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Abstract

Relation extraction (RE) aims to identify
semantic relations between entities in un-
structured text. Although recent work ex-
tends traditional RE to multimodal scenarios,
most approaches still adopt classification-based
paradigms with fused multimodal features, rep-
resenting relations as discrete labels. This
paradigm has two significant limitations: (1)
it overlooks structural constraints like entity
types and positional cues, and (2) it lacks se-
mantic expressiveness for fine-grained relation
understanding. We propose Retrieval Over
Classification (ROC), a novel framework that
reformulates multimodal RE as a retrieval task
driven by relation semantics. ROC integrates
entity type and positional information through
a multimodal encoder, expands relation la-
bels into natural language descriptions using a
large language model, and aligns entity-relation
pairs via semantic similarity-based contrastive
learning. Experiments show that our method
achieves state-of-the-art performance on the
benchmark datasets MNRE and MORE and ex-
hibits stronger robustness and interpretability.

1 Introduction

Relation extraction (RE) is a fundamental task in
information extraction, aiming to identify semantic
relations between entities from unstructured texts
automatically(Soares et al., 2019a; Yu et al., 2020a).
It provides crucial structured data for downstream
applications such as knowledge graph construction
and question answering(Luo et al., 2018; Li et al.,
2019b; Yu et al., 2020b).

However, traditional text-only RE methods face
two key challenges. First, the inherent ambiguity
of natural language often leads to incorrect pre-
dictions due to insufficient contextual information.
Second, real-world data is frequently accompanied
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Figure 1: Comparison of classification-based and
retrieval-based methods.

by visual information, and accurate relation infer-
ence in such scenarios usually requires joint reason-
ing over both textual and visual modalities(Zheng
et al., 2021b). These limitations motivate research
in multimodal relation extraction (MRE).

Existing MRE approaches primarily follow two
paradigms: modality fusion(Chen et al., 2022c;
Zhao et al., 2023; Liu et al., 2024b; Cui et al., 2024)
and modality alignment(Zheng et al., 2021a; Wu
et al., 2023; Hu et al., 2023; Li et al., 2024). De-
spite their technical differences, both paradigms ul-
timately rely on mapping multimodal features into
a discrete set of predefined relation categories—a
classification-based framework. This paradigm
faces two significant limitations.

First, it neglects structural constraints such as
entity types and positions. For instance, in a loca-
tion_at relation, the subject is typically a location
or an organization, while the object is usually a
location. Without modeling such priors, the model
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must search for relations across many irrelevant
entity pairs, significantly increasing reasoning dif-
ficulty and reducing classification accuracy.

Second, fixed label indices limit the model’s se-
mantic expressiveness for fine-grained relation un-
derstanding. Figure 1 illustrates a concrete exam-
ple: due to the semantic similarity between "Peer"
and "Couple" in the representation space, a classifi-
cation model tends to misclassify a married couple
as "Peer". This mistake stems from the limited ex-
pressiveness of discrete labels, which fail to capture
semantically similar but fundamentally different
relations, weakening the model’s ability to distin-
guish subtle relational nuances.

To address these limitations, we propose a novel
framework: Retrieval Over Classification (ROC),
which reformulates multimodal relation extraction
as a semantically-driven retrieval task.

To address the first challenge, we incorporate en-
tity types and positions to constrain the candidate
relation space. We use the Stanford NER toolkit(Qi
et al., 2020a) to identify entity types and embed
them into the input as explicit semantic prompts,
guiding the model to learn type-aware semantics.
Entity positions help localize entity pairs and con-
struct centered representations. We design a type-
aware multimodal encoder to jointly encode these
structural cues, effectively narrowing the candidate
space and improving classification accuracy.

To address the second challenge, we replace dis-
crete relation labels with natural language descrip-
tions to enhance semantic expressiveness. Using
GPT-40(OpenAl et al., 2024), we generate descrip-
tive sentences for each relation, followed by man-
ual verification to ensure quality. A relational se-
mantic encoder then transforms these descriptions
into global semantic representations. Compared
to fixed labels, this approach enables finer-grained
relation modeling and improves the model’s ability
to distinguish semantically similar relations.

To align entity pairs with relation semantics, we
introduce a contrastive retrieval strategy. The mul-
timodal entity pair encoder and the relation seman-
tic encoder project their features into a shared se-
mantic space. The model is trained to maximize
the similarity between matched pairs while sup-
pressing irrelevant candidates, enabling accurate
relation prediction. This retrieval-based paradigm
integrates multimodal information, maintains se-
mantic interpretability through natural language,
and mitigates the label rigidity often observed in
classification-based approaches.

Our contributions are summarized as follows:

* We propose ROC, reformulating multimodal
relation extraction as a semantic retrieval task,
offering a paradigm shift from traditional
classification-based methods.

* We design a type-aware multimodal encoder
incorporating entity type and position to effec-
tively constrain the candidate relation space.
Additionally, we construct natural language re-
lation representations and introduce a relation
semantic encoder to enhance fine-grained se-
mantic modeling. A cross-modal contrastive
retrieval mechanism aligns entity pairs with
relation semantics in a shared space, enabling
semantically consistent relation prediction.

* ROC achieves state-of-the-art performance on
both the multimodal relation extraction bench-
mark MNRE(Zheng et al., 2021b) and the
cross-modal dataset MORE(He et al., 2023),
demonstrating the effectiveness and generaliz-
ability of our approach.

2 Related Work

Modality Fusion Paradigms Modality fusion
methods aim to enable interactive learning of vi-
sual and textual features through deep neural net-
works. Representative approaches include HVP-
NeT (Chen et al., 2022b), which introduces multi-
scale visual features and leverages a dynamic gat-
ing mechanism to guide the language model in
capturing image context. MMIB (Cui et al., 2024),
built on variational autoencoders, incorporates mu-
tual information maximization (Shannon, 1948)
and the information bottleneck principle (Alemi
et al., 2017) to alleviate representational discrep-
ancies across modalities. While these methods ef-
fectively enhance cross-modal semantic perception,
they fundamentally rely on mapping fused features
to a predefined label space using discrete relation
classifiers. This paradigm overlooks structural pri-
ors between entity types, making it challenging to
model semantically continuous relationships, thus
exhibiting a strong dependence on rigid labels.

Modality Alignment Paradigms Modality align-
ment methods introduce structured intermediate
representations to guide semantic mapping across
modalities, thereby enhancing relation modeling.
For example, MEGA (Zheng et al., 2021a) aligns
syntactic dependency structures from text with vi-
sual scene graphs (Tang et al., 2020) from im-
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ages to improve entity-relation extraction accuracy.
MREISE (Wu et al., 2023) leverages CLIP (Rad-
ford et al., 2021) to construct cross-modal graph
structures and optimizes their representation via an
information bottleneck mechanism. These meth-
ods improve model interpretability through explicit
structural constraints, but their ability to model re-
lations remains limited by the expressiveness and
applicability of the prior structures. This limitation
becomes more pronounced in diverse and complex
contexts, where capturing the semantic dependen-
cies between entity types and flexibly modeling
structural constraints are challenging.

Emerging Paradigms In recent years, some stud-
ies have sought to overcome the limitations of tra-
ditional classification paradigms. EEGA (Yuan
et al., 2023) introduces an end-to-end framework
for joint extraction of entities and relations, re-
moving the dependence on predefined entity la-
bels. MOREformer (He et al., 2023) explores
cross-modal object-entity relation modeling, of-
fering greater adaptability in multimodal scenarios.
However, these approaches still follow a two-stage
pipeline of “feature learning followed by discrete
classification,” and have yet to break through the
representational bottleneck of classification-based
semantic modeling fundamentally.

The above methods primarily focus on classifica-
tion, emphasizing the extraction of textual and vi-
sual features while neglecting the semantic model-
ing of relationships themselves. Therefore, we pro-
pose a retrieval-based paradigm incorporating rela-
tional semantics which enables the model to extract
multimodal features while constraining the search
space for entity pairs through type constraints. It
also leverages natural language descriptions to pro-
vide fine-grained semantic information, more effec-
tively facilitating the model’s learning process.

3 Methodology

3.1 Task Definition

The task of MRE can be formally defined as
follows: Given an input text sequence 7' =
[wy,wa, ..., wy,] and its associated image I, the
goal is to predict a set of relational triples ¥ =
{(s,7,0)c}& . Here, s € E and 0 € E denote the
subject and object entities, where F is the set of all
entities in the input. The relation r € R is selected
from a predefined relation set R, and (s, 7, 0). rep-
resents the c-th predicted relation triple.

Unlike traditional classification paradigms, we

do not directly select a relation type r from the
discrete relation label space R. Instead, each re-
lation type is represented by a natural language
description, which is encoded into a shared seman-
tic space via a relation semantic encoder. Based
on the fully integrated multimodal representation
of the entity pair (s, 0), the model retrieves the re-
lation description that is most semantically aligned
in this space to determine the relation type r. This
reformulates multimodal relation extraction as a
semantics-driven multimodal retrieval task.

3.2 Overview

The overall architecture of our proposed ROC
model is illustrated in Figure 2. It mainly con-
sists of three core components: (1) Multimodal
Entity Pair Encoder: It integrates explicit entity
type annotations with a Transformer-based interac-
tion mechanism to fuse textual and visual features,
enhancing the semantic representation of entities
in cross-modal contexts (Section 3.3); (2) Relation
Semantic Encoder: Relation types are represented
in natural language and encoded into a unified se-
mantic space using an independent language model,
which explicitly models the semantic differences
between relation categories (Section 3.4); (3) Con-
trastive Semantic Retrieval Strategy: A match-
ing mechanism is established between multimodal
entity pair representations and relation semantics.
The model achieves more discriminative relation
extraction by optimizing the semantic similarity
between each entity pair and its corresponding re-
lation description (Section 3.5).

3.3 Multimodal Entity Pair Encoder

To constrain the candidate relation space and im-
prove the accuracy of relation extraction, we design
a type-aware multimodal entity pair encoder. It
jointly models entity types and positional informa-
tion to guide the model in filtering out semantically
or spatially inconsistent entity combinations, while
effectively integrating textual and visual features.
We use the Stanford NER tool(Qi et al., 2020b)
to identify entity types in the input text. The recog-
nized type information is embedded into the orig-
inal text sequence as an explicit semantic prompt,
guiding the model to perceive type priors during
encoding. A pretrained BERT(Devlin et al., 2019)
model encodes the enhanced textual sequence to
obtain the textual feature representation Xr.
Meanwhile, we adopt a pretrained Vision Trans-
former (ViT)(Dosovitskiy et al., 2021) to extract
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Figure 2: A multimodal relational extraction model based on relational semantic retrieval paradigm.

visual features X ;. Then, we concatenate the tex-
tual and visual features along the sequence dimen-
sion to form a unified multimodal representation
X = [Xp; X1], which is passed through multiple
Transformer encoder layers. A multi-head self-
attention mechanism is applied to achieve deep
cross-modal semantic fusion:

Hx = Encoder(XWgo, XWg, XWy)n (1)

Where Wq, Wi, Wy are the learnable projec-
tion matrices for queries, keys, and values in the
self-attention mechanism.

Let the indices of the subject and object entities
in the concatenated sequence be § and 0. Based on
their positions in the text, we extract the contextual-
ized representations (H,, H,) of the subject entity
s and the object entity o from H x:

H, = Hx[3],H, € R"

2)
H, = Hx[o], H, € R

Finally, the entity pair representation is fused via
a fully connected layer with a nonlinear activation
to obtain the multimodal entity representation used
for relation prediction:

Hp = o(WelHg; Ho| + be) 3)

where Hr € R¥ is entity-pair representation,
o is non-linear activation function, and W, €
RH7>2H and b, € R are learnable parameters.

3.4 Relational Semantic Encoder

To enhance the model’s ability capturing relational
semantics, we introduce natural language descrip-

tions to replace traditional discrete label represen-
tations which enables the model to precisely distin-
guish semantic differences among relation types.

We first utilize the GPT-40 model to convert each
relation label in the training dataset into a natural
language description. The generated descriptions
are then manually reviewed to ensure both accuracy
and semantic consistency.

For each relation description d;, we use an inde-
pendent BERT encoder (denoted as RelEncoder)
to encode the description and obtain a global se-
mantic representation of the relation:

X, = RelEncoder(d;)

L
1 &=y 4)
H, = LfPL ;:1 Xr[’t]

Where H, denotes the mean-pooled semantic
vector representing the relation, which captures the
distribution of the relation in the semantic space.

3.5 Contrastive Semantic Retrieval Strategy

During model training, the ROC framework aban-
dons traditional classification loss functions and
instead constructs a contrastive learning-based se-
mantic retrieval mechanism. Inspired by the Sim-
CLR approach, we optimize the model’s ability to
discriminate semantic relations by maximizing the
cosine similarity between positive samples (i.e., an
entity pair and its corresponding relation descrip-
tion) while minimizing the similarity to negative
relation descriptions within the same batch.
The loss function is defined as follows:
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i\f: exp s1m(H3E, Hi)/7)
— N exp(sim(HY, HY)/7)
5)
where sim(-, -) denotes cosine similarity, 7 is a

temperature hyperparameter, and H jg and H_ repre-
sent the multimodal entity pair representation and
the corresponding relation semantic representation
for the i-th sample, respectively.

3.6 Inference

During inference phase, the model calculates the
similarity between the multimodal entity pair repre-
sentation and all relation semantic embeddings, and
selects the relation with the highest similarity as
the final prediction. This retrieval-based inference
approach significantly enhances the interpretabil-
ity and flexibility of relation extraction, allowing
the model to perform dynamic matching based on
semantic similarity rather than relying on fixed cat-
egory labels. Compared to traditional classifica-
tion methods, this approach demonstrates stronger
adaptability and generalization when handling rela-
tion semantic shifts or unseen relation types.

4 Experimental Settings

Dataset We evaluate our method on two widely
used multimodal relation extraction datasets:
MNRE(Zheng et al., 2021b) and MORE(He et al.,
2023), which respectively correspond to social me-
dia contexts and object-entity relation extraction
tasks. These datasets encompass rich information
on image-text alignment and diverse relation types.
More details can be found in Appendix B.
Evaluation Metrics We adopt four commonly used
evaluation metrics for multimodal relation extrac-
tion tasks: Accuracy, Precision, Recall, and F1
score. The F1 score, which balances Precision and
Recall, is the main criterion for subsequent perfor-
mance analysis.

Baselines We compare ROC with a range of repre-
sentative multimodal RE baselines. Early methods
include MTB(Soares et al., 2019b), VisualBERT(Li
et al., 2019a), ViLBERT(Lu et al., 2019), UMT(Yu
et al., 2020c), MKGformer(Chen et al., 2022a),
MEGA(Zheng et al., 2021a) and HVPNeT(Chen
et al.,, 2022b). Among more recent advances,
IFAformer(Li et al., 2023c) improves visual-textual
alignment through prefix networks and early cross-
attention. TSVFN(Zhao et al., 2023) employs a
two-stage fusion strategy to mitigate visual noise.

PROMU(Hu et al., 2023) and MOREformer(He
et al., 2023) enhance relation prediction via prompt-
based and object-centric designs. TMR(Zheng
et al., 2023) leverages diffusion-based generation
for robust alignment, while MMIB(Cui et al., 2024)
adopts an information bottleneck to reduce modal-
ity noise. VM-HAN(Li et al., 2024) models higher-
order relations using multimodal hypergraphs, and
CAMRE(Zhang et al., 2024) introduces LLM-
generated image descriptions to improve alignment.
APOLLO(Zhang et al., 2025) proposes a triple
contrastive mechanism for cross-modal semantic
learning. We also use Qwen-VL(Bai et al., 2025),
BLIP2(Li et al., 2023b), and InstructBLIP(Dai
et al., 2023) as vision-language LLM baselines to
further validate ROC’s effectiveness.

Implementation details For detailed information
on model configuration, training setup, and hyper-
parameter settings, see Appendix C.

5 Experimental Results

5.1 Main Results

To comprehensively evaluate the performance of
our proposed ROC model on the multimodal re-
lation extraction task, we conducted main exper-
iments on two standard datasets: MNRE and
MORE, and compared our method with several
representative existing models. The experimental
results are shown in Table 1 and Table 2.

On the MNRE dataset, the ROC model achieved
an accuracy of 90.97%, which is lower than
CAMRE (95.79%). However, it outperformed all
other methods in terms of recall (90.85%) and F1
score (91.22%). Compared with CAMRE, ROC im-
proved recall by 0.69 percentage points (a relative
improvement of 0.77%) and F1 score by 0.28 per-
centage points (a relative improvement of 0.31%).
Significance testing on the F1 score shows a 95%
confidence interval of [90.93%, 91.51%], indicat-
ing that the improvement is statistically significant.
Since both models already exceed 90% on key met-
rics, even minor improvements demonstrate ROC’s
stronger ability in identifying positive samples in
multimodal relation extraction.

It is worth noting that models such as TMR and
CAMRE utilize additional information (e.g., syn-
thetic samples or image descriptions generated by
large models) to enhance understanding of image
content, thereby improving the accuracy of rela-
tion prediction between entities. However, these
methods often overlook the modeling of negative
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Model Accuracy Precision Recall F1-score
MTB (Soares et al., 2019b) 75.69 64.46 57.81 60.86
UMT (Yu et al., 2020c) 77.84 62.93 63.88 63.46
MEGA (Zheng et al., 2021a) 80.05 64.51 68.44 66.41
HVPNeT (Chen et al., 2022b) 92.52 83.64 80.78 81.25
IFAformer (Li et al., 2023c) 92.38 82.59 80.78 81.67
TSVEN (Zhao et al., 2023) 92.67 85.16 82.07 83.12
MOREformer (He et al., 2023) 82.67 82.19 82.35 82.27
PROMU (Hu et al., 2023) - 84.95 85.76 84.86
TMR (Zheng et al., 2023) - 90.48 87.66 89.05
MMIB (Cui et al., 2024) - 83.49 82.97 83.23
VM-HAN (Li et al., 2024) 92.57 85.76 84.69 85.22
CAMRE (Zhang et al., 2024) 95.79 91.73 90.16 90.94
ROC (Ours) 90.97 (+0.32) 91.59 (+0.24) 90.85 (+0.32) 91.22 (+0.23)
Table 1: Main experimental results of the ROC model on the MNRE dataset.

Model Accuracy Precision Recall F1-score
BERT+SG 61.79 29.61 41.27 34.48
BERT+SG+Att 63.74 31.10 39.28 34.71
MEGA (Zheng et al., 2021a) 65.97 33.30 38.53 3572
IFAformer (Li et al., 2023c) 79.28 55.13 54.24 54.68
MKGformer (Chen et al., 2022a) 80.17 55.76 53.74 54.73
VisualBERT (Li et al., 2019a) 82.84 58.18 61.22 59.66
ViLBERT (Lu et al., 2019) 83.50 62.53 59.73 61.10
MOREformer (He et al., 2023) 83.50 62.18 63.34 62.75
VM-HAN (Li et al., 2024) 85.57 64.76 66.69 65.71
APOLLO (Zhang et al., 2025) 85.90 67.42 70.70 69.02
ROC (Ours) 90.44 (+0.31) 68.85 (+1.12) 75.40 (+0.57) 71.97 (+0.86)

Table 2: Main experimental results of the ROC model on the MORE dataset.

samples (i.e., the "None" relation), resulting in lim-
ited improvements in recall. The significant recall
improvement achieved by ROC indicates that the
retrieval-based paradigm incorporating relation se-
mantics allows for a deeper understanding of se-
mantic relations between entities, leading to more
accurate predictions than traditional classification
approaches relying solely on discrete labels.

The ROC model outperformed existing methods
across all evaluation metrics on the more challeng-
ing MORE dataset, demonstrating state-of-the-art
performance in relation prediction. Specifically,
ROC achieved an F1 score of 71.97, outperforming
the second-best model APOLLO by 2.95 percent-
age points (a relative improvement of 4.27%). In
terms of recall, it reached 75.40, an improvement
of 4.70 percentage points over APOLLO (a rela-
tive improvement of 6.65%), while accuracy and
precision also increased by 5.29% and 2.12%, re-
spectively. These results confirm that the retrieval-
based paradigm with relation semantics helps the
model more comprehensively and accurately pre-
dict semantic relations between entities.

Overall, the retrieval-based multimodal relation

extraction approach employed by the ROC model
effectively aligns entity pairs with their potential
semantic relationships. It achieves the best overall
F1 scores on both the MNRE and MORE datasets,
providing strong evidence of the effectiveness of
the ROC model design.

5.2 Ablation Study

To evaluate the contribution of each core compo-
nent in the ROC model to the overall performance,
we designed four ablation studies by removing key
model modules and observing the resulting per-
formance changes. The experimental results are
shown in Table 3.

* w/o entity encoder: Removes the Transformer
encoder in the multimodal entity pair feature
encoding module to assess the effect of cross-
modal feature interaction and fusion.

* w/o entity position: Removes the entity po-
sition encoding mechanism to evaluate the
impact of positional information on relation
prediction. Global average pooling is applied
to maintain feature dimensional consistency.
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MNRE MORE
Ablation Setting
Accuracy Precision Recall F1 Accuracy  Precision  Recall F1

ROC (Full Model) 90.97 91.59 90.85 91.22 90.44 68.85 7540  71.97
w/o entity encoder 90.40 90.49 90.74  90.62 87.09 62.42 73.94  67.69
A -0.57 -1.1 -0.11 -0.6 -3.35 -6.43 -1.46  -4.28
w/o entity position 90.15 91.00 90.12  90.56 89.10 66.22 73.32  69.59

-0.82 -0.59 -0.73  -0.66 -1.34 -2.63 -2.08  -2.38
w/o entity type 89.16 89.57 88.96 89.26 88.37 65.60 71.82  68.57
A -1.81 -2.02 -1.89  -1.96 -2.07 -3.25 -3.58 -3.4
w/o relation embedding 88.23 89.00 87.72  88.36 84.85 63.88 64.84 64.36
A -2.74 -2.59 -313 -2.86 -5.59 -4.97 -10.56  -7.61

Table 3: Ablation results of the ROC model on MNRE and MORE datasets. Each row removes one component
from the full model. A indicates the performance drop compared to the full model.

* w/o entity type: Removes the pre-extracted
entity type information to assess the influence
of type priors on prediction performance.

» w/o relation embedding: Replaces the relation
semantic encoder with fixed relation label IDs,
degrading the model into a conventional clas-
sification architecture to evaluate the effective-
ness of the semantic retrieval paradigm.

According to the results, removing the cross-
modal interaction layer (w/o enc) decreased pre-
cision by 1.10 and 6.43 percentage points on the
MNRE and MORE datasets, respectively. This in-
dicates that the lack of explicit cross-modal feature
interaction significantly degrades performance.

Removing the entity position encoding (w/o ent-
pos) caused a performance drop across all metrics,
with recall declining even more than in w/o enc.
This suggests that positional encoding plays a crit-
ical role in relation prediction. On one hand, it
explicitly marks the positions of the subject and
object entities, enhancing the model’s ability to dis-
tinguish entity pair structures. On the other hand,
it constrains the semantic scope for relation mod-
eling, preventing indiscriminate matching based
on global text and image features. Without it, the
model must rely on global cues to retrieve relations,
lowering prediction accuracy and coverage.

When the entity type embedding was removed
(wlo ent-type), all metrics on the MNRE dataset
declined, with a 2.02 percentage point drop in
precision—the second largest drop among all ab-
lation settings. Precision and recall on the MORE
dataset decreased by 3.25 and 3.58 percentage
points, respectively, with recall experiencing the
second-largest decline. These results indicate that
entity type information effectively constrains the
relational semantic space. Since relation semantics

involve explicit meaning and imply subject-object
roles and type expectations, entity types help form
a constraint-verification mechanism with relation
semantics. Without this information, the model
struggles to distinguish between semantically simi-
lar relations but differ in kind, which harms predic-
tion accuracy.

After removing the relation semantic encoder
(w/o relation), the model experienced an average
drop of nearly 3 percentage points across all met-
rics on the MNRE dataset. On the MORE dataset,
recall fell by 10.56 percentage points and F1 score
by 7.61 points, indicating even more substantial
performance degradation. This powerfully demon-
strates the critical role of explicit relation semantic
modeling in improving multimodal relation extrac-
tion accuracy. The relation semantic encoder pro-
vides fine-grained semantic constraints, enabling
the model to perform relation prediction via seman-
tic matching. Without this module, the model re-
lies solely on fused features for classification, lack-
ing clear semantic guidance. This increases deci-
sion uncertainty, especially in cross-modal subject-
object scenarios like the MORE dataset.

Opverall, the submodules in the ROC model work
collaboratively to build a robust cross-modal se-
mantic matching mechanism.

5.3 Effect of Visual Input on ROC
Performance

To evaluate the impact of visual information on
model performance, we conducted a controlled ex-
periment by removing the visual modality. The re-
sults in Figure 3 show that the model’s performance
on the MNRE dataset remains largely unaffected
after excluding image inputs. In contrast, a signifi-
cant performance drop is observed on the MORE
dataset. This suggests that the MORE dataset relies
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Method MNRE MORE

Accuracy  Precision  Recall F1 Accuracy Precision Recall F1
Retrieval-based 90.97 91.59 90.85 91.22 90.44 68.85 7540 7197
Classification-based 74.91 76.99 75.51  76.25 74.24 4541 51.87 4843

Table 4: Comparison of retrieval-based and classification-based methods on MNRE and MORE datasets.
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Figure 3: Impact of visual information on ROC perfor-
mance on MNRE and MORE datasets.

more heavily on visual information and further val-
idates the effectiveness of deep multimodal fusion
in high-quality vision-language matching tasks.

5.4 Comparison of Retrieval-based and
Classification-based Methods

To further validate the retrieval-based approach
over the classification-based one, we replaced the
retrieval module with a standard classification head
(a fully connected layer followed by softmax) to
compare the performance of both versions. Results
are shown in Table 4.

As shown in the results, the classification-based
version exhibits a significant drop across all metrics.
On the MNRE and MORE datasets, the F1 scores
decrease by 14.97 and 23.54 percentage points,
respectively. This performance gap is primarily
because the retrieval-based method leverages se-
mantic matching between the relation descriptions
and the input context, while also using entity types
to effectively narrow down the candidate space. In
contrast, the classification model must select from
all possible relation types and cannot fully exploit

such contextual information.

5.5 Comparison with MLLMs

To further evaluate the advantages of the ROC
model under the current trend of large multi-
modal language models (MLLMs), we compare it
with several representative MLLMs, including fine-
tuned versions of BLIP2, InstructBLIP, and Qwen-
VL-Plus, as well as the non-fine-tuned DeepSeek-
V3. The comparison results are shown in Table 5.

On the MNRE dataset, the fine-tuned MLLMs
achieve high precision, with Qwen-VL-Plus reach-
ing 95.57%, and InstructBLIP and BLIP2 achiev-
ing 94.98% and 94.86%, respectively. However,
regarding F1 score, the ROC model outperforms all
MLLMs, indicating a more balanced performance
between precision and recall. Although MLLMs
perform competitively in some metrics, they still
lag behind ROC in recall and overall stability.

On the more challenging MORE dataset,
MLLMs’ accuracy remains relatively high, but both
precision and recall drop significantly, leading to
much lower F1 scores compared to ROC. This per-
formance gap may be attributed to increased seman-
tic complexity, which makes MLLMs more prone
to overfitting on the training set and less capable of
generalizing to diverse samples.

DeepSeek-V3, as non-fine-tuned MLLM, only
performs zero-shot inference in experiments. Its
performance is significantly worse than the fine-
tuned models and ROC, suggesting that current
MLLMs struggle to handle structured extraction
tasks without task-specific adaptation.

While MLLMs can achieve competitive results
under sufficient resources and tuning conditions,
their training costs and adaptation thresholds are
relatively high. In contrast, with its lightweight de-
sign, the ROC model achieves the best overall per-
formance on both datasets and consistently leads
in key metrics such as F1 score, demonstrating
superior practicality and deployability.

Additional analyses, including prompt templates,
encoder architecture variations, and attention dis-
tributions, are provided in Appendix E-I.
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MNRE MORE

Model

Accuracy Precision Recall F1 Accuracy Precision Recall F1
BLIP2 (Li et al., 2023b) 94.86 89.42 89.84  89.63 73.09 29.91 3554 3248
InstructBLIP (Dai et al., 2023) 94.98 90.11 89.69  89.90 79.48 49.33 55.24 5212
QwenVL-Plus (Bai et al., 2025) 95.57 91.41 89.84  90.62 - - - -
DeepSeek-V3# (Liu et al., 2024a) 21.62 21.65 54.53  30.99 16.70 16.73 41.13  23.79
ROC (Ours) 90.97 91.59 90.85 91.22 90.44 68.85 7540 7197

Table 5: Comparison of the ROC model with MLLMs on the MNRE and MORE datasets.

6 Conclusion

We introduce a relation-semantic retrieval-based
method for multimodal relation extraction, named
ROC. It integrates entity-centric multimodal en-
coding, position-aware structural modeling, and
relation-aware semantic retrieval, showing robust
performance across diverse scenarios. Experiments
demonstrate that ROC outperforms baselines on the
MNRE and MORE datasets, including fine-tuned
large-scale MLLMs, particularly excelling in F1
scores. Ablation studies further confirm the con-
tributions of each key component, highlighting the
critical roles of explicit multimodal interaction and
structured semantic modeling. ROC overcomes the
limitations of traditional classification methods in
label semantic representation and fine-grained se-
mantic differentiation, offering a novel paradigm
for multimodal relation extraction.

Limitations

The limitations of our approach are as follows: Our
experiments show that zero-shot multimodal LLMs
cannot directly perform multimodal relation ex-
traction. However, we have not yet systematically
verified whether fine-tuned LL.Ms can significantly
enhance task performance, especially when class
labels are reformulated as natural language descrip-
tions. Furthermore, although replacing discrete
class labels with semantic descriptions is theoret-
ically applicable to a wide range of classification
tasks, the generalizability of this method has not
been thoroughly evaluated across diverse domains,
tasks, and datasets.

Ethics Statements

Our model infers potential relations between en-
tities from text and images, but these are based
solely on input content and do not reflect verified
real-world facts. The datasets may include per-
sonal information and perform basic checks for

identifiable or offensive content, but named enti-
ties central to the task cannot be anonymized. No
human annotators or evaluators are involved; all ex-
periments and evaluations are automated. GPT-40
generates the relation descriptions. The Al tools
are used only for grammar correction and relation
description generation.
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A Licenses

The models used in this work, including ViT-B/16
(Dosovitskiy et al., 2021) and BERT (Devlin et al.,
2019), are licensed under the Apache License 2.0.
The GPT series models are developed and released
by OpenAl under their respective terms of use. De-
tailed license information is available on the official
GitHub repositories or documentation pages.

We use the Stanford Named Entity Recognizer
(NER) tool for entity recognition, which is dis-
tributed under the GNU General Public License v2
(GPLv2).!

The datasets used include the MNRE
dataset(Zheng et al., 2021b), with details
available on its GitHub page, and the MORE
dataset(He et al., 2023), which is released under
the MIT License.

In summary, all licenses permit academic re-
search use.

B Dataset Details

In the context of increasingly rich multimedia data,
extracting structured information from multimodal
data that includes both text and images has be-
come particularly important. To promote research
in this field, the academic community has intro-
duced specially designed datasets to support the
development of relation extraction tasks. MNRE
(Zheng et al., 2021b) is a specially designed dataset
aimed at evaluating and enhancing the capabili-
ties of neural relation extraction models, with a
particular emphasis on the importance of incorpo-
rating visual evidence in social media posts. The
dataset contains over 9,000 sentences covering 23
distinct relation types, sourced from Twitter and

1https://nlp.stanford.edu/software/CRF—NER.
html

annotated by crowd-sourced workers. Each sen-
tence is paired with a relevant image, intended
to supplement contextual information that may be
missing from the text alone, thereby aiding in the
more accurate identification of relationships be-
tween entities. MORE (He et al., 2023) is a novel
dataset focused on extracting object-entity relations
from both text and images, developed by a research
team from Nanjing University. It consists of 3,559
pairs of news headlines and their corresponding im-
ages, annotated with 20,264 multimodal relational
facts across 21 relation types, involving 13,520
visual objects with an average of 3.8 objects per
image. MORE is designed to pose challenges to
existing methods in handling complex relationships
between text and images, particularly emphasizing
scenarios that require identifying relations between
entities and visual objects across different modali-
ties. This dataset serves as an important resource
for advancing research on multimodal relation ex-
traction. With MORE, researchers can explore how
to enhance models’ ability to understand the inter-
actions between textual and visual information.

C Implementation Details

To ensure the fairness and rigor of our conclusions,
we adopted the same text encoder as used in pre-
vious methods. We conducted comprehensive ex-
periments on both the MNRE and MORE datasets.
Specifically, the model was trained for 50 epochs
with a batch size of 32, using the AdamW op-
timizer and a hidden layer dimension 768. The
overall model contains approximately 342.52 mil-
lion parameters, including the BERT-base-uncased
text encoder (109.48 million parameters), the ViT-
base-patch32-384 image encoder (88.12 million
parameters), and the BERT-base-uncased relation
encoder (109.48 million parameters). To ensure
reproducibility, all experiments were conducted un-
der the following setup: CPU was Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz with 32 cores, mem-
ory size was 128GB, and GPU was NVIDIA RTX
8000 with 48GB VRAM. The operating system
was Ubuntu 16.04.7 LTS, with CUDA version 11.7,
PyTorch version 1.13.1, and Python version 3.10.4.

The experimental results are obtained by one-
shot inference with a random seed of 648, and the
results are reproducible.
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Dataset #Image #Word #Sentence #Entity #Relation #Instance
MNRE 9,201 258k 9,201 30,970 23 15,485
MORE 3,559 - 3,559 - 21 3,559

Table 6: Detailed information on MNRE and MORE datasets.
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Figure 4: Effect of visual encoder on relation prediction
performance on MNRE and MORE datasets.

D Prompt Template for Extending
Natural Language Descriptions

This study employs GPT-4o0 to generate explana-
tions and descriptions for the predefined set of re-
lations in the MNRE and MORE datasets. Table 7
presents the specific prompt and several example
relation descriptions generated by large model.

E Impact of Visual Encoder
Architectures on Model Performance

To evaluate the performance of different visual en-
coders in multimodal relation extraction tasks, we
replaced the visual feature extraction module in
the ROC model with ResNet50, ResNet101 (CNN-
based architectures), and ViT-B/16 (a Transformer-
based architecture). We conducted comparative
experiments on the MNRE and MORE datasets,
and the results are shown in Figure 4.

On the MNRE dataset, ViT outperforms the
ResNet-based encoders across all metrics. Specifi-
cally, its F1 score is 3.95 percentage points higher
than that of ResNet50 and 1.47 points higher than

that of ResNet101, indicating stronger stability and
generalization capability. On the more complex
MORE dataset, which has a higher dependency
on visual semantics, ViT achieves even greater im-
provements, with F1 scores 5.48 and 3.65 percent-
age points higher than ResNet50 and ResNet101,
respectively. The precision gain is particularly no-
table, with a 7.17-point increase over ResNet50.

The primary reason for this performance differ-
ence lies in the architectural consistency and its
impact on modality fusion. In the ROC model, the
text encoder and the relation semantics encoder are
based on the Transformer architecture. ViT, as a
structurally homogeneous visual encoder, adopts
a similar approach to feature extraction and se-
mantic modeling as BERT, utilizing self-attention
mechanisms to model global dependencies. This ar-
chitectural compatibility naturally facilitates more
efficient semantic alignment in the fusion stage.

In contrast, as CNN-based encoders, the ResNet
series emphasize local feature extraction. Their
localized modeling mechanisms are structurally
heterogeneous to the global modeling strategy of
Transformers, introducing additional alignment
challenges during fusion and thus reducing the qual-
ity of modality integration. Since multimodal rela-
tion extraction tasks rely heavily on global seman-
tic reasoning between text and image, Transformer-
based encoders are inherently more suitable.

F Impact of Encoder Depth on Model
Performance

As a key component of modality fusion, the Trans-
former encoder in the ROC model models the
attention-based interactions between visual and tex-
tual information. This section investigates the im-
pact of different encoder depth on model perfor-
mance through comparative experiments, with the
results shown in Figure 5.

When no encoder is introduced on the MNRE
dataset, the model achieves an accuracy of 90.40%
and an F1 score of 90.62%. With the addition of
a single encoder layer, these metrics increase to
90.52% and 90.81%, respectively, indicating that
the attention mechanism contributes positively to
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Relation Description Few-shot Prompt Template

Given a set of relation labels, convert them into a JSON format where each key is a relation label and the value is a clear,
textual explanation of the relationship that the label represents. If the provided labels include numeric indices, please remove
them in your output.
There are some relation description examples:
{

"None": "Indicates that there is no relationship between the subject and object entity, based on text and image information.
Subject and object can be of any type.",

"/org/loc/locate_at": "Indicates that an organization is located at a specific geographical location (e.g., a company
headquartered in a city)",

"/per/misc/awarded": "Specifies an award, honor, or recognition received by a person (e.g., a Nobel Prize or medal)."

}

Example of Generated Relation Descriptions and Label Set

"None": "Indicates that there is no relationship between the subject and object entity, based on text and image information.
Subject and object can be of any type.",

"/loc/loc/contain": "Describes a containment relationship where both the subject and object are geographical locations,
with the subject containing the object (e.g., a country containing a city).",

"/misc/loc/held_on": "Indicates that a miscellaneous event or activity occurred at a specific geographical location (e.g., a
festival held in a city).",

"/misc/misc/part_of": "Describes a part-whole relationship between two miscellaneous entities (e.g., a chapter being part
of a book).",

"/org/loc/locate_at": "Indicates that an organization is located at a specific geographical location (e.g., a company
headquartered in a city).",

"/org/org/alternate_names": "Lists alternative names, aliases, or abbreviations for an organization (e.g., a company and its
trade name).",

"/org/org/subsidiary": "Describes a parent-subsidiary relationship between two organizations, with the subject being the
parent and the object being the subsidiary (e.g., a corporation and its owned companies).",

"/per/loc/place_of_birth": "Indicates the geographical location where a person was born (e.g., a city or country)."

}

Table 7: Prompt template and generated relation descriptions for few-shot relation label explanation.

SciRE NYT
Model F1 Model F1
MTB (Soares et al., 2019b) 87.4  BiRTE (Ren et al., 2021b) 92.8
REBEL (Huguet Cabot and Navigli, 2021)  87.7  DirectRel (Shang et al., 2022)  92.9
IRE-RoBERTa (Zhou and Chen, 2022) 88.9  GRTR (Renet al., 2021a) 93.4
RELA (Li et al., 2023a) 90.3  OD-RTE (Ning et al., 2023) 93.9

ROC (ours) 88.39 ROC (ours) 91.36

Table 8: Performance comparison on the SciRE and NYT datasets. SciRE results are from (Li et al., 2023a), and

NYT results are from (Ning et al., 2023)

basic multimodal fusion. The model performance
improves as the encoder depth increases to 3 and
6 layers. However, the F1 score of the 3-layer con-
figuration slightly surpasses that of the 6-layer one,
with an improvement of 0.41 percentage points.
This difference is primarily due to a slight drop
in recall for the 6-layer structure, suggesting that
while deeper encoders enhance prediction preci-
sion, they may also suppress the recognition of
marginal samples, thereby affecting recall.

On the MORE dataset, the model shows a more
significant response to increasing encoder depth.
Without any encoder, the model achieves an accu-
racy of 87.09% and an F1 score of 67.69%. When
the encoder depth is increased to 6 layers, the F1
score improves by 4.55 percentage points, with all

metrics reaching their highest values. This indi-
cates that deep attention mechanisms play a sub-
stantial role in enhancing cross-modal semantic
fusion on this dataset.

The performance differences between the two
datasets can be attributed mainly to the varying
quality of image-text alignment. The MNRE
dataset suffers from relatively weak semantic as-
sociations between images and text, where shal-
low fusion helps preserve more original semantics
and allows the model to learn alignment strategies
autonomously. In contrast, the MORE dataset is
constructed from news articles with well-aligned
image-text pairs, where deeper multimodal interac-
tion more effectively captures applicable semantics.
Therefore, deeper encoder layers are more benefi-
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Figure 5: Impact of different encoder numbers on modal
fusion performance on MNRE and MORE datasets.

cial for modeling complex semantic relationships
in multimodal scenarios with structurally complete
and semantically consistent inputs.

In summary, the optimal depth of the encoder
should be adapted to the dataset’s characteristics:
shallow structures are better suited for tasks with
loose image-text alignment, while deeper structures
are more effective in scenarios with strong semantic
coupling between modalities, promoting semantic
aggregation and relation understanding.

G Experiments on Text-Only Datasets

We conducted experiments on two text-only
datasets from different domains: SciRE, which fo-
cuses on scientific papers, and NYT, which covers
the news domain, in order to evaluate the appli-
cability of ROC across diverse professional text
datasets. The results are presented in Table 8.

As shown in the results, on the SciRE dataset,
ROC performs only 1.54 percentage points lower
than RELA, while outperforming MTB and
REBEL. On the NYT dataset, ROC is 2.54 per-
centage points lower than OD-RTE. These findings
demonstrate that ROC remains competitive and sta-
ble across different domain-specific text datasets.

H Case Study

To evaluate the ability of the ROC model to distin-
guish semantically similar relations, we selected a
subset of closely related relations from the MNRE
and MORE datasets and constructed relation pairs.

MNRE Accuracy
/per/misc/nationality vs /per/misc/race 100.00
/per/per/peer vs /per/per/neighbor 94.94
/org/loc/locate_at vs /loc/loc/contain 92.41
/per/misc/present_in vs /per/loc/place_of_residence 90.29
/per/org/member_of vs /per/per/alumi 90.00
MORE Accuracy
/org/loc/locate_at vs /org/misc/present_in 100.00
/per/misc/president vs /per/org/leader_of 97.73
/per/misc/nationality vs /per/misc/party 98.97
/per/per/relatives vs /per/per/partner 92.65
/per/misc/present_in vs /org/misc/present_in 91.74

Table 9: Accuracy of ROC on semantically related rela-
tion pairs from the MNRE and MORE datasets.

In the experiments, the model was required to iden-
tify the correct relation within each pair, effectively
performing a binary classification task. The experi-
mental results are shown in Table 9.

As shown in the results, ROC attains consis-
tently high accuracy across most relation pairs.
For pairs with clear semantic distinctions, such as
/per/misc/nationality-/per/misc/race and
/org/loc/locate_at-/org/misc/present_in,
the model achieves 100% accuracy. For pairs
that are semantically similar but differ in en-
tity types, such as /per/misc/present_in
-/per/loc/place_of_residence and /per
/misc/present_in-/org/misc/present_in,
the accuracies are 90.29% and 91.74%, respec-
tively, demonstrating that ROC can effectively
exploit entity type information to distinguish subtle
relation differences.

I Visualization of Attention Weight
Distribution

To further validate the ROC model’s semantic mod-
eling capability and interpretability in processing
specific samples, we conducted a visualization anal-
ysis of the attention distribution in the feature en-
coder for multimodal entity pairs. As shown in
Figure 6, a real-world example was selected: "RT
@DenisLlaw_WFT: New breed of Crocodile discov-
ered in South Wales woodland'", where the subject
is "Crocodile", the object is "South Wales", and the
relation type is /misc/loc/held_on.

The figure illustrates the attention weight distri-
bution of query vectors across different encoding
layers. In layers 1 and 2, the attention distribution
is relatively dispersed and does not focus on key en-
tities, indicating that at this stage, the model mainly
captures global semantic features without explicitly
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Figure 6: Visualization of attention weight distribution.

concentrating on the entity pair. In contrast, lay-
ers 5 and 6 show a progressively focused attention
pattern, with most attention weights concentrated
on the words "crocodile" and "south", which corre-
spond to the start positions of the entity pair. This
demonstrates the model’s dynamic transition from
integrating global semantics to identifying local
entities layer by layer.

Moreover, in layers 5 and 6, the query word
"in" exhibits high attention towards the ob-
ject word "south", consistent with the seman-
tic alignment of "loc" in the predicted relation
/misc/loc/held_on, indicating that the model has
captured semantic cues representing spatial loca-
tion. By contrast, "in" shows lower attention to-
wards the subject entity, aligning with the weaker
type constraint of the "misc" label for the subject

in this relation type.

Overall, the ROC model achieves hierarchical
semantic modeling through its multi-layer encoder:
shallow layers focus on context and global infor-
mation, while deeper layers progressively concen-
trate on key entities and capture latent relational
semantics. Additionally, the attention mechanism
effectively filters redundant information, reducing
interference from irrelevant words during training,
thereby enhancing both the interpretability and ro-
bustness of the model.
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