
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18846–18861
November 4-9, 2025 ©2025 Association for Computational Linguistics

BSFA: Leveraging the Subspace Dichotomy to Accelerate Neural Network
Training

Wenjie Zhou1,2*, Bohan Wang3*, Wei Chen1,2†, Xueqi Cheng1,2

1State Key Laboratory of AI Safety, Institute of Computing Technology,
Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3Independent researcher

zj4323005@gmail.com, bhwangfy@gmail.com, {chenwei2022, cxq}@ict.ac.cn

Abstract

Recent studies (Gur-Ari et al., 2018; Song
et al., 2024; Wen et al., 2024) highlight a fun-
damental dichotomy in deep learning optimiza-
tion: Although parameter updates along the
top eigendirections of the loss Hessian (Dom-
space) capture most of the update magnitude,
they often contribute minimally to loss reduc-
tion. In contrast, updates in the orthogonal com-
ponent (Bulk-space) have smaller magnitudes
but drive most learning progress. In this work,
we further advance the understanding of this
phenomenon and introduce the Bulk-Space-
Filtration-Accelerator (BSFA), a novel plug-
and-play framework. BSFA accelerates train-
ing by differentially scaling update components
projected onto these distinct subspaces, simul-
taneously enhancing stability by moderating
updates in the dominant subspace and boosting
convergence speed by amplifying those in the
bulk-space. To ensure BSFA is both practical
and scalable for contemporary large models,
we introduce two key innovations: an efficient
estimator using Principal Component Analysis
(PCA) on historical updates for fast subspace
estimation, and a block-wise strategy that ap-
plies this estimation on a per-parameter-block
basis. These designs make BSFA computation-
ally tractable and highly effective. We demon-
strate BSFA’s acceleration across various tasks,
notably achieving approximately 2× speedup
when pre-training LLaMA-72M on WikiText-
103 and LLaMA-134M on OpenWebText com-
pared to vanilla AdamW.

1 Introduction

Deep learning has revolutionized artificial intelli-
gence, achieving remarkable breakthroughs across
domains such as computer vision (He et al., 2016;
Dosovitskiy et al., 2020; Liu et al., 2021), natural
language processing (especially LLMs) (Vaswani
et al., 2017; Devlin et al., 2019; Achiam et al.,

*Equal contribution
†Corresponding author

2023), and healthcare (Miotto et al., 2018; Liu et al.,
2020; Esteva et al., 2019). At the heart of this suc-
cess lies optimization - the indispensable engine
driving the training of complex neural networks.
By iteratively minimizing loss functions through
algorithms like stochastic gradient descent (SGD)
(Robbins and Monro, 1951) and its adaptive vari-
ants (Duchi et al., 2011; tie, 2012; Kingma and Ba,
2014), optimization enables models to uncover in-
tricate patterns in high-dimensional data. However,
the ever-increasing scale of data and model com-
plexity (Kaplan et al., 2020; Hoffmann et al., 2022;
Molybog et al., 2023) has led to escalating training
costs, motivating researchers to continuously inno-
vate toward methods that can achieve high compu-
tational efficiency with reduced resource demands.
This relentless pursuit of scalable and adaptive op-
timization techniques underscores their critical role
in advancing the frontiers of deep learning.

Recent research has revealed that optimization
landscapes in deep learning exhibit unique char-
acteristics distinct from traditional machine learn-
ing objectives. For instance, Zhang et al. (2020)
demonstrated that neural network training pro-
cesses often exhibit dramatic variations in local
smoothness positively correlated with gradient
magnitudes. Wu et al. (2018); Cohen et al. (2021)
identified the "edge of stability" phenomenon,
where Hessian matrices implicitly adapt to opti-
mization hyperparameters until oscillation emerges.
Zhang et al. (2024a) further discovered "Block Het-
erogeneity" in Transformer training, characterized
by significant disparities in Hessian spectra across
parameter blocks. These observations not only ex-
plain the superior performance of adaptive optimiz-
ers in certain architectures but also inspire special-
ized optimization algorithm designs (Roulet et al.,
2024; Zhang et al., 2024b).

In overparameterized neural networks, the loss
landscape is highly anisotropic. Spectral analy-
ses of the Hessian reveal two distinct components.

18846

The bulk of its eigenvalues lies near zero and corre-
sponds to flat directions in parameter space, while a
small set of large eigenvalues identifies sharp direc-
tions (Hochreiter and Schmidhuber, 1997; Sagun
et al., 2017). Extensive research (Ghorbani et al.,
2019; Papyan, 2018) into the Hessian’s prevalent
low-rank structure further quantifies this: for k–
class classification problems, there are typically
around k such dominant eigenvalues, while for
Large Language Models (Zhang et al., 2024a; Liu
et al., 2023), the largest few tens of eigenvalues
are generally significantly more prominent and are
sufficient to define the dominant subspace. As a
result, at each point in parameter space, the tangent
space splits into a high-dimensional flat subspace
(bulk subspace) and a low-dimensional sharp sub-
space(dominant subspace).

Building on this geometric picture, most recently,
a line of works (Gur-Ari et al., 2018; Song et al.,
2024; Wen et al., 2024) show that optimization dy-
namics in the dominant and bulk subspaces follow
a clear dichotomy. Most update norm falls into
the dominant subspace but contributes little to loss
reduction. In contrast, the relatively small update
projected onto the bulk subspace drives most of
the loss descent (see Section 3 for details). This
discovery has been leveraged to explain the effec-
tiveness of modern learning rate schedulers like
Warm-Stable-Decay (WSD) (Hu et al., 2024).

Building upon these observations, this work
moves beyond phenomenological explanations to
algorithmic innovation. Specifically, we address
the fundamental question:

Can we exploit the subspace structure in update to
accelerate optimization convergence?

Our contributions are threefold:

1. We first extend the understanding of the
subspace dichotomy in deep learning opti-
mization. Our empirical analysis reveals
that independently modulating update com-
ponents within the dominant and bulk sub-
spaces—derived from the Hessian Eigenspec-
trum—yields distinct effects: controlling up-
date magnitudes in the dominant subspace pri-
marily affects training stability, while updates
within the bulk subspace predominantly influ-
ence convergence speed.

2. Based on this insight, we propose the
Bulk-Space-Filtration-Accelerator (BSFA),
a plug-and-play framework that differentially

scales updates in these subspaces. Initial vali-
dation with exact Hessian information shows
up to 4× acceleration on training ResNet18
on CIFAR10 and DenseNet121 on CIFAR100.
Then we introduce two key algorithmic en-
hancements to make BSFA practical and scal-
able: an efficient PCA-based estimator using
historical updates for rapid dominant subspace
approximation and a block-wise strategy ap-
plying this per parameter block. These render
BSFA computationally efficient for large mod-
els.

3. We validate the practical BSFA framework on
large-scale Transformer models, demonstrat-
ing significant training acceleration. Notably,
BSFA achieves approximately 2× speedup in
pre-training LLaMA-72M on WikiText-103
and LLaMA-134M on OpenWebText, and
in training ViT-Small on ImageNet-1k, com-
pared to AdamW.

2 Related work

In this section, we review existing literature on
optimization behaviors unique to deep learning and
acceleration techniques in this domain.

Optimization behaviors specific to deep learn-
ing. While classical machine learning tasks (Platt,
1998; Freund and Schapire, 1996) typically feature
convex, smooth landscapes with static local prop-
erties, deep learning optimization landscapes are
inherently more complex. These landscapes are of-
ten characterized by non-convexity (Li et al., 2018)
and non-smoothness (Zhang et al., 2020), creating
seemingly chaotic optimization dynamics. Recent
studies, however, have revealed intriguing struc-
tural patterns within this complexity. For instance,
(Zhang et al., 2020) observed in NLP tasks that
the spectral norm of the Hessian matrix exhibits a
positive correlation with gradient norms, providing
theoretical justification for the effectiveness of gra-
dient clipping techniques. In transformer-based ar-
chitectures, (Zhang et al., 2024a) identified heavy-
tailed distributions in parameter updates, while
(Zhu et al., 2024) demonstrated that large learn-
ing rates induce oscillations in subtle classification
rule learning while preserving deterministic feature
acquisition. A particularly influential observation
across multiple studies (Jastrzębski et al., 2018;
Wu et al., 2018; Jastrzębski et al., 2020; Cohen
et al., 2021) is the "edge of stability" phenomenon,

18847

where loss sharpness increases until reaching an
oscillation threshold determined by optimization
hyperparameters.

Most relevant to our work are the findings of
(Song et al., 2024; Wen et al., 2024), who demon-
strated that parameter updates in deep learning can
be decomposed into two distinct subspaces: one
accounting for the majority of update magnitude
but minimal loss reduction, and another comprising
smaller updates that drive most of the loss descent.
This dichotomy forms the foundation for our pro-
posed acceleration methodology.

Acceleration techniques in deep learning.
Since the introduction of stochastic gradient de-
scent (SGD) (Robbins and Monro, 1951), re-
searchers have persistently sought improvements
to optimization efficiency. Early innovations like
momentum (Polyak, 1964) enhanced convergence
by incorporating historical gradient information, ef-
fectively dampening oscillations through velocity-
based updates. The advent of adaptive learning rate
methods marked a pivotal advancement, with algo-
rithms like AdaGrad (Duchi et al., 2011), RMSProp
(tie, 2012), and Adam (Kingma and Ba, 2014) ad-
dressing scale variations across parameters. No-
tably, Adam’s dominance in modern practice stems
from its synthesis of momentum and adaptive step-
size mechanisms. Recent efforts have explored
more radical departures, including sign-based up-
dates (Chen et al., 2023), matrix-structured opti-
mization (Jordan et al., 2024), and second-order
approximations (Liu et al., 2023), each targeting
different aspects of the optimization geometry.

In contrast to these approaches, our methodology
draws inspiration from the intrinsic structure of
parameter updates. By explicitly leveraging the
subspace decomposition phenomenon observed in
(Song et al., 2024; Wen et al., 2024), we propose
a novel acceleration framework that strategically
prioritizes critical update components.

3 Subspace Dichotomy in Training
Dynamics

In this section, we first briefly introduce the sub-
space dichotomy phenomenon (Gur-Ari et al.,
2018; Song et al., 2024; Wen et al., 2024) and then
present our main findings.

Let L(θ) : Rp → R be the loss function
of the neural network parameterized by θ. For
θ ∈ Rp, let H(θ) = ∇2L(θ) ∈ Rp×p, with
eigenvalues λ1(θ) ≥ · · · ≥ λp(θ) and correspond-

ing orthonormal eigenvectors u1(θ), . . . , up(θ).
With these notations, (Gur-Ari et al., 2018; Song
et al., 2024) defines the top-k dominant sub-
space as Sk(θ) = span{u1(θ), . . . , uk(θ)}, and
the bulk subspace as its orthogonal complement
S⊥
k (θ). The corresponding projectors to the top-k

dominant subspace and the bulk subspace are re-
spectively denoted as Pk(θ) and P⊥

k (θ).
The key finding of Song et al. (2024) is learning

happens in the Bulk Subspace: Consider a SGD
training process θt+1 = θt− ηgt (where gt denotes
gradient at step t). If each update is projected onto
the dominant subspace, i.e. θt+1 = θt−ηPk(θt)gt,
it fails to decrease the training loss further. Con-
versely, projecting each update onto the bulk sub-
space, θt+1 = θt − ηP⊥

k (θt)gt, is still capable of
driving down the training loss. We validate this
observation in Figure 1, where we train a 2-layer
Transformer (2M parameters) on the SST2 dataset
using SGD; details are provided in Appendix A.1.

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

Transformer on SST2

t + 1 = t gt

t + 1 = t Pk(t)gt

t + 1 = t Pk (t)gt

Figure 1: SGD in dominant and bulk subspace (k = 2).

Building on this observation, a natural question
arises: how do updates projected onto these two
subspaces affect the training process? To tease
apart these two effects, we introduce a simple, two-
parameter projector Pα,γ(θ) that independently
scales the updates in the dominant and bulk sub-
spaces. Specifically, let

Pα,γ(θ) = αPk(θ) + γ P⊥
k (θ),

where Pk(θ) is the projector onto the dominant sub-
space and P⊥

k (θ) = I − Pk(θ), as defined above.
Then, we conduct experiments using this projec-
tor to modify the training iteration: θt+1 = θt −
ηPα,γ(θt) gt, scaling the dominant and bulk com-
ponents of the update by α and γ. Following the
setup of Figure 1, we sweep α ∈ {0.1, 0.5, 1, 2, 3}
and γ ∈ {0.1, 0.5, 1, 2, 3} at step 4000, we then
compare these projected training runs with a well-
tuned SGD baseline, and the results are presented

18848

2000 3000 4000 5000 6000 7000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
n

Lo
ss

Transformer on SST2

= 3.0, = 1.0
= 2.0, = 1.0

SGD (, = 1.0)
= 0.5, = 1.0
= 0.1, = 1.0

(a) Varying the dominant subspace update magnitude.

2000 3000 4000 5000 6000 7000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

Transformer on SST2

= 1.0, = 0.1
= 1.0, = 0.5

SGD (, = 1.0)
= 1.0, = 2.0
= 1.0, = 3.0

SGD (, = 3.0)

(b) Varying the bulk subspace update magnitude.

Figure 2: Subspace-specific Update Scaling. We follow the setting of Figure 1(SGD), and after 4000 steps, we
introduce two scaling factors, α and γ, to independently modulate the update magnitudes in the dominant and bulk
subspaces. Training is terminated once the model’s training accuracy reaches 0.99.

in Figure 2. We summarize two notable observa-
tions as follows:

• Dom-Update and Training Stability: In Fig-
ure 2a, with the bulk subspace learning rate held
constant, varying the dominant subspace scal-
ing factor α does not significantly alter the over-
all convergence rate. However, larger values
of α (green curves) induce more frequent and
pronounced loss spikes during training and in-
duce instability, whereas smaller values of α
(red curves) mitigate these spikes and promote
smoother convergence.

• Bulk-Update and Training Speed: In Fig-
ure 2b, with the dominant subspace learning rate
fixed, varying the bulk subspace scaling factor
γ has a marked impact on convergence speed.
When chosen appropriately, higher values of
γ = 3 (red curves) can substantially accelerate
training; however, simply increasing the over-
all update by 3 times (which is equal to setting
α, γ = 3) (grey curve) would lead to divergence.

These findings highlight a functional dichotomy:
updates in the dominant subspace predominantly
govern training stability, with smaller magnitudes
promoting smoother convergence. Conversely, up-
dates in the bulk subspace are primary drivers
of convergence speed, where appropriately scaled
larger magnitudes can yield substantial accelera-
tion. Such distinct behaviors strongly motivate a
decoupled control of update components within
these respective subspaces to enhance overall train-
ing performance.

4 BSFA: Accelerating Training through
Amplify Bulk Update

This section details our methodology for leveraging
the observed subspace dichotomy to accelerate neu-
ral network training. We first introduce the Bulk-
Space-Filtration-Accelerator (BSFA) framework in
Section 4.1. Subsequently, Section 4.2 presents
an efficient PCA-based estimator for approximat-
ing dominant eigendirections. Finally, Section 4.3
describes a block-wise BSFA strategy to enhance
scalability for large models by exploiting the Hes-
sian’s approximate block-diagonal structure.

4.1 BSFA Framework
Recalling Figure 2, updates in the dominant and
bulk subspaces contribute differently to the train-
ing dynamics. Building on this insight, we pro-
pose Bulk-Space-Filtration-Accelerator (BSFA), a
plug-and-play acceleration framework that can be
integrated with any optimizer. Concretely, given a
generic update θt+1 = θt + vt, BSFA modifies it
to

θt+1 = θt + ηPα,γ(θt) vt,
where Pα,γ(θt) denote the projector at iteration t, it
scales the base optimizer’s update in the dominant
subspace by α and in the bulk subspace by γ. In
practice, as illustrated in Figure 2, we typically
choose α < 1 to enhance training stability and
setting γ > 1 generally promotes a faster decrease
in the loss. We recompute Pα,γ(θt) every T steps,
with T = 10 by default. We summarize the BSFA
framework in Algorithm 1.

By definition, the projector Pα, γ needs to be
constructed by approximating the top k Hessian
eigenvectors uii = 1k. To obtain these, a common
approach is the Lanczos method (see Appendix B.1

18849

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

Te
st

 A
cc

CIFAR 10 on Resnet18

SGDM (200 epochs)~(91.89)
SGDM (50 epochs)~(88.80)
SGDM-BSFA (= 0.5, = 4)~(92.16)

(a) CIFAR10 Accuracy

0 25 50 75 100 125 150 175 200
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
Lo

ss

CIFAR 10 on Resnet18
SGDM (200 epochs)~(0.37)
SGDM (50 epochs)~(0.42)
SGDM-BSFA (= 0.5, = 4)~(0.36)

(b) CIFAR10 Validation Loss

0 25 50 75 100 125 150 175 200
Epochs

56

58

60

62

64

66

68

70

72

74

Te
st

 A
cc

CIFAR 100 on DesNet121

SGDM (200 epochs)~(71.90)
SGDM (50 epochs)~(67.57)
SGDM-BSFA (= 0.5, = 4)~(72.38)

(c) CIFAR100 Accuracy

0 25 50 75 100 125 150 175 200
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Va
lid

at
io

n
Lo

ss

CIFAR 100 on DesNet121
SGDM (200 epochs)~(1.26)
SGDM (50 epochs)~(1.44)
SGDM-BSFA (= 0.5, = 4)~(1.28)

(d) CIFAR100 Validation Loss

Figure 3: SGDM with BSFA (α = 0.5, γ = 4) achieves a 4× acceleration compared to tuned SGDM. In both
experiments, we employ a cosine learning-rate schedule with different total epoch counts. In each case, BSFA
consistently achieves lower validation loss at identical epoch checkpoints and matches the baseline’s 200-epoch test
accuracy in just 50 epochs. We provide training results for three random seeds.

Algorithm 1 Bulk-Space-Filtration-Accelerator
(BSFA)

1: Input: Current iteration step t, Update vt ∈
Rp of base optimizer at step t, Dominant sub-
space’s rank k, Interval T , Projection matrix es-
timator, Domspace scaler α, Bulkspace scaler
γ.

2: BSFA Projector Pα,γ ← Ik×d

3: if t mod T = 0 and t > 0 then
4: Pα,γ ← Estimator(α, γ, k)
5: end if
6: v′

t ← Pα,γvt
7: Return v′

t

for details). Leveraging this off-the-shelf routine,
we define our Lanczos-based Projector Estima-
tor (LPE) as a direct application of Lanczos to
construct the following projector:

Pα,γ = α
k∑

i=1

uiu
⊤
i + γ

(
I −

k∑

i=1

uiu
⊤
i

)
.

LPE is applied in Figures 1 and 2, yielding highly
accurate estimates. Pseudocode for LPE is given in
Appendix B.1, Algorithm 4.

To validate the BSFA framework with its
Lanczos-based Projector Estimator (LPE), we con-
ducted experiments on ResNet18/CIFAR10 and
DenseNet121/CIFAR100 (Figure 3) by integrating
BSFA (using α = 0.5, γ = 4) with well-tuned
SGDM (further experiment details are provided in
Appendix A.2). These experiments demonstrated
that BSFA enables SGDM to achieve higher ter-
minal test accuracy within the same number of
training epochs. Furthermore, it provides a signifi-
cant 4× acceleration, allowing SGDM to reach the
baseline’s 200-epoch test accuracy and validation
loss in just 50 epochs.

4.2 Fast Dom-Subspace Estimation via
Principal Component Analysis

The previous section validated BSFA’s substantial
acceleration benefits. However, a key challenge
of LPE estimator is the high computational cost
of estimating the top eigenvectors using the Lanc-
zos method, which involves multiple forward and
backward propagation steps, rendering the top-k
eigenvector computation both prohibitively expen-
sive and very time-consuming. Therefore, we next
explore how this computational time can be signif-
icantly reduced by efficiently approximating the
dominant eigendirections during training.

Key insight: Oscillatory Dynamics in Dominant
Subspace. To address this, we first draw intu-
ition from the oscillatory dynamics of historical
updates in the dominant subspaces. We present the
following proposition to provide insight that PCA
can capture these top eigenvectors over historical
updates.
Proposition 1 (Top eigenspace recovery via PCA).
Let H ∈ Rp×p be symmetric positive–semidefinite
with simple eigenvalues λ1 > · · · > λk > λk+1

and suppose all trailing eigenvalues are equal, i.e.
λk+1 = · · · = λd := λtail ≥ 0. Pick a stepsize
η > 0 such that ηλk > 1, 0 < ηλtail < 1, and
η(λk + λtail) > 2. Run gradient descent θs+1 =
θs − ηHθs from any x0 whose first k eigencoordi-
nates are non-zero, write gradient gs = Hθs, and
form Gt = [gt, . . . , gt+l−1] with window length
l ≥ k and l > 1. Then, as t → ∞, the k-
dimensional principal subspace identified by PCA
of the gradient matrix Gt converges to the target
eigenspace Sk = span{v1, . . . , vk}.

Proposition 1 indicate that the top-k eigenvec-
tors of loss Hessian can be recovered by applying
PCA to a list of recent gradients: directions with
larger eigenvalues oscillate more strongly and thus

18850

1000 2000 3000 4000 5000 6000 7000
Occurrence Index

10 8

10 6

10 4

10 2

100

Va
ri

an
ce

Transformer on SST2

Dom-space update variance
Bulk-space update variance

(a) Variance of updates in two subspaces.

0 1000 2000 3000 4000 5000 6000 7000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Transformer on SST2

U2 u′1 2

U2 u′2 2

(b) Squared projection norms.

1000 2000 3000 4000 5000 6000 7000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

Transformer on SST2

SGD
= 0.0, = 1.0 (LPE)
= 0.0, = 1.0 (PPE)

(c) Training loss comparison.

Figure 4: (a) The Variance of updates in Dom-space is much higher than Bulk-space. (b) Alignment of Dom-space
estimated by PPE and LPE is close to 1. (c) PPE and LPE exhibit comparable efficacy.

dominate the principal components (proof is in Ap-
pendix C). In Figure 4a, we validate this oscillatory
behavior on a Transformer trained on SST2 (same
setup as Figure 2) and, for each update, project
the most recent 30 gradient vectors onto the esti-
mated dominant subspace and its orthogonal com-
plement. We then compute the sample variance
of these projections and observe that the Variance
in the dominant subspace far exceeds that in the
bulk subspace, confirming that PCA on gradient
histories effectively isolates the Hessian’s leading
eigenspace.

Motivated by Proposition 1 and the variance
separation phenomenon illustrated in Figure 4a,
we introduce our PCA-based projector estima-
tor (PPE) in Algorithm 2. The estimator main-
tains a fixed-length queue storing the most recent
l updates(with l > k) and performs PCA on the
queued updates, and retains the top k principal
components.

Algorithm 2 PCA-based Projector Estimator (PPE)

1: Input: Historical updates matrix V =
[v1, . . . ,vl], number of principal components
k, domain scaler α, bulk scaler γ

2: Uk ← PCA(V , k)
3: Pα,γ ← αUk U

⊤
k + γ (I −Uk U

⊤
k)

4: Return: Pα,γ

To validate the efficacy of PPE, we train a Trans-
former on SST2 (k = 2 for this binary clas-
sification task) following the setup in Figure 1,
and compare the two-dimensional dominant sub-
spaces estimated by PPE (U = (u1, u2)) and LPE
(U ′ = (u′1, u

′
2)) in Figure 4b. We compute the

squared projection norms ∥U⊤u′i∥2 for i = 1, 2
at multiple checkpoints. As shown in Figure 4b,
the leading eigenvector attains a projection norm
virtually equal to 1, and the second eigenvector

remains close to 1 on average. Moreover, Fig-
ure 4c demonstrates that BSFA with either esti-
mator yields nearly identical training trajectories
and final accuracies. Table 1 reports the average
per-update time on an RTX4090, showing a 99.84%
speed-up with PPE over LPE. Additional runtime
comparisons are provided in Appendix B.2.

Estimator Time

LPE 10.28s
PPE 0.12s (↓ 99.84%)

Table 1: Wall-clock time on 1 RTX4090.

4.3 Block-wise Strategy for Enhancing BSFA
Scalability

In the preceding sections, we introduced the
BSFA framework and presented our PCA estimator,
which delivers substantial acceleration in approx-
imating the dominant subspace and thus renders
BSFA far more practical. However, directly ap-
plying this PCA estimator to large-scale models’
entire, high-dimensional parameter vector presents
a significant performance bottleneck: the essen-
tial SVD operation becomes extremely memory-
intensive and computationally slow when process-
ing such massive, monolithic parameter vectors.

Leveraging Block-Diagonal Hessian Structure.
To overcome the scalability challenges posed by
extremely high-dimensional parameter vectors, we
leverage the intuition that the loss Hessian in deep
neural networks is approximately block-diagonal.
Extensive empirical studies have demonstrated that,
across architectures—including modern transform-
ers—the Hessian naturally decomposes into inde-
pendent blocks, each with its eigenvalue spectrum
(Collobert, 2004; Roux et al., 2007; Martens and
Grosse, 2015; Zhang et al., 2024a).

18851

Motivated by this structure, we introduce the
Block-wise PCA-based Projector Estimator
(BPPE), detailed in Algorithm 3. BPPE constructs
a block-diagonal projector by partitioning the full
parameter vector into B disjoint subvectors (typi-
cally via PyTorch’s default block-wise segmenta-
tion). For each block, our PCA estimator is inde-
pendently applied to its historical parameter up-
dates to extract the local dominant subspace and
form a block-specific projector. In the context
of large language models, BPPE strategically ex-
cludes the input and output (embedding) layers
from these subspace operations—applying only
the base optimizer to these large, sparse compo-
nents—a practice consistent with optimizer designs
like Adam-Mini (Zhang et al., 2024b) and Muon
(Liu et al., 2025; Jordan et al., 2024).

Algorithm 3 Block-wise PCA-based Projector Es-
timator (BPPE)

1: Input: Historical updates matrix V =
[v1, . . . ,vl] ∈ Rp×l, parameter blocks B,
principal components k, domspace scaler α,
bulkspace scaler γ

2: Partition the parameter indices into {Ib}Bb=1

via PyTorch default partition
3: for b in B do
4: if LLM & b ∈ {embedding, output} then
5: continue
6: end if
7: P

(b)
α,γ ← PPE

(
V [Ib, :], k, α, γ

)

8: end for
9: Pα,γ ← blockdiag

(
P (1)
α,γ , . . . , P

(B)
α,γ

)

10: Return: Pα,γ

0 8000 16000 24000 32000 40000
Iteration

3.0

3.5

4.0

4.5

Va
lid

at
io

n
Lo

ss

LLaMA(72M) on Wikitext-103

AdamMini
AdamMini-BSFA(BPPE) (= 0.5, = 1)

Figure 6: Testing BPPE on LLaMA.

This block-wise application via BPPE inherently
reduces the memory footprint, improves cache effi-
ciency, and enhances numerical stability and paral-
lelism compared to a dense projector. These advan-
tages collectively accelerate the overall projector

estimation and critically improve BSFA’s scalabil-
ity. We evaluate BPPE in Figure 6 by training
LLaMA (72M) (Touvron et al., 2023) on WikiText-
103 (detailed settings in Appendix A.2). Integrated
into AdamMini-BSFA with dominant subspace up-
dates moderated by α = 0.5, BPPE effectively
mitigates training loss spikes and enhances sta-
bility, demonstrating its reliability in leveraging
block-specific dominant subspace information for
improved training dynamics.

5 Experiments

5.1 Experiment settings
For language tasks, we examine the performance
of BSFA in two experiments: LLaMA-72M on
WikiText-103 and LLaMA-134M on OpenWeb-
Text (Gokaslan and Cohen, 2019). For vision tasks,
we choose ViT-Small (Dosovitskiy et al., 2020) on
ImageNet-1k (Deng et al., 2009).

For all experiments, we use the default AdamW
as the baseline optimizer, we follow the training
protocols of nanoGPT and LLaMA for language
tasks, with β1 = 0.9, β2 = 0.95, and weight decay
λ = 0.1. The learning rate is linearly warmed to
lr_max and decayed via a cosine scheduler. For
each task, we tune lr_max to optimize AdamW;
further details are provided in Appendix A.3.

BSFA Implementation We integrate BSFA into
AdamMini under the same settings as above.
AdamMini is chosen primarily for two reasons:
its 2x memory reduction compared to AdamW
accommodates BPPE’s overhead, and its minimal
block-wise second-moment statistics ensure a dis-
tinct operational mechanism that does not over-
lap with BSFA’s subspace adjustments, facilitat-
ing a clean integration. Note that AdamW’s base-
line performance is comparable to or slightly bet-
ter than AdamMini’s (Zhang et al., 2024b). This
context allows our setup with AdamMini to effec-
tively showcase BSFA’s acceleration capabilities.
Moreover, because we use BPPE as the estimator,
our method’s average per-step time is similar to
AdamW; Table 2 shows the time comparison when
the update interval is T = 10.

5.2 Main Results
In Figure 5, we train ViT-S on ImageNet-1k
and compare a well-tuned AdamW with AdamW-
BSFA (α = 0.5, γ = 3), and we evaluate
LLaMA-72M on WikiText-103 and LLaMA-134M
on OpenWebText, comparing well-tuned AdaW

18852

0 22 45 67 90
Epoch

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70
To

p-
1

Ac
cu

ra
cy

ViT-S on ImageNet-1k

AdamW 90 Epoch~(69.31%)
AdamW 45 Epoch~(68.38%)
AdamMini-BSFA (= 0.5, = 3)~(69.29%)

(a) ViT-Small on Imagenet-1k

0 25000 50000 75000 100000
Iteration

2.4

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

LLaMA(72M) on Wikitext-103

AdamW 100k~(2.54)
AdamW 50k~(2.77)
AdamMini-BSFA (= 0.5, = 4)~(2.49)

(b) LLaMA(72M) on WikiText-103

0 25000 50000 75000 100000
Iteration

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

LLaMA(134M) on OpenWebText

AdamW 100k~(2.965)
AdamW 50k~(3.036)
AdamMini-BSFA (= 0.5, = 4)~(2.965)

(c) LLaMA(134M) OpenWebText

Figure 5: AdamMini–BSFA outperform AdamW baseline in ViT and LLaMA training.

Experiment AdamW (/step) BSFA (/step)

ViT-S 0.868s 1.02s
LLaMA(72M) 0.386s 0.422s
LLaMA(134M) 1.86s 2.12s

Table 2: Comparison of average per-step wall-clock
time (in seconds) on four RTX4090 GPUs. "BSFA"
indicates the AdamMini-BSFA.

with AdamMini-BSFA (α = 0.5, γ = 4) and
AdamMini-BSFA (α = 0.5, γ = 2). Across all
settings, for the same total number of training
steps, BSFA consistently achieves lower training
loss (and higher top-1 accuracy on ImageNet-1k)
than vanilla AdamW or AdamMini. Moreover,
BSFA reaches the performance of vanilla AdamW
or AdamMini trained for twice as many steps, cor-
responding to a 2× acceleration.

5.3 Ablation Study

In the above experiments, BSFA with BPPE was
applied across all major architectural blocks, cat-
egorized as Norm, Attention, and MLP blocks.
Here, we conduct experiments to investigate the
contribution of applying BPPE to different blocks
towards acceleration and training stability. All ab-
lations adhere to the BSFA configuration from Fig-
ure 5b, with (α = 0.5, γ = 4). We apply BSFA
solely to the selected blocks, while the remaining
blocks continue with vanilla AdamW. As shown in
Figure 7, we derive the following two conclusions:

Result is shown in Figure 7. We derive the fol-
lowing two conclusions:

• Norm layers play a crucial role in maintaining
training stability. In Figure 7 (Top), applying
BSFA to the norm layers does not accelerate
training. However, compared to vanilla AdamW,
no significant loss spike is observed. When
BSFA is not applied to the norm layers, train-
ing diverges.

• Both Attention and MLP blocks contribute to
training acceleration. In Figure 7(Bottom), we
compare the acceleration effects of applying
BSFA to (Attention, Norm) and (MLP, Norm)
blocks (with Norm layers ensuring training sta-
bility). Both configurations accelerate training
relative to vanilla AdamW, achieving similar ac-
celeration slightly inferior to block-wise BSFA
applied to all blocks (Attention, MLP, Norm),
indicating that both Attention and MLP blocks
contribute comparably to accelerating the model.

3

4

5

6

7

Tr
ai

n
lo

ss

LLaMA(72M) on Wikitext-103

AdamW
AdamMini-BSFA, RMS
AdamMini-BSFA, MLP
AdamMini-BSFA, Attn

0 10000 20000 30000 40000 50000
Iteration

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Tr
ai

n
lo

ss

AdamW
AdamMini-BSFA, RMS
AdamMini-BSFA, RMS&MLP
AdamMini-BSFA, RMS&Attn
AdamMini-BSFA, all block

Figure 7: (Top) Diverge if not applying BSFA to Norm
blocks. (Bottom)Apply BSFA to either attention or
MLP blocks alongside norm layers.

5.4 Memory Footprint and Efficiency of BSFA

BSFA explicitly caches the top-k principal direc-
tions to build its projector, incurring an additional
memory overhead equivalent to storing k full gra-
dients. Because memory is a primary bottleneck
in training, we examine: (i) whether the additional
memory indeed translates into faster training, and
(ii) can low-bit quantization reduce BSFA’s mem-
ory usage without degrading performance?

The Memory-Performance Trade-off of BSFA
To assess whether the additional memory con-
sumed by BSFA is justified by its performance

18853

Optimizer micro_BS Memory max_iter avg_per_step_time total_time final_val_loss

AdamW 30 10.2GB 100k 386ms ~10.72h 2.54
AdamW 60 17.6GB 100k 335ms ~9.32h 2.54
BSFA 30 18.2GB 50k 422ms ~5.86h 2.49

Table 3: Comparison with a memory budget similar to AdamW with a doubled micro-batch size. "Memory"
indicates peak memory usage per GPU

benefits, We test whether BSFA’s extra memory
is better spent on BSFA itself or on larger micro-
batches. On LLaMA-72M, BSFA adds 8 GB/GPU
(storing 30× gradient-sized dominant directions),
while increasing the micro-batch from 30 to 60
costs 7.4 GB/GPU in activation memory. We com-
pare their time overheads in Table 3. This result
demonstrates that in pre-training LLaMA-72M, al-
locating extra memory to BSFA is a more effec-
tive strategy for acceleration. A key insight is that
while additional memory can be used to enlarge
the micro-batch size, GPU utilization is already
near saturation. Consequently, any performance
gains from further increasing the micro-batch size
become marginal.

Potential for Memory Reduction: 4-bit BSFA
Although the memory-performance trade-off osten-
sibly favors BSFA, its auxiliary memory require-
ments may become prohibitive as model sizes con-
tinue to scale. To explore reducing BSFA’s memory
footprint, we evaluate whether quantizing BSFA
can lower memory usage without degrading per-
formance. Following the exact protocol of Figure
5b, we implement a 4-bit variant that linearly quan-
tizes BSFA’s historical gradients and projection
matrix. Specifically, we apply 4-bit linear quanti-
zation to the historical gradients and the projection
matrix required by BSFA. The per-step updates
and the dominant directions are quantized using a
group_size of 64 and stored compactly via nibble-
packing. For each group, the scale and zero-point
are stored in the FP8 (E4M3) format. These values
are only dequantized during the parameter update
step, which significantly conserves memory. We
perform a comparative study following the exact
experimental setup of Figure 5b. The table below
presents the validation loss for each optimizer at
various training steps.

The results below show that 4-bit BSFA achieves
performance comparable to the full-precision ver-
sion while reducing the additional memory over-
head from 8.0 GB to just 1.3 GB, approximately

Optimizer Loss@50k Peak Memory

AdamW 2.77 10.2GB
BSFA 2.49 18.2GB
4bit-BSFA 2.54 11.5GB

Table 4: Comparison of peak memory usage and fi-
nal loss on four RTX4090 GPUs. "BSFA" indicates
the AdamMini with BSFA, "4bit-BSFA" indicates the
AdamMini with 4bit-BSFA, "Peak Memory" indicates
peak memory usage per GPU.

1/6 of its initial value. This result shows that
quantizing BSFA to 4 bits is an effective memory-
reduction strategy that preserves training qual-
ity, providing a practical path to further improve
BSFA’s memory efficiency. We emphasize that the
core contribution of this work is the insightful ac-
celeration strategy derived from our analysis of the
loss landscape, leaving the development of more
practical, lightweight variants for future work.

6 Conclusion

In this paper, we introduced the Bulk-Space-
Filtration-Accelerator (BSFA), a novel framework
that exploits the distinct roles of dominant and
bulk subspaces in neural network training. By
differentially scaling updates within these sub-
spaces—moderating the dominant for stability and
amplifying the bulk for speed—and leveraging an
efficient PCA-based estimator with a block-wise
strategy for scalability, BSFA achieves significant
training acceleration, notably an approximate 2×
speedup for large Transformer models like LLaMA
and ViT compared to AdamW.

Limitations

Although BSFA demonstrates promising accelera-
tion capabilities, it has several areas for potential
improvement. First, the PCA estimator BPPE de-
mands significant GPU memory, and reducing its
memory requirements remains challenging. Fur-
thermore, estimating fewer dominant directions to
save memory could compromise the accuracy of the

18854

Projector, consequently diminishing the accelera-
tion benefits. Second, our current approach assigns
an equal number of dominant directions to each
block, which may not optimally accommodate the
heterogeneous properties of different blocks. Fu-
ture work could focus on mitigating these memory
constraints and developing more adaptive strate-
gies for block-specific control. In this work, we
use up to 4 RTX4090 to train for less than 500
hours, including hyperparameter tuning. We wish
this experience could boost the understanding of
efficient training in the community.

Ethical Considerations

This paper seeks to promote the development of
deep learning by focusing on understanding and im-
proving the training processes of neural networks,
with particular emphasis on large language mod-
els (LLMs). While our work has the potential for
broad societal impact, we do not, at present, iden-
tify any specific societal implications that warrant
special attention.

Acknowledgements

This work was supported by the Strategic Priority
Research Program of the Chinese Academy of Sci-
ences (Grant No. XDB0680101), CAS Project for
Young Scientists in Basic Research under Grant
No. YSBR-034.

References
2012. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURS-
ERA: Neural networks for machine learning, 4(2):26.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov.
2022. Better plain vit baselines for imagenet-1k.
Preprint, arXiv:2205.01580.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. 2023. Symbolic discovery of optimization algo-
rithms. arXiv preprint arXiv:2302.06675.

Jeremy Cohen, Simran Kaur, Yiding Jiang, Zico Kolter,
and Ameet Talwalkar. 2021. Gradient descent on neu-
ral networks typically occurs at the edge of stability.
arXiv preprint arXiv:2103.00065.

Ronan Collobert. 2004. Large scale machine learning.

Alex Damian, Eshaan Nichani, and Jason D Lee. 2022.
Self-stabilization: The implicit bias of gradient
descent at the edge of stability. arXiv preprint
arXiv:2209.15594.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, and 1
others. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159.

Andre Esteva and 1 others. 2019. A guide to deep
learning in healthcare. Nature Medicine, 25:24–29.

Yoav Freund and Robert E. Schapire. 1996. Experi-
ments with a new boosting algorithm. In Proceed-
ings of the 13th International Conference on Machine
Learning, pages 148–156.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao.
2019. An investigation into neural net optimization
via hessian eigenvalue density. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2232–2241. PMLR.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. 2018.
Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Flat
minima. Neural computation, 9(1):1–42.

18855

https://arxiv.org/abs/2205.01580
https://proceedings.mlr.press/v97/ghorbani19b.html
https://proceedings.mlr.press/v97/ghorbani19b.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, and 1 others. 2022.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, and 1 others. 2024. Minicpm:
Unveiling the potential of small language models
with warmup-stable-decay learning rate scheduler.
arXiv preprint arXiv:2404.06395.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit,
Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amos Storkey. 2018. Width of minima reached by
stochastic gradient descent is influenced by learning
rate to batch size ratio. In Artificial Neural Networks
and Machine Learning - ICANN 2018, pages 392–
402. Springer International Publishing.

Stanisław Jastrzębski, Maciej Szymczak, Stanislav Fort,
Devansh Arpit, Jacek Tabor, Kyunghyun Cho, and
Krzysztof Geras. 2020. The break-even point on op-
timization trajectories of deep neural networks. In
International Conference on Learning Representa-
tions.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng,
Franz Cesista, Laker Newhouse, and Jeremy Bern-
stein. 2024. Muon: An optimizer for hidden layers
in neural networks.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In Advances in Neural Information
Processing Systems (NeurIPS).

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and
Tengyu Ma. 2023. Sophia: A scalable stochas-
tic second-order optimizer for language model pre-
training. arXiv preprint arXiv:2305.14342.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang,
Guokun Lai, Yulun Du, Yidao Qin, Weixin Xu, En-
zhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng,
Yibo Liu, Shaowei Liu, Bohong Yin, Weiran He,
Han Zhu, Yuzhi Wang, Jianzhou Wang, and 9 others.
2025. Muon is scalable for llm training. Preprint,
arXiv:2502.16982.

Yu Liu and 1 others. 2020. A deep learning system
for differential diagnosis of skin diseases. Nature
Medicine, 26:900–908.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 10012–10022.

James Martens and Roger Grosse. 2015. Optimizing
neural networks with kronecker-factored approxi-
mate curvature. In International conference on ma-
chine learning, pages 2408–2417. PMLR.

Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian
Jiang, and Joel T Dudley. 2018. Deep learning
for healthcare: review, opportunities and challenges.
Briefings in Bioinformatics, 19(6):1236–1246.

Igor Molybog, Peter Albert, Moya Chen, Zachary De-
Vito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva,
Binh Tang, Puxin Xu, Yuchen Zhang, Melanie Kam-
badur, Stephen Roller, and Susan Zhang. 2023. A
theory on adam instability in large-scale machine
learning. arXiv preprint arXiv:2304.09871.

Vardan Papyan. 2018. The full spectrum of deepnet
hessians at scale: Dynamics with sgd training and
sample size. arXiv: Learning.

Barak Pearlmutter. 1994. Fast exact multiplication by
the hessian. Neural Computation, 6:147–160.

John C. Platt. 1998. Sequential minimal optimization:
A fast algorithm for training support vector machines.
In Advances in Neural Information Processing Sys-
tems (NIPS).

Boris T Polyak. 1964. Some methods of speeding up
the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics,
4:1–17.

Herbert Robbins and Sutton Monro. 1951. A stochas-
tic approximation method. Annals of Mathematical
Statistics, 22(3):400–407.

Vincent Roulet, Atish Agarwala, Jean-Bastien Grill,
Grzegorz Swirszcz, Mathieu Blondel, and Fabian
Pedregosa. 2024. Stepping on the edge: Curvature
aware learning rate tuners. In Advances in Neural
Information Processing Systems (NeurIPS).

Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua
Bengio. 2007. Topmoumoute online natural gradient
algorithm. Advances in neural information process-
ing systems, 20.

Levent Sagun, Utku Evci, V Ugur Guney, Yann
Dauphin, and Leon Bottou. 2017. Empirical analysis
of the hessian of over-parametrized neural networks.
arXiv preprint arXiv:1706.04454.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

18856

https://arxiv.org/abs/2002.09572
https://arxiv.org/abs/2002.09572
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://arxiv.org/abs/2502.16982
https://api.semanticscholar.org/CorpusID:173990834
https://api.semanticscholar.org/CorpusID:173990834
https://api.semanticscholar.org/CorpusID:173990834
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. 2024.
Does sgd really happen in tiny subspaces? arXiv
preprint arXiv:2405.16002.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and 1 others. 2017. Attention is all you need.
In Advances in Neural Information Processing Sys-
tems, pages 5998–6008.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall,
Percy Liang, and Tengyu Ma. 2024. Understand-
ing warmup-stable-decay learning rates: A river
valley loss landscape perspective. arXiv preprint
arXiv:2410.05192.

Lei Wu, Chao Ma, and Weinan E. 2018. How sgd se-
lects the global minima in over-parameterized learn-
ing: A dynamical stability perspective. In Advances
in Neural Information Processing Systems, pages
8279–8288.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jad-
babaie. 2020. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In
International Conference on Learning Representa-
tions (ICLR).

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li,
Ruoyu Sun, and Zhiquan Luo. 2024a. Why trans-
formers need adam: A hessian perspective. In Ad-
vances in Neural Information Processing Systems.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu
Sun, and Zhi-Quan Luo. 2024b. Adam-mini: Use
fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrish-
nan, and Mikhail Belkin. 2024. Catapults in SGD:

spikes in the training loss and their impact on gener-
alization through feature learning. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 62476–62509. PMLR.

A Experiment Details

A.1 Experiment Details in Section 3

Figures 1 & 2: Transformer on SST-2. We con-
duct illustrative experiments on a two-layer Trans-
former (hidden dimension 64, 8 attention heads)
following Damian et al. (2022) and Song et al.
(2024), training on SST2 (Socher et al., 2013) for
binary sentiment classification with cross-entropy
loss. All runs use SGD with constant learning rate
η = 0.03 and batch size 200, and stop when train-
ing accuracy reaches 0.99. Training is performed
on a single NVIDIA RTX 4090 GPU.

A.2 Experiment Details in Section 4

Figures 3a & 3c: CNNs on CIFAR-10/100. We
build on the official PyTorch tutorial, applying ran-
dom horizontal flips and 32 × 32 crops with 4-
pixel reflection padding, and normalize inputs to
mean 0.5. For SGDM we use initial learning rate
α0 = 0.1, momentum 0.9, weight decay 5× 10−4,
batch size 1024, and train for 200 or 50 epochs
with cosine decay. For BSFA we adopt LPE with
k = 10 (CIFAR-10) or k = 100 (CIFAR-100),
historical updates length l = k + 10, T = 10,
train for 50 epochs, and tune α ∈ {1, 0.5, 0.2},
γ ∈ {2, 4, 6} via grid search. We avoid selecting
α values approaching zero, since imprecise pro-
jector estimates would unduly attenuate updates in
other directions. All experiments run on a single
NVIDIA RTX 4090 GPU.

Figures 4a & 4: Transformer on SST-2. We
follow exactly the setup of Section A.1.

Figure 6: LLaMA(72M) on Wikitext-103.
We evaluate BSFA on LLaMA (Touvron et al.,
2023), a decode-only Transformer with RoPE (Su
et al., 2024), SwiGLU (Shazeer, 2020), and RM-
SNorm (Zhang and Sennrich, 2019), pre-trained on
Wikitext-103 (103M tokens, 28K articles). The
72M-parameter model has 16 layers, 10 heads,
hidden size 410, sequence length 150, batch size
240. We use AdamMini (Zhang et al., 2024b)
with (β1, β2, λ) = (0.9, 0.95, 0.1), learning rate
η = 5× 10−4, total steps 40 000, 500-step warm-
up to lr_max then cosine decay to lr_max/20, and
gradient clipping 1.0. AdamMini and AdamMini-
BSFA share this schedule. For AdamMini-BSFA,

18857

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.mlr.press/v235/zhu24h.html
https://proceedings.mlr.press/v235/zhu24h.html
https://proceedings.mlr.press/v235/zhu24h.html

BPPE estimates a rank-30 subspace using l = 40,
T = 10, and we set α = 0.5, γ = 1.0 to mitigate
loss spikes. All LLaMA experiments run on four
NVIDIA RTX 4090 GPUs.

A.3 Experiment Details in Section 5
Figure 5a: ViT-S/16 on ImageNet-1k. We
evaluate BSFA on training a ViT-S/16 model on
ImageNet-1k. We adopt the experimental protocol
established by Beyer et al. (2022). Specifically,
we adopt the original timm implementation and
apply RandAugment and Mixup (level 10, prob-
ability 0.2). The default optimizer is AdamMini
with hyperparameters β1 = 0.9, β2 = 0.999, and
weight decay λ = 10−4 (Beyer et al., 2022). We set
the batch size to 1024 and train for 90 epochs (or
45 epochs for AdamW-BSFA), each run including
10,000 warm-up steps. The learning-rate schedule
comprises a linear warm-up to lr_max = 10−3 fol-
lowed by cosine decay. For AdamW-BSFA, we re-
tain the same configuration and train for 45 epochs.
We use BPPE to estimate the dominant subspace
with k = 50, l = 60, and T = 10, and tune
α ∈ {1, 0.5, 0.2}, γ ∈ {2, 4, 6} via grid search.
All ViT-S experiments run on a single NVIDIA
RTX 4090 GPU.

Figure 5b: LLaMA(72M) on Wikitext-103.
In this experiment we evaluate the acceleration of
BSFA when applied to AdamMini. The model
and task are identical to Appendix A.2. We opti-
mize with AdamW using β1 = 0.9, β2 = 0.95,
and weight decay λ = 0.1, and run for 50,000 or
100,000 steps. The learning-rate schedule includes
a 500-step warm-up followed by cosine decay from
lr_max to lr_min = lr_max/20, with gradient clip-
ping at norm 1.0. We tune lr_max for AdamW over
{2× 10−4, 4× 10−4, 6× 10−4, 8× 10−3, 1.0×
10−3} as shown in Figure 8.

For AdamMini we follow the partitioning
of Zhang et al. (2024b); Figure 5b compares
AdamMini and AdamW under identical settings,
indicating similar performance with AdamMini
slightly behind. AdamW and AdamW-BSFA share
the same learning-rate schedule. For AdamW-
BSFA, we use BPPE with k = 50, l = 60, and
T = 10, and tune α ∈ {1, 0.5, 0.2}, γ ∈ {3, 4, 6}.
Representative hyperparameter pairs are displayed
in Figure 9. All LLaMA experiments use the Hug-
gingface LLaMA implementation on four NVIDIA
RTX 4090 GPUs.

Figure 5c: LLaMA(134M) on OpenWebText.
We evaluate BSFA on a 6-layer LLaMA(134M)

0 10000 20000 30000 40000 50000
Iteration

4

6

8

10

Va
lid

at
io

n
Lo

ss

LLaMA(72M) on Wikitext-103

lr_max = 2e-4
lr_max = 4e-4
lr_max = 6e-4
lr_max = 8e-4

Figure 8: Tuning lr_max for LLaMA(72M) on Wikitext-
103.

0 25000 50000 75000 100000
Iteration

2.4

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

LLaMA(72M) on Wikitext-103

AdamW 100k
AdamMini 100k
AdamW 50k
(= 0.2, = 3)
(= 0.5, = 4)
(= 0.2, = 4)

Figure 9: Tuning hyperparameter for AdamMini-BSFA.

model (16 heads per layer, hidden size 768) trained
on the OpenWebText corpus, with maximum se-
quence length 1,024 and batch size 480 (follow-
ing nanoGPT codebase1 and Liu et al. (2023)).
We optimize with AdamMini using the same hy-
perparameters of AdamW, where(β1, β2, λ) =
(0.9, 0.95, 0.1), run for 50,000 or 100,000 steps
(including 1,000 warm-up steps), and apply gradi-
ent clipping (norm 1.0). The learning-rate schedule
consists of a 1 000-step linear warm-up to lr_max
followed by cosine decay to lr_min = lr_max/20;
we tune lr_max over {3× 10−4, 6× 10−4, 1.2×
10−3, 1.8× 10−3} and identify 6× 10−4 as opti-
mal (The result is similar to Figure 8, so we don’t
show them again). AdamMini and AdamMini-
BSFA share this schedule. For AdamMini-BSFA,
BPPE estimates the dominant subspace with rank
k = 50, l = 60 historical updates and interval
T = 10, and we grid-search α ∈ {1, 0.5, 0.2} and
γ ∈ {2, 4, 6, 8} (The result is similar to Figure 9,
so we don’t show them again). All experiments
use the Huggingface LLaMA codebase on four
NVIDIA RTX 4090 GPUs.

1https://github.com/karpathy/nanoGPT

18858

Network&Task k l ||D|| LPE Time PPE Time

Transformer&SST2 2 10 1000 10.28s 0.12s (↓ 98.83%)
Resnet18&CIFAR10 10 20 5000 162.1s 0.42s (↓ 99.74%)
ViT-Tiny&ImageNet-1k 20 50 5000 2002s 3.27s (↓ 99.84%)

Table 5: Average wall-clock time (in seconds) on a single RTX4090. Here, k denotes the number of eigenvectors(For
both algorithms), l indicates the number of historical gradients(For PCA estimator), and ||D|| represents the size of
the abridged dataset(For Lanczos estimator).

B Details on Dominant Subspace
Estimation

B.1 Hessian Eigenspectrum Estimation via
Lanczos Method

Lanczos method (Pearlmutter, 1994; Papyan, 2018;
Ghorbani et al., 2019) is a common strategy for
estimating the top-k eigenpairs of the Hessian H ,
which we refresh every T optimizer steps to control
overhead. In practice, this involves two phases:

1. HVP construction. On a small “abridged”
dataset perform one forward pass and two back-
ward passes to define the Hessian–vector product
(HVP) operator v 7→Hv.

2. Lanczos iterations. Starting from a random
unit vector q1, apply the HVP operator and or-
thogonalize against previous basis vectors to
build a tridiagonal projection. Specifically, for
k = 1, 2, . . . ; do:

ṽk = H qk,

αk = q⊤k ṽk,

rk = ṽk − αk qk − βk−1 qk−1,

βk = ∥rk∥,
qk+1 = rk/βk.

The resulting tridiagonal matrix can be diagonal-
ized cheaply to yield approximations {λi, ui}ki=1.
Based on this, we propose the Lanczos-based
Projector Estimator (LPE), summarized in Algo-
rithm 4.

Algorithm 4 Lanczos-based Projector Estimator
(LPE)

1: Input: Neural network function F ,Number of
eigenvalues k, Abridged DatasetD, Domspace
scaler α, Bulkspace scaler γ

2: {λi}ki=1, {ui}ki=1 ← Lanczos(F ,D, k)
3: Pα,γ ← α

∑k
i=1 uiu

⊤
i + γ(I −∑k

i=1 uiu
⊤
i)

4: Return: Pα,γ

B.2 Wall-time Comparison of PPE and LPE
We compare the runtimes of the PPE and LPE in
Table 5, which shows that the PPE’s computation
time is negligible compared to the LPE’s. This is
because the PPE does not involve the forward or
backward propagation of the neural network.

18859

C Proof of Proposition 1

First, we restate our proposition for readability.

Proposition 2 (Gradient–PCA recovers the top eigenspace). Let A ∈ Rd×d be symmetric and positive
semi–definite with distinct eigenvalues

λ1 > λ2 > · · · > λk > λk+1 = λk+2 = · · · = λd (:= λtail ≥ 0),

and corresponding orthonormal eigenvectors v1, . . . , vd. Define the target subspace Ek =
span{v1, . . . , vk}.

Choose a stepsize η > 0 that satisfies

ηλk > 1, 0 < ηλtail < 1, η(λk + λtail) > 2. (1)

Run gradient descent on the quadratic f(x) = 1
2x

⊤Ax from an initial point x0 =
∑d

j=1 cjvj with
cj ̸= 0 for 1 ≤ j ≤ k:

xs+1 = xs − ηAxs, s = 0, 1, 2, . . .

and denote the gradients gs = ∇f(xs) = Axs. For an integer window length l ≥ k form the data matrix

Gt = [gt, gt+1, . . . , gt+l−1] ∈ Rd×l, t = 0, 1, 2, . . .

Then, as t → ∞, the k leading left singular vectors of Gt (equivalently, the top-k eigenvectors of
GtG

⊤
t) converge to an orthonormal basis of Ek. For simplicity, we consider this uncentered case, i.e., a

direct SVD analysis of the gradient matrix; we believe this conclusion can be naturally transferred to the
centered version.

Proof. 1. Closed forms. Write x0 =
∑d

j=1 cjvj . Since Avj = λjvj , one step of gradient descent gives
xs+1 = (I − ηA)xs then we have

xs = (I − ηA)sx0 =

d∑

j=1

cjµ
s
j vj ,

where µj := 1− ηλj . This implies

gs = Axs =

d∑

j=1

αjµ
s
j vj ,

with αj := cjλj .
2. Properties of µj . From the stepsize conditions (1), we have

µ1 < µ2 < · · · < µk < 0, 0 < µk+1 = · · · = µd < 1.

Since µk < 0, we have |µk| = ηλk − 1 > 0. Since µk+1 > 0, we have |µk+1| = µk+1 = 1− ηλtail.
Critically, from the third condition η(λk + λtail) > 2, we can derive:

ηλk − 1 > 1− ηλtail

which means |µk| > µk+1. Combined with the order of µj values, we have:

|µ1| > |µ2| > · · · > |µk| > µk+1 = |µk+1| = · · · = |µd|.

This ensures that |µk+1|/|µk| < 1, which is essential for convergence.
3. Factorization of Gt. Define wj ∈ Rl and wj = (1, µj , . . . , µ

l−1
j)⊤. Then

Gt =
d∑

j=1

αjµ
t
j vjw

⊤
j = V ΣtW

⊤,

18860

where V = [v1, . . . , vd], Σt = diag(αjµ
t
j)

d
j=1, and W = [w1, . . . , wd]. Consequently

GtG
⊤
t = VM (t)V ⊤, where M (t) =

(
αiαj(µiµj)

t(w⊤
i wj)

)d
i,j=1

.

4. Analysis of M (t). Write M (t) in block form

M (t) =

(
M

(t)
11 M

(t)
12

M
(t)⊤
12 M

(t)
22

)

where M
(t)
11 ∈ Rk×k. We can establish the following bounds:

∥M (t)
11 ∥2 ≥ C1|µk|2t,

∥M (t)
12 ∥2 ≤ C2|µk|tµ t

k+1,

∥M (t)
22 ∥2 ≤ C3µ

2t
k+1,

where C1, C2, C3 > 0 are constants that depend only on {cj , λj , l}dj=1. Specifically, C1 depends on the
minimum of |αj |2 for j ≤ k and the inner products of the geometric progression vectors, while C2 and
C3 depend on the maximum values of |αiαj | and the corresponding inner products.

From these bounds and using eigenvalue perturbation theory, the eigen-gap between the kth and
(k + 1)th eigenvalues of M (t) satisfies:

σk(M
(t))− σk+1(M

(t)) ≥ C4|µk|2t

for some constant C4 > 0, while
∥M (t)

12 ∥2 = O
(
|µk|tµ t

k+1

)
.

5. Subspace Convergence via Davis–Kahan Theorem To establish the convergence of the computed
subspace to Ek, we employ the Davis–Kahan sinΘ theorem. This theorem bounds the difference between
the subspace St (derived from M (t)) and the target subspace Ek, using the spectral properties of M (t):

∥sinΘ(St, Ek)∥2 ≤
∥M (t)

12 ∥2
σk(M (t))− σk+1(M (t))

= O
(∣∣µk+1

µk

∣∣t
)
−−−→
t→∞

0,

where St denotes the span of the top-k eigenvectors of M (t) (equivalently of GtG
⊤
t). Because V is

orthogonal, the corresponding subspace in the original coordinates is generated by the first k left singular
vectors of Gt. Therefore St → Ek as claimed.

18861

