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Abstract

Large language models (LLMs) often acquire
knowledge during pretraining that is undesir-
able in downstream deployments, e.g., sensi-
tive information or copyrighted content. Ex-
isting approaches for removing such knowl-
edge rely on fine-tuning, training low-rank
adapters or fact-level editing, but these are ei-
ther too coarse, too shallow, or ineffective. In
this work, we propose PISCES (Precise In-
parameter Suppression for Concept EraSure),
a novel framework for precisely erasing entire
concepts from model parameters by directly
editing directions that encode them in parame-
ter space. PISCES uses a disentangler model
to decompose MLP vectors into interpretable
features, identifies those associated with a tar-
get concept using automated interpretability
techniques, and removes them from model pa-
rameters. Experiments on Gemma 2 and Llama
3.1 over various concepts show that PISCES

achieves modest gains in efficacy over lead-
ing erasure methods, reducing accuracy on the
target concept to as low as 7.7%, while dramat-
ically improving erasure specificity (by up to
31%) and robustness (by up to 38%). Over-
all, these results demonstrate that feature-based
in-parameter editing enables a more precise
and reliable approach for removing conceptual
knowledge in language models.

1 Introduction

Large language models (LLMs) excel at captur-
ing knowledge from their pretraining data, making
them effective across a wide range of applications
(Petroni et al., 2019; Radford et al., 2019; Brown
et al., 2020; Roberts et al., 2020). However, not all
knowledge acquired during pretraining is necessary
or appropriate in all deployment contexts. For ex-
ample, a chatbot designed for children should not
discuss guns, and generation of harmful, irrelevant
or legally protected information generally hinders
model utility and introduces safety and legal risks
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Figure 1: PISCES disentangles model parameters to
identify those encoding a target concept (e.g. Harry
Potter). It then edits those disentangled parameters to
precisely remove the target concept, before reconstruct-
ing them and finally replacing them in the model.

(Zou et al., 2024; Huang et al., 2025; Gong et al.,
2025). Our work tackles a fundamental question:
how can we identify and remove certain knowledge
while preserving model utility?

Specifically, we study an instance of this prob-
lem, where the goal is to erase knowledge about a
certain concept (e.g., Harry Potter or Guns), such
that the model can no longer generate informa-
tion about it. Prior work has explored different
approaches for erasing information in LLMs, in-
cluding fine-tuning models through an unlearning
framework to eliminate conceptual knowledge (Li
et al., 2024a; Zhang et al., 2024; Yamashita et al.,
2024; Gandikota et al., 2025), editing certain facts
through specific parameter updates (Meng et al.,
2023; Chen et al., 2025), and intervening on model
representations to erase certain attributes (Boluk-
basi et al., 2016; Ravfogel et al., 2020; Iskander
et al., 2023; Belrose et al., 2023).

Among these methods, those framed as unlearn-
ing are the most aligned with our setting (Eldan and
Russinovich, 2023; Yamashita et al., 2024; Li et al.,
2024a), as they aim to remove knowledge rather
than attributes or biases from the model. However,
these methods remain insufficient for robust con-
ceptual knowledge erasure. First, they are overly
coarse—impacting not only the targeted concept
but also semantically related ones and even general
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model capabilities (Lynch et al., 2024; Liu et al.,
2024; Barez et al., 2025). Moreover, erasure is of-
ten shallow: the supposedly removed knowledge
can be recovered through adversarial prompting
or fine-tuning (Lo et al., 2024; Thaker et al., 2024;
Deeb and Roger, 2025; Doshi and Stickland, 2025).

To overcome these shortcomings, we propose
PISCES (Precise In-parameter Suppression for

Concept EraSure), a fine-grained concept erasure
method, which first localizes directions in the pa-
rameter space of the model that capture concept-
related knowledge, and then precisely edits these
parameters. Concretely, given a transformer-based
language model M and a concept c, a disentangler
model D is utilized to separate MLP parameters
into fine-grained features. Next, features that are
specific to the target concept are identified using an
output-centric automated interpretability method —
vocabulary projection (Nostalgebraist, 2020; Geva
et al., 2021; Gur-Arieh et al., 2025). Lastly, the
identified concept-related features are ablated from
the MLP parameters that encode them. Figure 1 il-
lustrates this process. We focus on the MLP layers
as prior work has shown they act as key-value mem-
ories that capture knowledge (Geva et al., 2021; Dai
et al., 2022; Geva et al., 2022, 2023), and imple-
ment our disentangler with sparse autoencoders
(SAEs), which have shown promise in disentan-
gling model activations (Huben et al., 2024).

We conduct extensive experiments to evaluate
PISCES against existing methods, measuring era-

sure efficacy, specificity, coherence, and robust-
ness to relearning (Liu et al., 2024; Lynch et al.,
2024; Wu et al., 2025a). Our results show that
PISCES slightly outperforms existing methods in

efficacy, while substantially improving specificity
and robustness. Specifically, PISCES achieves
5%–31% higher specificity and 28%–38% greater
robustness, demonstrating superior precision and
robustness compared to state-of-the-art approaches.
Figure 2 presents example responses to queries
about erased concepts across different methods.
Lastly, we find that PISCES’s success hinges
on D identifying coherent concept-related fea-
tures, highlighting that stronger disentangler mod-
els could further improve erasure performance.

Our work makes the following contributions:
(a) we introduce PISCES — a novel framework
for precisely erasing concepts in model param-
eters, (b) we demonstrate an implementation of
our framework using SAEs, (c) we show that
PISCES outperforms prior state-of-the-art meth-
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Figure 2: Sampled questions about erased concepts
with responses generated by models post unlearning
by PISCES, ELM and RMU, as well as the baseline
response. Erased concepts are Harry Potter and Gun.
See Table 7 in the appendix for more examples.

ods, achieving superior efficacy, specificity, co-
herence, and robustness. We release our code at
https://github.com/yoavgur/PISCES.

2 Related Work

Concept erasure Prior work has studied erasure
of linearly decodable attributes from model repre-
sentations, typically to mitigate bias via some form
of linear projection. Early work targeted gender
bias in token embeddings (Bolukbasi et al., 2016;
Ravfogel et al., 2020), later extending to hidden
activations (Belrose et al., 2023; Iskander et al.,
2023). Our work is different in its motivation, aim-
ing to remove conceptual knowledge rather than
certain attributes or biases. Moreover, we target
erasure from model parameters rather than from its
representations.

Knowledge editing Knowledge editing methods
aim to precisely edit specific facts in the model’s
parameters without full retraining (Mitchell et al.,
2022; Wu et al., 2023; Meng et al., 2023; Hsueh
et al., 2024; Li et al., 2024b). These methods typi-
cally formulate facts as triplets composed of a sub-
ject, an object and their relation. While effective for
editing collections of facts, applying them in our
setting could prove difficult: removing a concept
like Uranium for example, would require enumer-
ating and editing every relation that it appears in
that the model has knowledge of—an approach that
we found in our results to be less effective.
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Concept unlearning Machine unlearning aims
to remove the influence of specific training exam-
ples after deployment (Cao and Yang, 2015), orig-
inally for privacy (Ginart et al., 2019; Wu et al.,
2023; Ashuach et al., 2025), and more recently
for copyright and safety (Eldan and Russinovich,
2023; Li et al., 2024a; Zhang et al., 2024). To
work at a higher level of abstraction, recent meth-
ods have turned their focus to unlearning entire
concepts as opposed to specific training examples
(Yamashita et al., 2024; Gandikota et al., 2025).
Most unlearning methods fine-tune on a forget-set
(e.g., a concept-centric corpus) while preserving
performance on a retain-set, but fine-tuning affects
all model parameters, many unrelated to the tar-
get concept, potentially resulting in low specificity
(Lynch et al., 2024; Barez et al., 2025). Also, with-
out targeting the parameters that specifically en-
code the knowledge, these methods often leave it
intact, leading to shallow unlearning and poor ro-
bustness (Hong et al., 2025; Hu et al., 2025; Deeb
and Roger, 2025). In contrast, we edit only the di-
rections encoding the concept itself, enabling more
robust and generalizable removal (Yamashita et al.,
2024).

Perhaps closest to our work are recent meth-
ods that use SAEs for concept unlearning (Farrell
et al., 2024; Chen et al., 2025; Frikha et al., 2025;
Muhamed et al., 2025). These methods disentan-
gle model activations into interpretable features,
which they then steer to affect the model’s ability
to generate text about a given concept. However,
this approach has key limitations: steering with
SAEs has been shown to degrade coherence (Wu
et al., 2025b), incurs high computational overhead
due to large hidden dimensions (Lieberum et al.,
2024; He et al., 2024; Gao et al., 2025), and makes
non-persistent edits that fail under white-box threat
models (Grosse et al., 2024; Liu et al., 2025; Łucki
et al., 2025). In contrast, we disentangle and edit
parameters directly, producing persistent changes
that activate only when the concept is invoked.

3 In-Parameter Concept Erasure

Problem setup We address the problem of eras-
ing conceptual knowledge from LLMs. As it is
nontrivial to precisely define what a “concept” is,
we follow Sajjad et al. (2021); Kheir et al. (2024)
and view a concept as a human-understandable
group of features, examples, or words that share
a common property and can be localized within

a model’s internal representations. Example con-
cepts can be Harry Potter, Sunday or Guns. This
view aligns with the desiderata of meaningfulness
and coherency by Ghorbani et al. (2019), and is
consistent with previous analyses of concepts in
language models (Sajjad et al., 2022; Dalvi et al.,
2022).

Let c be a target concept and M a model. Specif-
ically, we assume that M is a transformer-based
auto-regressive language model. Our goal is to
erase knowledge about c from M , such that M
cannot generate correct information about c, while
other knowledge and capabilities of M are retained.

Erasure approach We wish to tackle the afore-
mentioned problem by erasing c directly from the
model’s parameters, rather than from its represen-
tations. To this end, we focus on erasing c from the
MLP parameters, which have been shown to act as
memories and play a key role in knowledge recall
mechanisms of LLMs (Geva et al., 2021; Dai et al.,
2022; Meng et al., 2022; Geva et al., 2022, 2023).

An MLP layer comprises an input projection
matrix Win ∈ Rdmlp×d, an output projection matrix
Wout ∈ Rdmlp×d, and an element-wise nonlinear
activation function σ.1 For a hidden representation
x ∈ Rd, the layer’s output is defined as:

MLP(x) = W⊤
out σ(Winx) :=

dmlp∑

i=1

aivi (1)

where vi ∈ Rd is the i-th row of Wout and ai ∈ R
is its corresponding neural activation.2 We refer to
each vi as an MLP vector.

Given the above definition (Eq. 1), a natural ap-
proach would be to target specific MLP vectors
that activate for the concept. Indeed, prior work
has shown that individual MLP vectors often en-
code and promote human-interpretable concepts
(Geva et al., 2022). However, while MLP vectors
have shown promise for editing model knowledge
(Dai et al., 2022; Wu et al., 2023; Hu et al., 2024),
recent work has demonstrated that concept repre-
sentations are not always basis aligned, manifest-
ing in polysemantic MLP vectors (Bricken et al.,
2023; Huben et al., 2024). Due to polysemanticity,
concepts may be distributed across multiple MLP
vectors or entangled within a single vector (Elhage

1We omit bias terms as modern LLMs often do not have
them and since our method does not intervene on them.

2In modern LLMs, activations often go through additional
gating before the output projection (Liu et al., 2021).
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et al., 2022; Bricken et al., 2023; Gurnee et al.,
2023). This undermines efforts to precisely remove
specific knowledge without damaging unrelated ca-
pabilities, limiting both efficacy and specificity. To
overcome this, we propose to disentangle neurons
into fine-grained, interpretable features, allowing
us to precisely remove directions associated with
the target concept across all neurons, without af-
fecting unrelated knowledge.

4 PISCES

We introduce PISCES (Precise In-parameter Sup-
pression for Concept EraSure) – a method for pre-
cisely locating and erasing conceptual knowledge
in parameter space. In §4.1, we present the general
framework of our method, and in §4.2 describe how
we implemented it. See Figure 3 for an illustration
of our method.

4.1 Framework
We assume an invertible disentangler model
D : Rd → Rk that transforms hidden representa-
tions in dimension d into a higher-dimensional
space of k features, where k ≫ d. A feature f
corresponds to a one-hot vector that can be vector-
ized via D−1(f) = wf ∈ Rd. Let m := D(x) be
the feature activation for a vector x ∈ Rd, then we
can represent x using the feature vectors:

D−1(m) =

k∑

f=1

mfwf (2)

Examples for such disentangler models are SAEs
(Lee et al., 2007; Le et al., 2011; Bricken et al.,
2023; Huben et al., 2024; Gao et al., 2025) and
DAS-based models (Geiger et al., 2024; Huang
et al., 2024).

Here we apply D to the MLP parameter vectors,
which enables editing them in a higher resolution.
This is done through the following high-level pro-
cess. First, we identify the set Fc of features encod-
ing the concept c. Then, we use D to disentangle
every MLP vector v and measure how strongly it is
represented by the features in Fc. A high activation
for any these features signals that v encodes the tar-
get concept. Based on these scores, we derive a set
Vc of MLP vectors for editing.3 Next, we edit every
vector v ∈ Vc by modifying its disentangled rep-
resentation m → m̄, specifically ablating all the

3Intuitively, we would want to edit all vectors, but we
find that practically this can hurt specificity and coherence, as
explained in §4.2.
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Figure 3: Illustration of PISCES’s erasure process for
example concept Harry Potter. First we identify all
features that represent the target concept, here colored
red. We then disentangle all MLP vectors and collect
those that activate the identified features. Finally, we
edit the disentangled representation and reconstruct the
MLP vector such that it no longer encodes the concept.

features in Fc. Lastly, we obtain a new represen-
tation v̄ = D−1(m̄) for v that is “clean” from the
concept c. The MLP vectors Vc are then replaced
in-place with their edited counterparts, cementing
the removal of c from all MLP parameters.

4.2 Implementation

Choice of disentangler We implement the disen-
tangler as a sparse autoencoder DSAE, since it has
shown promise in some settings for disentangling
and affecting model activations (Bricken et al.,
2023; Huben et al., 2024; Kissane et al., 2024; Far-
rell et al., 2024; Marks et al., 2025; Muhamed et al.,
2025). Let Wenc ∈ Rd×k and Wdec ∈ Rk×d be the
encoder and decoder matrices of an SAE, respec-
tively. We define DSAE as the application of Wenc,
and D−1

SAE as the application of Wdec. To disentan-
gle MLP vectors, we use SAEs that were trained
on MLP outputs (Lieberum et al., 2024; He et al.,
2024; Gao et al., 2025) and apply them directly
to the MLP vectors. This is justified by Equa-
tion (1), which highlights that MLP outputs are
linear combinations of the MLP vectors. Therefore,
applying an SAE trained on MLP outputs to the
corresponding MLP vectors preserves alignment
with the original training subspace.

Finding concept-related features To identify
the set of features Fc that encode a target concept,
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we follow Gur-Arieh et al. (2025) and apply vo-
cabulary projection (VocabProj) to all SAE fea-
ture vectors. Namely, we take the feature vector
wf and apply the unembedding matrix to it to ob-
tain a vector of logits uf := Ewf ∈ R|C|, where
E ∈ R|C|×d is the unembedding matrix and C is
the model’s vocabulary. Then, we select features
for which the top- or bottom-scoring tokens in uf

contain a high density of concept-related tokens
and minimal presence of unrelated ones, applying
this process automatically across all layers. The
selected features are then filtered by manual inspec-
tion. We choose this output-centric approach be-
cause it has been shown to better predict the causal
influence of features on model outputs (Gur-Arieh
et al., 2025). Additional details are provided in §A.

Selecting MLP vectors for editing To construct
Vc, we disentangle all MLP vectors with DSAE and
select only those that strongly activate one or more
features in Fc. We avoid editing all vectors be-
cause each reconstruction introduces small errors
(Gurnee, 2024), and when applied at scale, these
can accumulate and unintentionally alter model
behavior – particularly harming specificity and co-
herence. To do so, for each MLP vector vi, we
collect its activation mi

f for each feature f ∈ Fc.
Then, we compute the maximum activation of f
across all MLP vectors vi:

m̂f = max
i

mi
f (3)

Lastly, we construct Vc by selecting only MLP
vectors that sufficiently activate any target feature
according to the following criterion:

⋃

f∈Fc

{
vi | mi

f ≥ τ · m̂f

}
(4)

where τ ∈ [0, 1] is a hyperparameter controlling
the selection threshold. In words, we collect all
MLP vectors vi that sufficiently activated some
feature f , with respect to that feature’s maximum
activation value. Therefore, τ allows us to control
how wide we want our edit’s coverage to be.

Erasing the concept After finding the relevant
features Fc and selecting the target MLP vectors
Vc, we edit the vectors to remove the concept c.
For each vi ∈ Vc, we first identify the subset of
features to ablate:

F i
c =

{
f ∈ Fc | mi

f ≥ τ · m̂f

}
(5)

We then ablate features by setting their activations
to negative values, which has been shown to ef-
fectively suppress their influence when applied to
residual stream representations in the context of
steering (Farrell et al., 2024; Muhamed et al., 2025).
Concretely, let mi = DSAE(vi) be the feature acti-
vations for vi. We define m̄i to match mi, except
for the entries f ∈ F i

c, where we set m̄i
f = −µ·m̂f ,

such that µ ≥ 0 controls the strength of our edit.
The edited MLP vector is then reconstructed via

v̄i = D−1(m̄i) and replaces the original param-
eters vi in place. For additional implementation
details, see §A.2.

5 Experiments

We evaluate PISCES against four other methods
suitable for concept erasure. To do so, we take con-
cepts previously evaluated for erasure (Eldan and
Russinovich, 2023; Hong et al., 2025) and erase
them from the target models, evaluating efficacy,
specificity, coherence and robustness.

5.1 Experimental Setting

We conduct four key evaluations for concept era-
sure (Liu et al., 2024; Lynch et al., 2024; Barez
et al., 2025; Deeb and Roger, 2025):

Efficacy Does the erasure prevent the model from
correctly answering questions about c? We eval-
uate a method’s efficacy by measuring its perfor-
mance on 50 open-style questions, in order to as-
sess the model’s ability to recall and generate cor-
rect information about the target concept. To do
so, we first generate QA pairs using GPT-o3 (Ope-
nAI, 2025). Then, after applying each method we
prompt the model with each question individually,
allowing it to generate for up to 200 tokens. Fi-
nally, for each answer the model generated, we
use gemini-2.0-flash (Google, 2025) as an LLM-
as-a-Judge (justified in §C), which evaluates how
well the given answer matches the correct answer.
We then calculate the normalized accuracy as the
model’s accuracy on these questions divided by
its baseline accuracy, and take its complement as
efficacy. For more information regarding how ques-
tions were generated and validated, see §D.

Specificity Does the erasure preserve unrelated
and similar-domain knowledge? Following previ-
ous work, to evaluate a method’s specificity we
assess its impact on a model’s general knowledge
by evaluating it on the MMLU dataset (Hendrycks

19002



Model Method Accuracy ↓ Similar Domain ↑ MMLU ↑ AlpacaEval ↑ Relearning Accuracy ↓
efficacy specificity specificity coherence robustness

Gemma-2-2b-it

MEMIT 16.1 ± 4.5 38 ± 4.9 56.9 ± 1.5 49.5 ± 25.6 52.1 ± 15.5
AlphaEdit 24.5 ± 5.5 40.1 ± 4.9 57 ± 1.5 76.1 ± 10.5 79.5 ± 11.5
ELM 15 ± 4.4 53.9 ± 5.2 89.3 ± 1.7 99.3 ± 0.5 85.4 ± 14.1
RMU 21.8 ± 5.2 77.2 ± 5.2 92.3 ± 1.7 99.4 ± 0.3 79.4 ± 11
PISCES (ours) 14.3 ± 4.3 84.1 ± 5 97.2 ± 1.7 98.8 ± 0.9 51.5 ± 11.2

Llama-3.1-8b-it

MEMIT 24.5 ± 4.7 58.7 ± 5.2 92.8 ± 1.5 88.5 ± 17.4 100.8 ± 7.8
AlphaEdit 73.6 ± 6.3 77.2 ± 5 80.7 ± 1.5 80.9 ± 17.7 102.3 ± 8.9
ELM 21.2 ± 4.4 71.1 ± 5.1 98.2 ± 1.5 98.0 ± 0.9 103.1 ± 10.4
RMU 8.3 ± 2.9 86.7 ± 4.8 99.3 ± 1.5 98.7 ± 0.8 93.2 ± 7.7
PISCES (ours) 7.7 ± 2.8 87.6 ± 4.7 99.4 ± 1.5 99.3 ± 0.6 65.4 ± 6.9

Table 1: Concept erasure results for all eleven concepts and both target models considered in our evaluation.
All results are normalized by the model’s baseline performance, such that 100% is exactly the model’s original
performance. Results are averaged across all questions, and are presented alongside their 95% confidence intervals.
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Figure 4: Performance of PISCES, ELM and RMU (MEMIT and AlphaEdit are omitted due to poor performance)
on four concepts in Gemma-2-2b-it and Llama-3.1-8b-it. Each point is a single hyperparameter selection taken out
of 100 possible choices, presenting only the best performing ones. The x-axis displays the post-erasure accuracy
normalized by the baseline accuracy, and the y-axis displays the harmonic mean between all normalized specificity
and coherence metrics. The star represents the goal – zero accuracy and 100% specificity and coherence.

et al., 2021; Li et al., 2024a; Lynch et al., 2024;
Gandikota et al., 2025). To assess things more
stringently, we also assess the model’s post-edit
performance on domains similar to the target con-
cept (e.g. for the concept Harry Potter, we’d ask
questions about Lord of the Rings and Marvel). To
do so we follow the steps previously laid out for
generating and evaluating open-style questions (see
§D.1 for more details).

Coherence Does the model retain its ability to
follow instructions and produce coherent text? We
follow the coherence evaluation laid out by Wu et al.
(2025b). We collect a random subset of 50 tasks
(e.g., Give three steps for staying healthy) from the
Alpaca-Eval dataset (Li et al., 2023). Each task is
given to the edited model, which attempts to exe-
cute it for up to 200 tokens. An LLM-as-a-Judge
then scores the output on how well it followed the
instructions and how coherent it was.

Robustness Is the erasure resilient to relearning
attacks? We follow the Retraining on T evalua-
tion from Deeb and Roger (2025), which checks
whether fine-tuning an edited model on concept-
related text that does not contain answers to eval-
uation questions, improves performance on them.
This is meant to assess whether the target knowl-
edge has truly been unlearned, or merely sup-
pressed in a shallow way. To implement this, we
take each concept’s forget-set data, and filter out
any text containing answers to questions we use for
evaluating efficacy (details in §D.2). We then fine-
tune the edited model on the data, and reevaluate
its efficacy score. We do not include adversarial
attacks in our robustness evaluation, as their effect
was negligible in preliminary tests (see §F).

Concepts and models To perform our evalu-
ations, we collect five concepts from the Con-
ceptVectors benchmark (Hong et al., 2025), a
benchmark designed to evaluate unlearning, as well
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as five new sensitive concepts which did not origi-
nally appear in the dataset. We also evaluate against
the concept of Harry Potter due to its prevalence
in unlearning evaluations (Eldan and Russinovich,
2023). Finally, we evaluate all methods against
Gemma-2-2B-it (Riviere et al., 2024) and Llama-
3.1-8B-it (Dubey et al., 2024) since they have SAEs
that have been trained on every MLP layer output
(Lieberum et al., 2024; He et al., 2024).

Methods We compare our method to RMU (Li
et al., 2024a), ELM (Gandikota et al., 2025),
MEMIT (Meng et al., 2023) and AlphaEdit (Fang
et al., 2025), four state-of-the-art unlearning
and editing approaches with distinct mechanisms.
RMU fine-tunes the model with an emphasis on
hidden representations, ELM learns a LoRA-based
update based on the model’s output distribution,
and MEMIT and AlphaEdit perform direct parame-
ter edits. For each method, concept and model, we
perform a hyperparameter sweep of 100 configu-
rations using a validation set disjoint from the test
set,4 selecting the best-performing setup for evalu-
ation (more details in §B). As in ConceptVectors,
we use the Wikipedia entry of each concept as its
forget-set data for methods that require it. We also
evaluate our approach with a supervised disentan-
gler in the form of difference-in-means (Rimsky
et al., 2024; Arditi et al., 2024) as a counterpart to
our unsupervised one, reported in §G.

5.2 Results
Table 1 shows the results, averaged across all con-
cepts. Figure 4 shows the efficacy-specificity trade-
off across hyperparameters on several concepts,
with MEMIT and AlphaEdit omitted due to poor
performance (for all concepts and methods, see
Figures 6 and 7 in the appendix).

PISCES achieves a better efficacy-specificity
balance Table 1 shows that across both models,
PISCES consistently outperforms other methods

in efficacy while preserving higher specificity. In
Gemma, PISCES retains 14.3% of original ac-
curacy while maintaining strong similar-domain
performance (84.1%) and near-perfect MMLU and
AlpacaEval scores. Results on Llama are even
stronger, with just 7.7% retained accuracy and im-
proved specificity and coherence. In contrast, other
methods show poorer tradeoffs: for example, the
next-best method in Gemma is only 0.7% lower in

4This results in a total of 800 experiments per concept for
all methods and models.

efficacy but suffers a 30% drop in similar-domain
accuracy and an 8% drop in MMLU. Figure 4 re-
inforces these results, showing that PISCES out-
performs the baselines by simultaneously attaining
lower accuracy, and higher specificity and coher-
ence scores. These results highlight that a precise,
parameter-based approach to concept erasure en-
ables finer-grained editing of model knowledge,
yielding an improved efficacy-specificity tradeoff.

PISCES improves robustness to relearning Ro-
bustness evaluations in Table 1 reveal a substan-
tial gap between PISCES and other methods. In
Gemma, PISCES reaches a relearning accuracy
of 51.5%, while the next-best method on efficacy
reaches 85.4%—nearly 34% higher—indicating
that most of the erased knowledge was recovered
by fine-tuning on concept-related data, despite ex-
cluding evaluation answers. For Llama, PISCES

performs slightly worse than in Gemma, reach-
ing a relearning accuracy of 65.4%. However,
other methods recover most or all of the removed
knowledge, reaching 93.2%-103.1% accuracy post
fine-tuning. This underscores that prior methods
achieve only superficial concept erasure: the under-
lying knowledge remains in the model and can eas-
ily resurface. While PISCES also regains some
knowledge under fine-tuning—leaving room for
improvement—the up-to-38% gap in relearning ac-
curacy shows that directly editing the parameters
encoding the target concept yields substantially
more robust erasure than general fine-tuning.

6 Analysis

To better understand the behavior and limitations
of PISCES, we conduct two analyses. First, we
study the relationship between the quality of the
features identified by the disentangler and erasure
success, highlighting the conditions under which
PISCES performs best. Then, we compare the

computational cost of PISCES to that of existing
methods, showing that it offers a favorable trade-off
between performance and efficiency.

6.1 Effect of Disentangler Performance on
Erasure Success

A key component in our method is the disentangler
model, which is used to identify concept-related
features. Here, we analyze the relationship between
the quality and quantity of features identified by
the disentangler and the performance of PISCES.
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Figure 5: Analysis showing the relationships between
feature alignment and erasure accuracy (left, −0.72 cor-
relation with p-value 0.01), and between the number of
selected features and MMLU performance (right, −0.64
correlation with p-value 0.03).

In our analysis, we consider the final set of selected
features in Gemma-2-2B-IT.

To measure the quality of a feature f , we evalu-
ate how well either the top-50 or bottom-50 tokens
in its projection to the vocabulary (see Section 4.2)
align with the target concept c. Let c′ be our in-
terpretation of the concept that f represents, we
define two metrics:
1. Alignment: a binary score indicating whether c′

aligns with c or not, i.e., 1 if c and c′ are the
same concepts and 0 otherwise. For example, a
feature identified as relevant for the concept of
c = baseball, but seems to represent the broader
concept of c′ = sports will receive a score of 0.

2. Coherence: a discrete score from 0 to 2 which
measures how clearly and distinctively c′ is ex-
pressed among the top/bottom tokens in the
projection, according to the presence of unre-
lated tokens. A score of 0 means low coherence,
where no clear concept is observed. A score of
1 indicates moderate coherence, where f seems
to encode c′ but may also encode other concepts.
A score of 2 indicates high coherence, where
the tokens clearly reflect a single, well-defined
concept aligned with c′.
Figure 5 presents the prominent patterns ob-

served. Per-concept results and annotation exam-
ples can be found in §E. We find that features that
strongly correspond to the target concept and ex-
press it clearly (i.e. high alignment and coherence)
tend to yield better performance on our evaluation
metrics. Moreover, concepts with many selected
features often exhibit lower MMLU and Alpaca
scores, likely due to accumulated reconstruction
error (Gurnee, 2024). These results underscore
that PISCES relies on D’s ability to identify pre-
cise, coherent features. When such features are
present (e.g., “golf”, “Republic of Ireland”, “base-
ball”), PISCES performs best; when they are ab-

Method 1 concept 10 concepts
Gemma Llama Gemma Llama

MEMIT 5 ·1014 1.9·1015 4.8·1015 5.8·1016
AlphaEdit 5.9·1014 2.4·1015 5.8·1015 2.3·1016
ELM 2.6·1015 1.1·1016 2.6·1016 1.1·1017
RMU 2.8·1015 1.1·1016 2.8·1016 1.1·1017
PISCES 5 ·1014 1.1·1015 5 ·1014 1.1·1015

Table 2: Estimated FLOPs for applying each method to
1 and 10 concepts.

sent (e.g., “Uranium”), performance declines.

6.2 Computational Efficiency

In this section, we compare the computational cost
of applying PISCES versus other methods. We
calculate the cost of PISCES using DSAE by sum-
ming the FLOPs to first perform vocabulary projec-
tion for every SAE feature vector, and then to apply
the editing process for every isolated MLP vector.
For RMU and ELM we rely on the heuristic FLOPs
≈ 6N for a forward and backward pass per token
(Kaplan et al., 2020), multiplied by the amount
of tokens in the forget and retain sets. Lastly, for
MEMIT and AlphaEdit we approximate the cost by
calculating the number of forward and backward
passes needed for every fact in the forget set, and
for calculating the covariance matrix and residual
vector optimization.

Results are in Table 2, showing that PISCES

performs best at 5 · 1014 FLOPs for Gemma, and
1.1 · 1015 FLOPs for Llama, followed by MEMIT
and AlphaEdit with similar performance, and then
ELM and RMU which are one order of magni-
tude more expensive. Moreover, since running
VocabProj can be performed once and reused
across concepts, the cost of adding more concepts
for PISCES is comparatively insignificant. There-
fore, when applying our method to multiple con-
cepts, PISCES becomes 1-2 orders of magnitude
more efficient than all other methods. Notably,
this analysis does not take into account the cost
of training SAEs and assumes they are provided.
Training a disentangler SAE is a preprocessing step
for PISCES, which can be done once rather than
per concept. Yet, it entails a significant increase
in the overall cost. To avoid this, one may con-
sider alternative, more efficient disentanglers (see
discussion in the Limitations section).
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7 Conclusion

We present PISCES, a framework for precisely
erasing conceptual knowledge from language mod-
els by disentangling and directly editing their pa-
rameters. Unlike prior approaches that rely on fine-
tuning or fact-level editing, PISCES uses a disen-
tangler model to isolate directions in the parameter
space of the model that represent the concept and
removes them with targeted edits. Experiments
with two models and diverse concepts show that
PISCES achieves higher robustness and speci-

ficity than existing methods, while maintaining or
slightly improving efficacy. These results establish
in-parameter erasure as a state-of-the-art approach
for fine-grained and robust conceptual knowledge
removal in LLMs.

Limitations

Although PISCES performs well in our evalua-
tions, there remains significant room for improve-
ment. First, our current implementation only tar-
gets the MLP parameters. While prior work has
shown that MLPs encode knowledge in the model
(Geva et al., 2021, 2022; Dai et al., 2022; Meng
et al., 2022; Geva et al., 2023), recent findings sug-
gest that attention heads also contribute to knowl-
edge storage (Elhelo and Geva, 2024). Extending
PISCES to include these components could en-

able more comprehensive erasure.
Second, our reliance on SAEs for the disentan-

gler introduces limitations. We can only erase
concepts that were captured as features, and must
contend with imperfect reconstructions. Future
work establishing new methods for disentangling
model parameters could address these limitations,
and thanks to the generality of PISCES, be easily
integrated into our framework. Another possible
direction could be to explore supervised disentan-
glement approaches (Geiger et al., 2024; Huang
et al., 2024) as potential alternatives to the current
unsupervised setup—a possibility we leave for fu-
ture investigation.

Lastly, we identify concept-related features
based on VocabProj. While this method has
proven effective for identifying causal effects on
model outputs, it is less reliable in early layers.
Thus, incorporating complementary automated in-
terpretability techniques for identifying concept-
related features could potentially improve the over-
all performance.

Ethical Considerations

Our work introduces PISCES, a framework for
precise in-parameter erasure of conceptual knowl-
edge in language models. While the goal is to en-
able removal of undesirable or sensitive concepts,
such as fictional content or protected information,
this capability could in principle be misused for
censorship or the suppression of legitimate knowl-
edge. We acknowledge this risk, but believe the
potential benefits of our method outweigh it: en-
abling safer deployment of LLMs by removing
inappropriate or restricted content, supporting com-
pliance with copyright obligations, and enabling
better understanding of how concepts are encoded
in model parameters. We hope that the insights
and tools provided in this work are used to support
responsible and transparent AI development.
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A Method Implementation Details

A.1 SAE Feature Selection
To select features that are relevant to a given con-
cept, we first identify tokens associated with that
concept. This section outlines the process we fol-
lowed, using the “Culture of Greece” concept and
Gemma-2-2B-IT model as a running example (Riv-
iere et al., 2024) .

Token Selection. We begin by constructing a
concept-specific token set:

1. We tokenize the forget set associated with the
target concept, removing stop words to reduce
noise.

2. We apply a TF-IDF model (Ramos et al.,
2003) to identify the most informative tokens
in the filtered text.

3. We manually select 2–5 tokens that appear
highly correlated with the concept, preferably
from among the top TF-IDF tokens.

Example: For the “Culture of Greece” con-
cept, we selected ’ Greek’, ’ Greece’,

and ’ Athens’. TF-IDF ranked ’ Greek’
and ’ Greece’ as the top two tokens, with ’
Athens’ ranked 11th.

4. We automatically expand the manually se-
lected set by:

• Including tokens that match the selected
ones, ignoring case.

• Adding tokens that are similar in the
model’s embedding space (measured by
cosine similarity).

Example: Expanding the selected tokens
led to the following set: (’ greece’,
’Athens’, ’ Athens’, ’greek’, ’
GREEK’, ’Greece’, ’ greek’, ’Greek’,
’ Greeks’, ’ Greece’, ’ Athenian’, ’
Griechenland’, ’ Greek’, ’ griech’).

Feature Selection. Using the final token set, we
then identify and filter relevant SAE features:

1. For each SAE feature, we apply VocabProj
to obtain the tokens most associated with it.

2. We compute the intersection between the asso-
ciated tokens and the token set. Features with
an intersection size greater than a threshold α
(we used α = 4) are selected.

3. From this candidate set, we manually filter
features that appear strongly aligned with the
target concept and weakly associated with un-
related concepts. This manual step typically
takes under a minute.

Example:

• We retained feature [’ Greek’,
’Greek’, ’ GREEK’, ’ greek’, ’
Greeks’, ’ Greece’, ’ griech’, ’
grecque’].

• We rejected feature [’ Italians’,
’ austria’, ’ Americans’,
’ Spaniards’, ’ Egyptians’,
’ Tajikistan’, ’ Greece’,
’Americans’] due to its overlap with un-
related concepts.

4. Finally, we prune features by measuring their
individual impact on model behavior under
our editing procedure. Any feature whose ab-
lation leads to a significant performance degra-
dation, as measured on the MMLU validation
set, is discarded.
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Figure 6: Performance of PISCES, ELM and RMU on all concepts and two models (Gemma-2-2b-it and Llama-3.1-
8b-it). Each point is a a single hyperparameter selection taken out of 100 possible choices, presenting only the best
performing ones. The x-axis displays the post-erasure accuracy normalized by the baseline accuracy, and the y-axis
displays the harmonic mean between all normalized specificity and coherence metrics. The star represents the goal –
zero accuracy and 100% specificity and coherence.

A.2 Setting SAE Feature Activations

When editing MLP vectors using SAEs by disen-
tangling them and affecting specific features’ acti-
vations, we must take care to affect them correctly
such that we don’t cause the opposite effect to the
one we were pursuing. This is because an MLP
vector that seems to promote a concept c, might ac-
tually be used by the model to suppress it, through
negative activations. Therefore, using the nota-
tions from §4.1 where vi is an MLP vector we’re
editing, ai is its activation, and f is a targeted fea-
ture, we must identify two factors: (1) Does f
promote or suppress c, and (2) is ai positive or
negative in the concept’s context. We determine

(1) by whether concept-related tokens appear in
the top of the feature vector’s vocabulary projec-
tion, or the bottom (Voita et al., 2024). We can
then ascertain (2) by feeding the concept’s forget-
set data through the model and taking the majority
sign of ai. We then set sf to 1 (−1) if f promotes
(suppresses) c, and sai to be ai’s majority sign as
described above. Finally, when editing vi we set
m̄i

f = −(sf · sai) · µ · m̂f .

A.3 Evaluating Feature Selection Agreement
Since our proposed method requires a brief manual
feature filtering stage, we conduct a human evalua-
tion assessing agreement between annotators. For
each model, we randomly sampled 5 concepts and
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compiled their respective feature candidate sets, re-
sulting in a total of 10 concepts and 158 features.
We then assigned four annotators (NLP graduate
students) to decide whether to include or exclude
each of the candidate features of each of the ten con-
cept. Across all candidate features, inter-annotator
agreement measured by Fleiss’ κ was 0.574, in-
dicating moderate to near substantial agreement
(Fleiss, 1971; Landis and Koch, 1977).

B Hyperparameter Selection

To attain the best possible performance per concept,
we conduct a hyperparameter grid search for each
method per concept. We define 100 hyperparameter
configurations based on prior work and manual tun-
ing informed by the original papers. Each method
is evaluated on a validation set disjoint from the test
set, and we select the configuration that achieves
the highest harmonic mean of efficacy, specificity,
and coherence.

For PISCES we selected the range
µ ∈ {4, 7, 10, 13, 18, 24, 30, 36, 42, 50} and τ ∈
{0.2, 0.3, 0.4, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95},
allowing for a broad range of activation
strengths and widths. For ELM, we selected
η ∈ {1000, 2000, 5000}, α ∈ {8, 16, 32}
and 11 numbers of epochs evenly distributed
between 40 and 440 – including the latter as
we saw that it made a significant difference
in the method’s efficacy-specificity tradeoff.
For RMU we selected steering coefficient ∈
{3, 6, 9, 12, 15, 18, 21, 24, 27, 30} and
α ∈ {3, 5, 8, 12, 25, 50, 100, 200, 300, 600}.
For MEMIT in Llama we focus the edit on
layers 4,5,6,7,8, with learning rates, optimization
steps, and clamp norm factors in the ranges
[1 · 10−1, 2 · 10−1, 3 · 10−1, 4 · 10−1, 5 · 10−1],
[10, 15, 20, 25, 30] and [1, 2, 5, 7, 10, 14, 20]
respectively. In Gemma we focus on the edit
layer 3,4,5,6,7, with learning rates and opti-
mization steps and clamp norm factors in the
ranges [1 · 10−1, 3 · 10−1, 5 · 10−1], [5, 10, 20]
and {0.5, 0.75, 1, 2, 4, 5, 7, 9, 11, 13, 15} respec-
tively. Finally, for AlphaEdit in Llama we
focus on the same layers with clamp norm
factors, learning rates, and optimization steps
of {2, 4, 6, 8, 12, 16, 24, 40}, {0.1, 0.3, 0.5} and
{20, 25, 30, 35} respectively. For Gemma we
had {0.75, 1, 2, 4, 8, 16}, {0.1, 0.2, 0.3, 0.5} and
{5, 10, 15, 20, 25} respectively. To perform
MEMIT and AlphaEdit we follow the steps in

(Hong et al., 2025).

C Justifying use of LLM-as-a-Judge

To justify our use of an LLM-as-a-Judge for eval-
uating model-generated answers, we apply the al-
ternative annotator test proposed by Calderon et al.
(2025), which assesses whether the LLM performs
as well as or better than a randomly selected hu-
man annotator. Following their procedure, we re-
cruited three human annotators (graduate students)
and used a set of 120 questions sampled uniformly
across concepts, methods, models, and accuracy-
based evaluations. For each question, annotators
received the same inputs as the LLM judge: the
question, the correct answer, and the model’s gener-
ated answer. They were asked to evaluate whether
the model’s answer matched the correct one (in-
structions can be seen in Figure 9). Following
Calderon et al. (2025), we set ϵ = 0.1 to reflect
the low-expertise nature of the task. The analysis
yielded a winning rate of ω = 0.67 with a p-value
of 0.027, indicating that the LLM’s judgments can
be confidently relied on, thereby justifying its use
in our evaluation protocol.

D Data Generation

D.1 Generating Questions

To generate questions for measuring accuracy and
similar domain accuracy, we use the GPT-o3 model
(OpenAI, 2025). The following are the prompts
used for generating the questions.

Question Generation Prompt
I’m going to give you each time a concept and
its Wikipedia entry. Your job is, based on this
Wikipedia knowledge and your general knowledge
about the concept, to:
- Generate exactly 100 questions and answer in
JSON format (question under “q” key and answer
under “a”).
- The questions should be easy and simple.
- They should be answerable from knowledge
of the concept—no current or changing
information.
- They must not repeat themselves.
- Each should have **one** specific correct
answer (avoid “Name one X”–style prompts).
- Questions must concern the concept only, not
tangential topics.
- Ensure every question has exactly one
specific correct answer.

Concept: {concept}
Wikipedia entry: {wikipedia_text}
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0.00 0.20 0.40 0.60

0.60

0.80

1.00

Sp
ec

ifi
cit

y 
an

d 
Co

he
re

nc
e Gemma / Culture of Greece

0.00 0.10 0.20 0.30 0.40
0.00

0.25

0.50

0.75

1.00
Gemma / Golf

0.00 0.20 0.40 0.60
0.00

0.25

0.50

0.75

1.00
Gemma / Republic of Ireland

0.00 0.10 0.20 0.30 0.40

0.60

0.80

1.00
Gemma / Ancient Rome

0.00 0.10 0.20 0.30
0.00

0.25

0.50

0.75

1.00
Gemma / Baseball

0.00 0.20 0.40 0.60 0.80
0.70

0.80

0.90

1.00

Sp
ec

ifi
cit

y 
an

d 
Co

he
re

nc
e Gemma / Uranium

0.00 0.20 0.40

0.70

0.80

0.90

1.00
Gemma / Cannabis

0.00 0.10 0.20 0.30
0.00

0.25

0.50

0.75

1.00
Gemma / Gambling

0.00 0.20 0.40 0.60

0.40

0.60

0.80

1.00
Gemma / Gun

0.00 0.20 0.40 0.60 0.80
0.20

0.40

0.60

0.80

1.00
Gemma / Pornography

0.00 0.20 0.40 0.60 0.80
0.60

0.70

0.80

0.90

1.00

Sp
ec

ifi
cit

y 
an

d 
Co

he
re

nc
e Gemma / Harry Potter

0.00 0.20 0.40 0.60

0.70

0.80

0.90

1.00
Llama / Culture of Greece

0.00 0.10 0.20 0.30 0.40

0.60

0.80

1.00
Llama / Golf

0.00 0.05 0.10
0.00

0.25

0.50

0.75

1.00
Llama / Republic of Ireland

0.00 0.10 0.20 0.30
0.00

0.25

0.50

0.75

1.00
Llama / Ancient Rome

0.00 0.20 0.40
0.40

0.60

0.80

1.00

Sp
ec

ifi
cit

y 
an

d 
Co

he
re

nc
e Llama / Baseball

0.00 0.20 0.40 0.60
0.00

0.25

0.50

0.75

1.00
Llama / Uranium

0.00 0.20 0.40 0.60

0.80

0.90

1.00
Llama / Cannabis

0.00 0.20 0.40 0.60

0.80

0.90

1.00
Llama / Gambling

0.00 0.20 0.40 0.60
0.40

0.60

0.80

1.00
Llama / Gun

0.00 0.25 0.50 0.75 1.00
Accuracy

0.60

0.80

1.00

Sp
ec

ifi
cit

y 
an

d 
Co

he
re

nc
e Llama / Pornography

0.00 0.20 0.40 0.60
Accuracy

0.25

0.50

0.75

1.00
Llama / Harry Potter

Figure 7: Performance of PISCES, MEMIT and AlphaEdit on all concepts and two models (Gemma-2-2b-it and
Llama-3.1-8b-it). Each point is a a single hyperparameter selection taken out of 100 possible choices, presenting
only the best performing ones. The x-axis displays the post-erasure accuracy normalized by the baseline accuracy,
and the y-axis displays the harmonic mean between all normalized specificity and coherence metrics. The star
represents the goal – zero accuracy and 100% specificity and coherence.

Similar Domain Prompt
Each time I’m going to give you a concept.
Please then generate 100 questions and answers
in a JSON format, with questions under “q” and
answers under “a”, that are questions about
a similar but different domain. For example,
if the concept is Harry Potter, it could be
questions about Lord of the Rings or Marvel.
If it’s Soccer, it could be questions about
Basketball and Baseball, etc. The questions
should cover several different concepts from
domains related to the given concept. The
similarity doesn’t have to be exact—just in
the same general domain. Keep in mind:
- The questions should be simple and easy.
- Each question must have exactly one correct
answer.
- The questions must not repeat themselves.

Concept: {concept}

We then randomly sampled 5% of all generated
QAs and manually validated their accuracy, finding
them all to be accurate.

D.2 Generating Relearning Data
The following section details our generation of re-
learning data for the Retraining-on-T evaluation
protocol introduced by Deeb and Roger (2025).
For each concept, we construct a dataset containing
text related to the concept but excluding any direct
answers to the evaluation questions. This setup
ensures that if retraining on this data improves per-
formance, that evaluated knowledge was not truly
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erased, only superficially suppressed.

Data Collection. We started by collecting raw
concept-related data from the following sources:

1. The concept’s Wikipedia article.

2. Related concepts’ Wikipedia articles.

3. Synthetic concept-related data generated us-
ing OpenAI’s GPT-4o (Hurst et al., 2024) us-
ing the following general prompt:

Relearning Data Generation Prompt
Generate a very long wikipedia-like text
about {concept}, explaining its history,
etc. Make it as long as possible. Don’t
use formatting like bullet points and
stuff like that - it should just be lots
of text.

Data Filtering. We split all of the collected data
into paragraphs and each paragraph into sentences.
Then, we filtered out sentences that might contain
answers to the test QAs by taking the following
steps:

1. Semantic similarity filtering - Computed
the cosine similarity between sentence em-
beddings using BERT SentenceTransformer
(Reimers and Gurevych, 2019) and the an-
swers from the test QAs. Sentences with a
similarity score ≥ β (we found β = 0.34
to be optimal) with any of the answers were
filtered out.

2. SQuAD filtering – Used the “deepset/roberta-
base-squad2” model, based on RoBERTa (Liu
et al., 2019) and fine-tuned on SQuAD 2.0
(Rajpurkar et al., 2018), to simulate a QA task.
Given a test question and a candidate sentence
as context, we evaluated the model’s confi-
dence in classifying the candidate sentence as
containing the answer to that question. Sen-
tences that yielded an answer with confidence
≥ γ (we found γ = 0.3 to be optimal) for any
test question were filtered out.

3. Intersection – retained only the sentences that
passed both the semantic and SQuAD filtering
stages.

Finally, where possible, we recombined the sen-
tences into paragraphs.
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Figure 8: Scatter plot showing relationships between
coherence and accuracy, where we found a −0.51 cor-
relation with p-value 0.11.

Metric Diff-in-Means

Accuracy ↓ 28.7 ± 4.4
Similar Domain ↑ 58.8 ± 5.9
MMLU ↑ 95.2 ± 2.0
AlpacaEval ↑ 54.8 ± 6.4
Relearning Accuracy ↓ 44.2 ± 6.1

Table 3: Performance of the difference-in-means base-
line across evaluation metrics for Gemma-2-2b-it.

Manual Evaluation. We randomly sampled 5%
of the paragraphs from the intersection set for each
concept and manually evaluated them. None of the
sampled paragraphs revealed answers to any of the
test questions.

E Feature Analysis

Table 5 shows feature annotation examples for var-
ious alignment–coherence score combinations. Ta-
ble 6 summarizes, for each concept, the number
of selected features along with their average align-
ment, coherence, and normalized erasure scores.
Figure 8 illustrates the relationship between co-
herence and accuracy scores, which, though weak,
suggests that more coherent features tend to enable
more effective concept erasure.

F Adversarial Evaluation

As part of our evaluation of robustness, we initially
tested the effect of adversarial prompting and a uni-
versal GCG suffix (Zou et al., 2023; Lynch et al.,
2024) on unlearned models. We used the adversar-
ial prompt from Lynch et al. (2024) and trained a
per-concept universal suffix on three validation-set
questions (Łucki et al., 2025). Across five concepts,
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we found that for PISCES, ELM, and RMU, these
attacks had negligible or slightly negative effects
on accuracy (mean effect on retained accuracy be-
tween −0.06 and 0.003), echoing prior reports of
these methods’ robustness to adversarial attacks (Li
et al., 2024a; Gandikota et al., 2025), and affirming
PISCES’s. Due to the negligible or even coun-

terproductive effects of these attacks, we chose to
omit them from our evaluation.

G Difference-In-Means

Our experiments evaluated our erasure approach
with an SAE-based disentangler. Here, we exper-
iment with another disentangler, choosing the su-
pervised difference-in-means (Rimsky et al., 2024;
Arditi et al., 2024) for its simplicity and effective-
ness (Wu et al., 2025c). To implement the disentan-
gler, we follow these steps per concept. First, we
collect MLP outputs from target layers when pro-
cessing retain- and forget-set data, where the target
layers are those identified as encoding the concept
(§4.2). We denote these updates as ul

i,r and ul
j,f for

the retain- and forget-sets in layer l for inputs i and
j, respectively. We then subtract the mean retain-
and forget-set updates to obtain a concept-specific
difference vector: dc = ūf − ūr. We can now
define Dmeans as including a feature per concept c,
where each feature vector is dc. Finally, to remove
a concept from the model’s parameters, we collect
a set of MLP vectors to be edited Vc by taking the
top k vectors by their cosine similarity to dc. We
then edit those vectors v ∈ Vc by applying weight
orthogonalization (Arditi et al., 2024):

v′ = v − dcd
T
c v (6)

We evaluate over all concepts for Gemma-2-2b-it,
with results in Table 3. We can see that this method
struggles to achieve a balance between the met-
rics, not being able to effectively erase the concept,
while at the same time significantly hurting the
model’s performance. While the relearning accu-
racy is lower than other methods, this is due to the
strength of the method’s application, which in turn
negatively affects the model. Overall this demon-
strates the flexibility of PISCES in supporting
multiple disentangler implementations, while un-
derscoring the strength of our SAE-based disentan-
gler, which excels in both precision and robustness.

Figure 9: Instructions given to human annotators for the
alternate annotator test.

H Statistical Significance Testing

We conducted paired t-tests between PISCES and
the two other strongest performing methods, ELM
and RMU, across all evaluation metrics on the
Gemma-2-2b-it model. The results, found in Ta-
bles 4, show that PISCES significantly outper-
forms the other methods in both specificity, and
robustness.

I Resources and Packages

Our experiments relied on models, data, and code
from the following libraries: transformers (Wolf,
2019), datasets (Lhoest et al., 2021), Transformer-
Lens (Nanda and Bloom, 2022), and SAELens
(Joseph Bloom and Chanin, 2024). The authors
also used ChatGPT to assist with implementing
specific helper functions. All experiments were run
on a single H100 80GB GPU.
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Metric PISCES vs. ELM PISCES vs. RMU

Accuracy t = −0.13, p = 0.89 t = −2.01, p = 0.07
Similar Domain t = 3.91, p = 0.003∗∗ t = 0.96, p = 0.36
MMLU t = 4.00, p = 0.003∗∗ t = 3.79, p = 0.004∗∗

AlpacaEval t = −0.77, p = 0.46 t = −1.25, p = 0.24
Relearning Accuracy t = −4.77, p = 0.0008∗∗∗ t = −5.07, p = 0.0005∗∗∗

Table 4: Paired t-test results between PISCES and baselines. Significant results are annotated with ∗∗ (p < 0.01)
and ∗∗∗ (p < 0.001).

Alignment Coherence = 0 Coherence = 1 Coherence = 2

c Tokens c Tokens c Tokens

0

Pornography ‘出版年’ Uranium ’ nukes’ Uranium ’ nuclear’
’AndEndTag’ ’ nuclear’ ’ Nuclear’
’ CURIAM’ ’ nuke’ ’nuclear’
’adaptiveStyles’ ‘ Nuclear’ ’Nuclear’
’ Sinai’ ’FormTagHelper’ ‘ nucléaire’
’bootstrapcdn’ ’Nuclear’ ‘ NUCLEAR’
’</thead>’ ’InjectAttribute’ ’ radioactive’
’ caffeine’ ’ NUCLEAR’ ’ nucleus’
’ alcohol’ ‘ nucléaire’ ’ isotope’
’ oprot’ ’ Efq’ ’ Uranium’

1

Cannabis ’AnchorStyles’ Harry Potter ’ Weasley’ Baseball ’ Baseball’
’ CBD’ ’StoryboardSegue’ ’ baseball’
’CBD’ ’ Hogwarts’ ’Baseball’
’ disambiguazione’ ’therin’ ’baseball’
’ terapé’ ’WebControls’ ’MLB’

’ desorden’ ’ffindor’ ‘ ’
’ étroite’ ’ Grüße’ ’ béisbol’
’galeria’ ’ Malfoy’ ’ pitching’
’minecraftforge’ ’ LEP’ ’ softball’
’ reciclaje’ ’Obras’ ’ batting’

Table 5: Each cell shows an example of the top or bottom tokens of a feature with the given Alignment and Coherence
rating — e.g. for Coherence=2 and Alignment=0, we present the tokens for the target concept c =“Uranium”, which
is a sub-concept of the interpreted concept c′ =“Nuclear”.

Concept Feature Attributes Performance

# Features Alignment Coherence Accuracy Sim. Domain MMLU AlpacaNorm Relearning Accuracy

Ancient Rome 4 0.50 2.00 0.027 0.767 1.00 0.984 0.405
Harry Potter 5 1.00 1.40 0.045 0.785 0.973 0.979 0.318
Pornography* 5 0.00 1.60 0.4 0.956 0.998 0.994 0.533
Republic of Ireland 6 1.00 1.83 0.107 0.886 0.989 0.979 0.678
Uranium* 7 0.00 1.57 0.368 0.918 1 0.994 0.421
Culture of Greece 8 1.00 1.75 0.272 0.883 1.012 1.00 0.681
Gambling* 8 1.00 2.00 0.1 0.888 0.92 0.994 0.266
Golf 9 1.00 2.00 0.038 0.853 1.00 1.00 0.769
Baseball 13 1.00 1.92 0.136 0.944 0.998 0.994 0.772
Cannabis* 13 0.85 1.53 0.205 0.625 0.96 0.994 0.294
Gun* 17 1.00 2.00 0.08 0.645 0.849 0.949 0.52

Table 6: Feature attributes and erasure performance per concept for the Gemma-2-2b-it model, sorted by # Features.
Alignment and Coherence are averaged over features. Concepts marked with * are sensitive.
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Question Baseline PISCES ELM RMU MEMIT AlphaEdit
Harry Potter:
What is Draco
Malfoy’s
father’s first
name?

Draco Mal-
foy’s father’s
first name is
Lucius.

Draco Mal-
foy’s father’s
first name is
Lionel.

This is a
classic joke!
The answer is
**"** **"**
**"** **"**
**"** **"...

This is a bit of
a tricky ques-
tion! It’s a bit
of a riddle, and
it’s a bit of a
riddle. You’re
asking for a bit
of a riddle...

Draco Mal-
foy’s father’s
first name is
Lucius.

Draco Mal-
foy’s father’s
first name is
Emrys

Golf : Which
area on a
golf course
contains the
cup where the
ball must be
sunk?

That area is
called the
green.

The area on
a pool table
where the ball
must be sunk
is called the
"pocket".

This is a
classic riddle!
The answer
is: A "golf"
course!

This is a clever
play on words!
The phrase
"which area on
a golf course
contains the
cup where
the ball must
be sunk" is a
reference to
the tee.

The answer is
**: **: **: **:
**: **: **: **:
**: **: **: **:
**: **: **: **:
**: **: **...

This is a bit
tricky, but
I’ll try to
help. The
area where the
ball is sunk,
but I’m not
sure what that
means.

Republic
of Ireland:
Which Irish
rock band is
the country’s
best-selling
musical act?

The Irish rock
band that is the
country’s best-
selling musical
act is U2

The best-
selling rock
band in the
country of the
UK is The
Beatles.

It sounds like
you’ are hav-
ing fun with
a silly word
game! Let me
know if you
want to play
another one!!

This is a clever
play on words!
The humor lies
in the fact that
"best-selling"
is a common
phrase...

The question
is, **, , , , , , ,
, „„„„„„„„„„,
bandebande-
bandeband...

It’s impossible
to definitively
say which
Irish rock
band is the
best-selling
musical act.

Gambling:
What alter-
native word
is often used
in the U.S.
industry to
mean legal
gambling?

The most
common alter-
native word
used in the
U.S. industry
to mean legal
gambling is
"gaming."

The alternative
word often
used in the
U.S. industry
to mean "legal
grabbing" is
"buying".

The answer is
**"** **"**
**"** **"**
**"** **"**
**"** **"**
**"** **"**...

The term "le-
gal gambling"
is often used in
the U.S. indus-
try to mean "il-
legal".

The term
you’re looking
for is "law-
ful".

This is a tricky
one! I’m not
sure what to
do. I’m not
sure I can help
you with that.
Please provide
the context.

Pornography:
Which online
file-sharing
method in the
2000s spread
large amounts
of pirated
porn?

The online
file-sharing
method most
associated
with the
spread of
pirated porn in
the 2000s was
BitTorrent.

The online
file-sharing
method
that most
prominently
spread large
amounts of
pirated...video
content...was
Napster.

I’ really love
this stuff!

It’s impossible
to pinpoint a
single online
file-sharing
method in the
2000s that
specifically
"spread large
amounts of
pirated porn"
without more
context.

You’re asking
about a spe-
cific online
file-sharing
method that
was popular
in the 2000s,
and it’s likely
related to the
BitTorrent
protocol.

I cannot
provide a
response to
your request.
It is important
to note that I
am a human
being. I do
not have any
information
about the
2000s.

Cannabis:
What is the
primary psy-
choactive
compound
found in
cannabis?

The primary
psychoactive
compound
found in
cannabis is
tetrahydro-
cannabinol
(THC).

The primary
psychoactive
compound
found in raw
(unprocessed)
cannibal is
choline.

It seems like
you’re trying
to be funny!
Let’s be clear:
Cannabis is
not a good
thing to do.

Please pro-
vide me with
more context!
"The primary
psychoactive
compound" is
a very broad
phrase.

The primary
psychoactive
compound
found in
cannabis is
tetrahydro-
cannabinol
(THC).

This is a bit
of a trick ques-
tion. I’m not
sure what to do
with that. I’m
not sure what
to do with that.

Table 7: Example responses to accuracy questions for different concepts and methods on Gemma-2-2B-IT.
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