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Abstract

Text-to-SQL aims to convert natural language
questions into executable SQL queries. While
previous approaches, such as skeleton-masked
selection, have demonstrated strong perfor-
mance by retrieving similar training examples
to guide large language models (LLMs), they
struggle in real-world scenarios where such
examples are unavailable. To overcome this
limitation, we propose Self-Augmentation in-
context learning with Fine-grained Example se-
lection for Text-to-SQL (SAFE-SQL), a novel
unsupervised framework that enhances SQL
generation by generating and intelligently fil-
tering self-augmented examples. SAFE-SQL
leverages an LLM to generate diverse Text-
to-SQL examples, which are then filtered by
a novel fine-grained mechanism using crite-
ria for semantic similarity, structural align-
ment, and reasoning path quality to curate high-
quality in-context learning examples. Lever-
aging these carefully selected self-generated
examples, SAFE-SQL significantly surpasses
previous zero-shot and few-shot Text-to-SQL
frameworks, achieving superior execution ac-
curacy. Notably, our approach demonstrates
substantial performance gains in challenging
extra hard and unseen scenarios, where conven-
tional methods often struggle.

1 Introduction

Text-to-SQL generation converts questions into
SQL queries that help users access information in
databases. Traditional approaches on Text-to-SQL
rely on hand-crafted rules or simple pattern match-
ing to generate SQL queries. They often strug-
gle with the ambiguity and context-dependence
of natural language, making it challenging to ac-
curately translate user intent into structured SQL
commands (El Boujddaini et al., 2024; Moham-
madjafari et al., 2025; Li and Jagadish, 2014).

*Corresponding author.

Figure 1: The example on the left shows a failure in
retrieving relevant examples due to masked keywords,
which results in superficially similar but actually un-
related questions being selected. In contrast, our self-
augmented approach generates N-examples and filters
them using 3 criteria, resulting in appropriate example
retrieval.

As the field progressed, more sophisticated ap-
proaches emerged, including skeleton-masked se-
lection (Gao et al., 2023), relying on retrieving
similar examples from training data to guide query
generation. However, these methods face signifi-
cant challenges in real-world scenarios where simi-
lar examples are often unavailable in the training
set (Gan et al., 2021; Hong et al., 2024) or un-
related examples are retrieved as shown in Fig-
ure 1. To overcome these problems, recent re-
search has introduced methods to generate syn-
thetic data. SQL-GEN, presents by (Pourreza
et al., 2024), introduces dialect-specific synthetic
data to resolve the diverse SQL dialect challenges
in Text-to-SQL systems. Another important as-
pect of synthetic data generation is incorporating
key relationships from the schema and employing
schema-distance-weighted column sampling (Zhao
et al., 2022). However, these synthetic data gen-
eration methodologies predominantly require su-
pervised fine-tuning, which demands substantial
computational resources and time (Yang et al.,
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2024b). Moreover, self-generated examples can
introduce significant noise and inaccuracies that
undermine the quality of in-context learning. Er-
rors in synthetic SQL queries or flawed reason-
ing paths may lead to incorrect interpretations of
database schemas (Wretblad et al., 2024). As a re-
sult, relying on unfiltered self-generated examples
for Text-to-SQL tasks can pose a risk of degrad-
ing overall model performance. Consequently, it
is necessary to develop more efficient approaches
that enhance the accuracy of Text-to-SQL while
eliminating extra training costs and mitigating the
adverse impacts of noisy self-generated examples
by implementing a robust filtering mechanism.

In this paper, we propose SAFE-SQL, a novel
approach that fully exploits the generative power
of large language models (LLMs) to create high-
quality synthetic examples in an unsupervised man-
ner. SAFE-SQL enhances its inference capabil-
ities without additional fine-tuning through four
key steps: (1) Schema Linking: Analyzing SQL
test questions, database tables, and foreign keys
to map relationships between queries and database
structures (2) Example Generation: Generating
N-question-SQL query-reasoning path triplets per
input using schema-linked information with LLMs
(3) Threshold-based example selection: Filtering
generated examples using specifically designed rel-
evance criteria based on semantic similarity, Struc-
tural alignment, and reasoning path validity, retain-
ing only those scoring above a specific threshold
to ensure high quality and relevance for in-context
learning examples and (4) Final SQL Inference:
Leveraging the curated examples, this step utilizes
in-context learning to enhance the performance
of large language models. This approach benefits
from carefully selected examples that align with
the natural language question and database schema,
ensuring accurate and efficient SQL generation.

By relying on LLM-generated and filtered exam-
ples, SAFE-SQL significantly improves robustness
and accuracy, particularly in complex or unseen
scenarios where retrieval-based approaches strug-
gle. Our approach eliminates the need for addi-
tional model training while achieving superior per-
formance in Text-to-SQL tasks. Our contributions
can be listed as follows:

• We propose SAFE-SQL, a fully unsupervised ap-
proach that leverages LLMs to generate synthetic
examples.

• Our method leverages schema linking to dynam-

ically adapt examples, boosting the performance
of Text-to-SQL in complex scenarios.

• We introduce a structured filtering mechanism
that selects high-quality question-SQL pairs
based on semantic similarity, structural align-
ment, and reasoning path validation.

2 Related Work

Structural and Semantic Information for Text-
to-SQL Advances in Text-to-SQL have increas-
ingly emphasized the importance of effectively uti-
lizing structural and semantic information derived
from the database schema. RAT-SQL (Wang et al.,
2021) introduces relation-aware transformer archi-
tectures capable of encoding both the natural lan-
guage question and the complex structure of the
database schema, leading to improved schema link-
ing performance. Concurrently, PICARD (Scholak
et al., 2021) demonstrates that leveraging con-
strained decoding with step-by-step execution dur-
ing generation can reduce the likelihood of pro-
ducing invalid SQL queries. Rather than treating
SQL generation as a pure sequence prediction task,
PICARD executes partial SQL statements during
generation, thus enforcing syntactic and semantic
correctness. Both of these approaches highlight
the importance of integrating structural and seman-
tic information to generate correct SQL queries.
Building on this line of research, our work explores
how self-augmented examples can effectively in-
corporate structurally and semantically relevant in-
formation for in-context learning, particularly in
scenarios where large annotated datasets are un-
available.

In-context Learning with Example Augmen-
tation and Filtering As LLMs have demon-
strated strong performance in in-context learning
settings, recent work has focused on improving
the effectiveness of demonstrations through bet-
ter example augmentation and selection (Toteja
et al., 2025). Self-Instruct (Wang et al., 2023) in-
troduces a framework for generating instruction-
tuning data by prompting the model to synthesize
and filter examples, leveraging synthetic supervi-
sion. Further studies on demonstration selection
for in-context learning (Wang et al., 2024) have
systematically studied strategies for selecting ef-
fective in-context examples, including similarity-
based retrieval and clustering methods. Integrat-
ing self-generated prompts with explicit reasoning
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Figure 2: Overall flow of our proposed SAFE-SQL.

chains has also been shown to significantly im-
prove in-context learning outcomes by guiding the
model’s thought process (Shum et al., 2023; Wei
et al., 2023). These studies collectively underscore
the impact of demonstration quality on LLM perfor-
mance and highlight the potential of intelligently
curating examples. Focusing on the Text-to-SQL
task, our work distinguishes itself by generating
synthetic examples and filtering them using a novel
fine-grained mechanism that considers semantic
similarity, structural similarity, and reasoning path
quality. This allows us to generate multiple candi-
date examples and select the most effective through
this tailored fine-grained filtering process.

3 Fine-grained Self-Augmentation for
Text-to-SQL

We propose SAFE-SQL, a framework that auto-
matically generates high-quality examples for in-
context learning in Text-to-SQL tasks. Unlike tradi-
tional methods that rely on retrieving similar ques-
tions or using predefined templates, SAFE-SQL
uses LLMs to create synthetic examples tailored
to the given database schema. These examples
are then filtered based on their semantic similarity,
structural alignment, and the quality of reasoning
paths. Finally, we predict the final SQL query for
the test input using the self-generated examples via
in-context learning.

3.1 Schema Linking

The first step in SAFE-SQL is schema linking,
which identifies and extracts relevant schema el-
ements from the database to reduce noise and im-
prove performance in Text-to-SQL tasks (Cao et al.,
2024). As shown in Figure 2, the schema linking
step involves analyzing the test question to detect
keywords and phrases that correspond to schema
elements such as tables, columns, rows, and foreign
keys within the database schema. This mapping
narrows the focus to the most pertinent parts of the
schema and provides the necessary context for gen-
erating relevant examples that are both meaningful
and grounded in the database structure.

3.2 Example Generation

Using the information obtained from schema link-
ing, the LLM generates a pool of multiple synthetic
examples for each test question. As illustrated in
Figure 2, for each test question, we generate ten
examples—each comprising a similar question, its
corresponding SQL query, and a detailed reason-
ing path. The generated SQL questions maintain
structural similarity while varying elements such as
numerical values, table names, and key attributes.
This ensures that the generated examples remain
relevant while encouraging the model to general-
ize beyond surface-level patterns. By observing
these modified instances, the model can infer the
correct SQL query even when face with unseen
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but structurally similar questions. In particular, the
reasoning path outlines the logical steps required
to derive the correct SQL query result, providing a
comprehensive explanation of the query execution
process. We provide the full prompt used for LLMs
in Appendix B.1.

3.3 Relevance Scoring
After generating a set of synthetic examples, SAFE-
SQL employs a crucial evaluation process rooted
in novel fine-grained example selection to deter-
mine the relevance of each generated example to
the test question. This fine-grained selection pro-
cess is integral to our method, ensuring that only
high-quality, contextually appropriate examples are
used for in-context learning, moving beyond sim-
ple retrieval to curate examples truly relevant and
beneficial for the Text-to-SQL task.

To achieve this, we assign composite relevance
score Rel on a scale from 0 to 10 to each example
e, which is calculated as follows:

Rel = α · S(Qe, Qt) + β ·A(Qe, Qt) + γ ·R (1)

Here, Qt represents the test question, Qe denotes
the generated example question. The coefficients
α, β, and γ are weighting factors that sum to 1, al-
lowing for adjustment of the relative importance of
each component in the fine-grained selection score.
The three components are defined as follows:

• Semantic Similarity S(Qe, Qt): assesses if
the generated question preserves the underly-
ing meaning and intent to ensure the example
aligns with the user’s core query objective.

• Structural Alignment A(Qe, Qt): evalu-
ates structural correspondence based on key
database elements and their relationships,
which is important for mapping natural lan-
guage to a similar database structure and op-
erations.

• Reasoning Path Quality R: evaluates the
alignment of the example’s logical derivation
steps and database operations (e.g., filtering,
aggregation, joins, subqueries) with the test
question’s required logic.

We utilize LLMs to compute the score for each
of the three components based on our specifically
designed instructions and criteria. Specifically,
the LLM applies a predefined, multi-point scor-
ing rubric (detailed in Appendix B.2) to assign a

quantitative score (0-10) for each criterion. This
process allows for a nuanced assessment of the de-
gree of alignment between the generated example
and the test question along each dimension, mov-
ing beyond simple binary or qualitative judgments.
By carefully evaluating these three factors through
our fine-grained example selection process, SAFE-
SQL ensures that the selected examples are highly
relevant and informative, contributing to more ac-
curate and effective SQL query generation.

3.4 Threshold Selection

To further ensure quality, SAFE-SQL retains only
those examples with a relevance score above a pre-
defined threshold θ. Formally, the set of selected
examples is defined as:

Eselected = {e ∈ E | Rel ≥ θ} (2)

where E represents all generated examples. This
thresholding step filters out low-quality examples
and ensures that only the most informative and
contextually appropriate examples are used in the
final inference. The threshold is set to 8, as Figure 4
demonstrates that this value provides an optimal
balance between preserving high-quality examples
and maintaining sufficient diversity for robust SQL
generation.

3.5 Final Inference

In the final stage, the high-quality examples gener-
ated in previous steps are combined with the test
question to construct a comprehensive prompt for
the LLM. These examples, enriched with filtered
questions, corresponding SQL queries, and detailed
reasoning paths, guide the LLM in generating the
final SQL query. By integrating schema linking,
synthetic example generation, relevance scoring,
and threshold-based filtering, SAFE-SQL produces
SQL queries that are both syntactically correct and
semantically aligned with the intended database
operations, while also providing an interpretable
reasoning process.

4 Experiment

4.1 Experimental Setup

For our experiments, we employ six models for
comparison purposes: GPT-4o (Hurst et al., 2024),
GPT-4o-mini (Hurst et al., 2024), GPT-4 (Achiam
et al., 2023), Llama-3.1-70B-Instruct (Dubey et al.,
2024), Llama3.3-70B-Instruct (Dubey et al., 2024),
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Qwen2.5-72B (Yang et al., 2024a), Gemma3-
12b (Team et al., 2025), and Gemma3-27b (Team
et al., 2025). The evaluation is conducted on the
Spider dev dataset (Yu et al., 2018) and the Bird
dev dataset (Li et al., 2023), which are widely used
benchmarks for Text-to-SQL systems. The Spider
dev set contains 7,000 training samples covering
166 databases in various domains and 1,034 evalua-
tion samples from 20 databases, comprised of four
difficulty levels. BIRD is a large cross-domain
Text-to-SQL dataset with 12,751 question-SQL
pairs across 95 databases. Since the test sets of
both the Spider and BIRD datasets are only accessi-
ble through specific evaluation servers, we conduct
our evaluation using their respective development
sets.

4.2 Baselines

We use the following baseline Text-to-SQL meth-
ods: Supervised fine tuning, which fine-tunes an
open source model, Zero-shot, which infers with-
out examples, Few-shot, which infers with few
examples. Synthesizing Text-to-SQL data from
weak and strong LLMs (Yang et al., 2024b) uti-
lizes preference learning from the weak data from
small LLMs and strong data from LLMs. SQL-
PaLM (Sun et al., 2024) introduces synthetic data
augmentation to fine-tune open source models. Din
SQL (Pourreza and Rafiei, 2023) breaking down
the task into smaller sub-tasks, allowing large lan-
guage models to improve their reasoning process
through self-correction iteratively. C3-SQL (Dong
et al., 2023) comprises clear prompting, calibra-
tion with hints, and consistent output, which sys-
tematically addresses model input, bias, and out-
put to enhance performance using the zero-shot
prompt. Dail-SQL (Gao et al., 2023) introduces
effective few-shot learning, significantly reducing
the number of tokens required per question. ACT-
SQL (Zhang et al., 2023) enhances Text-to-SQL
performance by automatically generating chain-of-
thought exemplars, eliminating the need for manual
labeling. PTD-SQL (Luo et al., 2024) categorizes
queries into subproblems and focuses on targeted
drilling to improve LLMs’ reasoning capabilities.

4.3 Evaluation Metrics

We use Execution Accuracy (EX) and Exact Match
(EM) to evaluate the performance of our model. EX
measures whether the SQL query generated by the
model produces the same results as the ground truth
query when executed on a database. Exact Match

Method Model Easy Medium Hard Extra All Time

Supervised Fine-Tuning (SFT)

SYN-SQL Sense-13B 95.2 88.6 75.9 60.3 83.5 -
SQL-PaLM PaLM-2 93.5 84.8 62.6 48.2 77.3 -

Zero-shot Methods

Baseline GPT-4 84.3 73.1 65.8 40.3 69.1 1.28
Baseline GPT-4o 87.2 77.2 68.4 48.7 73.4 0.93
Baseline GPT-4o-mini 84.8 75.6 67.0 46.1 71.5 1.07
C3-SQL GPT-4 90.2 82.8 77.3 64.3 80.6 19.34

Few-shot Methods

DIN-SQL GPT-4 91.1 79.8 64.9 43.4 74.2 4.37
DAIL-SQL GPT-4 91.9 90.1 75.2 63.8 83.6 16.79
ACT-SQL GPT-4 91.1 79.4 67.2 44.0 74.5 4.55
PTD-SQL GPT-4 94.8 88.8 85.1 64.5 85.7 7.89
DEA-SQL GPT-4 88.7 89.5 85.6 70.5 85.6 8.69

Self-augmented In-Context Learning

SAFE-SQL GPT-4 93.2 88.9 85.8 74.7 86.8 21.41
SAFE-SQL GPT-4o 93.4 89.3 88.4 75.8 87.9 14.92
SAFE-SQL GPT-4o-mini 93.6 87.5 86.1 75.2 87.4 15.33
SAFE-SQL Llama3.1-70B-Instruct 90.4 88.2 86.2 78.2 86.8 23.52
SAFE-SQL Llama3.3-70B-Instruct 92.0 80.5 81.0 62.9 80.5 22.46
SAFE-SQL Qwen2.5-72B 87.6 74.5 77.0 52.4 74.5 28.51
SAFE-SQL Gemma3-12B 92.4 90.7 85.1 78.8 88.2 13.28
SAFE-SQL Gemma3-27B 93.6 89.8 87.4 78.8 88.5 14.26

Table 1: Execution accuracy across difficulty levels on
the Spider development set. The highest score per row
is in bold, and the second highest is underlined.

(EM), on the other hand, assesses whether the pre-
dicted SQL query exactly matches the ground truth
query in its structure and syntax. By combining
these two metrics, we ensure a comprehensive eval-
uation of both the correctness and execution relia-
bility of the generated SQL queries.

4.4 Performance Comparison

Spider Dataset We analyze the performance of
SAFE-SQL across different SQL difficulty levels
and compare it with zero-shot, few-shot prompting
methods, and supervised fine-tuning approaches.
The results, presented in Table 1, demonstrate that
SAFE-SQL achieves overall superior performance,
with particularly strong improvements in hard and
extra hard categories. Few-shot methods exhibit
higher accuracy in Easy and Medium categories,
which can be attributed to skeleton-masked selec-
tion which retrieves answers directly from the train-
ing set, leading to an inflated performance in sim-
pler queries. SAFE-SQL excels in hard and ex-
tra hard categories, achieving significantly higher
EX. This improvement is notably influenced by
the inclusion of reasoning paths, which provide
explicit guidance in SQL generation and enhance
the model’s ability to construct complex queries, as
well as the filtering of misleading examples, which
reduces potential confusion and prevents error prop-
agation. These multiple factors play a crucial role
in enabling the model to generate more accurate
and structurally sound SQL queries, especially
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Method Model Execution Accuracy

Supervised Fine-Tuning (SFT)

Syn-SQL Sense13B 63.4
SQL-Palm Palm 53.6

Zero-shot Methods

Baseline GPT-4 49.2
Baseline GPT-4o 51.8
Baseline GPT-4o-mini 51.2
C3-SQL GPT-4 53.8

Few-shot Methods

Din-SQL GPT-4 55.9
Dail-SQL GPT-4 55.4
ACT-SQL GPT-4 52.8
PTD-SQL GPT-4 57.0
DEA-SQL GPT-4 52.4

Self-augmented In-Context Learning

SAFE-SQL GPT-4 58.9
SAFE-SQL GPT-4o 63.5
SAFE-SQL GPT-4o-mini 62.1
SAFE-SQL Llama3.1-70B-Instruct 60.9
SAFE-SQL Llama3.3-70B-Instruct 61.2
SAFE-SQL Qwen2.5-72B 56.2
SAFE-SQL Gemma3-12B 60.8
SAFE-SQL Gemma3-27B 61.5

Table 2: Execution accuracy on Bird dataset.

Models EX EM

SAFE-SQL - GPT-4o 87.9 78.3
w/o Reasoning path 84.4 (-3.5) 73.6(-4.7)
w/o Relevance filtering 82.1 (-5.8) 68.5(-9.7)
w/o Schema linking 80.4 (-7.5) 65.1(-13.2)
w/o Similar examples 77.1 (-10.8) 61.9(-16.4)

Table 3: Ablation study results for SAFE-SQL, where
removing each component leads to a performance drop.

in challenging scenarios where other approaches
struggle. Notably, SAFE-SQL using open-source
models such as Gemma3-27B outperforms high-
cost methods based on GPT-4, highlighting its cost-
effectiveness and strong capability.

Bird Dataset We also conduct experiments on
the Bird Dev dataset in addition to the Spider
dataset. Similar to Spider, SAFE-SQL consis-
tently outperforms zero-shot and few-shot methods,
achieving 63.5% execution accuracy with GPT-4o,
which is even higher than Syn-SQL (63.4%), a
supervised fine-tuning approach. This highlights
the effectiveness of our SAFE-SQL using a self-
augmented in-context learning method.

4.5 Ablation Study
To assess the contribution of each key component
in our model, we conduct an ablation study by sys-
tematically removing four critical modules: Rea-
soning Path, Relevance Score, Schema Linking,
and Similar Examples. We evaluate the resulting
impact on performance using EX shown in Table 3.
Our findings indicate that each component plays a

crucial role in the model’s effectiveness. Removing
the Reasoning Path leads to a 3.5-point drop in EX,
highlighting its importance in guiding the model
toward generating accurate SQL queries. The ab-
sence of the Relevance Score resulted in a 5.8-point
decrease in EX, underscoring its contribution to
overall performance. Eliminating Schema Linking
causes a 7.5-point drop in EX, which demonstrates
its critical role in similar example construction.
Overall, each of the four components—Reasoning
Path, Relevance Score, Schema Linking, and Sim-
ilar Examples—is essential for achieving optimal
performance in SQL generation, empirically vali-
dating our architectural and design choices.

4.6 Analysis

Inference Time per Query on Spider Dev Set
As shown in Table 1, we compare the inference
time of SAFE-SQL with other methods. While
baseline methods achieve faster inference via sim-
ple zero-shot prompts, they show lower accuracy.
Few-shot methods are faster than SAFE-SQL but
still underperform in execution accuracy. In con-
trast, SAFE-SQL leverages example augmentation
and filtering process, achieving higher performance
with a modest increase in inference time. Despite
requiring three LLM calls, SAFE-SQL demon-
strates strong zero-shot capabilities without relying
on a training set, making the trade-off in latency
worthwhile.

Score cos θ # of Generated EX % Filtered EX

≥ 0 0.581 10340 0 %
≥ 2 0.625 10185 1.50% (-155)
≥ 4 0.744 9883 4.41% (-457)
≥ 6 0.762 9378 9.30% (-962)
≥ 8 0.765 8606 16.76% (-1734)
≥ 10 0.769 6795 34.28% (-3545)

Table 4: Summary of data generation, filtering results,
and embedding similarity analysis by score.

Number of Generated and Filtered Examples
per Score, along with an Embedding Similar-
ity Analysis of the Filtered Examples For each
test question in the Spider dev set, 10 examples
are generated, resulting in a total of 10,340 exam-
ples. The quality of these examples is assessed
using a relevance score ranging from 0 to 10. As
shown in Table 4, the 65.71% of examples are as-
signed a score of 10, while the 0.59% of examples
are received a score of 0. This trend suggests that
the LLM tends to assign high relevance to its own

19040



Figure 3: (Left) Correlation between question embedding similarity and average EX, (Right) Average EX across
embedding similarity bins

generated examples. The similarity is computed
using cosine similarity, where higher scores indi-
cate greater semantic alignment between the test
questions and the retained examples. As the fil-
tering threshold increases, the embedding similar-
ity also increases, suggesting that higher-relevance
examples exhibit stronger semantic consistency
with the test questions. However, we also observe
that overly strict filtering—selecting only examples
with a perfect score of 10—leads to a decline in per-
formance. This drop occurs because an excessively
high threshold significantly reduces the number of
available examples, limiting the diversity.

Effect of Question Embedding Similarity on Ex-
ecution Accuracy. In Figure 3, the left graph
illustrates the correlation between embedding simi-
larity and EX. Each point represents one of the 11
data points obtained by filtering examples based on
different threshold scores (0 to 10). The data points
follow an upward trend, suggesting that higher sim-
ilarity tends to result in better EX. The red line
indicates the overall correlation, with a coefficient
of 0.82, showing a relatively strong positive rela-
tionship. Building on this analysis, the right graph
provides a more fine-grained view by examining
the execution accuracy of individual generated ex-
amples based on their embedding similarity with
test questions. The x-axis represents the normal-
ized similarity between the test question and the
generated question, and the y-axis indicates EX.
The results show that EX is lowest in the 0.0-0.1
similarity range, suggesting that examples with
very low similarity to test questions tend to be less
useful. As similarity increases, EX generally im-
proves, peaking in the 0.7-0.8 range. This suggests
that examples with a moderate to high similarity
to test questions are more effective in generating

Figure 4: Performance of GPT-4o at different relevance
score thresholds.

executable SQL queries. However, accuracy drops
slightly in the 0.8-0.9 range before rising again in
the 0.9-1.0 range. This indicates that excessively
high similarity can reduce diversity, potentially lim-
iting the model’s generalization ability.

Effect of Relevance Scoring Thresholds on Per-
formance. To further evaluate the effectiveness
of SAFE-SQL, we conduct a detailed case study
using varying thresholds for the relevance scor-
ing mechanism as shown in Figure 4. The self-
generated examples are filtered based on relevance
scores, with thresholds ranging from 0 to 10. For
each test question, the number of high-scoring
examples varied due to the specific content and
schema structure (e.g., some test questions have
six examples with scores ≥ 8, while others have
three). The selected examples are then used during
the final inference stage to generate SQL queries.
The ≥ 8 threshold consistently produces the best
results, validating the robustness of SAFE-SQL’s
relevance score filtering. The results demonstrate
that selecting high-quality examples plays a critical
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GOLD Question GOLD SQL Query Generated Question Reasoning Path Relevance Score

Question1: What are
the names, countries,
and ages for every
singer in descending or-
der of age?

SELECT name,
country, age FROM
singer ORDER BY
age DESC

What are the names,
ages, and countries of
all singers from a spe-
cific country, sorted by
age in descending or-
der?

1. Identify the desired columns: name, age, and
country.
2. Specify the table: singer.
3. Sort the results by age in descending order.

Semantic similarity =
10 Structural Similarity
= 10 Reasoning path =
10 Relevance score =
(10+10+10)/3 = 10

Question2: Return the
names and template ids
for documents that con-
tain the letter w in their
description.

SELECT
document_name,
template_id FROM
Documents WHERE
Document_Description
LIKE "%w%"

Retrieve the titles and
category IDs of articles
whose summaries con-
tain the word "data".

1. Identify the necessary columns: extract title
and category_id from the Articles table.
2. Locate the relevant table: use the Articles table
as it contains the required data.
3. Define the filtering condition: apply a WHERE
clause to check if the summary column contains
the substring "data".
4. Use the LIKE operator: employ LIKE
’%data%’ to search for any instance of "data"
within the summary.
5. Retrieve the results: return the title and
category_id values for all matching records.

Semantic similarity =
7 Structural Similarity
= 9 Reasoning path =
8 Relevance score =
(7+9+8)/3 = 8

Question3: What is the
number of car models
that are produced by
each maker and what is
the id and full name of
each maker?

SELECT Count(*),
T2.FullName, T2.id
FROM MODEL_LIST AS
T1 JOIN CAR_MAKERS
AS T2 ON T1.Maker
= T2.id GROUP BY
T2.id;

List all employees who
work in the IT depart-
ment along with their
employee ID and hire
date.

1. Identify required details: employee ID and hire
date.
2. Filter condition: find employees who work in
IT.
3. Retrieve data: select only emp_id and
hire_date.

Semantic similarity =
6 Structural Similarity
= 3 Reasoning path =
2 Relevance score =
(6+3+2)/3 = 3.67

Table 5: Comparative examples of gold-questions and GPT-4o-generated SQL questions, including detailed
reasoning paths and the process of computing relevance scores.

α β γ Easy Medium Hard Extra EX

0.33 0.33 0.33 93.4 89.3 88.4 75.8 87.9

1 0 0 90.7 84.2 82.3 68.3 82.8
0 1 0 89.8 85.6 81.2 69.2 83.1
0 0 1 89.2 85.1 84.3 71.7 83.7

0.5 0.5 0 91.2 87.3 82.5 69.4 84.4
0.5 0 0.5 92.5 87.9 83.5 70.3 85.3
0 0.5 0.5 92.7 86.8 88.5 72.4 86.1

Table 6: Execution accuracy across difficulty levels un-
der different weights: semantic similarity (α), structural
similarity (β), and reasoning path quality (γ).

role in guiding LLMs to generate accurate SQL
queries, regardless of the underlying model.

Effect of Three Measuring Components on Per-
formance. To assess the impact of the three mea-
suring components—semantic similarity (α), struc-
tural similarity (β), and reasoning path quality
(γ)—on EX, we conduct experiments by varying
their respective weightings. The results, presented
in Table 6, highlight distinct performance trends
across different difficulty levels. Notably, the ex-
clusion of reasoning path quality leads to a drop
in EX, particularly in the Hard and Extra Hard.
This suggests that a well-structured reasoning path
is crucial for handling complex queries, as it pro-
vides essential logical steps that bridge the gap
between natural language understanding and SQL
formulation. Conversely, semantic similarity and
structural similarity have a greater influence on the
Easy and Medium levels. This is because these
queries tend to be relatively straightforward, mean-

ing that having structurally similar SQL questions
in the example set often provides sufficient guid-
ance for generating correct queries. In these cases,
direct pattern matching and schema alignment play
a larger role. Overall, the findings demonstrate that
a balanced combination of all three components is
essential for optimizing performance across differ-
ent levels of query complexity.

4.7 Case Study

As shown in Table 5, test questions from the Spider
dev set alongside their generated similar examples,
evaluated based on semantic similarity, structural
similarity, and the reasoning path score, which to-
gether determine the relevance score. The first
example achieves a perfect relevance score of 10,
as the generated question closely aligns with the
original in meaning, structure, and reasoning. The
SQL formulation remains nearly identical, and the
reasoning path explicitly details each step, ensur-
ing full alignment. The second example receives
a relevance score of 8, with semantic similarity of
7 due to minor differences in terminology ("doc-
uments" vs. "articles" and "letter ’w’" vs. "word
’data’"). However, its structural similarity remains
high, as the SQL structure is nearly identical. The
reasoning path score of 8 reflects a clear expla-
nation of query formulation, though slightly less
detailed than the first example. The third example
has the lowest relevance score due to significant
differences. The generated question shifts focus
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from counting car models to listing IT employees,
resulting in semantic similarity of 6 and structural
similarity of 3. These results emphasize the impor-
tance of fine-grained example selection due to the
varing quality of generated examples.

5 Conclusion

We introduce SAFE-SQL, a novel unsupervised
framework designed for Text-to-SQL. SAFE-SQL
generates and filters high-quality self-augmented
examples for in-context learning. Extensive ex-
periments demonstrated that both the fine-grained
example generation process and optimal thresh-
old filtering contribute significantly to performance
gains. Our method achieves state-of-the-art results,
showing notable improvements over ablated ver-
sions and excelling particularly in challenging extra
hard and unseen scenarios.

Limitations

While SAFE-SQL demonstrates strong perfor-
mance in generating accurate and semantically
valid SQL queries, there are a few limitations that
should be addressed in future work. Although the
model performs well on the tested datasets, its
ability to generalize to highly diverse or domain-
specific SQL tasks remains to be fully evaluated.
The current framework also relies on large lan-
guage models like GPT-4o, which may not be easily
scalable to low-resource settings or environments
with limited computational resources. Handling
edge cases and extremely complex queries, which
might require deeper schema understanding and
more sophisticated reasoning, is another challenge
for the model.

Ethics Statement

While our approach enhances SQL generation with-
out additional fine-tuning, it relies on LLMs, which
may inherit biases from training data. We mitigate
potential biases and inaccuracies through structured
filtering and relevance scoring. Our study uses pub-
licly available datasets, ensuring compliance with
data privacy standards. We encourage responsi-
ble use of our method, particularly in applications
requiring high accuracy and fairness.
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A Appendix

B Prompts for SAFE-SQL

B.1 Prompt for example generation.

For example generation, we use zero shot prompt
as shown in the figure 7.

You are a powerful text-to-SQL reasoner. Your
task is to generate ten similar questions, ten SQL
queries, and ten reasoning paths for how the SQL
queries are derived. To ensure high-quality exam-
ples, focus on the following three key aspects:

Semantic Similarity
Ensure that all generated questions have the same
underlying meaning as the test question. Variations
in wording, synonyms, and phrasing are allowed
as long as they preserve the intended query objec-
tive. Avoid introducing ambiguity or additional
constraints that alter the intent.

Structural Similarity
While key terms (such as table names, column
names, and numerical values) may vary, their func-
tional roles and relationships should remain intact.

Reasoning Path
The logical reasoning required to construct the SQL
query should remain consistent across examples.
Clearly outline each step, including how key con-
ditions are identified and mapped to SQL opera-
tions.Maintain coherence in how joins, aggrega-
tions, filters, and sorting operations are applied.
Do not explain me about the result and just give me
ten examples.

## Schema linking: schema_linking[i]
## Tables: test_table[i]
## Foreign keys: test_foreign_keys[i]
## Question: test_question[i]

## Similar Question:
## SQL query:
## Reasoning Path:

Table 7: The zero-shot prompt used for example genera-
tion

B.2 Prompt for filtering examples.

For example generation, we use zero shot prompt
as shown in figure 8.

B.3 Prompt for final inference.

For final inference, we use zero shot prompt as
shown in figure 9.

You are a powerful text-to-SQL reasoner. Given a test question
and a set of examples, compute the relevance score for each
example based on the following criteria. Do not explain me
about the answer, just give me scores.

Semantic Similarity
Compare the overall meaning of the test question and the
example question. Higher scores should be assigned if the
two questions have the same intent, even if they are phrased
differently. Consider synonyms, paraphrasing, and minor
wording variations that do not alter the fundamental meaning.
Assign lower scores if the test and example questions focus on
different database operations (e.g., aggregation vs. filtering)
or require fundamentally different types of information.(up to
10 points).
10: Almost identical meaning and intent.
7–9: Minor paraphrasing but highly relevant.
4–6: Some overlap but different focus.
1–3: Mostly unrelated meaning.
0: Completely different intent.

Structural Similarity
Evaluate the structural alignment between the test question and
the example question by analyzing how key elements (such
as entities, attributes, and numerical values) are connected.
Even if individual nouns, verbs, or numbers differ, the overall
relational structure should be considered. Focus on whether
the dependencies between key components (e.g., how entities
relate to each other in the database) remain consistent.(up to
10 points).
10: Nearly identical structural relationships and dependencies.
7–9: Mostly similar structure, with minor differences in entity
connections.
4–6: Some overlap, but noticeable differences in how key
components interact.
1–3: Few shared structural relationships, making alignment
weak.
0: No meaningful structural similarities.

Reasoning Path
Evaluate whether the logical steps needed to answer the ex-
ample question align with those required for the test question.
Consider whether the database operations (e.g., filtering, ag-
gregation, joins, subqueries) are similar.A high score should
be given if the example follows the same logical sequence to
derive the SQL query.Lower scores should be assigned if the
reasoning process differs significantly, even if the questions
seem similar at a surface level.(up to 10 points).
10: Exact reasoning process to get right SQL query.
7–9: Mostly similar but with minor differences.
4–6: Some alignment but different key steps.
1–3: Largely different reasoning.
0: Completely unrelated logic.

## Question: test_question[i]
## Similar Question: similar_question[i]
## Reasoning Path: reasoning_path[i]
## Relevance score:

Table 8: The zero-shot prompt used for filtering exam-
ples.
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You are a powerful text-to-SQL reasoner. Your task
is to generate the final SQL query using a set of
selected examples that provide guidance on query
construction. Utilizing Selected Examples. Do not
explain me about the answer, just give me SQL
query.
A set of chosen examples, each containing: A nat-
ural language question similar to the test question
A corresponding SQL query A detailed reasoning
path explaining how the SQL query was derived
These examples are selected based on three key
criteria:

Semantic Similarity The selected examples
closely match the intent of the test question. Varia-
tions in wording do not change the meaning.
Structural Similarity The database schema ele-
ments (tables, columns, joins) used in the examples
align with the test question. The SQL syntax and
structure are relevant to the expected query.
Reasoning Path Similarity The logical steps used
to construct the SQL query align with the reasoning
required for the test question. Key transformations,
filtering conditions, and aggregation logic are simi-
lar.
Final SQL Query Construction
Using the selected examples, generate the final
SQL query that correctly retrieves the desired result
for the given test question. Follow the reasoning
patterns observed in the examples. Now, generate
the final SQL query for the given test question:

##Tables: test_table[i]
##Foreign_keys: test_foreign_keys[i]
##Question: text_question[i]
##Filtered_example: filtered_example[i]

Table 9: The zero-shot prompt used for Final SQL query
inference.

Easy Med Hard Extra All

Qwen 2.5-3B 62.4 61.2 58.6 48.8 59.1
Qwen 2.5-7B 80.0 78.0 67.2 51.8 72.3
Qwen 2.5-14B 81.2 80.3 69.5 56.4 74.7

Table 10: Execution accuracy performance of different
size of models of Qwen series across difficulty levels of
spider dev set.

C Impact of model size

Performance based on generated examples
across different model size As shown in Ta-
ble 10, We investigate the impact of model size
on example generation with different variants of
the Qwen2.5 Models. The results demonstrate that
the 14B model achieves the highest overall perfor-
mance, followed by the 7B and the 3B. This trend
is consistent across all difficulty levels, with large
model size generating higher-quality examples that
lead to more accurate SQL query generation. The
performance improvement with increasing model
size can be attributed to the enhanced capacity of
larger models to capture SQL question patterns and
semantic relationships. Moreover, larger models
possess more extensive information, allowing them
to generate more appropriate questions and con-
struct detailed reasoning paths, which contribute to
the overall accuracy of SQL query generation.

D Spider dev training set embedding
clusters.
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Figure 5: Embedding of spider dev set training ques-
tions.

Although questions within the same category
share semantic similarities, they may belong to
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different clusters, leading to inconsistencies when
retrieving examples from the training set. This
highlights the limitations of training set retrieval in
Text-to-SQL tasks.
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