
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18933–18951
November 4-9, 2025 ©2025 Association for Computational Linguistics

SheetDesigner: MLLM-Powered Spreadsheet Layout Generation with
Rule-Based and Vision-Based Reflection

Qin Chen*,1, Yuanyi Ren*,1, Xiaojun Ma†,2, Mugeng Liu1, Han Shi2, Dongmei Zhang2,
1Peking University, 2Microsoft,

{chenqink,yyren,lmg}@pku.edu.cn, {xiaojunma,shihan,dongmeiz}@microsoft.com

Abstract

Spreadsheets are critical to data-centric tasks,
with rich, structured layouts that enable effi-
cient information transmission. Given the time
and expertise required for manual spreadsheet
layout design, there is an urgent need for au-
tomated solutions. However, existing auto-
mated layout models are ill-suited to spread-
sheets, as they often (1) treat components as
axis-aligned rectangles with continuous coordi-
nates, overlooking the inherently discrete, grid-
based structure of spreadsheets; and (2) neglect
interrelated semantics, such as data dependen-
cies and contextual links, unique to spread-
sheets. In this paper, we first formalize the
spreadsheet layout generation task, supported
by a seven-criterion evaluation protocol and a
dataset of 3,326 spreadsheets. We then intro-
duce SheetDesigner, a zero-shot and training-
free framework using Multimodal Large Lan-
guage Models (MLLMs) that combines rule
and vision reflection for component placement
and content population. SheetDesigner outper-
forms five baselines by at least 22.6%. We fur-
ther find that through vision modality, MLLMs
handle overlap and balance well but struggle
with alignment, necessitates hybrid rule and vi-
sual reflection strategies. Our codes and data is
available at Github.

1 Introduction

Sitting at the heart of finance, analytics, and sci-
entific discovery, spreadsheets serve as powerful
tools for organizing and analyzing data (Chan and
Storey, 1996; Häcker and Ernst, 2017; Powell
and Baker, 2019). They are structured in a grid
of rows and columns with integrated tables and
charts. Meanwhile, their effectiveness hinges on
clear, well-structured layouts; otherwise, even the
most rigorous analysis becomes unreadable when

*Equal contribution. Work done during internship at Mi-
crosoft.

†Corresponding author.

a chart obscures its source data, or a column cuts
off text. Consequently, given the importance of
well-structured layouts and the time-consuming,
expertise-dependent nature of manual design, auto-
mated layout generation becomes essential.

However, existing layout generation approaches
(Zhang et al., 2024; Kong et al., 2022; Gupta et al.,
2021; Cheng et al., 2025) fall short of this task,
as they (1) treat components as rectangles with
continuous pixel coordinates, ignoring the grid-
based structure of spreadsheets, where components
span discrete cells and resizing them affects entire
rows or columns. (2) overlook key semantic rela-
tionships, such as placing charts near their source
tables, and fail to account for the global row or
column resizing to fit content like long text. Conse-
quently, their outputs must be painstakingly post-
processed for spreadsheet layouts and often remain
invalid or suboptimal, underscoring a significant
and largely unaddressed research problem.

In this paper, we first formalize the task of
spreadsheet layout generation: Given a raw sheet
containing user data (e.g., tables, charts), the goal
is to generate a structured layout that enhances
spreadsheet usability. To quantify the evaluation
of this task, we introduce an evaluation protocol
that scores a candidate layout on seven complemen-
tary criteria—fullness, compactness, compatibil-
ity, component-alignment, type-aware alignment,
relation-aware alignment, and overlap (see sec-
tion 2). We also formulate a dataset, SheetLayout,
comprising 3,326 real-world spreadsheets covering
ten domains and thirteen frequently used topics of
functions (see Table 7, Table 8).

On this foundation, we propose SheetDesigner,
a zero-shot and training-free framework for spread-
sheet layout generation, powered by Multimodal
Large Language Models (MLLMs). Given a set
of user data, SheetDesigner consists of two phases.
(1) It initially places components on the grid in
a type-aware and relation-aware manner, and sub-

18933

https://github.com/Cqkkkkkk/SheetDesigner

sequently applies a Dual Reflection mechanism,
comprising rule-based and vision-based reflection,
to refine the layouts. (2) After reflection, it pop-
ulates the sheet layout with user data, inserts line
breaks for lengthy entries, and generates consistent
global column widths and row heights, resulting in
a ready-to-use layout.

We evaluate SheetDesigner on the SheetLay-
out dataset against five state-of-the-art baselines,
achieving a 22.6% improvement in performance.
Using a 13B-parameter backbone, SheetDesigner
matches or exceeds the performance of much
larger architectures like LayoutPrompter (Lin et al.,
2023b), leveraging GPT-4O as its backbone (Ope-
nAI, 2024). Our ablation study highlights the con-
tribution of each component and shows that while
the vision modality of MLLMs improves overlap
and balance, they struggle with alignment. Our
further empirical analysis reveals that MLLM at-
tention evidently fails to effectively focus on re-
gions critical for component alignment in struc-
tured spreadsheet images, extending the observa-
tions of (Zhang et al., 2025a). This highlights the
importance of the hybrid rule-based and vision-
based reflection mechanisms in SheetDesigner.

In summary, our contributions are as follows:

• We present the first task formulation for
spreadsheet layout generation, accompanied
by a seven-criteria evaluation protocol and a
novel dataset, SheetLayout, comprising 3,326
spreadsheets spanning 10 common domains
and 13 frequent topics.

• We introduce SheetDesigner, a zero-shot and
training-free framework that directly models
spreadsheet layout generation in a two-stage
process: structure placement with Dual Re-
flection and content population with global
arrangements.

• We show that SheetDesigner achieves a 22.6%
improvement over five state-of-the-art base-
lines, with the 13B variant matching or sur-
passing much larger architectures built on
GPT-4o. Our ablation study and empirical
analysis further validate the effectiveness of
the hybrid rule- and vision-based design.

2 Preliminary

2.1 Task Formulation
In this subsection, we formally define the task of
spreadsheet layout generation.

Input We denote the input raw sheet as S =
[C1, C2, . . . , CN], where each component Ci =
{Di} contains user data Di. Di, including texts,
numbers, formulas, etc.

Output The goal of spreadsheet layout genera-
tion is to create a layout: L = [C̃1, C̃2, . . . , C̃N ,G]
that organizes the components while preserving
their types and formatting the content appropri-
ately. Each component in the generated layout
is represented as C̃i = {Pi, Ti, D̃i}, where Pi
specifies the assigned position of the component
using the R1C1 format (e.g., "A1:C3"), Ti de-
notes the assigned type from five component types
(e.g., "title"), and D̃i denotes the formatted text
with appropriate line breaks. Additionally, G =
[w1, w2, . . . ;h1, h2, . . .] represents the configura-
tion of the generated layout, encompassing the col-
umn widths wi and row heights hi.

In this paper, we consider the following five com-
mon types of spreadsheet components divided by
their semantics: (1) title that provides a descriptive
heading for the spreadsheet. (2) main-table that
contains the core structured data, often organized
in rows and columns. (3) meta-data that includes
supplementary information such as author names,
dates, or version details. (4) summary-data that
presents aggregated insights, such as totals, aver-
ages, or key metrics derived from the main table.
(5) chart that visually represents data trends and
relationships through graphs, bar charts, or other
visual components like images or icons.

2.2 Layout Evaluation

This subsection outlines the evaluation of gener-
ated sheet layouts. Intuitively, we expect the gener-
ated layouts to (1) be compact without large empty
space; (2) be well-aligned between components,
and the alignment should be broadcast to compo-
nents of the same type, or dependent components
like table and charts that are drawn by the data in
this table ; (3) be visually balanced where there is
no great discrepancy for the vertical and horizon-
tal distribution of components; (4) be compatible
to the original contents; (5) avoid overlap regions.
Following this intuition, we define quantitative eval-
uation metrics (detailed in Appendix C). For Over-
lap, a score of 0 indicates no overlap, with pro-
gressively smaller values corresponding to greater
overlap. Other metrics fall within the (0, 1] range,
where higher scores indicate better performance.

18934

.

Raw Sheet

User Data

Pre-processing

- Types
- Relations
- Descriptions

MLLM

Topic Image

Relations & Types

Structure Instructions

Topic Match

Input

Intermediate Sheet

- Types
- Relations
- Descriptions

…

SheetRanker

MLLM

Reflection-Vision

Reflection-Rule

Select & Plot Sketch

Input - Types
- Relations
- Descriptions
- Revised

MLLM

Intermediate Sheet Content Instructions

Input

Input

Candidate Sheet

SheetRanker

Final Output

(a) Relation- and Type-aware Structure Placement with Dual Reflection (b) Content Population

MLLM and Its Context Textual Input LLM Generation Process

…

User Data

Spreadsheet ComponentsVisual Input

- Revised

- Row Heights
- Column Widths
- Line Breaks

Figure 1: SheetDesigner operates in two stages following pre-processing. (a) Components are structurally placed
based on their types and relationships. Among multiple layout candidates, SheetRanker selects the best one, which is
then refined through Dual-Reflection—a revision step combining rule-based (text) and vision-based (sketch-image)
feedback. (b) Content is populated into the placed components, with adjustments to row heights, column widths,
and line breaks to ensure proper fit. SheetRanker then selects the final output from the generated candidates.

3 Method

This section details the structure of SheetDesigner,
shown in Figure 1. SheetDesigner divides the sheet
layout generation into two phases: (1) structure
placement with Dual Reflection, which assigns
components to appropriate locations by consider-
ing both their type and relational context, while
ensuring proper alignment. Then it refines the as-
signment through rule-based and vision-based re-
flection; and (2) content population with global
arrangements, which fills components with user
data and sets row heights and column widths based
on cell content. The two-phase design leverages
MLLMs’ strength in handling focused tasks, rather
than being distracted by diverse objectives in a sin-
gle run (Wang et al., 2024; Sun et al., 2025).

Pre-processing Denote each raw sheet as S =
[C1, C2, . . . , CN], where each component Ci =
{Di} contains the corresponding data Di. We be-
gin by classifying the entire spreadsheet into one of
13 topics based on its application context, yielding
a general topic label T̂S for the sheet. Next, for
each component Ci ∈ S , we: (i) assign it a type Ti,
selected from five component types (e.g., "title");
(ii) generate a textual description D̂i based on its
content Di (e.g., "A main-table for different ser-
vices and costs"). We then instruct large language
models (LLMs) to identify pairwise relationships
between components, resulting in a relation listR
(e.g., [(Main1,Chart1)]). See Appendix J for de-
tailed prompt examples. The processed sheet is

denoted as Ŝ = {[Ĉ1, Ĉ2, . . . , ĈN], TS ,R}, where
each Ĉi = {Ti, D̂i} includes the assigned type and
generated description for the component. We em-
ploy LLMs as the pre-processing engine.

3.1 Structure Placement with Dual Reflection
3.1.1 Structure Placement
In this stage, for each preprocessed sheet Ŝ, we
prompt the MLLMs with: (i) textual instructions
guiding sheet layout generation; (ii) the relations
R and sheet components [Ĉ1, Ĉ2, . . . , ĈN], and (iii)
an exemplar topic image I. We generate N1 inter-
mediate sheet layouts per spreadsheet, score them
using SheetRanker (see subsection 3.3), and select
the top-performing candidates.

The instructions guide the generation by: (1) pre-
serving alignment among components, particularly
in a type-aware manner (aligning components with
the same type) and a relation-aware manner (plac-
ing related components in proximity); (2) ensuring
spatial fullness and balance by maximizing space
usage and distributing components evenly in hori-
zontal or vertical; (3) avoiding overlaps. We also
provide examples to demonstrate each principle
in practice. Furthermore, MLLMs are allowed to
resize titles and charts to improve layout quality,
as these have looser grid constraints than others.
Other components are fixed in size. For instance, a
1×5 title can be resized to 1×6 (or 1×4) to enhance
alignment without affecting its meaning, whereas
resizing a 4×4 data table to 4×5 (or 4×3) would
involve adding or removing data.

18935

For each preprocessed sheet Ŝ, we retrieve a
topic-specific image I, a screenshot of an exem-
plar spreadsheet of the same type of TS . We use
this image as a visual exemplar to guide the layout
of components. Layout conventions, such as spa-
tial grouping, and visual emphasis, are tailored to
each document’s topic. For example, recipe cards
prioritize vertical lists of ingredients and step-by-
step instructions, whereas academic posters allo-
cate prominent space for section headers and data
visualizations.

3.1.2 Dual Reflection

Given the top-ranked intermediate sheet layout and
its scores for each aspect, we refine it through a
dual reflection process: (1) Rule-based Reflec-
tion. For each evaluation aspect, if the SheetRanker
score falls below a predefined threshold (e.g., full-
ness < 0.5), we augment the prompt with targeted
revision instructions. For instance, a low overlap
score triggers guidance to explicitly avoid compo-
nent overlap during the reflection step1. (2) Vision-
based Reflection. We visualize the sheet layout by
coloring cells based on component types for an im-
age input. This allows the MLLM to perceive the
layout from a visual perspective, enabling further
refinement through multimodal understanding. For
detailed information on the threshold for triggering
reflection, the specific prompts for revising each
aspect, and the algorithm used to generate images
of layouts, please refer to Appendix D.

3.2 Content Population and Global
Arrangements

After revising the intermediate sheet, we en-
ter the content-aware stage, where the original
data is populated into components with appro-
priate line breaks. Global sheet layout config-
urations—specifically, column widths and row
heights—are also generated. The prompt includes
the following instructions: (1) insert line breaks
for lengthy content; (2) adjust column widths and
row heights to fit content while minimizing empty
space. We also provide examples of common font
settings with corresponding row height and column
width settings. The LLM generates N2 candidate
sheet layouts, which are then ranked using Shee-
tRanker to produce the final, fully detailed sheet
layout.

1If no aspect falls below its threshold, this step is skipped.

3.3 SheetRanker
Given a set of candidate sheets, SheetRanker as-
signs a score to each based on the protocol in sub-
section 2.2 and selects the one with the highest
score. All aspects are weighted equally at 1 2. We
adopt this uniform weighting because all aspects
(except Overlap) share a common scale of (0, 1],
while Overlap mostly falls within (−1, 0]. Shee-
tRanker serves two key functions: (i) guiding se-
lection toward the candidate with the highest over-
all performance, and (ii) providing a quantitative
foundation for reflecting on and refining structural
placement.

4 Experiments

In this section, we conduct experiments to verify
the effectiveness of the proposed SheetDesigner.

4.1 Dataset
For the evaluation of our model, we construct a
dataset, SheetLayout, consisting of 3,326 Excel
spreadsheets collected from various domains and
real-world applications (See Table 7 and Table 8.
The dataset encompasses diverse spreadsheet struc-
tures, reflecting practical use cases across multiple
fields. We perform object detection within each
spreadsheet, identifying key components. These
detected objects are subsequently converted into
a structured JSON format to enable standardized
processing. See Appendix E for details on the col-
lection, anonymous process, and licenses.

4.2 Baselines & Settings
We compare the proposed SheetDesigner with vari-
ous state-of-the-art baselines, which can be broadly
categorized into two groups:

• Traditional Transformer-based models,
trained and validated on layout datasets, in-
cluding BLT (Kong et al., 2022), Layout-
Former++ (Jiang et al., 2023), and Coarse-
to-Fine (Jiang et al., 2022).

• LLM-based approaches, which leverage
LLMs to enable few-shot or zero-shot layout
generation, including LayoutPrompter (Lin
et al., 2023b) and PosterLLaVA (Yang et al.,
2024). For LayoutPrompter we adopt GPT-
4o as the backbone, as the recommended
text-davinci-003 is deprecated.

2For aspects with horizontal and vertical sub-aspects, each
sub-aspect is weighted at 0.5, maintaining a total weight of 1.

18936

Table 1: Quantitative results on SheetLayout reported in mean scores. Scores range from 0 (poor) to 1 (optimal),
except for the overlap metric (≤ 0), where values closer to 0 indicate better performance. The weighted total score
assigns a weight of 0.5 to vertical and horizontal sub-aspects, and 1 to all other aspects. Relative performance is
reported with respect to the best-performing model. For LLM-based methods, the underlying language model is
indicated in parentheses. "C" denotes Component, "T" for Type-aware, and "R" for Relation-aware.

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total
Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

BLT 0.485 0.285 0.586 0.373 0.604 0.379 0.571 0.451 0.547 0.474 0.504 -0.184 2.688 (↓ 45.12%)
LayoutFormer++ 0.618 0.308 0.559 0.501 0.728 0.407 0.585 0.556 0.607 0.595 0.705 -0.125 3.268 (↓ 33.27%)
Coarse-to-Fine 0.531 0.289 0.576 0.475 0.635 0.402 0.601 0.519 0.528 0.601 0.725 -0.143 3.063 (↓ 37.45%)

PosterLLaVa (LLaVA-7B) 0.653 0.376 0.608 0.404 0.712 0.430 0.642 0.609 0.684 0.610 0.732 -0.183 3.373 (↓ 31.12%)
LayoutPrompter (GPT-4o) 0.804 0.397 0.623 0.508 0.789 0.487 0.683 0.690 0.716 0.634 0.778 -0.167 3.789 (↓ 22.63%)

SheetDesigner (Vicuna-7B) 0.703 0.395 0.617 0.434 0.778 0.485 0.628 0.662 0.581 0.545 0.683 -0.103 3.504 (↓ 28.46%)
SheetDesigner (LLaVA-7B) 0.706 0.431 0.629 0.458 0.794 0.486 0.637 0.690 0.585 0.619 0.721 -0.075 3.656 (↓ 25.36%)
SheetDesigner (Vicuna-13B) 0.678 0.424 0.649 0.456 0.803 0.521 0.678 0.675 0.642 0.668 0.753 -0.056 3.756 (↓ 23.31%)
SheetDesigner (LLaVA-13B) 0.690 0.432 0.661 0.459 0.806 0.530 0.680 0.695 0.668 0.696 0.793 -0.043 3.857 (↓ 21.25%)
SheetDesigner (GPT-4o) 0.981 0.549 0.886 0.683 0.880 0.788 0.858 0.703 0.679 0.894 0.920 -0.003 4.898

Table 2: Ablation study, "w/o" denotes "without".

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total
Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

SheetDesigner 0.981 0.549 0.886 0.683 0.880 0.788 0.858 0.703 0.679 0.894 0.920 -0.003 4.898

w/o Topic 0.973 0.537 0.859 0.653 0.856 0.736 0.821 0.683 0.673 0.876 0.897 -0.003 4.766 (↓ 2.71%)
w/o Reflection-Rule 0.956 0.530 0.876 0.641 0.820 0.744 0.793 0.642 0.664 0.823 0.856 -0.007 4.644 (↓ 5.20%)
w/o Reflection-Vision 0.941 0.544 0.879 0.672 0.867 0.788 0.854 0.698 0.674 0.852 0.882 -0.012 4.784 (↓ 2.33%)
w/o Reflection 0.925 0.520 0.853 0.622 0.805 0.739 0.781 0.628 0.631 0.804 0.802 -0.017 4.500 (↓ 8.12%)
w/o SheetRanker 0.916 0.491 0.752 0.637 0.842 0.729 0.784 0.673 0.659 0.859 0.884 -0.010 4.561 (↓ 6.88%)
w/o Vision 0.926 0.522 0.701 0.638 0.848 0.705 0.804 0.632 0.632 0.823 0.874 -0.015 4.500 (↓ 8.12%)

While the aforementioned baselines perform
well in general layout generation, they are neither
specifically designed nor optimized for spreadsheet
layouts. Their outputs are typically pixel-based
bounding boxes, like [(x1, y1, x2, y2), . . .], where
each box defines the top-left and bottom-right pixel
coordinates of a component. To adapt these lay-
outs for spreadsheets, we introduce a standard-
ized procedure that maps pixel-based layouts to
a grid-based structure. We assume a Bx ×By pixel
background, where each grid cell corresponds to
a Cx × Cy pixel area, yielding a Bx

Cx ×
By

Cy grid. If
any layout exceeds Bx pixels in width (or By pix-
els in height), we scale it down proportionally to
fit within these constraints. Components that do
not align perfectly with the grid (i.e., whose posi-
tions are not exact multiples of Cx or Cy pixels) are
adjusted by snapping to the nearest cell.

In this study, we adopt Bx = 1000, Cx = 50,
By = 500, and Cy = 25, reflecting typical set-
tings in commonly used spreadsheet applications.
The threshold for triggering Dual Reflection is set
to a moderate value of 0.5 for all aspects except
Overlap, which uses a strict threshold of 0, as any
intersection significantly degrades layout usability
and therefore always triggers a revision. The num-
ber of repeated runs is set to N1 = N2 = 3. To
ensure a fair comparison between training-based
and training-free methods, the data is split into 10%

for training, 10% for validation, and 80% for test-
ing. All reported performance metrics are based
on the test set. We adopt three families of back-
bone models: GPT-4o (OpenAI, 2024), the Vicuna
family (Zheng et al., 2023), and the LLaVA family
(Liu et al., 2023). Regarding modality, GPT-4o and
LLaVA are multimodal LLM with vision ability,
while Vicuna models are text-only. For Vicuna,
vision-related inputs are disabled. The LLaVA
models utilized in this study employ their corre-
sponding Vicuna models as the backbone LLM.

4.3 Evaluation Results

In Table 1, we compare SheetDesigner with several
baselines on the dataset SheetLayout. Employing
GPT-4o as its backbone, SheetDesigner demon-
strates state-of-the-art performance. It surpasses
the second-place LayoutPrompter, which also uti-
lizes GPT-4o, by a notable 22.63% in total score.
Variants using smaller models also remain compet-
itive. Notably, when equipped with a 13B model
(either Vicuna-13B or LLaVA-13B), SheetDesigner
performs competitively or even surpasses Layout-
Prompter—which relies on the much stronger GPT-
4o backbone—demonstrating the effectiveness of
our framework. Additionally, at comparable param-
eter scales, models with vision perception (LLaVA
family) consistently outperform those without (Vi-
cuna family).

18937

We visualize some of the layouts generated
by SheetDesigner, LayoutFormer++, and Layout-
Prompter for comparison in Figure 2. Generally
SheetDesigner achieves favorable results against
the baselines. Compared to LayoutFormer++ and
LayoutPrompter, SheetDesigner produces more
aligned layouts. Further, SheetDesigner arranges
components in a relation-aware and type-aware
manner, for example, in Figure 2 (middle-right),
SheetDesigner places summary tables of corre-
sponding tables directly below them, assuring bet-
ter readability and usefulness compared to the oth-
ers. For a analysis on failure cases, please refer to
Appendix F.

4.4 Ablation Study

To assess the contribution of each component in
SheetDesigner, we conduct an ablation study (see
Table 2), including a “w/o Vision” case in which
both the topic image and vision-based reflection are
removed, and visualize the lowest 1% of the score
distributions (see Figure 3). Our results show that
every component enhances performance to varying
degrees: the SheetRanker yields a significant over-
all improvement; the topic images notably boosts
balance and relation-aware alignment; rule-based
reflection affects almost every metric (its smallest
impact being on overlap); and vision-based reflec-
tion improves balance and reduces overlap but con-
tributes little to alignment measures. Generally, the
visual modality of MLLMs is helpful for improv-
ing balance or overlap, but struggle with alignment
requirements.

Table 3: Quantitative comparison: Specified dimensions
with line wraps than the AutoFit of Excel. Relative
performance degradation is reported.

Compatibility Deg. Ratio
Horizontal Vertical

Specified (Full) 0.549 0.886 -
AutoFit (Full) 0.538 0.853 3.07%

Specified (%5 Low) 0.523 0.882 -
AutoFit (%5 Low) 0.495 0.824 6.12%

Specified (%1 Low) 0.521 0.896 -
AutoFit (%1 Low) 0.485 0.818 8.05%

We compared our proposed ContentPopulator
with Excel’s built-in AutoFit function (see Table 3)
across the full dataset, as well as the lowest 5% and
1% of scores. The results support our claim that
explicitly specifying row and column dimensions,

along with appropriate line wrapping, generally
outperforms AutoFit.

4.5 Hyper-parameter Analysis on Thresholds
in Dual Reflection

Table 4: Hyper-parameter Analysis on the thresholds
in Dual Reflection. We report the total scores, and the
average tokens costs with GPT-4o as the backbone.

Total Score ↑ Dual Reflection Token Cost ↓
Threshold=0.3 4.604 103.5
Threshold=0.5 4.898 234.2
Threshold=0.7 4.904 616.7

The thresholds in Dual Reflection determine
when a layout needs revision. We use a moder-
ate threshold of 0.5 for the main experiments, as
stated previously. Lower thresholds (e.g., 0.3) re-
duce computation by targeting only extreme cases,
while higher thresholds (e.g., 0.7) improve quality
but increase computation due to more frequent re-
visions. In this section, we show results for thresh-
olds 0.3 and 0.7 in Table 4. A 0.3 threshold signifi-
cantly reduces performance, while 0.7 offers little
improvement but uses many more tokens. This
indicates that some layouts need revision, but not
all are fixable, for example, some spreadsheets are
inherently difficult due to mixed object sizes. This
supports our choice of a moderate threshold for
efficient performance gains.

5 Why Does Vision Help Balance and
Overlap but Not Alignment?

As previously stated in subsection 4.4, our find-
ings indicate that with visual input, MLLMs excel
at improving overlap, balance but struggle with
alignment-related features. To further investigate
this, we visualize the attention weights of LLaVA-
7B using two sketch images, following the setup
in (Zhang et al., 2025a). One layout contains
overlapping components, while the other exhibits
misaligned elements. In each case, the model is
prompted to identify regions of either overlap or
misalignment. To facilitate direct visual interpre-
tation of the attention weights, we use the general
prompt "detect the spreadsheet’s components" to
normalize the attention maps (Liu et al., 2025b).

As shown in Figure 4, LLaVA-7B demonstrates
precise attention to overlapping regions, indicated
by a highly concentrated distribution of weights.
Conversely, its attention is scattered and disorga-
nized when dealing with misalignment, failing to

18938

T1

M1

S1

C1

Input LayoutFormer++ LayoutPrompter SheetDesigner

T1 T1

M1

S1

C1

Title X 1

Main X 1

Summary X 1

Chart X 1

C1

Input LayoutFormer++ LayoutPrompter SheetDesigner

T1Title X 1

Main X 2

Summary X 2

Chart X 2

Meta X 1 MT1

T1

M1
S1

C1
M2

C2

S2

T1

M1
S1

C1

M2

C2

S2

C1 C2

M1 M2
MT1

Input LayoutFormer++ LayoutPrompter SheetDesigner
Title X 1

Main X 1

Summary X 1

Chart X 2

Meta X 1

T1

M1

S1

C1

C2

MT1

T1

M1

S1

C1

C2

MT1

T1

M1

S1

C2

C1

MT1

Input LayoutFormer++ LayoutPrompter SheetDesigner

Title X 1

Main X 4

Summary X 4

Meta X 1

T1

MT1

M1 M2

M3 M4

T1
MT1

M1
M2M3 M4

MT1
M1

T1
M2

M3 M4

Input LayoutFormer++ LayoutPrompter SheetDesigner

Title X 1

Main X 1

Summary X 4

Meta X 4

T1

M1

MT
1 MT

2MT
3

MT
4

T1

M1

MT
1

MT
3

MT
2

MT
4

T1

M1

MT
1

MT
3

MT
2

MT
4

Input LayoutFormer++ LayoutPrompter SheetDesigner

Title X 1

Main X 1

Summary X 1

Chart X 1

Meta X 2

T1

C1 S1

T1T1

M1

C1
S1

M1

S1
S1 S2

S1 S2

S3 S4

S1
S2

S3
S4

S3
S4

S1 S2

S1 S2
S3 S4

S1

S2S3
S4

S4
S1

S2

S3

MT
2

MT
1

M1

C1

S1

MT
2

MT
1

M1 MT
2

MT
1

MT1

Figure 2: Qualitative comparison among SheetDesigner, LayoutFormer++ and LayoutPrompter. We denote each
component with the letters, T for titles, M for main tables, S for summary tables, and MT for metadata tables.

Full w/o Topic w/o Reflection-Rule w/o Reflection-Vision w/o Reflection w/o SheetRanker w/o Vision

Varients

3

3.2

3.4

3.6

To
ta
lS
co
re

Fullness C-Alignment T-Alignment R-Alignment Balance Overlap

0.4

0.6

0.8

1

Sc
or
es

Figure 3: Ablation study for the lower 1% tail of the score distributions. An offset of 1 was added to the overlap
scores for clarity. Aspects with horizontal and vertical sub-components were merged by averaging their scores.

Figure 4: Visualization of attention weights on the input image. The first row shows an instance with overlapping
components, where LLaVA-7B demonstrates precise attention with a concentrated weight distribution. In contrast,
the second row illustrates an instance with misalignment, where the model’s attention is scattered and fails to
accurately capture misaligned components, such as the right border of the title block.

18939

accurately identify misaligned components like the
right border of the title block. The model’s profi-
ciency with overlap, akin to identifying a "man with
a yellow backpack," likely stems from its optimiza-
tion for perceiving natural objects with mixed vi-
sual features. However, alignment demands a fine-
grained focus on the boundaries between paired
components, an area where MLLMs currently lack
sufficient optimization. This disparity in process-
ing may explain the limited contribution of vision
to alignment in Figure 3.

This analysis underscores the pivotal role of
our Dual Reflection module, which leverages the
complementary strengths of rule-based (textual)
and vision-based (image) reasoning. In alignment
tasks, textual reasoning demonstrates a clear ad-
vantage due to the explicitness of coordinate data.
For instance, the alignment between "A1:A3" and
"B1:B3," contrasted with the misalignment with
"C2:C4," can be directly inferred from positional
information. However, recognizing this relation-
ship in images requires detailed pairwise visual
reasoning. Conversely, for spatial features such
as overlap or balance, visual perception provides
immediate and intuitive insights, while textual anal-
ysis demands additional processing to extract the
same information from raw coordinates. The Dual
Reflection module’s strength lies in integrating
these two modalities, resulting in notable perfor-
mance gains. These findings also highlight oppor-
tunities for improving MLLMs, particularly by en-
hancing their visual reasoning capabilities (Wang
et al., 2024)—a critical need when interpreting
structured formats like spreadsheet images.

6 Related Works

Traditional Pixel-oriented Layout Generation
Layout generation is a widely studied topic encom-
passing various sub-tasks, including: (1) generation
conditioned on element types (Kikuchi et al., 2021;
Kong et al., 2022; Lee et al., 2020; Arroyo et al.,
2021), (2) generation conditioned on both element
types and sizes (Kong et al., 2022; Cheng et al.,
2024), (3) generation conditioned on element re-
lationships (Kikuchi et al., 2021; Lee et al., 2020;
Cheng et al., 2024), (4) layout completion (Gupta
et al., 2021), (5) layout refinement (Rahman et al.,
2021), (6) content-aware generation (Hsu et al.,
2023; Zheng et al., 2019; Zhang et al., 2024), (7)
text-to-layout generation (Huang et al., 2021; Lin
et al., 2023a), (8) layout revision (Li et al., 2024),

and more. Transformers and diffusion models are
popular and powerful backbones for these tasks.

LLM-driven Layout Generation Beyond the
traditional methods mentioned above, recent stud-
ies (Lin et al., 2023b; Yang et al., 2024; Tang et al.,
2023; Seol et al., 2024; Zhang et al., 2025b; Hsu
and Peng, 2025; Tang et al., 2024) have explored
leveraging Large Language Models (LLMs) for
layout generation. These approaches offer benefits
such as zero-shot capability, robustness, multi-task
generalization, and strong generation performance,
all without the need for task-specific training. Ad-
ditionally, efforts are being made to enhance LLMs
with vision modalities (Cheng et al., 2025), Chain-
of-thought reasoning (Shi et al., 2025), and diffu-
sion models (Liu et al., 2025a).

While considerable research has been conducted
in general layout generation, the resulting meth-
ods may not directly align with the distinct charac-
teristics of spreadsheets. Spreadsheets inherently
demand strict conformity to a grid, contrasting
with approaches that permit arbitrary pixel-level
element positioning. Moreover, element dimen-
sions within spreadsheets, such as row heights and
column widths, function as global parameters; an
adjustment to column A’s width, for example, con-
sequently alters all cells in that column. Finally,
spreadsheet layouts inherently require awareness of
component types, relationships, and content, which
many general-purpose layout approaches do not
fully incorporate.

7 Conclusion

In this paper, we formalize the task of spread-
sheet layout generation, develop an evaluation pro-
tocol covering seven key aspects, and present a
dataset comprising 3,326 spreadsheets. We then
introduce SheetDesigner for this task, a zero-shot,
and training-free framework driven by multimodal
large language models. SheetDesigner adopts a
two-stage strategy. SheetDesigner involves (1)
structural placement with Dual Reflection and (2)
content population with global arrangements. Ex-
perimental results reveal SheetDesigner’s superior
performance, surpassing baselines by a significant
22.63% in performance. Ablation studies reveal
the impact of each component. We further conduct
a further empirical analysis of MLLMs’ vision ca-
pabilities. This analysis underscores the necessity
of our hybrid Dual Reflection module. The study
also illuminate key considerations for advancing

18940

MLLMs in the future.

8 Limitations

This work has the following limitations: (i) The
dataset is limited to a set of commonly encoun-
tered fields, potentially missing the unique require-
ments and challenges of less-represented or novel
domains. This may impact the generalizability of
our findings and highlights the need for future work
to incorporate more diverse field types to more
comprehensively evaluate SheetDesigner’s perfor-
mance. (ii) As shown in Appendix F, the model
arranges elements sub-optimally in extreme cases
involving a large number of components with vary-
ing sizes. This limitation is not unique to our ap-
proach and has also been reported in prior work
(Arroyo et al., 2021; Lin et al., 2023b). Address-
ing such cases remains an open direction for future
research.

References
Diego Martin Arroyo, Janis Postels, and Federico

Tombari. 2021. Variational transformer networks for
layout generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 13642–13652.

Yolande E Chan and Veda C Storey. 1996. The use of
spreadsheets in organizations: Determinants and con-
sequences. Information & Management, 31(3):119–
134.

Qin Chen, Yuanyi Ren, Xiaojun Ma, and Yuyang
Shi. 2025a. Large language models for predic-
tive analysis: How far are they? arXiv preprint
arXiv:2505.17149.

Qin Chen and Guojie Song. 2025. Adaptive heteroge-
neous graph neural networks: Bridging heterophily
and heterogeneity. arXiv preprint arXiv:2508.06034.

Qin Chen, Liang Wang, Bo Zheng, and Guojie Song.
2025b. Dagprompt: Pushing the limits of graph
prompting with a distribution-aware graph prompt
tuning approach. In Proceedings of the ACM on Web
Conference 2025, pages 4346–4358.

Chin-Yi Cheng, Ruiqi Gao, Forrest Huang, and Yang Li.
2024. Colay: Controllable layout generation through
multi-conditional latent diffusion. arXiv preprint
arXiv:2405.13045.

Yutao Cheng, Zhao Zhang, Maoke Yang, Hui Nie, Chun-
yuan Li, Xinglong Wu, and Jie Shao. 2025. Graphic
design with large multimodal model. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 2473–2481.

Kamal Gupta, Justin Lazarow, Alessandro Achille,
Larry S Davis, Vijay Mahadevan, and Abhinav Shri-
vastava. 2021. Layouttransformer: Layout genera-
tion and completion with self-attention. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 1004–1014.

Joachim Häcker and Dietmar Ernst. 2017. Financial
Modeling: An Introductory Guide to Excel and VBA
Applications in Finance. Springer.

Hsiao Yuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong,
and Qing Zhang. 2023. Posterlayout: A new bench-
mark and approach for content-aware visual-textual
presentation layout. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 6018–6026.

HsiaoYuan Hsu and Yuxin Peng. 2025. Postero: Struc-
turing layout trees to enable language models in
generalized content-aware layout generation. arXiv
preprint arXiv:2505.07843.

Forrest Huang, Gang Li, Xin Zhou, John F Canny, and
Yang Li. 2021. Creating user interface mock-ups
from high-level text descriptions with deep-learning
models. arXiv preprint arXiv:2110.07775.

Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng,
Zhongkai Wu, Vuksan Mijovic, Zijiang James Yang,
Jian-Guang Lou, and Dongmei Zhang. 2023. Layout-
former++: Conditional graphic layout generation via
constraint serialization and decoding space restric-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18403–18412.

Zhaoyun Jiang, Shizhao Sun, Jihua Zhu, Jian-Guang
Lou, and Dongmei Zhang. 2022. Coarse-to-fine gen-
erative modeling for graphic layouts. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 36, pages 1096–1103.

Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and
Kota Yamaguchi. 2021. Constrained graphic layout
generation via latent optimization. In Proceedings of
the 29th ACM International Conference on Multime-
dia, pages 88–96.

Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang,
Yuan Hao, Haifeng Gong, and Irfan Essa. 2022. Blt:
bidirectional layout transformer for controllable lay-
out generation. In European Conference on Com-
puter Vision, pages 474–490. Springer.

Talia Lavie and Noam Tractinsky. 2004. Assessing
dimensions of perceived visual aesthetics of web
sites. International journal of human-computer stud-
ies, 60(3):269–298.

Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le,
Haifeng Gong, Ming-Hsuan Yang, and Weilong Yang.
2020. Neural design network: Graphic layout gen-
eration with constraints. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part III 16, pages
491–506. Springer.

18941

Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu,
Christina Wang, and Tingfa Xu. 2020. Attribute-
conditioned layout gan for automatic graphic design.
IEEE Transactions on Visualization and Computer
Graphics, 27(10):4039–4048.

Tao Li, Chin-Yi Cheng, Amber Xie, Gang Li, and
Yang Li. 2024. Revision matters: Generative
design guided by revision edits. arXiv preprint
arXiv:2406.18559.

Jiawei Lin, Jiaqi Guo, Shizhao Sun, Weijiang Xu, Ting
Liu, Jian-Guang Lou, and Dongmei Zhang. 2023a. A
parse-then-place approach for generating graphic lay-
outs from textual descriptions. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 23622–23631.

Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang Yang, Jian-
Guang Lou, and Dongmei Zhang. 2023b. Layout-
prompter: awaken the design ability of large language
models. Advances in Neural Information Processing
Systems, 36:43852–43879.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–
34916.

Wei Liu, Liuan Wang, and Jun Sun. 2025a. Effi-
cient object placement via llm and diffusion model.
In ICASSP 2025-2025 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE.

Xuyuan Liu, Yinghao Cai, Qihui Yang, and Yujun Yan.
2024. Exploring consistency in graph representa-
tions: from graph kernels to graph neural networks.
In Advances in Neural Information Processing Sys-
tems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024.

Xuyuan Liu, Lei Hsiung, Yaoqing Yang, and Yujun Yan.
2025b. Spectral insights into data-oblivious criti-
cal layers in large language models. In Findings of
the Association for Computational Linguistics, ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pages
4860–4877. Association for Computational Linguis-
tics.

OpenAI. 2024. Gpt-4o system card. Preprint,
arXiv:2410.21276.

Stephen G Powell and Kenneth R Baker. 2019. Business
analytics: The art of modeling with spreadsheets.
John Wiley & Sons.

Soliha Rahman, Vinoth Pandian Sermuga Pandian, and
Matthias Jarke. 2021. Ruite: Refining ui layout aes-
thetics using transformer encoder. In Companion
Proceedings of the 26th International Conference on
Intelligent User Interfaces, pages 81–83.

Yuanyi Ren, Haoran Ye, Hanjun Fang, Xin Zhang, and
Guojie Song. 2024. ValueBench: Towards compre-
hensively evaluating value orientations and under-
standing of large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2015–2040. Association for Computational
Linguistics.

Jaejung Seol, Seojun Kim, and Jaejun Yoo. 2024.
Posterllama: Bridging design ability of language
model to content-aware layout generation. In Eu-
ropean Conference on Computer Vision, pages 451–
468. Springer.

Hengyu Shi, Junhao Su, Huansheng Ning, Xiaom-
ing Wei, and Jialin Gao. 2025. Layoutcot: Un-
leashing the deep reasoning potential of large lan-
guage models for layout generation. arXiv preprint
arXiv:2504.10829.

Yiliu Sun, Yanfang Zhang, Zicheng Zhao, Sheng Wan,
Dacheng Tao, and Chen Gong. 2025. Fast-slow-
thinking: Complex task solving with large language
models. arXiv preprint arXiv:2504.08690.

Hongbo Tang, Shuai Zhao, Jing Luo, Yihang Su, and
Jinjian Yang. 2024. Layoutkag: Enhancing lay-
out generation in large language models through
knowledge-augmented generation. In 2024 3rd
International Conference on Artificial Intelligence,
Human-Computer Interaction and Robotics (AIH-
CIR), pages 292–299. IEEE.

Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan.
2023. Layoutnuwa: Revealing the hidden layout
expertise of large language models. arXiv preprint
arXiv:2309.09506.

Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin,
Haiteng Zhao, Yongfei Liu, Bohan Zhai, Jianbo Yuan,
Quanzeng You, and Hongxia Yang. 2024. Exploring
the reasoning abilities of multimodal large language
models (mllms): A comprehensive survey on emerg-
ing trends in multimodal reasoning. arXiv preprint
arXiv:2401.06805.

Tao Yang, Yingmin Luo, Zhongang Qi, Yang Wu, Ying
Shan, and Chang Wen Chen. 2024. Posterllava: Con-
structing a unified multi-modal layout generator with
llm. arXiv preprint arXiv:2406.02884.

Jiahao Zhang, Ryota Yoshihashi, Shunsuke Kitada, At-
suki Osanai, and Yuta Nakashima. 2024. Vascar:
Content-aware layout generation via visual-aware
self-correction. arXiv preprint arXiv:2412.04237.

Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara,
and Filip Ilievski. 2025a. Mllms know where to look:
Training-free perception of small visual details with
multimodal llms. arXiv preprint arXiv:2502.17422.

Peirong Zhang, Jiaxin Zhang, Jiahuan Cao, Hongliang
Li, and Lianwen Jin. 2025b. Smaller but better: Uni-
fying layout generation with smaller large language
models. International Journal of Computer Vision,
pages 1–27.

18942

http://papers.nips.cc/paper_files/paper/2024/hash/f631e778fd3c1b871e9e3a94369335e9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/f631e778fd3c1b871e9e3a94369335e9-Abstract-Conference.html
https://aclanthology.org/2025.findings-acl.251/
https://aclanthology.org/2025.findings-acl.251/
https://arxiv.org/abs/2410.21276
https://doi.org/10.18653/v1/2024.acl-long.111
https://doi.org/10.18653/v1/2024.acl-long.111
https://doi.org/10.18653/v1/2024.acl-long.111

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH
Lau. 2019. Content-aware generative modeling of
graphic design layouts. ACM Transactions on Graph-
ics (TOG), 38(4):1–15.

A Potential Risks

This work focuses on automating the generation of
spreadsheet layouts through SheetDesigner. While
automation offers clear efficiency and usability ben-
efits, it also introduces certain risks. In particular,
over-reliance on automatically generated layouts
may lead to reduced user control or unintended
formatting choices that do not align with domain-
specific expectations. Additionally, if deployed in
high-stakes environments (e.g., finance or health-
care), errors in layout generation could affect data
interpretation and decision-making (Chen et al.,
2025a). It is therefore important to incorporate
mechanisms for human oversight, validation, and
customization to mitigate these risks and ensure
responsible deployment.

B Declaration of Generative AI Tools

Generative AI tools were used solely for the pur-
pose of language polishing. All ideas, experiments,
analyses, and writing were originally developed by
the authors.

C Evaluation of Spreadsheet Layouts

In this section we detail the seven aspects of eval-
uation metrics. All metrics, except for Overlap,
are scaled from (0, 1], where higher scores indicate
better performance. For Overlap, a score of 0 signi-
fies no overlaps, while increasingly negative scores
reflect a greater degree of overlap.

Fullness This aspect evaluates the spatial utiliza-
tion of generated layouts (Hsu et al., 2023). We
first identify the top-left and bottom-right corners
to determine the background region size Rbg. Next,
we mark the areas occupied by layout components,
denoted as Rft. Note that when calculating area
sizes, the row and column dimensions G are taken
into account. The fullness metric is defined as:

Sfull([C̃], G) =

{
1, if size(Rft)

size(Rbg)
≥ θfull,

size(Rft)
size(Rbg)

, otherwise.
(1)

where size(·) represents the two-dimensional area
measurement, considering both row and column di-
mensions, θfull is a threshold value. This metric en-
courages the generation of compact and practically
useful spreadsheet layouts while allowing sufficient
space for line breaks and separation where neces-
sary by assigning full scores for fullness greater
than θfull.

Compatibility This aspect evaluates how well
the provided row heights and column widths ac-
commodate the corresponding text within each cell
(Hsu et al., 2023). To achieve this, we first approxi-
mate the average pixel dimensions of the text, as-
suming a width ofWtext pixels per character and a
height ofHtext pixels per line. We then convert the
row heights and column widths into pixel units via .
The compatibility scores in both the horizontal and
vertical directions are defined as the normalized
average compatibility scores across all cells:

Scompt_h =
1

1 + 1
M |

∑M
i=1

Shwi
Wtextli+Ph

− 1|
,

Scompt_v =
1

1 + 1
M |

∑M
i=1

hi
Hini+Pv

− 1|
.

(2)

Here, M represents the total number of data-
containing cells. The variables wi and hi denote
the width and height of the i-th cell, respectively.
The term li corresponds to the number of charac-
ters in the cell’s content, while ni represents the
number of text lines in the cell. Sh denotes the
factor translating spreadsheet cell width to pixels.
Ph, Pv denotes the padding space for horizontal
and vertical. We apply the shifted reciprocal trans-
formation f(x) = 1

1+|x−1| to normalize the scores.
This ensures that cells that are either too wide or
too narrow for the given text receive lower scores,
while optimal compatibility results in a score ap-
proaching 1.

Component Alignment Alignment lies in the
core of assessing a layout’s practical usage and
beauty (Li et al., 2020). We begin by measuring
general alignment between components and then
extend the evaluation to type-aware and relation-
aware alignment. Given a list of components, we
identify frequently occurring positions and assess
alignment. Deviations from these positions con-
tribute to an alignment violation score Svio_h and
Svio_v. Formally, we detect the top-k most frequent
positions in both directions and check whether each

18943

component aligns with them. A perfect match re-
sults in no violation; otherwise, the violation score
(Svio_h or Svio_v) increases by one. We then nor-
malize the final alignment scores via the reciprocal
transformation f(x) = 1

1+x , ensuring that perfect
alignment results in a score of 1, while greater mis-
alignment lowers the score:

Salign_h =
1

1 + 1
N Svio_h

, Salign_v =
1

1 + 1
N Svio_v

.

(3)

Type-aware Alignment Type-aware alignment
focus on measuring how components of the same
type aligns with each other. We classify the com-
ponents by their type, and calculate the alignment
scores within each group. The final score of type-
aware alignment is calculated by averaging the
scores between the types.

Relation-aware Alignment Relation-aware
alignment evaluates how referenced components
correspond to each other. For instance, in a main
table and its summary table, proper alignment
ensures visual hierarchy and perceptual integrity.
We detect the groups of related components
and measure the alignment within each group.
The final score of relation-aware alignment is
calculated by averaging the scores between the
groups.

Balance Balance assesses whether components
are evenly distributed to maintain visual equi-
librium in a spreadsheet (Lavie and Tractinsky,
2004). A well-balanced layout should be achieved
both vertically and horizontally, avoiding exces-
sive weight on one side, such as clustering compo-
nents on the left while leaving the right sparsely
populated. Technically, the spreadsheet is divided
vertically and hierarchically into two parts3. The
fullness metric is then applied to each part, and the
final scores are computed as:

Sbalance_h = 1−

∣∣∣Sfull([C̃]left, G)− Sfull([C̃]right, G)
∣∣∣

Sfull([C̃]left, G) + Sfull([C̃]right, G)

Sbalance_v = 1−

∣∣∣Sfull([C̃]upper, G)− Sfull([C̃]down, G)
∣∣∣

Sfull([C̃]upper, G) + Sfull([C̃]down, G)
,

(4)

where [C̃]name represents the list of components
belonging to the corresponding part. For a well-
balanced layout, the balance score is 1. The more
imbalanced the layout, the lower the score.

3Components spanning the midpoint are proportionally
allocated to both parts

Overlap Overlap assesses whether components
occupy previously assigned areas (Li et al., 2020).
We iterate through all components, marking the
background to compute the overlap score, where
each pair of collision increases the overlap count
Coverlap by 2. The final score is given by:

Soverlap = −
C2

overlap

N
(5)

We impose a strong penalty on overlap by apply-
ing a quadratic term, C2

overlap, since even minor
overlaps severely undermine practical utility. A
perfectly non-overlapping layout receives a score
of 0, while overlapping components are penalized
with increasingly negative values. Theoretically,
the scores fall within the range [−N(N − 1)2, 0],
where every pair of components overlaps. In prac-
tice, however, the scores typically lie within (−1, 0)
in most cases.

Settings We set θfull = 0.8 for fullness. For com-
patibility, we approximate the Wtext = 12 and
Htext = 15 for the default settings of Calibri with a
font size of 12 in English in this paper. For other
fonts and languages, the corresponding constants
can be adjusted accordingly. We set the padding
terms Ph = 40 and Pv = 10. The translating factor
Sh is set to 7.

We do not use metrics like Fréchet Inception
Distance to assess similarity to real layouts. While
real layouts can serve as useful references, they are
not the only valid designs. Effective spreadsheet
layouts can be arranged in many different ways.
There is no definitive ground truth for what a layout
should be. Instead, we evaluate generated layouts
using the seven criteria described above. A layout
does not need to resemble existing ones to be useful.
If it scores well on these criteria, it can still be
effective for practical applications. This evaluation
approach also encourages diversity in the generated
layouts.

D Additional Methodology Details

D.1 Exemplar Image IS
During structural placement, we provide an exem-
plar image IS to the MLLMs as a reference for
topic-aware component arrangement. This exem-
plar is selected based on the topic or application
context, as the topic significantly influences layout
structures. For example, given the topic "Check
List," layouts from domains such as finance, ed-
ucation, IT, or healthcare tend to share common

18944

Figure 5: An exemplar image of topic "To-do Lists and Calendars".

structural patterns. We provide an example in Fig-
ure 5

In our implementation, we curate 5–10 exem-
plar images for each of the 13 general spreadsheet
topics in Table 8. For each structural placement
task, one exemplar from the same topic is randomly
selected. Importantly, all exemplars are excluded
from the SheetLayout test set, ensuring there is no
risk of information leakage.

D.2 Sketch Image Generation for Layouts

For the sketch image of generated layouts, we first
detect the maximum grid size of the layout and de-
fine the background. Then, for each component we
color the corresponding cells with corresponding
texts. Different types of elements are colored with
different colors. This sketch image provide clear
visual information of the fullness, alignment (and
its variants), balance, and overlap. We provide the
algorithm in 2, and an example of the images in
Figure 6.

Algorithm 1 PlotComponent

Require: K component, C canvas, S style map
1: L← K.layout.location
2: (cs, ec)← PhraseLocation(L)
3: (rs, cs)← CellToIndex(cs)
4: (re, ce)← CellToIndex(ec)
5: ∆c← ce − cs + 1
6: ∆r ← re − rs + 1
7: fill ← S[K.type]
8: DrawRectangle(C, cs, rs,∆c,∆r,fill)
9: DrawText(C,K.id, cs +

∆c
2 , rs +

∆r
2)

Algorithm 2 PlotLayout

Require: Λ layout data
1: C ← InitCanvas()
2: S ← DefineStyles()
3: (Rmax, Cmax)← ComputeGridSize(Λ)
4: ConfigureCanvas(C, Rmax, Cmax)
5: for all K ∈ Λ do
6: PLOTCOMPONENT(K, C,S)
7: end for

D.3 Thresholds and Instructions in Dual
Reflection

We present the reflection-triggering thresholds in
Table 5. If any aspect score from SheetRanker falls
below its corresponding threshold, the relevant in-
struction from Table 6 is appended to the reflection
prompt. All scores, except Overlap, are on a unified
scale of (0, 1); thus, we adopt a moderate thresh-
old of 0.5. For Overlap, where any intersection
degrades layout usability, a strict threshold of 0 is
used—any overlap triggers revision.

These thresholds are tunable hyper-parameters.
Lower values (e.g., 0.3) reduce computation by
filtering only extreme cases, while higher values
(e.g., 0.7) enhance quality at the cost of increased
processing due to more frequent revisions.

E Dataset Details

In this section, we summarize the dataset statistics.
The 3,326 spreadsheets span 10 domains (see Ta-
ble 7) and cover 13 common topics grouped by the
application context (see Table 8).

Datasets were acquired from a variety of public
platforms. These include official government open

18945

Figure 6: Examples of the sketch images generated from layouts.

Table 5: Thresholds for triggering specific instructions
in Dual Reflection.

Aspect Threshold

Fullness 0.5
Overlap 0.0
Alignment 0.5
T-Alignment 0.5
R-Alignment 0.5
Balance 0.5

data websites (e.g., data.gov) that share public re-
ports or tools in spreadsheet formats; repositories
for open science data, such as Zenodo 4, where
researchers deposit supplementary materials; and
digital libraries like the Internet Archive, which
preserve publicly accessible documents. All pre-
existing cell content within these publicly sourced
spreadsheets was subsequently anonymized using
offline LLMs, which replaced original data with
synthetically generated content that is semantically
coherent with the original data’s type and structure.
The specific terms and numerical values were ex-
cluded from the input and the output cell content
was generated entirely by privacy-secure LLMs, en-
suring no sensitive data was retained. This process
preserves the structural and contextual integrity of
the dataset while mitigating privacy risks.

For every acquired spreadsheet, its specific li-
censing and terms of use were meticulously ver-
ified to ensure suitability for academic research
and inclusion in this layout-focused dataset. Prefer-
ence was given to content in the public domain or
under permissive open licenses, such as Creative
Commons (e.g., CC0, CC BY).

4https://zenodo.org

In addition to these publicly sourced materials,
the dataset incorporates spreadsheet layouts origi-
nating from Microsoft 365 Create 5 published on-
line. The incorporation of these anonymized lay-
outs for academic research was authorized under a
formal agreement with Microsoft. This agreement
required the thorough anonymization of all original
cell content prior to inclusion in the dataset.

Table 7: Statistics of the dataset on domain distribution.

Domain #Sheets

Business and Finance 445
Marketing and Sales 397
Engineering and Manufacturing 386
Sports and Entertainment 320
Healthcare and Medical 330
Education and Research 355
Personal and Daily Life 302
Technology and IT 290
Agriculture and Food 260
Hospitality and Tourism 241

Total 3326

5https://create.microsoft.com/en-us

18946

Table 6: Specific instructions in Dual Reflection.

Aspect Instruction

Fullness This spreadsheet is with much empty space. Consider redistribute the elements to minimize empty space.
Overlap This spreadsheet has overlapping components. Consider moving the components to avoid overlapping
Alignment The horizontal alignment of components is not good. Consider align the top of the components
Alignment The vertical alignment of components is not good. Consider align the left of the components
T-Alignment The type-specific horizontal alignment of components is not good. Consider align the top of the components according to their types
T-Alignment The type-specific vertical alignment of components is not good. Consider align the left of the components according to their types
R-Alignment The relation-specific horizontal alignment of components is not good. Consider align the top of the components according to their relations
R-Alignment The relation-specific vertical alignment of components is not good. Consider align the left of the components according to their relations
Balance The horizontal balance of components is not good. Consider distribute the components horizontally
Balance The vertical balance of components is not good. Consider distribute the components vertically

Table 8: Statistics of the dataset on topic distribution.

Topic #Sheets

Financial Management and Forecasting 499
Data and Task Logs 394
Staff Scheduling and Shift Management 301
Performance and KPI Dashboards 298
Event Scheduling and Planning 288
Inventory and Asset Management 269
Report and Publication Tracking 267
Maintenance Scheduling 155
Marketing Campaign Tracking 151
Project Scheduling 150
To-do Lists and Calendars 180
Travel Itinerary and Planning 165
Goal and Habit Tracking 159

Total 3326

F Case Study

F.1 Failure Cases

Parallel to the general cases revealed in Figure 2,
in this sub-section we analyze the failure cases
of SheetDesigner (with GPT-4o). We find that
there are two frequent issues in instances with low
scores: (1) some easy-to-get alignment score is
not achieved; (2) in cases of extremely enormous
components with different sizes, these elements
are arranged non-optimally. We provide two ex-
amples in Figure 7. In the upper figure, there are
some easy steps like expanding the title T1 to the
right border of MT1 (Note that title components is
allowed to resize), and moving MT2 down to align
the downsize border of M1 will increase the score
of alignment. In the lower figure with seven meta-
data tables of varying shapes, it fails to provide
proper arrangement, leading to a somewhat messy
layout, whereas still of certain organization. This
analysis reveals the future objectives for improving
the SheetDesigner.

Input SheetDesigner

Title X 1

Main X 1

Summary X 1

Chart X 1

Meta X 2

T1

C1
S1

M1
MT2

MT1

Input SheetDesigner

Title X 1

Main X 4

Summary X 1

Meta X 7

MT
4

MT
5

MT
7

MT
6

MT3MT
2

MT1

T1

M1

M3 M4

S1

M2

Figure 7: Fail Case study of SheetDesigner

18947

G Details of Ablation Study

Comprehensive details of the ablation study are
presented in Table 9 and Table 10, which report the
ablation scores corresponding to the lower 5% and
1% tails of the score distributions, respectively.

H Additional Experiments

In this section we provide some additional experi-
ments.

H.1 Choice of Exemplar Images
We provide the ablation on the choice of exem-
plar images in Table 11. Table 2 demonstrates that
topic-guided exemplar retrieval outperforms meth-
ods that do not leverage topic exemplars, achieving
a 2.71% performance improvement. We also pro-
vide an additional comparison below, introducing a
variant that uses purely random exemplars without
regard to topic.

Table 11: Ablation on the choice of exemplar images

Score

SheetDesigner (Topic Exemplar) 4.898
SheetDesigner (Random Exemplar) 4.780
SheetDesigner (No Exemplar) 4.766

This demonstrates that even a simple topic-based
selection strategy offers clear benefits. Although
more fine-grained semantic retrieval could fur-
ther improve performance, it primarily enhances
content-level alignment rather than layout structure,
making it less directly relevant to the layout gener-
ation task. Additionally, such approaches are often
computationally intensive and tailored to specific
tasks. We therefore consider them more appropri-
ate for future work.

H.2 Traditional Methods with R1C1 Format
Additionally, we conducted an experiment equip-
ping LayoutPrompter with the R1C1 coordinate
system in Table 12. While this improved its overall
performance, a significant gap remained between
SheetDesigner and LayoutPrompter, highlighting
the effectiveness of our design beyond the form of
coordinate system.

H.3 Traditional Transformer-based Methods
with More Training Data

Below, we present the results of an experiment
conducted under a label-rich setting, using a 60%-

20%-20% train-validation-test split. With more
labels available, traditional methods such as Lay-
outFormer++ and Coarse-to-Fine achieve substan-
tial performance gains; however, they still perform
significantly below SheetDesigner.

H.4 Statistics of Experimental Results

We provide the standard deviation of some experi-
mental results of Table 1 in Table 14.

I Experimental Environment Details

We use GPT-4o via the official OpenAI API6,
while all other models are run locally on a server
equipped with an AMD EPYC 7V13 64-Core Pro-
cessor, 866 GB of RAM, and four NVIDIA A100
GPUs with a total of 320 GB GPU memory. The
experiments required approximately 1,200 GPU
hours in total. The cost associated with GPT-4o
API usage is estimated at approximately $2,892.

For GPT-4o, we set a maximum token limit of
16,384 per invocation, with top-p set to 0.95 and
a temperature of 0.7. Structured output is enabled.
For Vicuna and LLaVA models, we follow the
hyperparameter settings provided in their official
implementations. The threshold values for Dual
LoRA are selected based on a balance between
performance and average token cost, as detailed
below

We conduct a token cost analysis running Sheet-
Designer on different models in Table 15 7. We
calculate the total token costs using the official
OpenAI API response for GPT-4o, while the token
length for Vicuna/LLaVA models is determined by
the specific tokenizer used. Based on current pric-
ing, a single run with GPT-4o costs approximately
0.0029$, totaling around 0.0719$ per instance for
a complete execution.

J Detailed Prompts

In this section we provide the detailed prompts for
the SheetDesigner, where {...} denotes the place-
holder to fill in the corresponding data. For all
the prompts the input data includes the different
stage of the developing spreadsheet layout, from
raw spreadsheet data to the revised layout to be pop-
ulated. For the prompt of Dual Reflection, there
are additional inputs of the specific instructions

6https://openai.com
7Note that revision is conditionally triggered; runs without

revision are marked with a cost of 0 in this procedure

18948

Table 9: Ablation study on 5%-low scores.

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total
Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

SheetDesigner 0.887 0.523 0.882 0.742 0.861 0.391 0.494 0.434 0.440 0.815 0.885 -0.057 4.064

w/o Topic 0.869 0.510 0.863 0.727 0.844 0.369 0.467 0.411 0.408 0.798 0.855 -0.056 3.939 (↓ 3.06%)
w/o Reflection-Rule 0.776 0.518 0.885 0.685 0.780 0.377 0.380 0.361 0.372 0.734 0.852 -0.068 3.680 (↓ 9.44%)
w/o Reflection-Vision 0.783 0.525 0.866 0.724 0.830 0.394 0.466 0.421 0.432 0.741 0.860 -0.098 3.814 (↓ 6.13%)
w/o Reflection 0.755 0.522 0.867 0.656 0.765 0.357 0.365 0.355 0.356 0.719 0.839 -0.083 3.572 (↓ 12.08%)
w/o SheetRanker 0.785 0.460 0.865 0.724 0.812 0.403 0.367 0.425 0.413 0.760 0.829 -0.068 3.746 (↓ 7.81%)
w/o Vision 0.753 0.503 0.856 0.717 0.818 0.360 0.423 0.409 0.419 0.734 0.836 -0.102 3.688 (↓ 9.23%)

Table 10: Ablation study on 1%-low scores.

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total
Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

SheetDesigner 0.876 0.521 0.896 0.770 0.879 0.253 0.263 0.385 0.360 0.845 0.867 -0.287 3.608

w/o Topic 0.867 0.521 0.893 0.756 0.858 0.255 0.256 0.338 0.333 0.800 0.795 -0.293 3.477 (↓ 3.66%)
w/o Reflection-Rule 0.829 0.525 0.887 0.611 0.756 0.187 0.189 0.301 0.345 0.720 0.746 -0.347 3.115 (↓ 13.66%)
w/o Reflection-Vision 0.812 0.523 0.890 0.759 0.854 0.241 0.267 0.384 0.352 0.709 0.723 -0.417 3.246 (↓ 10.05%)
w/o Reflection 0.785 0.519 0.883 0.604 0.744 0.175 0.182 0.287 0.338 0.702 0.719 -0.429 2.933 (↓ 18.73%)
w/o SheetRanker 0.830 0.503 0.880 0.759 0.831 0.249 0.232 0.380 0.372 0.780 0.815 -0.363 3.368 (↓ 6.68%)
w/o Vision 0.833 0.516 0.893 0.811 0.848 0.224 0.182 0.396 0.390 0.693 0.712 -0.445 3.220 (↓ 10.75%)

Table 12: Results of traditional methods with R1C1 format.

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total

SheetDesigner 0.981 0.718 0.782 0.823 0.691 0.907 -0.003 4.898

LayoutPrompter 0.804 0.510 0.649 0.585 0.703 0.706 -0.167 3.789
LayoutPrompter(R1C1) 0.812 0.509 0.672 0.604 0.713 0.693 -0.142 3.861

Table 13: Results of traditional transformer-based methods with 60%-20%-20% train-validation-test split

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total

SheetDesigner 0.978 0.721 0.769 0.831 0.689 0.901 -0.004 4.885

LayoutPrompter 0.803 0.513 0.653 0.594 0.699 0.712 -0.158 3.816
Coarse-to-Fine 0.583 0.462 0.573 0.51 0.583 0.652 -0.132 3.231
LayourFormer++ 0.631 0.464 0.63 0.504 0.621 0.69 -0.116 3.424

Table 14: Statistics of experimental results.

Fullness Compatibility C-Alignment T-Alignment R-Alignment Balance Overlap Weighted Total

SheetDesigner 0.978±0.03 0.721±0.08 0.769±0.12 0.831±0.13 0.689±0.16 0.901±0.08 -0.004±0.13 4.885 ±0.28

18949

Table 15: Token cost analysis of SheetDesigner, report-
ing average token cost per instance, for a single run, and
for a full run with three repeats.

Pre-Process Structure Revise Content Total (Single) Total

Vicuna-7B 278.8 1301.2 310.2 1080.5 2970.7 7734.1
Vicuna-13B 283.1 1339.6 262.3 1154.5 3039.5 8027.7
GPT-4o 280.5 1165.7 234.2 958.4 2638.9 6887.3

which are triggered by rules, the full set of specific
instructions are in Table 6.

Prompts for Pre-processing

Task
You will receive a list of spreadsheet components,
each accompanied by comments, descriptions, and
detailed data. Your task is to identify pairs of com-
ponents that have a logical relationship. For ex-
ample, if summary_table_1 summarizes data from
main_table_1, you should extract and present this re-
lationship as: (main_table_1, summary_table_1)
Hints
(1) Relationships can be based on dependencies, refer-
ences, or summarization within the spreadsheet struc-
ture. (2) If component_A describes, summarizes, or
illustrates data derived from component_B, then A and
B are related. (3) Organize the results in list of lists,
where the inner list should be a 2-component list like
[A, B].
Spreadsheet Components
{...}

Prompts for Structure Placement

Task
I will provide you with a spreadsheet skeleton with
multiple elements including title, main-table, meta-data,
summary-table, and charts in JSON. The task is to place
the elements by setting their position in the spreadsheet
in a good structure.
Instructions
There are some hints to place the elements:
- The location of elements should be provided via the
"location" attribute, which should be a list of two strings
indicating the left-top and bottom down corner of the
element. Example: ["A1", "C3"].
- The elements placed should align with each other. You
can also maintain some symmetry. - Specially, main-
tain a type-aware alignment between element groups.
For example, the metadata tables should be aligned
with each other. - Specially, maintain a relation-aware
alignment between elements. For example, the chart
demonstrating certain main-table should be aligned
with that main-table.
- Avoid overlapping the elements.
- The spreadsheet is a 2D grid, so don’t place the ele-
ments wholly horizontally or vertically. Arrange them
in a compound manner.
- When placing the elements, you can leave some space
as margins between them. But, avoid leaving too much
space empty in the whole spreadsheet.
- Place the elements considering the relationship be-
tween them, for example, the summary-table should be
placed below the main-table.
- You can change the size of the components following
these rules: - Title: can be arbitrarily resized. - Main-
table: you can add empty rows (or namely, changing the
height of the table) to make it look good. But, the width
should be the same as the given width. - Meta-data,
summary data: not re-sizable.
- The title should be placed at the top of the spreadsheet,
spanning all active columns where there are compo-
nents.
- Do not duplicate the components, each type of compo-
nents should be placed under the corresponding lists.
Spreadsheet Skeleton Set
{...}

Prompts for Dual Reflection

Task
I will provide you with a spreadsheet layout with mul-
tiple elements including title, main-table, meta-data,
summary-table, and charts in JSON. Your task is to re-
vise the structure following the instructions. I will first
provide you with the general instructions, then is the
specific instructions I want you to follow. You will need
to revise the structure of the spreadsheet accordingly.
General Instructions
<Instructions for structure placement>
Specific Instructions
{...}
Spreadsheet layout
{...}

18950

Prompts for Content Population

Task
I will provide you with a spreadsheet with multiple ele-
ments including title, main-table, meta-data, summary-
table, and charts in JSON. These components include
their location in the spreadsheet, as well as their con-
tent. Your task is to generate the proper line heights and
column widths for the spreadsheet, as well as adding
line breaks to the content. The fundamental goal is to
(1) make the cells compatible with the content, and (2)
make the spreadsheet visually appealing.
Instructions
There are some hints: - Carefully consider the content
of each cell and adjust the row height and column width
accordingly. - For a cell with lengthy content, you can
either wrap the text for a line break, or increase the
column width. - Try assigning line heights and column
widths and line breaks to make (1) the spreadsheet is
balanced vertically and horizontally, and (2) the nei-
ther too compact nor too much empty spaces.. - You
may assume a default font setting of Calibri 11 and
excel standard column width and row heights, where
1 character of text are compatible with 0.65 of column
width.
Spreadsheet Skeleton Set with Contents
{...}

K Future Works

Future work can extend this research in several
promising directions:

• Graph-based Representation Learning: We
plan to leverage the heterogeneous graph
structure of spreadsheet components (Chen
and Song, 2025) and apply advanced graph
learning techniques (Liu et al., 2024; Chen
et al., 2025b). This will enable a more compre-
hensive modeling of component relationships
and facilitate more powerful representation
learning.

• Expanded Ethical Analysis: We aim to
broaden the ethical analysis to explore other
critical dimensions of AI safety, such as the
problem of value and preference alignment
between humans and AI systems (Ren et al.,
2024).

18951

