roles are outlined as below:

Semantic Frame

Agent: 6.1-magnitude quake
Explanation: The event causing the injury.

Victim: Dozens of villagers
Explanation: The entities that are injured.

Time: On Tuesday
Explanation: The time when the injury oc-
curred.

Place 1: In Indonesia’s Aceh province
Explanation: The location where the injury
took place.

Place 2: Western tip of Sumatra island
Explanation: Another location where the
injury took place.

Using FrameNet to identify semantic frames and
their elements ensures annotators consistently in-
terpret the roles of event arguments, enhancing the
clarity and quality of the annotations.

B.1.3 Annotation Review
To ensure annotation quality, a review process is
conducted. In this stage, a senior annotator vali-
dates and refines the initial annotations. For each

target event, the senior annotator is provided with
the golden trigger and its annotated arguments from
the first stage.

Following the same procedure as the initial an-
notation, senior annotators are asked to consult
FrameNet to identify the semantic frame evoked by
each trigger. Based on the frame structure, they ver-
ify whether the selected arguments correctly filled
the expected semantic roles (e.g., Agent, Victim,
Time, Place) and whether any required arguments
are missing.

To illustrate the correction process, we provide
the following example:

Original Document

Indian ship thwarts piracy attempt in
Gulf of Aden, 26 pirates arrested. Up-
dated: November 11, 2011, 18:50
IST. Indian Naval ship, INS Sukanya,
thwarted a piracy attack in the Gulf of
Aden and captured three boats of the
pirates. A statement from the Defence
PRO says the incident happened yester-
day when INS Sukanya was escorting a
group of merchant vessels.

Annotation Correction

Semantic Role Argument

Perpetrator pirates
Victim vessels
Instrument boats (added)
Time yesterday
Place Gulf of Aden

Correction Explanation

“Boats” was initially overlooked in the
annotations as a potential Instrument,
representing the object that the pirates
used to carry out the attack. This correc-
tion ensures that all semantic roles are
properly filled.

This protocol allowed us to improve both recall
and precision of argument annotations while main-
taining consistency across the dataset.

B.1.4 Annotation Examples Based on Web UI
To assist with the annotation process, we developed
a custom web-based interface that simplifies the
task of annotating event arguments within a docu-
ment. The web UI allows annotators to view the

19282

full document and select relevant arguments from
a pre-defined list. The interface is designed for
efficiency and ease of use, enabling high-quality
annotations.

To clarify how the annotation process works,
let’s examine examples of a piracy event. As shown
in the Figure 6 and Figure 7, the upper-left box dis-
plays all occurrences of the same “piracy” event
across different documents. By clicking on each
event, the corresponding document appears on the
right side of the interface. The event mentions in
the document are highlighted in blue, while the can-
didate arguments are shown in red. On the lower-
left corner, there is a list of candidate arguments,
which includes both event mentions and entities
that might be relevant to the event.

In the first example (Figure 6), the annotator
selects the following relevant arguments:

Argument Role

ships Vehicle
arms Instrument
attempt Purpose
international waters Location

In the second example (Figure 7), the selected
arguments are:

Argument Role

vessels Victim
in the Gulf of Aden Location
attack Purpose
on 10 Nov 11 Time

Additionally, we provide the FrameNet semantic
frame for the “piracy” event, as shown in Figure 8,
which annotators can reference. This frame helps
annotators correctly identify the semantic roles of
the arguments, such as Perpetrator, Victim, In-
strument, and others. Annotators are instructed to
consult the FrameNet database to select arguments
for each event trigger.

B.2 Dataset Statistic
Table 6 provides a breakdown of argument dis-
tribution across documents. In the case of multi-
document events, a significant portion of the argu-
ments (1,230, or approximately 40%) are unique to
a single document, while the remainder, 1,866 ar-
guments (approximately 60%), appear in multiple
documents. Specifically, a large number of events
are mentioned in two or more documents, with

632 arguments occurring in two documents, 350
in three, and 222 in four, reflecting considerable
redundancy. This redundancy indicates a substan-
tial overlap in the events reported across different
sources, highlighting the need for more sophisti-
cated aggregation techniques to handle repeated
arguments, rather than relying on simple merging
strategies.

In contrast, arguments in single-document events
occur only within one document by definition, with
4,669 such arguments. This reflects the inherent
uniqueness of content in individual news articles,
in stark contrast to the redundancy found in multi-
document events.

19283

Figure 6: Example 1 for the “piracy” event.

Figure 7: Example 2 for the “piracy” event.

Docs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Multi-doc Events 1230 632 350 222 188 130 80 70 58 54 30 20 18 3 4 1 4 2
Single-doc Events 4669 – – – – – – – – – – – – – – – –

Table 6: Argument distribution across documents.

19284

Figure 8: The semantic frame for the piracy event as found in FrameNet, illustrating key roles such as Perpetrator,
Victim, Instrument, and Location.

19285

C Model Implementations

C.1 SLM-based Pipeline Models

Event Trigger Detection We follow the ap-
proach in Cattan et al. (2021), which uses a BERT-
based (Devlin et al., 2019) span scorer with prun-
ing to keep only high-quality candidate triggers on
ECB+ dataset. For each candidate span s ∈ Sd

within document d, a scoring function f(s, d) eval-
uates its likelihood of being an event trigger. The
final trigger set Td is formed by selecting spans
whose scores exceed a predefined threshold τ :

Td = {s ∈ Sd | f(s, d) > τ}.

Cross-Document Event Coreference Resolu-
tion We adopt the method from Cattan et al.
(2021), performing coreference resolution over pre-
dicted events rather than gold-standard annotations.

Coreference scores are computed for all pairs of
candidate events (ei, ej) both within and across
documents, where ei, ej ∈ Eall:

Score(ei, ej) = fθ(ei, ej),

with fθ denoting a BERT-based pairwise scorer.
Cross-document event clusters are then formed

via agglomerative clustering on Eall, using the simi-
larity scores and a threshold τ :

CT = AgglomerativeCluster(Eall, Score, τ).

Document-Level Event Argument Extraction
We adopt a trigger-based approach for document-
level argument extraction Ma et al. (2022). Given a
trigger t ∈ Td in document d, and a predefined set
of roles R = {r1, r2, . . . , rk}, the model selects
the most likely argument span for each role from
a candidate set Sd ∪ {ϵ}, where ϵ denotes a null
span indicating no argument. Formally, for each
role r ∈ R, the predicted argument is:

a∗r = arg max
s∈Sd∪{ϵ}

Score(s | d, t, r),

where Score(s | d, t, r) is computed by a BART-
based (Lewis et al., 2020) model conditioned on d,
t, and r via prompt-based input formatting.

The final argument set for trigger t is:

At = {(r, a∗r) | a∗r ̸= ϵ}.

Cross-Document Argument Coreference Resolu-
tion We use a model similar to event coreference
to separately handle argument coreference, address-
ing the complexity of cases where events serve as
arguments for other events in nested structures. A
BERT-based pairwise scorer followed by agglom-
erative clustering groups argument mentions into
clusters CA = {CA

1 , C
A
2 , . . . }.

Event Canonicalization We apply a frequency-
based heuristic to select canonical representatives
within each event cluster Ci. Specifically, given the
set of triggers Ti = {ti1, ti2, . . . , tim} and the set
of argument mentions Ai = {ai1, ai2, . . . , ain} ex-
tracted from the constituent document-level events
in cluster Ci, we define the canonical trigger and
arguments as:

t̂i = argmax
t∈Ti

freq(t),

Âi =

{
argmax

a∈C
freq(a) | C ∈ C(Ai)

}
,

19286

Module Backbone Model Learning Rate Batch Size Epochs / Steps Other Hyperparameters

Event Trigger Detection RoBERTa-large 1e-4 16 10 epochs
Max span length: 10
Score threshold: 0.25

Cross-Document Event
Coreference Resolution

RoBERTa-large 1e-4 32 10 epochs
Clustering linkage: average
Clustering merge threshold: 0.5

Document-Level Event
Argument Extraction

BART-base 2e-5 16 10,000 steps
Max span length: 10
Prompt template: concatenate
Max prompt length: 80

Cross-Document Argument
Coreference Resolution

RoBERTa-large 1e-4 32 10 epochs
Clustering linkage: average
Clustering merge threshold: 0.8

Table 7: Hyperparameter settings for SLMs in the pipeline.

where freq(·) denotes the frequency of occurrence,
and C(Ai) represents the set of argument clusters
associated with Ci. The canonical event represen-
tation is thus êi = (t̂i, Âi).

Hyperparameters For models that require train-
ing, the hyperparameter settings are provided in
Table 7.

C.2 LLM-based Pipeline Prompts

We have adapted the standard SLM-based pipeline
by leveraging the extended context handling ability
and flexibility of LLMs, resulting in a modified
pipeline tailored for multi-document processing.

Step 1: Event trigger detection

Task Objective:
You are given a natural language document
composed of multiple sentences. Your task is
to identify event triggers in each sentence. A
trigger is the head word or phrase that most
strongly conveys the event’s meaning. Wrap
each identified trigger with ##.

1. Trigger Extent
- Mark only the head of the event phrase: - For
verbal expressions, annotate only the main
verb (e.g., ##shooting##, not may have been
shooting). - For nominal expressions, anno-
tate the main noun that expresses the event
(e.g., ##earthquake##). - Do not annotate: -
Auxiliary verbs (e.g., may, have, did). - Nega-
tion words (e.g., not, never). - Determiners
and adjectives (e.g., this terrible in this
terrible war). - In light-verb construc-
tions, annotate both the verb and the noun sep-
arately: - e.g., “make an offer” → ##make##,
##offer##.

2. Valid Parts of Speech for Triggers
Triggers can be: - Verbs: e.g., ##fights##,

##arrives## - Nouns (including nominaliza-
tions and proper nouns): e.g., ##eruption##,
##World War II## - Attributive participles:
e.g., ##crying## in “the crying baby” - Pred-
icative complements (after copular verbs):
e.g., ##marine## in “was a marine” - Pro-
nouns referring to prior events: e.g., ##It##
in “It did not trigger a tsunami”

3. Output Format
- Assign a sentence ID (Sentence1, Sentence2,
etc.) for each sentence. - Wrap each trig-
ger with ##. - Preserve the original sentence
wording in full. - Return one labeled sentence
per line. - If multiple triggers appear, wrap
each independently.

Instructions to the model:
- Read the paragraph sentence by sentence. -
Identify each event trigger and wrap it with ##.
- Return one labeled sentence per line using
the format above.
The document to process is as following:
{}

Step 2: Event argument extraction

Task Objective:
You are given a document formatted as:
Sentence1: ...
Sentence2: ...

Your task is to extract all events. An event
consists of:

• trigger: the head word or phrase already
annotated with ##.

• arguments: four types—
– TIME: answers “when” (dates, times,

relative times).
– LOCATION: answers “where” (places,

venues, regions).
– HUMAN_PART: answers “who” (indi-

viduals, groups, pronouns).

19287

– NON_HUMAN_PART: answers “what”
(objects, institutions, abstract enti-
ties).

• If multiple mentions of the same
type occur, assign numbered keys (e.g.
HUMAN_PART_1, HUMAN_PART_2).

Output Format:
Return only a JSON array of event objects. No
explanatory text. Each object must have:
{

"event_id ": "E1",
"trigger ": "...",
"arguments ": {

"TIME": "...",
"LOCATION ": "...",
"HUMAN_PART ": "...",
"NON_HUMAN_PART ": "..."

}
}

Example
Sentence1: He ## arrived ## in Paris

on January 1.
Sentence2: They ## celebrated ## the

victory.

Expected output:
[
{

"event_id ": "E1",
"trigger ": "arrived",
"arguments ": {

"TIME": "January 1",
"LOCATION ": "Paris",
"HUMAN_PART ": "He",
"NON_HUMAN_PART ": ""

}
},
{

"event_id ": "E2",
"trigger ": "...",
"arguments ": {

"TIME": "...",
"LOCATION ": "...",
"HUMAN_PART ": "...",
"NON_HUMAN_PART ": "..."

}
}
...
]

Instructions to the model:
Read each sentence, extract events in order,
and output exactly the JSON array above.
Here is the document to process:
{}

Step 3: Cross-document event coreference
resolution
Task Objective:
You are given a single document with:

• doc_id: a unique identifier.
• text: the full document text.

• events: a list of objects, each with:
– event_id, trigger, arguments:

keys TIME, LOCATION, HUMAN_PART,
NON_HUMAN_PART

Clustering Steps:
1. Gather all events into a flat list.
2. Identify coreference groups by trigger

lemma and argument overlap.
3. For each group:

• Assign cluster_id (C1, C2, . . .).
• Select earliest trigger.
• For each role, pool non-empty values,

dedupe, pick earliest; omit if none.
• Add original_events: merged
event_ids.

4. Singleton events form their own cluster.
Output Format:
Return only JSON, no extra text:
{

"clusters ": [
{

"cluster_id ":"C1",
"triggers ":[" hold"],
"arguments ":{

"HUMAN_PART ":["He"],
"NON_HUMAN_PART ":[" the screen "]

},
"original_events ":["E7","E8"]

},
{

"cluster_id ":"C2",
"triggers ":[" want"],
"arguments ":{

"HUMAN_PART ":["we"],
"NON_HUMAN_PART ":[" the ceremony

"]
},
"original_events ":["E5"]

}
...
]

}

Instructions to the model:
Read the input JSON, perform clustering, and
output exactly the JSON under “clusters”.
Here is the document:
{}

Step 4: Event consolidation

Input Format:
You will be given a list of document entries.
Each entry has:

• "doc_id": the document identifier
• "clusters": an array of intra-document

clusters, each with:
– "cluster_id"
– "trigger": [. . .]
– "arguments": {"TIME": [. . .

19288

], "LOCATION": [. . .],
"HUMAN_PART": [. . .],
"NON_HUMAN_PART": [. . .]}

– "original_events": [. . .]
TASK: Merge Across Documents
Merge these clusters into global event clusters.
Return only the final JSON.
Steps:

1. Pool all clusters into one flat list.
2. Identify cross-document coreference sets

by:
• Matching or synonym-equivalent

trigger lemmas.
• Overlapping or identical argument

values.
3. For each set:

• Assign "EC_id" (EC1, EC2, . . .).
• Select earliest trigger.
• For each role, collect non-empty val-

ues, dedupe, pick earliest; omit if
none.

4. Non-coreference clusters become single-
ton global clusters.

Output Format:
Return a JSON array:
[
{

"EC_id ": "EC1",
"trigger ": ["hold"],
"arguments ": {

"HUMAN_PART ": ["He"],
"NON_HUMAN_PART ": ["the screen "]

}
},
...
]

Here is the INPUT:
{}

C.3 LLM Sequence-to-Sequence Prompts

LLM seq2seq ICL prompt

Task Objective:
The goal is to first identify events within in-
dividual documents, where each event con-
sists of a trigger and its associated arguments,
and then consolidate these events from multi-
ple documents into corpus-level event clusters.
Some events from different documents may
refer to the same real-world event, and these
should be merged into a single cluster after
consolidation.

An example is provided as follows:
Input documents: {}

Example: "Doc_1":". . . ",
"Events_of_this_document":". . . ",
"Doc_2":". . . ", . . .
Event cluster ids consisting of event ids from
individual documents: {}
Example: "event_cluster_id":"EC1",
"related_event_ids":"D1_E2","D2_E3",
"D3_E1",. . .
Output event clusters: {}
Example: "event_cluster_id":"EC1",
"canonical_trigger": "Oscar",
"arguments": ". . . ",. . .

An exercise is provided as follows:
Input documents:
{}

LLM seq2seq SFT prompt

Task Definition:
To accomplish the multi-document event
extraction task, you need to extract a struc-
tured representation of events from the given
multiple documents. You are required to
extract all parameter information of the events,
including time, location, participants, etc.,
and mark the role information for all time
parameters.
For event entities, if there are multiple forms
of synonymous entities, please select the most
representative form.
For the role information of entities, if the
same entity has multiple roles, choose the
most representative role as the final role.
Output in the following JSON format:

"trigger": "Event Trigger",
"arguments": [
"role": "Role1", "mention": "Entity1",
"role": "Role2", "mention": "Entity2"
...
]

Input documents:
{}

Output:

19289

C.4 Our Collaborative Framework Prompts

Reasoning stage 1.1: Event-to-cluster as-
signment

Task Objective:
Find the most relevant event cluster for merg-
ing.

Document-Level Event Structure:
Each event in a document has the following
structure:

• event_id: A unique identifier for the
event.

• trigger: A keyword or phrase that trig-
gers the event.

• arguments: A list of arguments, each
with:

– argument_id: A unique identifier
for the argument.

– role: One of
* time: specific moment or dura-

tion when the event occurs
* location: the place or area

where the event takes place
* human participant: the peo-

ple who participate in or influ-
ence the event

* non_human participant: en-
tities or nested events

– mention: The specific textual ex-
pression that refers to the argument.

– argument_cluster_id: The ID of
the argument cluster it belongs to.

Corpus-Level Event Cluster Structure:
Each cluster has:

• EC_id: A unique ID for the event cluster.
• triggers: A list of triggers concatenated

from the document-level events.
• arguments: A list of merged arguments,

each with:
– roles: List of roles concatenated

from the document-level arguments.
– mentions: List of mentions concate-

nated from the document-level argu-
ments.

– argument_cluster_ids: List of ar-
gument cluster IDs concatenated
from the document-level arguments.

Procedure:
Stage 1: Identify the most relevant cluster

• Context: Compare document contexts.
• Trigger: Check for synonymy.

• Arguments: Compare time, location, par-
ticipants; infer missing details.

Stage 2: Select relevance level
• a: Different seminal news.
• b: Same news, not synonymous triggers.
• c: Same news, synonymous triggers, sig-

nificant differences.
• d: Same news, synonymous triggers, ba-

sic match.
• e: Same news, synonymous triggers, all

aspects match.
• Merge decision:

– If level d or e, merge.
– Otherwise, create.

Output Requirements:
• Detailed analysis for both stages.
• A JSON object with fields:

– decision: "merge" or "create".
– most_relevant_event_cluster_id:

cluster ID or "none".
• No extraneous text in the JSON.

Input documents and corresponding events:
{}
Existing event clusters: {}
Candidate event: {}

Reasoning stage 1.2: Argument alignment

Task Objective:
Merge the candidate event into the target event
cluster.

Document-Level Event Structure:
Each event in a document has the following
structure:

• event_id: A unique identifier for the
event.

• trigger: A keyword or phrase that trig-
gers the event.

• arguments: A list of arguments, each
with:

– argument_id: A unique identifier
for the argument.

– role: One of
* time: specific moment or dura-

tion when the event occurs
* location: the place or area

where the event takes place
* human participant: the peo-

ple who participate in or influ-
ence the event

19290

* non_human participant: en-
tities or nested events

– mention: The specific textual ex-
pression that refers to the argument.

– argument_cluster_id: The ID of
the argument cluster it belongs to.

Corpus-Level Event Cluster Structure:
Each corpus-level event cluster has:

• EC_id: A unique ID for the event cluster.
• triggers: List of triggers concatenated

from document-level events.
• arguments: List of merged arguments,

each with:
– roles: List of roles concatenated

from document-level arguments.
– mentions: List of mentions con-

catenated from document-level argu-
ments.

– argument_cluster_ids: List of ar-
gument cluster IDs concatenated
from document-level arguments.

Procedure:
For each component in the candidate event:

• Trigger merging: Append the candidate
trigger to the cluster’s triggers list.

• Argument merging: For each candidate
argument:

– Determine match by semantic simi-
larity and argument_cluster_id:

* Similar & same cluster →
match

* Similar & different cluster →
match

* Not similar & same cluster →
no match

* Not similar & different cluster
→ no match

– If matched: append its
argument_cluster_id, role,
and mention to the corresponding
lists.

– If not matched: add as a new argu-
ment entry.

Output Requirements:
• Provide a detailed analysis.
• Then output a JSON object with key:

– updated_event_cluster: The
newly merged event cluster.

• No extraneous text in the JSON.
Input documents and corresponding events:

{}
Target event cluster: {}
Candidate event: {}

Reasoning stage 2: Event consolidation

Task Objective:
The event cluster constitutes the structured rep-
resentation of events at the corpus-level by in-
tegrating information from the corresponding
document-level events. We aim to fine-tune
this structure by correcting errors in the inte-
grated information.

Procedure:
• Step 1. Identify the corresponding

document-level events using the listed
event_ids.

• Step 2. From the triggers list, select
one core trigger and remove all others.

• Step 3. For each entry in arguments:
– Check relevance: an argument is rel-

evant if it factually contributes to the
event cluster.

– If relevant:
* Retain the argument.
* In its mentions list, choose one

core mention and remove the
rest.

– If irrelevant: remove the entire argu-
ment entry.

Document-Level Event Structure:
Each document-level event has:

• event_id: Unique identifier.
• trigger: Keyword or phrase.
• arguments: List of arguments, each with:

– argument_id: Unique identifier.
– mention: Textual expression of the

argument.
Corpus-Level Event Cluster Structure:
Each cluster has:

• EC_id: Unique cluster ID.
• event_ids: List of document-level event

IDs.
• triggers: Concatenated triggers from

member events.
• arguments: List of merged arguments,

each with:
– mentions: Concatenated mentions

from member events.

Input documents and corresponding events:

19291

{}
Event cluster: {}

Output Requirements:
• Provide a detailed analysis of each step.
• Then output a JSON object with the up-

dated event cluster under the key:
– updated_event_cluster: The re-

fined cluster structure.
• Do not merge arguments; keep the origi-

nal cluster schema intact.
• The JSON must contain no additional text

or notes.

C.5 A Detailed Running Example of Our
Framework Components

To further clarify the components of our framework,
we provide a detailed running example based on the
example in Figure 1, demonstrating one iteration
of Stage 1 and Stage 2 reasoning. For clarity, we
have structured the reasoning process in the form
of tables.

Reasoning Stage I: Event Composition

Input 1: Existing Event Clusters

Cluster ID: EC1
Trigger: injured
Human Participant: dozens (A777)
Non-Human Participant: quake (A768)
Time: Tuesday (A784)
Location: in a region (A783)

Cluster ID: EC2
Trigger: injured
Human Participant: others (A781)
Non-Human Participant: quakes (A768)
Time: Sunday (A764)
Location: in Papua in easternmost of
Indonesia (A848)

Input 2: Candidate Event

Trigger: injuring
Human Participant: dozens (A777)
Non-Human Participant: quake (A768)
Location: across the affected region (A798)

Sub-step 1.1: Event-to-cluster Assignment

Feature: Context
EC1: Same event: 6.1-magnitude earthquake
in Aceh

EC2: Different event: Quake in Papua
Decision: EC1 context aligned

Feature: Trigger
EC1: injuring ≈ injured
EC2: injuring ≈ injured
Decision: Both match

Feature: Human Participant
EC1: dozens (A777)
EC2: others (A781)
Decision: Exact match with EC1

Feature: Non-Human Participant
EC1: quake (A768)
EC2: quakes (A768)
Decision: Shared across both

Feature: Time
EC1: (missing) vs. Tuesday (A784)
EC2: (missing) vs. Sunday (A764)
Decision: No contradiction with EC1

Feature: Location
EC1: across the affected region (A798) vs. in
a region (A783)
EC2: across the affected region (A798) vs.
Papua (A848)
Decision: Consistent with EC1

Sub-step 1.2: Merge Candidate Event

Relevance Level: e (Same news, synonymous
triggers, consistent arguments)
Action: Merge the candidate event into Event
Cluster 1 (EC1)

Sub-step 2: Argument Alignment

Type: Trigger
Mentions: injured, injuring
LLM Reasoning: “injuring” is a variant form
of “injured,” indicating the same event trigger.

Type: Human Participant
Mentions: dozens
Argument Clusters: A777
LLM Reasoning: Exact match on mention
and cluster ID, confirming identity of human
participants.

Type: Non-Human Participant

19292

Mentions: quake
Argument Clusters: A768
LLM Reasoning: Exact match on mention
and cluster ID, confirming same non-human
participant.

Type: Location
Mentions: in a region, across the affected
region
Argument Clusters: A783, A798
LLM Reasoning: Mentions are semantically
similar; LLM infers they refer to the same
location despite different cluster IDs.

Type: Time
Mentions: Tuesday
Argument Clusters: A784
LLM Reasoning: Candidate lacks ex-
plicit time but does not contradict existing
"Tuesday" argument; inferred as same.

Reasoning Stage II: Event Consolidation

Event Consolidation

Component: Trigger
Mentions: "injured" (D13_E2), "injuring"
(D14_E4)
Selected: "injured"
Reasoning: More concise and commonly
used; semantically similar to "injuring"

Component: Argument 1
Mentions: "dozens", "dozens"
Selected: "dozens"
Reasoning: Identical mentions; quantify
injured people; keep one

Component: Argument 2
Mentions: "quake", "quake"
Selected: "quake"
Reasoning: Identical mentions; refers to
cause of injury; keep one

Component: Argument 3
Mentions: "in a region", "across the affected
region"
Selected: "across the affected region"
Reasoning: Both relevant, second is more
precise; keep more specific mention

Component: Argument 4

Mentions: "Tuesday"
Selected: "Tuesday"
Reasoning: Time argument relevant for event
temporal context; retain for completeness

19293

D Case Study

D.1 Stage 1.1: Event-to-cluster assignment
An example of event-to-cluster assignment is pre-
sented in Table 8. The LLM takes the new candi-
date event D7_E1 (“ARRESTS” of “RCMP” and
“MEN” in “THE RELIGIOUS COMMUNITY OF
BOUNTIFUL IN THE BC INTERIOR”) and, in
the first event composition phase, recognizes that
the uppercase trigger “ARRESTS” is semantically
equivalent to the first event cluster’s existing “ar-
rested,” aligns “RCMP” and “MEN” with the clus-
ter’s “leaders” according to the texts, thereby merg-
ing D7_E1 into cluster 1 (Relevance Level e).

D.2 Stage 1.2: Argument alignment
An example of argument alignment is given in Ta-
ble 9. In the Model Input section, we show (1)
the excerpt of the target event cluster—complete
with its existing triggers and argument lists—and
(2) the new candidate event D7_E1, formatted as
nested JSON. In the Model Output section, we first
detail the trigger merging step, where “ARRESTS”
is appended to the cluster’s triggers, and then the
argument merging step, where each D7_E1 argu-
ment (“RCMP,” “MEN,” and the Bountiful loca-
tion) is aligned and merged into its corresponding
cluster entry. The table concludes with the full up-
dated_event_cluster JSON, demonstrating how the
LLM produces a single, coherent multi-document
event representation.

D.3 Event Consolidation
An example of event Consolidation is presented
in Table 10. The LLM receives as input the ag-
gregated cluster—complete with its seven triggers
(five instances of “arrested” plus “ARRESTS”) and
nine argument mention lists—and, in the Detailed
Analysis phase, first selects “arrested” as the sin-
gle canonical trigger (removing the variant “AR-
RESTS”). It then evaluates each argument men-
tion group : retaining “leaders,” “practicing,” “in
Canada,” “Wednesday,” “in Bountiful, B.C.,” and
“RCMP” as relevant core mentions, and discarding
“on Tuesday,” “residents,” and “charges” as incon-
sistent or redundant. The table concludes with
the final ‘updated_event_cluster’ JSON, showing
a streamlined cluster with one trigger and six core
arguments.

19294

Model Input:
Documents and Events (excerpt):
Doc 1: . . . ; Events: . . .
Doc 2: . . . ; Events: . . .
. . .
Existing event clusters (excerpt):
[{ "EC_id": 1, "event_ids": ["D1_E1",. . .],
"triggers": ["arrested","arrested",. . .],
"arguments": [
{ "roles": ["human participant",. . .], "mentions": ["leaders",. . .], "argument_cluster_ids": [. . .]
},
}, { "EC_id": 2, "event_ids": [. . .],
"triggers": ["polygamy","polygamy",. . .], "arguments": [. . .] },
{ "EC_id": 3, "event_ids": [. . .],
"triggers": ["arrests"], "arguments": [. . .] },
{ "EC_id": 4, "event_ids": [. . .],
"triggers": ["practicing"], "arguments": [. . .] },
{. . . }
]
]
Candidate event (excerpt):
{ "event_id": "D7_E1", "trigger": "ARRESTS", "arguments": [
{ "argument_id": ". . . ", "role": "human participant", "mention": "MEN" },
{ "argument_id": ". . . ", "role": "human participant", "mention": "RCMP" },
{ "argument_id": ". . . ", "role": "location",
"mention": "THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR" },
{. . . }
] }
Model Output:
Stage 1: Identify the Most Relevant Cluster
Context Comparison:
– The candidate event (D7_E1) reports the arrest of two men (Winston Blackmore and James Oler) from the polygamous
community of Bountiful, British Columbia, on charges of polygamy. This aligns closely with the context of existing event cluster
1 (EC_id: 1), which also describes the arrests of the same individuals in the same location (Bountiful, British Columbia) for
practicing polygamy. The context is consistent across all documents in cluster 1 and the candidate event.
Trigger Comparison:
– The candidate event’s trigger is “ARRESTS” (uppercase, likely due to headline formatting), which is synonymous with
“arrested” and “arrests” found in cluster 1 and cluster 3. The semantic meaning is identical, despite minor formatting differences.
Argument Comparison:
– Human Participants: The candidate event mentions “RCMP” (A973) and “MEN” (A894). Cluster 1 includes “RCMP”
(A890) and “leaders” (A893, A953), which are semantically similar to “MEN” (the men arrested are the leaders). The roles and
mentions align well.
– Location: The candidate event mentions “THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR”
(A916), which is semantically equivalent to “in Bountiful, B.C.” (A926) and “in Canada” (A897, A936) in cluster 1. All refer to
the same geographic area.
– Non-Human Participants: The candidate event does not explicitly mention a non-human participant, but the context implies
the charges are related to polygamy, which is covered in cluster 1’s arguments (“practicing”, “charges”).
– Time: The candidate event does not specify a time, but this is not a significant discrepancy given the strong alignment in other
arguments.
Comparison with Other Clusters:
– Cluster 2 (EC_id: 2) focuses on a different event involving “another member” of the FLDS, which does not match the candidate
event’s context or arguments.
– Cluster 3 (EC_id: 3) uses the trigger “arrests” but involves “authorities” as the human participant and lacks specific details
about Bountiful or the leaders. The context is less aligned.
Stage 2: Select Relevance Level
– Same news (arrests of Blackmore and Oler in Bountiful for polygamy).
– Synonymous triggers (“ARRESTS” vs. “arrested”).
– Matching human participants (RCMP and leaders/men).
– Matching location (Bountiful, British Columbia).
– No significant differences in time, location, or participants.
This fits relevance level e: “Same news, synonymous triggers, and most aspects match.”
Merge Decision:
– Merge the candidate event into cluster 1 (EC_id: 1).
JSON Output:
{ "decision": "merge", "most_relevant_event_cluster_id": 1 }

Table 8: LLM I/O in event-to-cluster assignment

19295

Model Input:
Documents and Events (excerpt):
Doc 1: . . . ; Events: . . .
Doc 2: . . . ; Events: . . .
. . .
Target event cluster (excerpt):
[’EC_id’: 1, ’event_ids’: [’D1_E1’,’D8_E4’,. . .], ’triggers’: [’arrested’,’arrested’,. . .],
’arguments’: [’roles’: [’human_participant’,. . .], ’mentions’: [’leaders’,. . .],
’argument_cluster_ids’: [. . .],
’roles’: [’location’,. . .], ’mentions’: [’in Canada’,. . .], ’argument_cluster_ids’: [. . .],
’roles’: [’time’,. . .], ’mentions’: [’Wednesday’,’Wednesday morning’],
’argument_cluster_ids’: [. . .],
’roles’: [’location’], ’mentions’: [’in Bountiful , B.C.’], ’argument_cluster_ids’: [. . .],
’roles’: [’human_participant’], ’mentions’: [’RCMP’], . . .]]
Candidate event (excerpt):
{ "event_id": "D7_E1", "trigger": "ARRESTS", "arguments": [
{ "argument_id": ". . . ", "role": "human participant", "mention": "MEN" },
{ "argument_id": ". . . ", "role": "location",
"mention": "THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR" }, {. . . }] }
Model Output:
Trigger Merging:
– Candidate Trigger: “ARRESTS” is appended to the existing triggers {“arrested”, . . . }, since they are semantically equivalent.
Argument Merging:
1. Argument D7_E1_A1: mention “RCMP” matches the cluster’s “RCMP” despite differing cluster IDs, so we append its role,
mention, and ID.
2. Argument D7_E1_A2: mention “MEN” is semantically similar to “leaders”/“residents”, so we merge it into that argument
entry.
3. Argument D7_E1_A3: the location mention “THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR”
aligns with “in Bountiful, B.C.”, so we merge it accordingly.

{"updated_event_cluster": {
"EC_id": 1,
"event_ids": ["D1_E1","D8_E4","D9_E1","D3_E2","D5_E1","D6_E2","D7_E1"],
"triggers": ["arrested","arrested","arrested","arrested","arrested","ARRESTS"],
"arguments": [
{"roles": ["human participant","human participant","human participant","human participant"],

"mentions": ["leaders","leaders","leaders","MEN"],
"argument_cluster_ids": ["A953","A893","A893","A894"]},

{"roles": ["non_human participant"],
"mentions": ["practicing"],
"argument_cluster_ids": ["A895"]},

{"roles": ["location","location","location"],
"mentions": ["in Canada","in Canada","in Canada"],
"argument_cluster_ids": ["A897","A897","A936"]},

{"roles": ["time","time"],
"mentions": ["Wednesday","Wednesday morning"],
"argument_cluster_ids": ["A903","A903"]},

{"roles": ["location","location"],
"mentions": ["in Bountiful , B.C.","THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR"],
"argument_cluster_ids": ["A926","A916"]},

{"roles": ["human participant","human participant"],
"mentions": ["RCMP","RCMP"],
"argument_cluster_ids": ["A890","A973"]},

{"roles": ["time"],
"mentions": ["on Tuesday"],
"argument_cluster_ids": ["A903"]},

{"roles": ["human participant"],
"mentions": ["residents"],
"argument_cluster_ids": ["A893"]},

{"roles": ["non_human participant"],
"mentions": ["charges"],
"argument_cluster_ids": ["A913"]}]}}

Table 9: LLM I/O in argument alignment

19296

Model Input:
Documents and Events (excerpt):
Doc 1: . . . ; Events: . . .
Doc 2: . . . ; Events: . . .
. . .
Event cluster (excerpt):
’EC_id’: 1, ’event_ids’: [’D1_E1’,’D8_E4’,. . .],
’triggers’: [’arrested’,’arrested’,. . .],
’arguments’: [
’mentions’: [’leaders’,’leaders’,’leaders’,’MEN’],
’mentions’: [’practicing’],
’mentions’: [’in Canada’,’in Canada’,’in Canada’],
’mentions’: [’Wednesday’,’Wednesday morning’],
’mentions’: [’in Bountiful , B.C.’,’THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC INTERIOR’],
’mentions’: [’RCMP’,’RCMP’],
’mentions’: [’on Tuesday’],
’mentions’: [’residents’],
’mentions’: [’charges’]
]
Model Output:
Detailed Analysis:
1. Trigger Selection: “arrested” is chosen as the single core trigger (the most consistent) and all others are removed.
2. Argument Relevance and Mention Selection:
• Argument 1 ({’mentions’: [’leaders’,’leaders’,’leaders’,’MEN’]}): retain, choose “leaders”.
• Argument 2 ({’mentions’: [’practicing’]}): retain, “practicing”.
• Argument 3 ({’mentions’: [’in Canada’,’in Canada’,’in Canada’]}): retain, “in Canada”.
• Argument 4 ({’mentions’: [’Wednesday’,’Wednesday morning’]}): retain, “Wednesday”.
• Argument 5 ({’mentions’: [’in Bountiful , B.C.’,’THE RELIGIOUS COMMUNITY OF BOUNTIFUL IN THE BC
INTERIOR’]}): retain, “in Bountiful , B.C.”.
• Argument 6 ({’mentions’: [’RCMP’,’RCMP’]}): retain, “RCMP”.
• Argument 7 ({’mentions’: [’on Tuesday’]}): remove (inconsistent).
• Argument 8 ({’mentions’: [’residents’]}): remove (redundant).
• Argument 9 ({’mentions’: [’charges’]}): remove (too vague).

{
"EC_id": 1,
"event_ids": ["D1_E1","D8_E4","D9_E1","D3_E2","D5_E1","D6_E2","D7_E1"],
"triggers": ["arrested"],
"arguments": [

{"mentions": ["leaders"]},
{"mentions": ["practicing"]},
{"mentions": ["in Canada"]},
{"mentions": ["Wednesday"]},
{"mentions": ["in Bountiful , B.C."]},
{"mentions": ["RCMP"]}

]
}

Table 10: LLM I/O in event consolidation

19297

