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Abstract

Despite Bengali being among the most spo-
ken languages bearing cultural importance and
richness, the NLP endeavors on it, remain rel-
atively limited. Figures of speech (FoS) not
only contribute to the phonetic and semantic
nuances of a language, but they also exhibit
aesthetics, expression, and creativity in liter-
ature. To our knowledge, in this paper, we
present the first ever Bengali figures of speech
classification dataset, BengFoS, on works of
six renowned poets of Bengali literature. We
deploy state-of-the-art (SOTA) models to this
dataset, improve them, and finally dissect them,
revealing novel insights on the intrinsic be-
havior of two open-source LLMs (Llama and
DeepSeek) in FoS detection. Though we fo-
cused on Bengali, the experimental framework
can be reproduced for English as well as for
other low-resource languages. '

1 Introduction

“(2 3% 9leitd o9 [y wow; ... ool W,
‘{]’ff AT 1”7 (O Bengali (language) your treasury
has various jewels; ... the mother language is a
mine full of jewels).

— Bongobhasha (The Language of Bengal),
1866, Michael Madhusudan Dutt (Dutt, 1866)

In the above quote, the famous Bengali poet
Michael Madhusudan Dutt broods over the rich-
ness of the Bengali language in his sonnet Bongob-
hasha (the Bengali language). Notably, the first
and last lines of the poem contain figures of speech
(FoS), such as apostrophe and Metaphor. Identify-
ing figurative language, particularly FoS, remains
a critical yet underexplored challenge. This chal-
lenge is even more prominent in low-resource lan-
guages, such as Bengali, which ranks as the fifth
most widely spoken native language globally (En-
cyclopaedia Britannica, 2025), yet suffers from a
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scarcity of annotated linguistic resources and task-
specific models. Bengali earned the famous poet
Rabindranath Tagore his Nobel prize in 1913 as
the first Asian to receive it for his ‘Song Offer-
ings’ translated from the Bengali poem collection
Meteer (Gitanjali). While prior work in Bengali
NLP has focused on tasks like sentiment analy-
sis (Sazzed, 2020), named-entity recognition (Ek-
bal and Bandyopadhyay, 2008), and part-of-speech
tagging (Kumar et al., 2024), computational ap-
proaches to stylistic determinations like FoS, inte-
gral to literary and stylistic analysis, are virtually
nonexistent.

FoS detection is vital for applications such as
literary critique, machine translation, and creative
language understanding, but it presents consider-
able challenges due to its reliance on subtle se-
mantic and complex contextual cues, particularly
in low-resource settings. To address this, we in-
troduce BengFoS, the first systematically curated
(to our knowledge), sentence-level dataset for Ben-
gali FoS, comprising 3,148 expertly-annotated lit-
erary sentences. Our initial experiments, involv-
ing fine-tuning SOTA LLMs such as Llama-3 and
DeepSeek R1, underscore the inherent difficulty of
Bengali FoS classification, with models achieving
only modest gains.

Another distinctive contribution of our research
is an in-depth probing analysis of these fine-tuned
LLMs. While FoS identification has been studied
in other languages (e.g., (Berger et al., 2024; Yang
et al.,, 2023)) and LLMs are extensively bench-
marked across various NLP tasks like Named En-
tity Recognition (NER) (Bogdanov et al., 2024)
or Question Answering (Li et al., 2024)), such
studies predominantly focus on performance met-
rics. They rarely extend to a detailed investigation
of how models internalize task-specific knowledge
by examining their hidden representations, espe-

'0 dataset d deb. il- : . .
able ur at: atase ht:gls: /) gitﬁu%éls:n /S ;lrfavalK/?; / cially for complex tasks like FoS in less-resourced
LLMs-on-Bengali-FoS-Identification. languages. Our work uniquely bridges this gap.
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’ "Kumor parar gorur gari,
bojhai kora kalshi haari.."

Have | used any FoS?
|

A

Yes Gurudeb! You have used
Alliteration.

Interesting.. How do you
know that?

| know that because | was trained on Bengali FoS and my
probing analyses indicate a strong attention score for

Alliteration!

e m E E E EEEE, . ———————————- -

i

Figure 1: A light-hearted illustration of an imaginary event where Rabindranath Tagore (image generated by
ChatGPT-4o0) orates a piece of his poem for children and asks an LLM bot if any FoS is used. The bot responds
affirmatively as Alliteration (addressing Tagore fondly as Gurudeb, his sobriquet), as a classification task, with an
explanation by indicating the terminal rhythmic Bengali words in each line, gari (a car) and haari (a pot) through

probing, which we discuss in detail in the paper.

Following established interpretability methodolo-
gies (Jin et al., 2025; Belinkov and Glass, 2019),
we apply linear probes to the hidden layers of fine-
tuned Llama-3 8B and DeepSeek R1 Distill 7B
models. This allows us to assess how figurative lan-
guage knowledge is encoded and processed within
these architectures. This probing, a first for Ben-
gali literary analysis, reveals that FoS-related se-
mantic and lexical cues are distributed across var-
ious model depths, with different layers specializ-
ing in distinct aspects of figurative language. This
deeper understanding of model behavior for FoS
identification is a primary focus of our contribu-
tion.

Figure 1 imagines a hilarious situation where Ra-
bindranath Tagore interacts with an LLM bot for
the FoS in his composed lines. On a more serious
note, we look to apply SoTA probing techniques to
unearth the reasoning for FoS detection by leading
LLMs on our proposed corpus. We make the fol-
lowing contributions through our work:

* We introduce BengFoS, the first gold-
standard annotated corpus for Bengali FoS
detection, containing 3,148 poetic sentences
(Section 2).

* We present a large-scale evaluation of state-
of-the-art LLMs (Llama-3 8B and DeepSeek
R1 Distill 7B) on the FoS task, including zero-
shot baselines, dedicated fine-tuning, and de-
ployment. We report cross-validated perfor-
mance metrics and detailed comparison re-

sults (Section 5).

* We perform in-depth probing analyses of the
fine-tuned models, examining their layer-wise
representations for FoS knowledge, thereby
providing novel insights into how figurative
language is internally represented by LLMs
(Section 6).

* We analyze the results to identify the chal-
lenge that even fine-tuned LLMs yield lim-
ited accuracy, and we observe that model
attention patterns do not consistently align
with human-annotated FoS spans. These find-
ings highlight the need for research focus
on linguistically-informed modeling and in-
terpretability of figurative language process-
ing (Section 6).

2 Corpus Preparation

We developed the dataset BengFoS by crawling
the poems from several internet archives and dig-
ital repositories. Only certain poets were selected
based on their contrasting writing styles, resource
availability, and non-conflicting with the Copy-
right Act (Copyright Office, Government of India,
1957). Our dataset comprises sentences from po-
ems written by 6 renowned Bengali poets.

Each sentence has been attributed to a specific
Sentence ID to keep track of data. We accumu-
lated a total of 10,198 sentences, out of which
3,148 sentences were found to contain FoS and an-
notated. A reason behind it is that only the poems
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GOLD

FoS DISTRIBUTION

POET STANDARD ~— 0 T 2 3 ) 5 6 7 8 9 10 11 V]
Rabindranath Tagore 732 R B v 778 36 77 313 3 g 3 113 7 i
Jibanananda Das 345 109 68 79 90 2 12 68 3 0 0 1 0 0
Sukanta Bhattacharya 405 133 11 94 81 4 11 184 0 0 0 8 0 0
Kazi Nazrul Islam 453 201 15 76 27 3 10 193 1 0 0 12 0 0
Micheal Madhusudan Dutt 92 58 7 6 8 0 1 50 1 3 4 10 5 0
Sukumar Roy 121 45 1 10 13 0 2 34 2 5 3 8 4 0
TOTAL 3148 %30 278 512 397 % 110 32 13 16 7 162 16 1
PERCENTAGE 2955% 88%% 1627% 15.79% 2.06% 349% 42.63% 041% 051% 038% 5.15% 051% 0.03%

Table 1: FoS distribution across poets. The TOTAL values indicate the number of sentences where each FoS is

present.

contain FoS and not the stories, novels, or articles.
Within the 3,148 sentences, 1,732 sentences are
from the poems of Rabindranath Tagore, 345 sen-
tences from Jibanananda Das, 405 sentences from
Sukanta Bhattacharya, 453 sentences from Kazi
Nazrul Islam, 92 sentences from Michael Mad-
husudan Dutt, and 121 sentences from Sukumar
Roy.

The distribution in Table 1 presents the num-
ber of sentences containing each specific figures
of speech. For instance, out of the 1,732 annotated
sentences from Tagore’s poem lines, 813 sentences
contain instances of Alliteration (FoS Label: 6).
The table summarizes the total occurrences of each
figures of speech, the overall number of annotated
sentences, and the total percentage for each FoS la-
bel within the dataset.

Each sentence was manually annotated by two
expert linguists for one or more of the following
FoS Labels from 0 to 12: None, Simile, Metaphor,
Personification, Onomatopoeia, Hyperbole, Allit-
eration, Oxymoron & Antithesis, Epigram, Irony,
Euphemism & Pun, Apostrophe, and Synecdoche
& Metonymy. Out of 3,148 sentences in Beng-
FoS, approximately 71% contain at least one FoS
instance and 29% are labeled None. A small sub-
set (7.2%) contains multiple FoS labels (e.g., both
Metaphor and Hyperbole).

2.1 Data Splits and Preprocessing

For all experiments, we used the stratified 5-fold
cross-validation to ensure robust performance esti-
mates across FoS categories. In each fold, 80% of
the data is used for training, 10% for development,
and 10% for testing, preserving the overall label
distribution. Prior to model input, sentences are
normalized using Unicode NFC normalization and
tokenized with the native Bengali tokenizer from
the Indic NLP (Kakwani et al., 2020) for both the
fine-tuned models. We removed leading/trailing
whitespace and collapse consecutive spaces. No
additional cleaning (e.g., stopword removal) is per-

formed, as FoS often relies on function words.

2.2 Human Annotation

We assigned two native Bengali speakers as anno-
tators, who are not authors of this work. They were
thoroughly trained with additional examples, as
shown in Table 7, under the guidance of senior fac-
ulty members of Bengali literature. Upon indepen-
dent annotation, they achieved high agreement on
annotation quality, which was measured using Co-
hen’s x (Ben-David, 2008), resulting in x« = 0.78,
indicating substantial agreement. Table 2 presents
three annotation instances with multiple figures of
speech, illustrating the complexity of the task. We
show all such instances of multiple FoS labels ap-
plied to each sentence using a co-occurrence ma-
trix in Figure 8.

3 Experimental Setup

We utilized several SoTA models for the FoS iden-
tification as a multi-class classification in a zero-
shot experimental setup (Hasan et al., 2024). We
aimed to comprehensively compare model perfor-
mances while ensuring computational efficiency.
We used the evaluation dataset containing sen-
tences labelled with their corresponding FoS codes.
Our evaluation comprises two categories of mod-
els: pre-trained models that can be fine-tuned or
used directly, and proprietary models accessible
through APIs. We select Llama-3 8B (Grattafiori
et al., 2024), DeepSeek R1 Distill 7B (Guo et al.,
2025), and Mixtral 7B (Jiang et al., 2024) as the lo-
cal models for evaluation in a zero-shot setup. The
API-based models are GPT 3.5 (Ye et al., 2023)
and Gemini 1.5 (Team et al., 2024).

3.1 Zero-Shot Classification

Given that the models may not have been fine-
tuned on our specific classification task, we
adopted a zero-shot learning approach. Our ob-
jective was to test several open-source and pro-
prietary models on unseen Bengali FoS, to evalu-
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Sample Sentence

Figures of Speech

= e aiferr 2@z o (Seeing the picture on my chest,
the water trembles and sways, and says, It is for this that 1
have wept and turned into water)

T (Personification), &A™ (Alliteration)

@AEF ATT A AfTE I AR Ao Col Qe o
N P AE B q&? (When, in the autumn storm,
1 fall like leaves along the path, will you then lie upon my
chest?)

[AF (Metaphor), SNSRI (Hyperbole)

T 60 fe; o9 e Afiesie, e e Wi
JWCE WS MR I | (The day sways; the oath-chanting
farmer and laborer neighborhoods, thousands upon thou-
sands in the fields and ports have responded today)

T (Personification), &AM (Alliteration), SS*CE
(Hyperbole)

Table 2: Annotation instances with multiple FoS labels. Complex for LLMs to identify such intricacies.

Model Accuracy Avg. Confi- F1 Score Precision Recall
dence

Llama-3 8B 0.4211 0.4401 0.4178 0.4329 0.4016

DeepSeek-R1 Distill 7B 0.4179 0.4310 0.4023 0.4257 0.4175

Mixtral 7B 0.3536 0.3817 0.3410 0.3729 0.3386

GPT-3.5 0.3647 N/A 0.3538 0.3790 0.3472

Gemini-1.5 0.3818 N/A 0.3652 0.3812 0.3590

Table 3: Classification performance comparison of different LLMs on zero-shot setup. Confidence scores were not
produced by API-based models such as GPT and Gemini. The low values clearly indicate that the pre-trained SoTA
LLMs lack the capability to identify Bengali FoS, thus motivating us to fine-tune.

ate whether the models can identify the FoS labels
from their pre-training knowledge. We share the
zero-shot results in Table 3.

4 Experiments

In this section, we present the fine-tuning experi-
ments on DeepSeek R1 and Llama-3, report perfor-
mance metrics, and compare full fine-tuning with
parameter-efficient variants.

4.1 Models Fine-Tuning

Before taking the fine-tuning approach, we trained
two traditional machine learning algorithms, Sup-
port Vector Machines and Multinomial Naive
Bayes, on the Gold Standard dataset to observe
their performances. The subsequent test and vali-
dation results were uninspiring and on par with the
zero-shot results. This is further discussed in Ap-
pendix A.5. That motivated us to fine-tune both
the better-performing open-source models. Based
on the performances in the zero-shot setup, we fine-
tuned two better-performing models from the com-
peting models, Llama-3 8B and DeepSeek R1 Dis-
till 7B. Llama is proven for its multilingual capabil-
ities, and DeepSeek R1 is the recent SOTA model to
exceed the other language models in several bench-
marks, including critical thinking. However, the

multilingual prowess of DeepSeek R1 is yet to be
evaluated in downstream tasks, and hence, we de-
ploy these two models for FoS evaluation.

4.2 Fine-Tuning Results

Table 4 summarizes performance on the held-out
test folds (5-fold cross-validation). Full fine-
tuning of both models yields substantial gains over
zero-shot baselines, while adapter and LoRA vari-
ants (Whitehouse et al., 2024) achieve competitive
performance with far fewer trainable parameters.
However, we observed that 8-bit quantization intro-
duces overhead and limitation in achieving compet-
itive multi-label performance in fine-tuning, and
16-bit quantization produces the best overall perfor-
mance by enhancing 5% to 7% across all the met-
rics. Hence, we pursued the rest of the experiments
with the 16-bit quantized fine-tuned models. Here-
after, all the instances of the fine-tuned DeepSeek
R1 and Llama-3 versions should be considered as
the same.

Full fine-tuning of Llama-3 achieves the best
Macro-F1 of 0.14 and Accuracy of 0.35. Among
parameter-efficient methods, LoRA performs clos-
est to full fine-tuning, with less than 2% drop in
Macro-F1. The fine-tuning loss performances of
all Llama-3 and DeepSeek quantized variants are
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Model Variant Accuracy Macro-F1  Micro-F1
DeepSeek R1 (full) 0.55 0.53 0.56
DeepSeek R1 + Adapters 0.52 0.51 0.53
DeepSeek R1 + LoRA 0.51 0.50 0.52
DeepSeek R1 (16-bit quantized) 0.55 0.54 0.56
Llama-3 (full) 0.55 0.53 0.55
Llama-3 + Adapters 0.53 0.52 0.54
Llama-3 + LoRA 0.52 0.51 0.53
Llama-3 (16-bit quantized) 0.54 0.55 0.56

Table 4: Fine-tuning performance on BengFoS (5-fold
CV) by both LLMs. The 16-bit quantized variants
achieve marginally superior results.

visualized in Figure 2.

Model Fine-Tuning Performance Comparison

Loss
.

Epoch

I DeepSeek 7B 8-bit Train
I Deepseek 7B 16-bit Val
Llama-3 16-bit Train

DeepSeek 78 8-bit Val M DeepSeck 78 16-bit Train

M Llama-3 8-bit Val

Figure 2: Fine-tuning loss comparison on the
gold-standard corpus.

4.3 Upsampling of Gold Standard Corpus

To mitigate the label imbalance in our Gold
Standard corpus, we also applied a contextual
augmentation—based upsampling technique to nor-
malize all FoS labels to the count of the most fre-
quent class. Popular upsampling techniques such
as SMOTE (Bhuvana et al., 2025) and ADASYN
(Em et al., 2023) operate on numerical feature
spaces (generating synthetic feature vectors); they
don’t directly revert the original natural language
text in the corpora or from samples. Applying
these techniques typically results in new samples
represented as vectors rather than as the original
sentences. SMOTE and ADASYN generate syn-
thetic feature vectors that do not directly translate
back to the original text. This is even more prob-
lematic for a low-resource language like Bengali.
Hence, for our experiment, we utilized the text
augmentation technique for negating the label im-
balance in the Gold Standard corpus through con-
textual word embeddings to upsample the minority
classes while keeping the original poem sentences
in the corpus intact. For this purpose, we used the
BERT-based augmented (Sahin, 2022). This aug-
menter is capable of handling multiple languages

(including Bengali) and substitutes words with con-
textually similar alternatives, preserving original
poetic structure while introducing lexical variation.
We then refine-tuned DeepSeek R1 and Llama-3
in the upsampled corpus and evaluated both fine-
tuning with 8-bit and 16-bit quantized deployment
performance. Figure 3 represents a visual under-
standing of the upsampling of our Gold Standard
dataset. The results are discussed in Appendix A.4.

4.4 Ablation Studies

To assess the impact of data size and learn-
ing rate, we conduct two ablations: Training
Data Fraction: We fine-tuned both models on
25%, 50%, 75%, and 100% of the training set.
Learning Rate Sweep: We evaluated learning
rates {1e—5, 3e—5, 5e—5, le—4} for full fine-tuning.
Ablation analysis demonstrates that performance
scales roughly linearly with data size, plateauing
beyond 75% of the data, and that 3e—5 remains op-
timal. These results inform our choice of full data
usage and 3e—5 LR for subsequent probing analy-
sis in Section 6.

5 Evaluation and Results

We evaluated the fine-tuned system on a held-out
set of Bengali sentences with known FoS labels.
Additionally, we conduct K-fold cross-validation
on the extracted sentence embeddings by train-
ing a lightweight logistic regression classifier for
multi-label prediction, verifying the consistency of
learned representations. We used the standard met-
rics for multi-label classification evaluation same
as the zero-shot setup. The evaluation is shown in
Table 5.

5.1 Models Deployment

We evaluated the fine-tuned Llama-3 8B and
DeepSeek R1 7B models at 16-bit quantized pre-
cision on the full BengFoS dataset. The primary
objective was to simulate their classification effi-
cacy in a real world deployment scenario. Table 6
presents a comparative summary of their perfor-
mance metrics.

From the results, the DeepSeek R1 7B (16-bit)
model demonstrates notably higher recall and F1-
scores across all averaging methods compared to
the Llama-3 8B (16-bit) model on this multi-label
FoS classification task. For instance, DeepSeek
R1 achieved a weighted average F1-score of 0.64,
whereas Llama-3 achieved 0.40. While Llama-3
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Label Distribution Comparison: Original vs. Upsampled
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Figure 3: Contextual augmentation upsampling of the Gold Standard corpus. The blue lines represent original
annotations bearing corresponding inconsistent FoS labels, while the red lines represent the upsampled FoS labels

for all instances.

Deployment Metric Llama-3 DeepSeek R1
Cross-Validation Averages

Accuracy 0.5500 0.5900

Precision 0.5700 0.5800

Recall 0.6100 0.5900

Micro F1 Score 0.5800 0.5900

Classification Report (Macro Avg)

Precision 0.5700 0.6000
Recall 0.6000 0.6500
Macro F1 Score 0.5700 0.6000
Classification Report (Weighted Avg)
Precision 0.5900 0.6200
Recall 0.6100 0.6500
Weighted F1 Score 0.5900 0.6200

Table 5: Evaluation of 16-bit quantized models on the
full dataset.

shows high recall for certain specific labels (e.g.,
FoS Labels 4 and 7, based on the detailed clas-
sification report), its precision for many classes,
and consequently its overall Fl-scores, are lower.
DeepSeek R1, particularly in terms of recall (e.g.,
micro avg. recall of 0.92), appears to identify a
larger proportion of the true FoS instances, though
this sometimes comes at the cost of lower preci-
sion for specific minority classes not highlighted
in this summary table. The overall performance
suggests that for this deployment scenario on the
BengFoS dataset, the fine-tuned DeepSeek R1 7B

(16-bit) model provides a more effective balance
for identifying FoS.

5.2 Qualitative Analysis

LoRA-based tuning and quantization on query and
value projections align the models to the partic-
ularities of Bengali FoS data, resulting in near-
parity performance with larger precision variants.
In cross-validation experiments, the sentence em-
beddings yield consistently high micro-averaged
precision and recall, confirming that the model cap-
tures semantically relevant features of each FoS la-
bel. Confusion matrix and ROC curve analyses
of both 16-bit quantized models in Appendix A.14
highlight that, quite naturally, the models have per-
formed better in identifying the labels (e.g, Alliter-
ation) they found more than the other labels (e.g,
Metonymy).

6 Probing Analysis

Language model probing investigates the linguistic
knowledge encoded within the internal represen-
tations (hidden states) of transformers, typically
by training simple linear classifiers on these rep-
resentations to predict specific properties (Yi et al.,
2025; Orgad et al., 2025; Zhao et al., 2024). This
technique offers insights into how models process
and understand language, moving beyond task per-
formance to interpretability (Conia and Navigli,
2022). In our study, we employ probing to dissect
the fine-tuned Llama-3 and DeepSeek R1 Distill
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Model

Llama-3 8B (16-bit)

DeepSeek R1 Distill 7B (16-bit)

Metric Precision Recall F1-Score Support Precision Recall F1-Score Support
Micro Avg. 0.17 0.53 0.26 649 0.32 0.92 0.47 649
Macro Avg. 0.15 0.49 0.19 649 0.50 0.88 0.50 649
Weighted Avg. 0.35 0.53 0.40 649 0.58 0.92 0.64 649
Samples Avg. 0.16 0.52 0.24 649 0.58 0.90 0.64 649

Table 6: Comparative deployment performance of 16-bit quantized models on BengFoS dataset.

models. Specifically, we conduct layer-wise prob-
ing using logistic regression to ascertain where and
how effectively Bengali FoS categories are repre-
sented, analyze hidden state distributions (mean
and variance) to understand representational geom-
etry, and examine attention mechanisms. Our goal
is to gain a deeper insight of the internal encoding
of figurative language within these LLMs for the
Bengali FoS identification task.

6.1 Setup for Probing

We apply layer-wise linear probing following the
methodology (Ju et al., 2024; Cho et al., 2023). Af-
ter fine-tuning Llama-3 and DeepSeek R1 on the
full dataset (using the optimal learning rate and hy-
perparameters), we freeze the model weights and
extract hidden states h, for each input sentence at
every layer ¢ € {0, 1,...,L}.

We then train a logistic regression probe using
80% of the validation fold to predict the FoS labels
based on h, and evaluate using micro-F1 on the re-
maining 20%. The probing is performed over all
13 FoS categories. We use the hidden state of the
classifier token [CLS] as the sentence-level repre-
sentation for each layer.

6.2 Layer Probing Results

Figure 4 plots the micro-F1 scores achieved by the
probing classifier across all 29 layers of DeepSeek
R1. We observe that probing performance im-
proves significantly from the embedding layer
(Layer 0: 0.292) and peaks around Layer 9 (micro-
F1 = 0.575). Beyond this, performance remains
relatively stable, with only slight drops in the
higher transformer layers. This indicates that FoS-
relevant signals are strongly represented in the mid-
depth layers of DeepSeek R1.

Interestingly, the middle layers (Layers 8—13)
consistently show higher encoding power than the
early or final layers. This aligns with previous find-
ings that intermediate layers in transformers cap-
ture syntactic and local semantic cues, attributes

Layer Probing Results for DeepSeek R1 Distilled 7B
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Figure 4: Layer-wise probing results (micro-F1) for
DeepSeek R1 fine-tuned on BengFoS.

closely tied to identifying metaphor, personifica-
tion, or alliteration.

Figure 5 shows the layer-wise probing trajectory
for Llama-3. With 31 layers in total, the model ex-
hibits steady growth in representational quality.

Layer Probing Results for Llama-3 8B

0.6 — ey’ T \

051 /

0.4 1

Probe micro-F1
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0.2 A

0 5 10 15 20 25 30
Layer

Figure 5: Layer-wise probing results (micro-F1) for
Llama-3 fine-tuned on BengFoS.

The probing accuracy begins at a low 0.177
(Layer 0) but increases rapidly, peaking at Layer
30 with micro-F1 = 0.624. Notably, layers 13—
30 show a continuous and monotonic rise in per-

18652



formance, suggesting a richer accumulation of ab-
stract semantic features relevant for figurative lan-
guage. Layer-wise probing analysis revealed dis-
tinct peak performance depths for the evaluated
models. The DeepSeek R1 model achieved its
highest micro-F1 score of 0.575 at Layer 9. In com-
parison, the Llama-3 8B model demonstrated supe-
rior peak performance, reaching a micro-F1 score
of 0.624 at a considerably deeper layer, specifically
Layer 30.

Our probing analyses share common founda-
tional principles and analogous observations to
studies on LLM internal states for statement truth-
fulness made by Azaria and Mitchell (Azaria and
Mitchell, 2023). Both studies affirm that an LLM’s
internal hidden layer activations are not merely
transient computations but encode decipherable
information about sophisticated properties, such
as statement veracity or nuanced FoS characteris-
tics, suggesting these internal representations hold
richer data than surface outputs alone might indi-
cate. Furthermore, a significant common observa-
tion is that the decodability of this target informa-
tion varies across model depth; for instance, spe-
cific layers were identified as optimal for truth-
fulness detection, akin to our findings where FoS
classification performance (especially for Llama-3)
peaks in the middle to later layers, suggesting a hi-
erarchical processing or refinement of these com-
plex features.

Finally, both analyses hint that an LLM might
internally “know” or represent a concept, like a
statement being false or the specific features of an
FoS, more clearly or robustly in its activations than
it might consistently articulate or utilize in its fi-
nal generated output. These parallels suggest a
broader principle: internal state analysis via prob-
ing offers a valuable window into the nuanced, and
sometimes surprisingly sophisticated, ways LLMs
process and represent diverse types of information.

Contrary to the deployment performances,
Llama-3 maintains a higher probing peak than
DeepSeek R1, indicating better internal abstrac-
tion for Bengali FoS classification. DeepSeek’s
representational  strength peaks earlier and
plateaus, while Llama-3 continues improving
deeper into its stack, possibly benefiting from its
larger depth and training corpus. Simultaneously,
we also demonstrate a detailed study on the hidden
states distributions in Appendix A.10.

6.3 Qualitative Insights

We examined a few sentences where both mod-
els correctly predicted multiple FoS labels in some
and incorrectly in others. One such correctly iden-
tified instance is represented in Figure 6 and Fig-
ure 7 that shows the token-level attention heatmaps
of the same sentence: R @“@T;{ O A,
@I ¥ 9T GEL AT ARRE @ *S *Towa
ey (Laughing, I rose along the skyward path;
there, only a sound stirs on the distant shore of un-
spoken words, as if hundreds of lotus were bursting
into bloom.) consecutively for DeepSeek R1 and
Llama-3 obtained from probing analyses. This sen-
tence contains three FoS labels: Metaphor (Label
2), Hyperbole (Label 5), and Aliteration (Label 6).

Original Index: 627, Label: 2, 5, 6
Sentence: "TIFAIT SR (FVH- T, (AT (T3 47 505 SI-T1AF TRRNA (T 9 76T (alG '

[cs]|
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Token_1001]
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&
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Figure 6: Attention heatmap generated by DeepSeek for

a sentence with multiple FoS labels.

Original Index: 627, Label: 2, 5, 6
Sentence: "TfTAT SI¥ @10, (TAT (FT 41 S5 TH-TIAH THENA (4 S 0% GBI 1"
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Figure 7: Attention heatmap generated by Llama for a
sentence with multiple FoS labels.

Upon inspecting the reason for the correct identi-
fication of multi-label FoS within this sentence, we
found out that the attention scores in the heatmaps
are high for the tokens that fundamentally repre-
sent such FoS labels. For instance, considering
the first token of the sentence is the classifier to-
ken [CLS] and the last token is the separator to-
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ken [SEP], the tokens responsible for Aliteration
are <Token_1006> and [SEP]. For DeepSeek R1’s
probing analyses, the attention score between them
is found to be 0.5045, and for Llama-3’s probing
analyses, the same is found to be 0.5066. Consid-
ering the highest attention score threshold hovered
around 0.60 in both the attention heatmaps, respec-
tively, these scores are quite high and indicate that
the fine-tuned model found a pattern of rhythmic
matching between the words to consider them as
the Aliteration. similarly, <Token_1001> and <To-
ken_1002> are responsible for Metaphor, and <To-
ken_1011> and <Token_1012> are responsible for
Hyperbole. Both DeepSeek R1 and Llama-3 have
captured the linguistic connection between these
tokens by capturing the higher attention scores be-
tween them than the other remaining tokens. How-
ever, there are also several instances where both
models failed to identify one or more FoS labels
from certain sentences, and we have shown such
an example in Appendix A.12.

This analysis indicates that after fine-tuning
both models, in several instances, FoS identifica-
tion by these models is not surface-level pattern
matching. It is proven to be deeply entangled with
mid-to-high-level semantic composition captured
by the transformer layers.

7 Conclusion

We introduced BengFoS, the first systematically
curated corpus for Bengali FoS, addressing a crit-
ical gap for low-resource languages. Extensive
evaluations of fine-tuned Llama-3 and DeepSeek
R1 highlighted the complexities of FoS identifi-
cation, with models showing modest overall per-
formance post fine-tuning. Rigorous layer-wise
probing revealed how FoS information is encoded
across network depths, identifying distinct repre-
sentational patterns and peak performance layers.
Analyses of hidden state distributions and attention
mechanisms further clarified this. These novel in-
terpretability studies for Bengali FoS suggest that
while LLMs develop internal FoS-indicative repre-
sentations, translating this to consistently accurate
classification remains challenging. Our compre-
hensive dataset creation, robust model evaluation,
and detailed probing advance Bengali literary anal-
ysis and also underscore the necessity of integrat-
ing interpretability techniques to improve LLMs’
capabilities for complex linguistic tasks.

8 Limitations

During this work, we faced issues with the un-
availability of Bengali literary content on the web
as well as copyright-protected content. On one
hand, low-resource Indian languages like Bengali
have very limited literary resources digitized and
restored in any form of digital archives. On the
other hand, the Copyright Protection Act of India
protects literature and other intellectual properties
for a long time, even after the authors’ demise. We
have discussed this issue in detail in Appendix A.1.

Hence, BengFoS draws from six Bengali poets
(authorial skew), and, as a result of their unique
writing styles, several FoS classes have low in-
stances. We also initially accumulated the literary
works of other famous Bengali authors, such as
Sarat Chandra Chattopadhyay, Dwijendralal Ray,
and Bibhutibhushan Bandyopadhyay. Despite the
fact that most of the digitally available Bengali lit-
erary works are not yet outside of copyright, our
entire original dataset initially contained 10,198 lit-
erary sentences. However, after the accumulation
of short stories, novels, and articles written by the
above-mentioned authors, the Bengali language ex-
perts (who guided us during data annotation) ob-
served that such writings exhibit minimal to no FoS
expressions at all. The experts suggested that gen-
erally Bengali prose does not contain FoS expres-
sions. That did not align with the objective of this
research, and hence, we could not consider those
writings for this scope of work.

9 Ethical Statement

The annotators were compensated accordingly for
their effort on an hourly basis. The proprietary
models for the zero-shot learning setup were de-
ployed from Hugging Face without requiring a sub-
scription.
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A Appendix

UNESCO observes 21st February as the Interna-
tional Mother Language Day to honor the martyr-
dom of the Bengalis of the then-Pakistani province
of East Bengal (now the independent Bangladesh
nation) in the fight for recognition of their Bengali
language®.

The choice of the poets has been made keep-
ing their diverse poetic styles (Authors, 2025). Ra-
bindranath Tagore’s writing style stands out for
its profound lyricism, philosophical depth, and the
seamless blending of Eastern and Western literary
traditions. He crafted verse so musical that nearly
half his poems became songs, imbuing Bengali lit-
erature with a new lyrical idiom. His imagery of
nature serves as both setting and symbol for human
emotion and universal spirituality.

Jibanananda Das broke entirely new ground in
Bengali literature. He invented a fresh poetic dic-
tion, fused imagism with existential sensuousness,
and pioneered a fragmented, non-linear syntax that
demands reading between the lines. His verse is
marked by vivid, often surreal imagery of rural
Bengal juxtaposed with melancholy and philosoph-
ical depth, creating a uniquely modern sensibility
rooted in indigenous rhythms and personal mem-
ory.

*https://en.wikipedia.org/wiki/International _
Mother_Language Day.
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Sukanta Bhattacharya’s poetry is marked by
a revolutionary fervor and proletarian sensibil-
ity, blending modernist techniques with accessible,
colloquial Bengali to critique social injustice and
colonial oppression. His verse employs vivid, con-
crete imagery drawn from everyday life, hunger, la-
bor, and struggle to evoke both empathy and opti-
mism. Using direct, unadorned diction, he chan-
nels Marxist ideals into concise, punchy lines that
resonate deeply with the common reader.

Kazi Nazrul Islam revolutionized Bengali litera-
ture and music with a style that was simultaneously
rebellious, devotional, and deeply humanist. He
fused colloquial speech and elevated diction, draw-
ing on Arabic, Persian, Sanskrit, and English regis-
ters to craft verse and song that spoke directly to the
oppressed masses while engaging classical forms
like the ghazal and classical ragas. His language
is marked by powerful imagery, rhetorical devices,
and innovative metaphors that evoke both the sen-
sual world and lofty ideals of freedom, love, and
equality.

Michael Madhusudan Dutt fused Western Ro-
mantic and classical influences, especially from
Byron, Milton, Homer, and Ovid, with indigenous
Bengali rhythms to create an entirely new vernacu-
lar poetic idiom. He broke from traditional rhymed
Bengali verse by introducing blank verse and was
the first to pioneer the sonnet form in Bengali, lend-
ing his work both epic grandeur and lyrical inten-
sity.

Sukumar Roy pioneered literary nonsense in
Bengali by blending Western influences, notably
Edward Lear and Lewis Carroll, with indigenous
folk rhythms, creating whimsical yet incisive verse
and prose. His language is deceptively simple and
colloquial, packed with playful neologisms, puns,
and a rhythmic mastery of quatrains and limericks.
Beneath the laughter lie subtle social critiques and
anti-colonial subtext.

A.1 Copyright Protection Act

In Section 2 of our paper, we mentioned that only
certain poets were selected based on their contrast-
ing writing styles, availability of resources, and
adherence to the Copyright Protection Law of In-
dia. The Copyright Protection Law of India man-
dates that a literary work is copyrighted to its au-
thor as his/her intellectual property during the au-
thor’s lifetime and up to 60 years after his/her
demise, starting from the beginning of the calen-
dar year immediately following the year of the au-

thor’s death (Copyright Office, Government of In-
dia, 1957). Therefore, we developed the dataset
by accumulating the literary works of the six pio-
neer Bengali poets from the late nineteenth century
to the mid-twentieth century, and not beyond that.
The dataset curation is governed by the choice of
literary works compiled from poem collections, in
compliance with the Copyright Protection Law of
India.

We carried out our dataset curation in ac-
cordance with the Copyright Protection Law of
India, as discussed with a senior legal expert
(as mentioned in Section 10). We avoided se-
lecting random samples from copyrighted litera-
ture and, therefore, curated the data only after
discussing potential copyright-related issues that
might arise. We have avoided copyrighted mate-
rials to safeguard ourselves against potential legal
action. Hence, we developed the dataset by accu-
mulating the literary works of the six pioneer Ben-
gali poets from the late nineteenth century to the
mid-twentieth century, and not beyond that.

There are 3,148 sentences from poems, and the
linguistic experts found FoS labels mostly within
these sentences and annotated accordingly. This is
our Gold Standard dataset, which is used to fine-
tune the Llama-3 and DeepSeek R1 models.

A.2 Annotation Guidelines

We requested that the annotators independently an-
notate each sentence with one or more of the 13
possible labels (12 FoS labels and ‘None’). They
were given a document that contained detailed def-
initions of FoSs and examples of annotated sen-
tences for each FoS. This document was compiled
from a reputed Bangla Grammar book, S 11!
GRS (Higher Order Bengali Grammar) by Ba-
mandev Chakraborty and was finalized by two se-
nior experts in the Bengali language (as mentioned
in Section 10), who were not otherwise involved in
this work. We demonstrate an example of each FoS
label annotated for an appropriate literary sentence
in Table 7.

A.3 Zero-shot Classification Discussion

Formally, for an input sentence x and a set of can-
didate labels L, the models compute:

y =argmax P(l | x) (1)
lel

where P(/|x) represents the probability of label
[ given input x as estimated by the model.
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Class Label

Figures of Speech

Sample Sentence

1 ©o (upoma): An upoma (simile) is a figure of “FANF TCO! R (FINA TS (A bed as soft as
speech that compares an object (upomeyo) with  butter) — Kalidas Ray
another unlike object (upoman) using “like”,

“as”, etc.

2 [AS (rupak): A rupak (similar to metaphor) “RIT-SWI (O (.zll<1°li=?1}wff% T F@?”
is a figure of speech that compares an object (How long will the bloom of your youth remain
(upomeyo) with another unlike object (upoman) in the garden of life?) — Michael Madhusudan
such that the latter overshadows the formertothe ~ Dutt
extent that the verb follows the latter.

3 RS manabikaran: A manabikaran (Per- “@e Zffef 1S o vv @ gfeA 2T 1”7
sonification) is imparting human qualities or  (The day full moon night comes, the moon smiles
abilities to animals or objects. across the sky) — Rabindranath Tagore

4 FAA@E (anukarandhwani): An anukarand- “J& IR Ax o Fm Qg3 @@ (Hear-
hwani (Onomatopoeia) uses words that imitate  ing whose free-spoken words, the three worlds
the sounds associated with the objects or actions  tremble and weep) — Kazi Nazrul Islam
they refer to.

5 Sfe*TAIRE (atishoyokti): An atishoyokti (Simi- “TEIF FGIH 3w ¢ A7 FA [Ee == o
lar to hyperbole) is an exaggeration used for a ofet 7 Sior Sfotet T 1”7 (Thousands and thou-
difference or distinction. sands of martyrs and heroes, in dreams and

deep remembrance, I cherish, I have not forgot-
ten their self-sacrifice) — Sukanta Bhattacharya

6 99 (anupras): An anupras (Alliteration) is ~ “SNNq BIiRE| I Ae! O TIfE A" (The
the repetition of initial consonant sounds in a se-  response to the melody of my flute will awaken
ries of words. in them instantly) — Rabindranath Tagore

7 Q@I (birodhavash): A birodhavash (Simi- “&R¥ Tg @R 9, 56 SRARA" (Life and
lar to oxymoron and antithesis) juxtaposes con-  death are servants at my feet, the mind is free
trasting ideas in balanced phrases. from worry) — Rabindranath Tagore

8 @7 (bidrup): A bidrup (Irony) conveys a PN V(A M SR, (T N AR (By dy-
meaning opposite to the literal meaning in a  ing Kadambini proved that she had not died) —
satirical manner. Rabindranath Tagore

9 CE¥ @R AT (slesh and yamak): A slesh and — “CPIH @9 M2 O IAME AT ((He) has no
yamak (Similar to euphemism and pun) use qualities, has fire on forehead) — Bharatchan-
mild or indirect words with respective positions  dra Rai Gunakar
and multiple meanings to replace harsh or blunt
ones.

10 SmeNe  (uddeshyokti):  An uddeshyokti “Ferel QI IR fowEeT 20S; ©g8
(Apostrophe) addresses an absent or imaginary ~— (OTIF SR AN 27\ (Kolkata you will one
person or a personified abstraction. day become a bustling, magnificent city; yet, my

heart will always belong to you) — Jibanananda
Das

11 afsfieg (pratinidhitwa): A pratinidhitwa  ““F4R ACSY "[f\i’l% A" (The earth is prosaic
(Synecdoche) is a figure of speech in which in the world of hunger) — Sukanta Bhattacharya
a part of something is used to represent the
whole, or vice versa.

12 FACA 18] (swarbaishistya): A swarbaishistya “aifsy Foavw, B, fo=pfoa =2 B2 (Tam

(Assonance) is a figure of speech in which simi-
lar vowel sounds are repeated in nearby words.

ever indomitable, ever defiant, forever treading
the crooked path) — Kazi Nazrul Islam

Table 7: Examples of all figures of speech labels in Bengali literature.
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Co-occurrence matrix (sentences with 2 2 FoS labels) — 535 sentences

BECTITE (Apostrophe) 2 3] 4
&= (Irony)
TAETETET (Oxymoron/Antithesis/Epigram) 1 1 5
T (Alliteration) 92 170 214 3
AfTTENTE (Hyperbole) 2 13 15 1
FEFAEART (Onomaloposia) 5 3 8
TESER (Personification) 31 80 283 3
4% (Metaphor) 16 224 80 5
ST (Simile) 17 16 Y|
& & O e
& P & el
%‘Q o & &
& & & &
& R €
gé'* & g

Co-occurrence
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1 1 400
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Figure 8: Co-occurrence matrix of FoS labels that are simultaneously applied to the same sentences.

For local models, each model is loaded with
the specified quantization configurations to opti-
mize resource usage. Then the input sentences
are tokenized and converted into embeddings. The
model computes similarity scores between the in-
put embeddings and label representations, estimat-
ing P(/|x) for each label / € L. The label with
the highest probability is selected as the predicted
label. The associated probability P(ylx) serves as
the confidence score for the prediction. For API-
based models, we interacted with the models by
transferring the sentences from the evaluation set
to the models. Since API models may not provide
explicit confidence scores, we retrieved the other
standard set of metrics based on available informa-
tion.

After evaluating each model, we obtain the con-
fidence scores and compute the performance met-
rics. We observe that models like Llama-3 and
DeepSeek R1 performed competitively. Llama-3
marginally outperformed other models, attributed
to its extensive multilingual pre-training data and
language understanding capabilities.

While zero-shot classification is powerful, it
may not achieve the same performance as models

fine-tuned on specific datasets. Here, the models
relied on their pre-trained knowledge and hence
could not cover domain-specific nuances present
in the dataset.

A.4 Upsampling Experiment Continuation

As shown in Table 8, upsampling yields micro-
F1 = 0.4500 and weighted-F1 = 0.4250 for refine-
tuned DeepSeek R1, and micro-F1 = 0.5000 and
weighted-F1 = 0.5000 for refine-tuned Llama-3.
Macro-F1 is 0.4273 for DeepSeek R1 and 0.5000
for Llama-3. On the other side, quantized fine-
tuning and deployment results on the original Gold
Standard dataset represent better performance, in-
dicating that the upsampling gains are either not
preserved or not learned by the internal representa-
tions of the language models. Hence, we did not
make this a fundamental part of our main experi-
mental framework.

While contextual upsampling can enhance over-
all classification recall, it does not significantly im-
pact the models’ ability to discriminate intricate
FoS categories. These findings suggest that further
work, such as incorporating synthetic discourse
contexts or span-level augmentation, may be neces-
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Model & Mode Micro-F1 Macro-F1  Weighted-F1  Support
DeepSeek R1 7B (fine-tune) 0.4500 0.4273 0.4250 2,597
DeepSeek R1 7B (8-bit deploy) 0.4000 0.4000 0.4000 2,597
DeepSeek R1 7B (16-bit deploy) 0.4250 0.4091 0.4250 2,597
Llama-3 8B (fine-tune) 0.5000 0.5000 0.5000 2,597
Llama-3 8B (8-bit deploy) 0.4750 0.5000 0.5000 2,597
Llama-3 8B (16-bit deploy) 0.4750 0.5000 0.5000 2,597

Table 8: Fine-tuning and quantized deployment results after upsampling. The results are subpar to the fine-tuning
and deployment on the original Gold Standard dataset, which motivated us to work with that dataset.

sary to improve performance on underrepresented
labels.

A.5 Traditional ML Classifiers Approach

As discussed in Section 4.1, standard SVM and
NB classifiers, with bag of words and TF-IDF fea-
tures, respectively, achieved weighted-F1 scores
that are indeed comparable to our zero-shot evalu-
ation setup. However, they fell substantially short
of the moderate performance gains by finetuned
Llama3 and DeepSeek R1. We show these results
in Table 10.

Model Micro-F1 (%)
SVM (Bag-of-Words) 41.1
Naive Bayes (TF-IDF) 40.5
Zero-Shot Llama-3 41.0
Zero-Shot DeepSeek R1 40.0
Fine-Tuned Llama-3 59.0
Fine-Tuned DeepSeek R1 62.0

Table 9: Comparison of approaches on the weighted-F1
metric.

A.6 Data and Task Formulation for Models
Fine-Tuning

Our primary goal is to handle FoS assignments,
where each sentence may belong to one or more
labels. We adopt Low-Rank Adaptation (LoRA)
to deploy the models with reduced computational
overhead efficiently. For fine-tuning the Llama-3
8B and DeepSeek R1 Distill 7B models on a multi-
label classification task involving Bengali text, We
consider the GS where each Bengali sentence is as-
sociated with one or multiple FoS labels, thus fram-
ing the problem as a multi-label classification chal-

lenge.

Let:
P = {(x(n)’y(n))}N

n=1

2

Determining our Gold Standard Bengali dataset
of size N. Here, x'" is the n-th sentence, and
y(n) € {0,1}K is the corresponding multi-label
vector indicating membership in any of K possible
FoS categories. We partition & into training and
evaluation subsets, employing a stratified split to
preserve label distributions.

Although both models are primarily designed
for language modeling tasks, we attach a multi-
label classification head to the output of its final
attention layer. Concretely, for a sentence x", the
model outputs a final hidden representation A",
which we pass through a linear mapping:

z" = Wcls’h(n) + bcls’ (3)

where " € RK is a logit vector for the K FoS
labels. Each logit zk™ is then passed through a
sigmoid to yield an independent label probability:

PO =112 = g, (z). )

This setup naturally supports multi-label deci-
sions, allowing each label dimension to be acti-
vated independently.

We define our training objective using the Bi-
nary Cross-Entropy (BCE) loss over each label:

e(n‘k) _

beh = -y log(o(zf) = (1 -y log(1 - (). (5)

The overall loss is the average across all n and k:

1 K
% =55 D bt (6)
’ k=1

We minimize # with an 8-bit variant of
the Adam optimizer, following a mixed-precision
training scheme (Narang et al., 2017). This setup is
particularly suitable when deploying large models
in environments with limited GPU memory.

After training, the adapted models can be used to
classify new Bengali sentences by computing the
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final logits for each label and thresholding the sig-
moid outputs. Additionally, we extract sentence
embeddings by taking the final hidden state or a
designated token representation from the last trans-
former layer:

e = Enc(x"™), (7)

where Enc denotes the final encoder outputs of
Llama-3. These embeddings can serve for ancil-
lary tasks such as similarity search or external clas-
sifier training.

A.7 Hyperparameter Search Space

We performed grid search over learning rates
{le—5,3e-5, 5e-5}, batch sizes {16,32}, and up
to 10 epochs with early stopping (patience = 2) us-
ing AdamW (g, = 0.9, 8, = 0.999, weight de-
cay = 0.01). Sequence length was capped at 128
tokens. For adapters, we used a bottleneck d = 64,
for LoRA rank r = 8 and r=16, and for prefix-tuning
a prompt length of 50 tokens. The insights are rep-
resented in Table 10).

Hyperparameter Values

Learning rate le-5, 3e-5, 5e-5

Batch size 16, 32

Max epochs 10 (early stop patience=2)
Weight decay 0.01

Optimizer AdamW (S,=0.9, 5,=0.999)
Sequence length 256

Adapter bottleneck dim. (d) 64

LoRA rank (r) 8

Prefix length 50

Table 10: Hyperparameter search grid.

A.8 Fine-Tuning and Deployment Results

The tables below report the entire fine-tuning and
deployment metrics (8-bit and 16-bit quantized)
for Llama-3 8B and DeepSeek R1 Distill 7B as
observed during the experiments. The fine-tuning
figures (Accuracy / Macro-F1 / Micro-F1) are
taken from Table 4 (5-fold CV fine-tuning vari-
ants). The deployment / average metrics (ac-
curacy/precision/recall/micro/macro/weighted F1)
are taken from the summary of the deployment
evaluation and classification report of the article
(Tables 6-7 and related text).

A.9 Layer-wise Probing Procedure

After fine-tuning, we extracted for each sentence
x; the hidden vector A} corresponding to the first
token (e.g., <s>) at each layer €. We then trained

a separate logistic regression probe in 80% of the
validation fold and evaluated micro-F1 on the re-
maining 20%. Algorithm 1 details the pipeline.

Algorithm 1 Layer-wise Probing for FoS Label
Identification.

Require: Fine-tuned transformer model /6 with L layers, dataset & =
((xi’yi))ﬁ]

1: for¢=0,...,Ldo

2:  Extract representations:

H©O « {9 = Mby(x,)[<s>] | (x:,¥;) € D}

3: Split (£, Y) into train (80%) and val (20%)
4: Train logistic regression probe %(® on train
5: Evaluate: i
microF1'? « 9 (val)
6: end for

7: return {microF1'" o

A.10 Analysis of Hidden State Distributions

To further investigate the internal representational
dynamics and complement our layer-wise probing
accuracy, we analyzed the mean and variance of
the hidden state activations for each layer. For a
given layer /, let HD = {h%l),h(zl), ,hj(\l,)} be the
set of N hidden state vectors (typically the output
of the attention mechanism or the feed-forward net-
work, before layer normalization, averaged over to-
ken positions per sentence). We compute the mean
vector ;0 = LYY hP and the mean of the
element-wise variances 02!’ = mean(Var(H")),
where the variance is computed across the dataset
for each dimension of the hidden state and then av-
eraged. This analysis aims to reveal layer-specific
shifts in representational geometry. For instance,
significant changes in variance might indicate lay-
ers where representations become more special-
ized or discriminative for the downstream task.

DeepSeek R1 Distill 7B Insights: The
DeepSeek R1 model shows in Figure 9 rela-
tively stable variance across most layers, with
only a slight increase observed in the final few
layers. The mean of its hidden states presents
more fluctuation, particularly a sharp decrease in
the terminal layers. Unlike Llama-3, a direct and
strong correlation between these distributional
statistics and the layer-wise probing performance
is less apparent for DeepSeek R1, where probing
accuracy is more varied across its depth. This
difference suggests distinct representational learn-
ing strategies between the two architectures when
fine-tuned for Bengali FoS identification.
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ID Figure of Speech (FoS)
0 None
1 SO (Simile)
2 S (Metaphor)
3 WEIRd (Personification)
4 GFRARE (Onomatopoeia)
5 Ofew@ifE (Hyperbole)
6 O™ (Alliteration)
7 fegem (Oxymoron, Antithesis, or Epigram)
g famet (Irony)
9 ¥ / INF (Euphemism or Pun)

10 Swmentes (Apostrophe)
11 eifsfafag (Synecdoche and Metonymy)
12 FAIME (Assonance)

Table 11: FoS ID — label-name mapping used in the annotations and experiments.

L-3 8-bit L-3 16-bit DS R1 8-bit DS R1 16-bit

Class P R F1 Sup P R F1 Sup P R F1 Sup P R F1 Sup

1 .

2 033  0.05 0.09 81 042 014 021 81 030 0.09 0.13 81 030 0.09 0.13 81
3 030 0.06 0.10 98 047 0.08 0.14 98 038 035 036 98 038 035 036 98
4 0.00 0.00 0.00 3 0.00 0.00 0.00 3 0.00 0.00 0.00 3 0.00 0.00 0.00 3
5 0.00 0.00 0.00 15 0.00 0.00 0.00 15 0.00 0.00 0.00 15 0.00 0.00 0.00 15
6 0.69 073 071 239 0.80 077 0.78 239 069 075 072 239 069 075 072 239
7 0.00  0.00 0.00 5 0.00  0.00 0.00 5 0.00  0.00 0.00 5 0.00  0.00 0.00 5
8 0.00 0.00 0.00 0 0.00  0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0
9 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1
10 0.00 0.00 0.00 21 1.00  0.05 0.09 21 0.00 0.00 0.00 21 0.00 0.00 0.00 21
11 0.00  0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0
12 0.00 0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0
mic. avg 0.65 041 0.51 666 069 046 054 666 062 045 052 666 062 045 055 666
mac. avg 023 013 0.14 666 033 015 015 666 022 015 0.16 666 022 015 017 666
Ww. avg 054 041 043 666 064 046 046 666 055 045 047 666 055 045 050 666
smp. avg 051 045 046 666 056 050 049 666 050 047 047 666 050 047 050 666

Table 12: Fine-tuning — full classification reports (classes 0—12) for the four quantized variants. L-3 is Llama-3
8B, and DS R1 is DeepSeek R1 7B. All metrics are represented from the training logs. Precision, Recall, F1-Score,
and Support are represented as P, R, F1, and Sup. The cumulative results are represented in micro average, macro
average, weighted average, and sample average.

L-3 8-bit L-3 16-bit DS R1 8-bit DS R1 16-bit

Class P R F1 Sup P R F1 Sup P R F1 Sup P R F1 Sup

1 0.00 0.00 0.00 51 0.00 0.00 0.01 51 0.18 1.00  0.30 51 0.18 1.00 031 51
2 0.19 0.78 031 80 0.19 078 033 80 0.28 1.00 043 80 0.28 1.00 046 80
3 029 051 0.37 86 029 051 0.39 86 0.29 1.00 045 86 0.29 1.00 048 86
4 0.00 0.00 0.00 4 0.01 1.00  0.02 4 1.00 075 0.86 4 .00 075 092 4
5 0.03 1.00  0.05 14 0.00 0.00 0.01 14 1.00 050  0.67 14 0.05 1.00  0.11 14
6 052  0.64 058 247 052 0.64 062 247 0.67 1.00  0.80 247 0.67 1.00  0.85 247
7 0.00 1.00 0.01 2 0.00 1.00  0.02 2 0.01 1.00  0.02 2 1.00 050 071 2
8 0.00  0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0 0.00  0.00 0.00 0
9 0.00 0.00 0.00 0 0.00  0.00 0.00 0 0.00 0.00 0.00 0 0.00  0.00 0.00 0
10 0.00 0.00 0.00 13 0.00 0.00 0.01 13 0.05 1.00  0.09 13 0.05 1.00  0.10 13
11 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0
12 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0
mic. avg 0.18 054 027 649 0.17 053 029 649 031 091 0.47 649 032 092 050 649
mac. avg 016 049 0.19 649 015 049 020 649 049 0.88 049 649 050 0.88 052 649
W. avg 035 054 041 649 035 053 044 649 0.60 091 0.65 649 058 092 069 649
smp. avg 0.17 053 025 649 0.16 052 027 649 058 0.89 0.63 649 058 090 0.67 649

Table 13: Deployment — full classification reports (classes 0—12) for the four quantized deployed variants. L-3
is Llama-3 8B, and DS R1 is DeepSeek R1 7B. All metrics are represented from the deployment logs. Precision,
Recall, F1-Score, and Support are represented as P, R, F1, and Sup. The cumulative results are represented in micro
average, macro average, weighted average, and sample average.
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Mean and Variance of Hidden States by Layer
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Figure 9: Mean and variance of hidden state activations
across layers for the fine-tuned DeepSeek R1 Distill
7B. The x-axis represents the layer number, the left y-
axis shows the mean of activations, and the right y-axis
shows the average variance.

Llama-3 8B Insights: As depicted in Figure 10,
the Llama-3 8B model exhibits a notable increase
in the variance of its hidden states in the later lay-
ers (approximately layers 25-31). This region of
increased variance is intriguingly correlated with
the layers that demonstrate the highest probing per-
formance for FoS classification (micro-F1 score
> 0.60). The mean of the hidden states also dis-
plays a distinct pattern, with a discernible dip in
these later layers. This suggests that as representa-
tions progress through Llama-3, they become more
dispersed and potentially more separable for FoS-
related features in the upper layers.
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Figure 10: Mean and variance of hidden state activa-
tions across layers for the fine-tuned Llama-3 8B.

Missclassification Analysis: We further include
a per-class misclassification analysis of the 16-bit
quantized Llama-3 and DeepSeek R1 models. Fig-
ure 11 and Figure 12 show the relative counts of
false positives and false negatives for each FoS la-
bel. These plots are derived from the fine-tuning
of DeepSeek R1 and Llama-3, highlighting that
skewed classes (e.g., frequent Alliteration, rare

Apostrophe or Synecdoche) drive asymmetric er-
ror patterns. The plot reports per-class counts of
false positives (Predicted=1, True=0) and false neg-
atives (Predicted=0, True=1).

A.11 Compute and Runtime

All experiments were conducted on NVIDIA A100
GPUs, CUDA 11.7, PyTorch 2.0, and Hugging-
Face Transformers v4.28. Full fine-tuning took
~4.2 hours for DeepSeek R1 Distill 7B and =5.1
hours for Llama-3 8B per fold, using 14 GB and
20 GB of GPU memory, respectively.

A.12 Additional Experimentation Details

Due to page limits, the following figures are pro-
vided here for reference:

Fine-Tuning Loss Comparison. Here we show
in Figure 13 the comparative evaluation of the
loss comparison among the quantized variations of
Lllama-3 and DeepSeek R1 during fine-tuning.

Fraction-wise Evaluation Loss. Here we show
in Figure 14 the final validation loss on the respec-
tive training subset size.

Attention Heatmaps. In accordance with Sec-
tion 6.3, here we show one instance of the attention
heatmaps of a sentence in Figure 15 and Figure 16,
where both Llama-3 and DeepSeek R1 failed to
identify the FoS labels.

The sentence here is: TWER G &E AN G
AR A e emd e gers AR
(Through the doors of every heart we roam all
night, frolicking in each soul; at dawn we will go
forth, blending as we go). This sentence contains
Personification (Label 3), Onomatopoeia (Label 4),
and Alliteration (Label 6). However, both models
mistake the FoS present as a Metaphor (Label 2).
Similarly, for many other sentences, the internal
layer representations could not decode the patterns
present in the sentence.

A.13 Discussion

Our extensive experiments reveal several key in-
sights into fine-tuning and interpreting LLMs for
Bengali FoS detection.

A.13.1 Performance Disparities Across FoS
Labels

Analysis of per-label metrics (labels that were
found and annotated for the Gold Standard dataset)
in Table 14 with layer probing shows that frequent
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Misclassification Analysis: False Positives vs. False Negatives per FoS Label

I False Positives (Predicted=1, True=0)
[ False Negatives (Predicted=0, True=1)
30

Count of Misclassifications

Figure of Speech Labels

Figure 11: Misclassification analysis of the 16-bit quantized DeepSeek R1 Distill 7B model on BengFoS. Errors are
unevenly distributed across labels, with frequent classes (e.g., Alliteration, None) exhibiting higher false positives
and rare classes (e.g., Apostrophe, Synecdoche) showing higher false negatives.

Misclassification Analysis: False Positives vs. False Negatives per FoS Label
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Figure 12: Misclassification analysis of the 16-bit quantized Llama-3 8B model on BengFoS. Compared to
DeepSeek R1, Llama-3 exhibits higher false positives in several mid-frequency labels and persistent false nega-
tives for rare labels. The visualization highlights the challenge of class imbalance and the asymmetric error patterns
across different figures of speech.
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Model Fine-Tuning Performance Comparison (1@ Epochs)

Epoch
B [Train] DeepSeek 7B 8-bit B [Train] Llama-3 8-bit
B [Train] DeepSeek 7B 16-bit W [Train] Llama-3 16-bit
B [Val] DeepSeek 7B 8-bit [ [Val] Llama-3 8-bit
B [val] DeepSeek 7B 16-bit [val] Llama-3 16-bit

Figure 13: Loss comparison among the quantized variations of Lllama-3 and DeepSeek R1 during fine-tuning.

Final Validation Loss
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Final Validation Loss vs. Training Subset Size
(Evaluation Phase)

Training Data Subset Fraction
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Figure 14: Fraction-wise validation loss of Llama-3 and DeepSeek R1
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Figure 15: Attention heatmap generated by DeepSeek
for a misclassified FoS identification sentence with mul-
tiple FoS labels.
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Figure 16: Attention heatmap generated by Llama for a
misclassified FoS identification sentence with multiple
FoS labels.

categories (e.g., None, Alliteration) achieve higher
precision and recall, while rare categories (e.g.,
Apostrophe, Euphemism) suffer from near-zero re-
call. This imbalance underscores the need for
data augmentation or cost-sensitive training to cap-
ture underrepresented FoS better. Also, though
both models exhibit similar performances, Llama-
3 was found to cover a better FoS Label range than
DeepSeek R1.

A.13.2 Impact of Deployment Quantization

Deployment experiments in Section 5.1 indicate
that 16-bit quantization of Llama-3 and DeepSeek
R1 incur minimal drops in macro-F1 (<2%),
demonstrating the feasibility of real-time inference.
However, rare classes saw larger degradation un-
der quantization, hinting at reduced representation
fidelity for nuanced FoS features.

A.14 Fine-Grained Deployment Result
Analysis

To assess practical applicability, we evaluated the
16-bit quantized fine-tuned DeepSeek R1 7B and
Llama-3 8B models on the complete BengFoS test
set. This evaluation aimed to simulate a deploy-
ment scenario and provide a comprehensive under-
standing of their classification capabilities for Ben-
gali Figures of Speech (FoS).

The DeepSeek R1 7B (16-bit) model demon-
strated a weighted average Fl-score of 0.64 and
a macro average Fl-score of 0.50. A detailed
breakdown of its per-class performance and error
patterns can be observed in its confusion matrix,
presented in Figure 17a. The model’s ability to
discriminate between classes is further illustrated
by the Receiver Operating Characteristic (ROC)
curves and their corresponding Area Under the
Curve (AUC) values, shown in Figure 17b. No-
tably, for several FoS classes, the DeepSeek R1
model achieved high AUC values (e.g., Class 0
AUC = 0.95, Class 4 AUC = 0.99), indicating
strong discriminative power for these specific cate-
gories.

In comparison, the Llama-3 8B (16-bit) model
achieved a weighted average F1-score of 0.40 and
a macro average F1-score of 0.19. The confusion
matrix in Figure 17c details its classification behav-
ior across the different FoS labels, highlighting ar-
eas where it excels or struggles. The ROC curves,
depicted in Figure 17d, provide a visual assess-
ment of its class-wise true positive rate versus false
positive rate. While Llama-3 showed reasonable
AUC:s for certain classes (e.g., Class 4 AUC=0.76,
Class 7 AUC=0.81), its overall discriminative ca-
pability, as reflected by the average F1-scores and
many per-class AUCs, was comparatively lower
than DeepSeek R1 on this task.

These results suggest that while both models can
be deployed at 16-bit precision, the DeepSeek R1
7B architecture, after fine-tuning, exhibits a more
robust performance profile for Bengali FoS identi-
fication in this setting. The visual diagnostics (con-
fusion matrices and ROC curves) in sub-figs. 17a
to 17d are crucial for understanding the nuances
of these performance differences beyond aggregate
metrics.

A.15 Error Analysis

Despite promising layer-wise trajectories, probing
cannot fully reveal causal influence or disentan-
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(a) Confusion Matrix (DeepSeek 16-bit). (b) ROC Curves (DeepSeek 16-bit).
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(c) Confusion Matrix (Llama-3 16-bit). (d) ROC Curves (Llama-3 16-bit).

Figure 17: Performance evaluation of the 16-bit quantized versions of DeepSeek R1 7B and Llama-3 8B on the
BengFoS test set. Subfigures (a) and (c) show the normalized confusion matrices, while (b) and (d) illustrate the
per-class ROC curves and AUC values.
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DeepSeek R1 Distill 7B Llama-3 8B

FoS Label Precison Recall F1-Score Support Precison Recall F1-Score  Support

FoS 0 0.276 0.973 0.429 147 0.397 0.211 0.276 147
FoS 1 0.099 0.893 0.179 56 0.105 0.929 0.189 56
FoS 2 0.152 0.716 0.251 81 0.152 0.963 0.263 81
FoS 3 0.185 0.980 0.311 98 0.180 0.888 0.299 98
FoS 4 - - - - 0.006 1.000 0.011 3
FoS 5 0.031 0.733 0.060 15 0.030 1.000 0.059 15
FoS 6 0.438 0.456 0.447 239 0.449 0.146 0.221 239
FoS 7 - - - - 0.010 0.600 0.019 5
FoS 9 - - - - 0.003 1.000 0.006 1
FoS 10 0.043 0.714 0.082 21 0.032 0.524 0.061 21

Table 14: Cumulative performance metrics for FoS labels during layer probing for both Fine-tuned Models. The
probing analyses reveal that Llama-3 performed better in identifying slightly more diverged FoS labels (Labels 4,
7, and 9), while Llama-3 is more stable across the metrics.

gle distributed representations. Some FoS cate-
gories (e.g., Apostrophe, Euphemism) remain hard
to probe due to their sparsity or dependence on
discourse context. Inspection of misclassified or
missing labels reveals common patterns as: Se-
mantic Overlap: Sentences with multiple FoS la-
bels (e.g., Metaphor + Personification) often con-
fuse the model’s single-head classifier. Idiomatic
Expressions: Culturally specific idioms are fre-
quently missed or misattributed. Length Sensitiv-
ity: Longer sentences with complex syntax yield
lower accuracy, suggesting transformer truncation
limits semantic capture.
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