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Abstract

Despite advancements in large language mod-
els (LLMs), non-factual responses still persist
in fact-seeking question answering. Unlike ex-
tensive studies on post-hoc detection of these
responses, this work studies non-factuality pre-
diction (NFP), predicting whether an LLM will
generate a non-factual response prior to the re-
sponse generation. Previous NFP methods have
shown LLMs’ awareness of their knowledge,
but they face challenges in terms of efficiency
and transferability. In this work, we propose
a lightweight model named Factuality Lens
(FacLens), which effectively probes hidden rep-
resentations of fact-seeking questions for the
NFP task. Moreover, we discover that hidden
question representations sourced from different
LLMs exhibit similar NFP patterns, enabling
the transferability of FacLens across different
LLMs to reduce development costs. Extensive
experiments highlight FacLens’s superiority in
both effectiveness and efficiency. 1

1 Introduction

Large language models (LLMs) have shown im-
pressive abilities in understanding and generating
coherent text (OpenAI, 2023; Meta, 2024; Jiang
et al., 2023), yet they may provide non-factual re-
sponses in fact-seeking question answering (fact-
seeking QA) (Zhang et al., 2023; Cui et al., 2024).
Extensive studies have been devoted to detecting
the non-factual responses, a task we name non-
factuality detection (NFD) (Manakul et al., 2023;
Azaria and Mitchell, 2023; Chen et al., 2024a,
2023; Min et al., 2023a). However, these post-
hoc methods require response generation, which
incurs significant computational overhead. There-
fore, this paper studies non-factuality prediction
(NFP), which predicts the likelihood of an LLM

*Work done while at Zhongguancun Laboratory.
†Corresponding authors.
1Code: https://github.com/wyl7/FacLens.

generating a non-factual response to a fact-seeking
question before the response generation. Figure 1
(a) illustrates the difference between NFD and NFP.

To solve the NFP problem, researchers have pro-
posed making predictions by analyzing specific
tokens in a question (Mallen et al., 2023; Yük-
sekgönül et al., 2024), making these methods ap-
plicable to specific types of questions. For more
general questions, approaches based on prompting
or fine-tuning the LLM for NFP have been pro-
posed (Luo et al., 2024; Kadavath et al., 2022).
However, two limitations persist: (1) current NFP
models can be improved in terms of effectiveness
and efficiency, and (2) they are designed for an in-
dividual LLM, lacking the transferability for rapid
adaptation to new LLMs.

Inspired by studies that monitor and manipulate
hidden representations to improve LLMs’ perfor-
mance (Zou et al., 2023; Zhang et al., 2024; Chen
et al., 2024b), we hypothesize that knowledge
awareness has been embedded in the hidden repre-
sentations of fact-seeking questions. To investigate
this, we propose a lightweight model, Factuality
Lens (FacLens), and demonstrate its ability to
probe the hidden question representations for NFP.
Figure 1 (b) shows the workflow of FacLens. As
hidden question representations can be efficiently
obtained, and the model structure is lightweight,
FacLens achieves high efficiency in both training
and prediction (see Table 2). This makes it highly
suitable for real-world LLM applications, helping
to reduce non-factual responses to end-users while
maintaining a minimal budget and latency. To con-
struct the training data of FacLens, we prompt the
target LLM to produce responses to questions from
high-quality fact-seeking datasets. We then com-
pare the LLM-generated answers with the golden
answers, assigning binary factual/non-factual la-
bels to the responses. Nevertheless, extending Fa-
cLens to support multiple LLMs becomes resource-
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Figure 1: Illustrations of the objective and workflow of FacLens for efficient and transferable ante-hoc NFP.

intensive and time-consuming, because each LLM
must conduct response generation for the training
data construction. Fortunately, we discover the
transferability of FacLens across different LLMs,
allowing us to assign the binary labels for just one
LLM and apply unsupervised domain adaptation
(DA) to rapidly apply FacLens to other LLMs with-
out collecting new labels, thereby improving the
efficiency in development.

Investigating the transferability of FacLens is in-
spired by the research on human cognition (Miller
et al., 2012), which shows that individuals with
similar cognitive styles and encoding strategies ex-
hibit similar brain activity when performing the
same task. Given current LLMs generally follow
the Transformer (Vaswani et al., 2017) architec-
ture and share overlapping training corpora (Gao
et al., 2021; com, 2024; Kocetkov et al., 2023),
we hypothesize that different LLMs have similar
cognitive patterns in terms of knowledge aware-
ness (i.e., similar NFP patterns). To validate this
hypothesis, we define a collection of hidden ques-
tion representations sourced from a certain LLM
as a data domain. Our experiments demonstrate
that a FacLens trained on data from multiple do-
mains performs similarly to the one trained on
a single domain, suggesting that different indi-
vidual domains do not have a significant concept
shift (Moreno-Torres et al., 2012).2 Building on
this insight, we can quickly apply a trained FacLens
to a new LLM through unsupervised domain adap-
tation (DA) (Smola et al., 2007; Liu et al., 2022).
Additionally, we propose a question-aligned strat-
egy to enhance the mini-batch-based DA.

This paper makes the following contributions:

• Findings. We verify that hidden question rep-
2Not having a significant concept shift implies highly con-

sistent conditional distributions P (y|X) between domains.

resentations in an LLM contain valuable in-
formation for NFP in fact-seeking QA, i.e.,
LLMs’ activation during question understand-
ing mostly reveals whether they know the
facts. Moreover, we show that different LLMs
exhibit similar NFP patterns to enable a cross-
LLM NFP model.

• Method. We propose a lightweight and trans-
ferable NFP model named FacLens, enabling
efficient development and application. To our
knowledge, this is a pioneer work to train a
transferable NFP model for multiple LLMs.

• Experiments. We conduct extensive experi-
ments, involving four open-source LLMs and
three widely used fact-seeking QA datasets.
The results show that FacLens outperforms
baselines in terms of AUC metric and runtime.

2 Related Work

Hidden Representations in LLMs. Hidden rep-
resentations in LLMs have been shown to encode
valuable information that can be leveraged for vari-
ous tasks (Zou et al., 2023). In terms of LLMs’ fac-
tuality, studies like SAPLMA (Azaria and Mitchell,
2023) and MIND (Su et al., 2024) leverage hid-
den representations of LLM-generated responses
for post-hoc NFD. TruthX (Zhang et al., 2024) ed-
its hidden representations of LLM-generated re-
sponses via an edit vector to enhance the LLM’s
truthfulness. Activation Decoding (Chen et al.,
2024b) reveals that an LLM’s responses are closely
tied to the representations of input entities but do
not validate their effectiveness in NFP.

Non-Factuality Prediction in LLMs. We
categorize the studies into token-based and non-
token-based methods. The entity popularity-based
method (Mallen et al., 2023) focuses on input entity
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tokens, assuming that LLMs are more familiar with
questions about popular entities and estimating
entity popularity based on Wikipedia page views.
However, not every question contains entities that
exactly match a Wikipedia entry. SAT Probe (Yük-
sekgönül et al., 2024) predicts based on the LLM’s
attention to specific constraint tokens. The authors
restrict the types and formats of questions to fa-
cilitate the identification of the constraint tokens.
However, extracting constraint tokens from free-
form questions is non-trivial. Without focusing on
specific tokens, Self-Familiarity (Luo et al., 2024)
estimates an LLM’s familiarity with the requested
facts through multi-round conversations with the
LLM, requiring carefully crafted prompts to en-
gage the LLM multiple times, resulting in low pre-
diction efficiency. Alternatively, researchers fully
fine-tune the LLM for NFP (Kadavath et al., 2022)
(termed Self-Evaluation). However, this approach
incurs significant computational costs and may hin-
der the LLM’s generalization ability (Yang et al.,
2024b). In contrast, FacLens exhibits good appli-
cability and high efficiency. LLM Factoscope (He
et al., 2024) estimates whether the first generated
word matches a known fact using the representa-
tion of the prompt’s last token. By comparison,
FacLens does not restrict the LLM’s output format
and demonstrates that, beyond the representation
of the prompt’s last token, question-level represen-
tations captured through alternative forms are also
effective. Most importantly, unlike prior work, our
method is distinguished by its ability to support
cross-LLM domain adaptation. 3

3 Preliminary

3.1 Problem Definition

Definition 1 Non-Factual Response. Given an
LLM m ∈ M and a fact-seeking question q ∈ Q,
m generates an answer s. If the answer s fails to
convey the queried fact, it is a non-factual response.

Problem 1 Non-Factuality Prediction in an LLM
(NFP). Given an LLM m ∈ M and a fact-seeking
question q ∈ Q, the objective is to learn a function
f (m, q) → y, where y = 1 if m will generate a
non-factual response to q and y = 0 otherwise.

Problem 2 Transferable Cross-LLM NFP. Given

3Hidden question representation has been utilized for pre-
dicting an LLM’s self-consistency (Liang et al., 2024). No-
tably, self-consistency does not equate to factuality; for in-
stance, an LLM can consistently produce incorrect answers.

LLMs m1,m2 ∈ M and a fact-seeking ques-
tion set Q, NFP labels have been constructed
based on Qtrain ⊂ Q for m1, deriving a train-
ing set {((m1, qi) , y1,i)}qi∈Qtrain . The goal is to
utilize the training set and m2 to learn a function
f (m, q) → y, where m ∈ {m1,m2} and q ∈ Q.

3.2 NFP Datasets

Dataset Construction. Given an LLM m and a
fact-seeking QA dataset, for each question q ∈ Q,
we assign a binary label y to the (m, q) pair, where
y = 1 if m fails to generate the golden answer
for q, and y = 0 otherwise. Our goal is to predict
the labels prior to answer generation. Notably, a
fact-seeking question asks for objective and ver-
ifiable information, such as dates, locations, and
entities. Examples include “In which year was
the Eiffel Tower built?” and “Which city is the
capital of France?”. Their answers are naturally
short and precise. Therefore, we follow previous
work (Mallen et al., 2023) to mark an LLM’s re-
sponse as non-factual (i.e., y = 1) if no sub-string
of the response matches any of the gold answers.4

We consider four LLMs and three QA datasets in
the main body of the paper, deriving 4 × 3 = 12
NFP datasets. In each NFP dataset, consisting of
samples in the form of ((m, q), y), we randomly
sample 20% data for training, 10% data for valida-
tion, and use the remaining data for testing.

LLMs & QA Datasets. LLaMA2-7B-Chat (Tou-
vron et al., 2023), LLaMA3-8B-Instruct (Meta,
2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
and Qwen2-1.5B-Instruct (Yang et al., 2024a) are
used for experiments. These LLMs have been
instruction-tuned for conversational engagement.
We pose questions from three widely-used QA
datasets: PopQA (PQ) (Mallen et al., 2023), Entity
Questions (EQ) (Sciavolino et al., 2021), and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019).
Detailed statistics of these datasets are provided in
Appendix A. To ensure reproducibility, we set each
LLM’s decoding strategy to greedy search rather
than top-p or top-k sampling. We have also run the
sampling-based decoding, and find that the paper’s
experimental conclusions still hold true.

4The labeling method ensures accurate labels of all positive
samples. We randomly sample 20 negative samples from each
NFP dataset, deriving 20× 12 = 240 negative samples, and
manually checked their labels’ quality. Given that all positive
samples constitute 72.2% of the dataset, the ratio of correct
labels is 97.0%.
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Figure 2: Performance comparison of FacLens (ante-
hoc NFP) with INSIDE and SAPLMA (post-hoc
NFD). Trends are consistent on EQ and NQ (see Ap-
pendix D.1).

4 Methodology

4.1 FacLens
Given an LLM m and a fact-seeking question q, we
can quickly acquire the hidden states correspond-
ing to input tokens. In a certain layer, we use the
hidden states corresponding to the last input token
as the question’s hidden representation x. Then
we use an encoder genc to transform the question’s
hidden representation into a latent feature space,
where we presume that the NFP patterns are rep-
resented. Afterwards, a linear classifier gclf is set
upon genc for classification. Formally, based on the
ℓ-th hidden layer of m, FacLens predicts by,

p = gclf (genc (m≤ℓ (q))) = gclf (genc (x)) (1)

where m≤ℓ (·) denotes the function composed
of the ℓ-th transformer layer and its preceding
layers, genc is implemented by a lightweight
multi-layer perceptron (MLP)5, gclf is imple-
mented by a linear layer with the Softmax func-
tion, and p is a two-dimensional vector revealing
the probability of (not) producing non-factual re-
sponses. Based on a set of labeled NFP instances
{(m≤ℓ (qi) , yi)}qi∈Qtrain∪Qval

, where Qtrain and
Qval denote question sets used for training and val-
idation, respectively, we can train a FacLens for m
with the classic cross-entropy (CE) loss.

Observation: While post-hoc NFD methods lever-
age more information, the ante-hoc FacLens
has the potential to perform better. In Figure 2,
we compare FacLens with SAPLMA (Azaria and
Mitchell, 2023) and INSIDE (Chen et al., 2024a),

5Our goal is to verify that hidden question representations
contain useful patterns for the NFP task. Exploring other
model architectures for the NFP pattern extraction is beyond
the scope of this paper.

two representative post-hoc methods that lever-
age hidden representations of LLM-generated re-
sponses to identify non-factual responses. While
post-hoc methods leverage more information (i.e.,
the LLM-generated responses), FacLens shows
comparable and even better performance.

4.2 Transferability of FacLens
When it comes to multiple LLMs, the construction
of NFP training data becomes resource-intensive
and time-consuming, because each LLM needs
to conduct costly response generation (see Sec-
tion 3.2). Fortunately, we discover the transferabil-
ity of FacLens, which allows us to label training
data for just one LLM and adapt the FacLens to sup-
port other LLMs. In Appendix B, we illustrate the
more efficient process of training data construction
enabled by the transferability of FacLens.

Why Domain Adaptation is Effective for Trans-
ferring FacLens Across LLMs. Domain adapta-
tion (DA) is an approach in transfer learning that
transfers information from a source domain to im-
prove performance in a target domain (Ben-David
et al., 2006; Liu et al., 2022; Moreno-Torres et al.,
2012). The premise of DA is that the source and
target domains have distinct marginal probability
distributions P (X), but share similar conditional
probability distributions P (y|X) (i.e., no signifi-
cant concept shift) (Liu et al., 2022; Moreno-Torres
et al., 2012). Here we refer to the domain as,

Remark 1 Let the variable X represent the hidden
question representation in an LLM. A data domain
D refers to a collection of hidden question repre-
sentations sourced from a certain LLM.

Different domains naturally have different P (X).
If P (y|X) of different domains exhibit similar
forms, we can perform DA to apply FacLens to
other LLMs without new labels for training.

Now we verify that different data domains indeed
have similar conditional distributions P (y|X) by
introducing a mixture domain Dmix, whose joint
probability distribution is,

Pmix(X,y) =
∑M

i=1
αi · Pmi(X,y)

s.t.
∑M

i=1
αi = 1

(2)

where M is the number of individual data domains
(i.e. the number of different LLMs), mi denotes
the i-th LLM, and 0 < αi < 1 represents the

18578



LLaMA2 LLaMA3 Mistral Qwen20.75

0.80

0.85

0.90

0.95

1.00
A

U
C

PQ
fm trained on individual data domain
fmix trained on mixture data domain

Figure 3: Performance comparison between fm and
fmix. Similar performance suggests no significant con-
cept shift across different domains. Trends are consis-
tent on EQ and NQ (See Appendix D.2)

proportion of Di in the mixture domain. Here we
set αi =

1
M .

Therefore, the FacLens trained on the mixture do-
main follows the conditional distribution,

Pmix(y|X) =
∑M

i=1
βi(X) · Pmi(y|X),

βi(X) =
αi · Pmi(X)

∑M
j=1 αj · Pmj (X)

(3)

It is readily derived that
∑M

i=1 βi(X) = 1, and 0 <
βi(X) < 1 if Pm1(X), Pm2(X), · · · , PmM (X)
are not disjoint. If there are no concept shifts be-
tween individual data domains, we have,

Pmix (y|X) = Pm1 (y|X) = Pm2 (y|X)

= · · · = PmM (y|X)
(4)

Conversely, if significant concept shifts exist be-
tween individual domains, Eq. 4 is not valid,
as there must exist at least a domain Di where
Pmix (y|X) is very different from Pmi (y|X).
Consequently, on the test set of domain Di, fmix

will noticeably underperform fmi , where fmix is
trained in Dmix, and fmi is trained in Di. For sim-
plicity, we use fm to denote a FacLens trained on
an individual domain.

Given a specific fact-seeking QA dataset, we have
four individual domains as our experiments con-
sider four LLMs. Each individual domain has its
training, validation, and test sets. The training sets
of all the individual domains form the training set
of the mixture domain. Notably, the hidden di-
mension of Qwen2-1.5B-Instruct is different from
that of the other three LLMs, so we introduce an
additional linear layer to reshape Qwen2’s hidden
question representations to match the dimension of
the other three LLMs.
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Figure 4: Distribution of δ between an individual-
domain FacLens and the mixture-domain FacLens over-
all questions (questions from PQ, EQ, and NQ).

Domain_2

Domain_1

Domain_3

Domain_4

Figure 5: Visualization of NFP features extracted from
different LLMs’ hidden question representations, where
each domain corresponds to an LLM, and the blue and
dark yellow points denote the positive and negative sam-
ples, respectively. Trends are consistent on EQ and NQ
(see Appendix D.2).

Observation 1. Figure 3 shows the results on the
PQ dataset, and we can observe that fmix exhibits
comparable performance to fm on the test set of
the corresponding individual domain, indicating
similar P (y|X) across different domains. Hence,
we can conduct DA to derive a FacLens used by
different LLMs.

Observation 2. We measure concept shift between
an individual domain and the mixture domain by
δ = ||pm(y = 1|x)−pmix(y = 1|x)||, where pm

is computed by fm and pmix by fmix. The values
of δ are mostly near zero (see Figure 4), indicating
that Pm1(y|X), Pm2(y|X), . . . , PmM (y|X) and
Pmix(y|X) have similar distributions.

Observation 3. Given hidden question representa-
tions from different LLMs, we use the encoder of
fmix to extract the NFP features and visualize them
with t-SNE. The results on PQ are shown in Fig-
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ure 5, where the positive and negative samples are
represented by points of different colors. Although
these points are sourced from different LLMs, we
can see that a unified classification boundary can be
applied to them, further demonstrating the similar
P (y|X) across different domains.

4.3 Cross-LLM FacLens
We have verified that we can use DA to train a
cross-LLM FacLens for LLM mj leveraging label
information from LLM mi. Here the distribution
shift between a source domain DS and a target
domain DT , is due to the difference of LLMs. DS

has labeled data, yet DT has no label information.

Unsupervised Domain Adaptation. The classic
Maximum Mean Discrepancy (MMD) loss (Gret-
ton et al., 2012) is used to find a domain-invariant
NFP feature space, based on which FacLens pre-
dicts the labels. The MMD loss calculates the dis-
tance between two distributions in the reproducing
kernel Hilbert space (RKHS) (Smola et al., 2007).
We denote the NFP features in the source and target
domains as ZS = {zS,i}NS

i=1 and ZT = {zT,j}NT
j=1,

respectively, where zS,i = genc (xS,i), and zT,j =
genc (xT,j). The encoder genc in FacLens is opti-
mized by minimizing the MMD loss,

LMMD (ZS , ZT ) =
1

N2
S

NS∑

i,j=1

k(zS,i, zS,j)

+
1

N2
T

NT∑

i,j=1

k(zT,i, zT,j)

− 2

NSNT

NS∑

i=1

NT∑

j=1

k(zS,i, zT,j)

(5)

where NS = NT = |Qtrain| is the number of ques-
tions for training, and k (·) denotes a kernel func-
tion. We extract hidden question representations
from the LLM’s middle layer.

Importantly, we also use the CE loss to optimize
genc and gclf with the labeled data in DS , which
collaborates the MMD loss to find the latent feature
space for NFP. Finally, the loss function is,

LDA = LMMD +
1

NS

NS∑

i=1

LCE (gclf (zS,i) , yS,i)

(6)
Notably, if LLMs have distinct hidden dimensions,
we introduce an additional linear layer to reshape

the target domain’s hidden question representations
to match the dimension of the source domain’s
hidden question representations. We demonstrate
that FacLens can transfer across LLMs of distinct
hidden dimensions in Figure 6 and Appendix D.5.
Besides, we discuss the choice of kernel function
for MMD loss in Appendix D.6.

Question-Aligned Mini-Batch Training. In or-
der to address GPU out-of-memory issues, FacLens
employs mini-batch training for DA. In each mini-
batch, we sample two question sets, QS and QT ,
from Qtrain, for two domains. This raises a ques-
tion: are QS and QT identical? Given a range of
questions, the distribution P (Z) should be deter-
mined by the LLM. In a mini-batch, the number of
sampled questions is limited, so the estimation of
PS (Z) and PT (Z) within the mini-batch is likely
to be affected by the sampling process. Hence, we
propose to use the same question set for two do-
mains in each mini-batch, i.e., QS = QT , to allevi-
ate the influence of sampling process in estimating
the true distance between PS (Z) and PT (Z).

5 Experiments

5.1 Experimental Setup

Baselines. We compare FacLens with exist-
ing NFP methods, which have been introduced in
Section 2, including Entity-Popularity (Mallen
et al., 2023), SAT Probe (Yüksekgönül et al.,
2024), Self-Familiarity (Luo et al., 2024), and
Self-Evaluation (Kadavath et al., 2022). As Self-
Evaluation fully fine-tunes the LLM for NFP, we
adopt LoRA (Hu et al., 2022) as an additional base-
line to conduct parameter-efficient fine-tuning. We
also consider a Prompting-based method, which
directly asks the LLM whether the LLM knows the
factual answer to the given question. Moreover,
inspired by using the perplexity to evaluate the fac-
tual precision of responses (Min et al., 2023b), we
consider perplexity (PPL) on the input question
as a baseline (see Appendix C.1).

Hyper-Parameter Settings. Our experiments are
conducted based on 4 * 80G NVIDIA Tesla A800
GPUs. We implement the encoder genc of FacLens
by a 3-layer MLP, setting the dimension of each
MLP layer to 256. We use the Adam optimizer
with weight decay 1e-4. The hyper-parameters de-
termined on the validation set include: the training
epochs (set the maximum epochs to 100), and the
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LLaMA2 LLaMA3 Mistral Qwen2

PQ EQ NQ PQ EQ NQ PQ EQ NQ PQ EQ NQ

PPL 72.5 67.1 56.4 69.8 65.5 53.9 69.1 67.2 57.7 74.1 64.6 57.4
Prompting 72.7 67.8 58.1 70.6 64.9 57.2 72.2 66.0 65.5 73.0 74.7 57.1
Entity-Popularity 79.0 – – 75.9 – – 77.6 – – 67.9 – –
SAT Probe 85.1 79.3 – 83.4 81.5 – 84.4 81.9 – 88.5 81.9 –
Self-Familiarity 59.1 64.9 55.8 61.8 68.4 52.0 57.1 64.9 54.2 54.1 61.8 57.6
LoRA (Parameter-Efficient FT) 88.2 84.8 67.0 86.1 83.8 63.2 84.1 81.8 65.7 90.0 85.1 73.5
Self-Evaluation (Fully FT) 88.5 85.2 68.8 85.7 85.8 63.9 83.5 80.9 61.9 89.7 86.6 71.3

FacLens-ent (avg, last layer) 76.0 79.6 60.4 75.8 77.7 57.4 76.8 77.8 59.2 84.6 77.7 65.2
FacLens-ent (avg, 2nd to last layer) 77.9 80.5 60.4 76.2 79.0 58.0 77.1 78.3 60.5 84.5 78.6 65.1
FacLens-ent (avg, middle layer) 81.7 81.2 60.6 79.2 81.0 58.6 81.4 82.4 61.5 87.0 82.2 65.4

FacLens-ent (last token, last layer) 81.4 81.7 60.6 78.9 79.6 55.3 80.9 80.9 59.3 87.4 81.7 64.4
FacLens-ent (last token, 2nd to last layer) 82.3 82.1 60.1 78.1 79.7 57.8 81.6 81.9 59.7 87.6 81.7 63.9
FacLens-ent (last token, middle layer) 83.5 81.4 61.2 79.9 81.0 60.0 82.9 82.8 60.5 88.0 81.5 63.5

FacLens (last token, last layer) 88.7 84.9 69.1 86.1 84.1 64.7 86.1 84.4 71.7 90.0 85.9 74.0
FacLens (last token, 2nd to last layer) 88.8 85.0 67.7 86.1 84.1 65.6 87.0 85.7 72.1 90.7 85.6 72.4
FacLens (last token, middle layer) 88.7 85.6 69.5 86.5 85.0 68.9 87.4 85.4 71.4 90.3 86.4 71.6

“–” means the method is not suitable for the QA dataset. We give the detailed explanation in the appendix C.3.
“avg” refers to the averaged hidden representation of the input entities’ tokens or a question’s tokens. “last
token” refers to the hidden representation of the last token in the input entities or the question. The question
consists of a chat template and the original question, where the chat template can prompt the LLM to better
respond. Due to space limitation, we show the performance of FacLens (avg) in Appendix D.3.

Table 1: Prediction performance of different NFP methods (AUC %).

learning rate ∈ {1e-3, 1e-4} for single-LLM Fa-
cLens. Considering that the number of training
questions from NQ are relatively small, we set the
learning rate of FacLens to 1e-4 on NFP datasets
derived from NQ. The default learning rate of cross-
LLM FacLens is set to 1e-5. Due to the memory
limitation, we minimize the MMD loss via mini-
batch training with a batch size of 64. We provide
the hyper-parameter settings of baselines in Ap-
pendix C.2.

Evaluation Metric. As the number of positive
samples is larger than that of negative samples (see
Table 3), we adopt AUC, a common metric for
imbalanced binary classification, as the evaluation
metric.

5.2 Experimental Results
Probing hidden question representations for
NFP in fact-seeking QA yields promising results.
As reported in Table 1, FacLens exhibits promis-
ing performance compared to the baselines, and it
favors hidden representations from LLMs’ middle
layers. Specifically, Self-Evaluation and LoRA can
be regarded as two special representation-based
NFP methods. While both perform well, FacLens,
with much fewer trainable parameters, offers higher
efficiency and yields results comparable to, or even
surpassing, those of Self-Evaluation and LoRA.
Compared to SAT Probe, FacLens demonstrates
that hidden representation could be more useful
than attention weights for NFP. Furthermore, we

conduct main experiments on HotpotQA (Yang
et al., 2018), a more complex multi-hop QA dataset,
in Appendix D.4. The results show that FacLens
continues to perform well. We also developed a
demo to collect more questions and provide the
case study in Appendix E.

Question-level modeling is more effective than
focusing on specific tokens. Inspired by entity-
centric studies, we propose FacLens-ent, which
feeds the representations of input entity tokens
into FacLens.6 As shown in Table 1, FacLens con-
sistently surpasses FacLens-ent, Entity-Popularity,
Self-Familiarity, and SAT Probe, suggesting that
overemphasizing specific tokens of the input ques-
tion may mislead the predictions.

FacLens stands out for its efficiency. Taking the
LLaMA2-PQ NFP dataset as an example, which
includes 2,272 questions for training, 1,136 ques-
tions for validation, and 7,952 questions for test-
ing, Table 2 reports the average training time per
epoch and the average prediction time per ques-
tion of each method. We can see that fine-tuning
an LLM (i.e., Self-Evaluation and LoRA) incurs
significant computational costs. Importantly, if the
LLM has been fine-tuned for a specific task, its
ability on other tasks can be compromised (Yang
et al., 2024b). As for prediction, FacLens runs
much faster than Self-Familiarity because Self-

6Entities, e.g., persons, locations, organizations, are identi-
fied using the Stanza NLP Package (Qi et al., 2020).
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Training-Free Transferable Training Time
Per Epoch (avg)

Prediction Time
Per Question (avg)

Self-Familiarity Yes – – 5.838s
Prompting Yes – – 0.115s
PPL Yes – – 0.044s
LoRA (Parameter-Efficient FT) No No 116.500s (1 * 80G A800) 0.038s
Self-Evaluation (Fully FT) No No 184.778s (4 * 80G A800) 0.028s
SAT Probe No No 0.010s (1 * 80G A800) 0.037s
FacLens No Yes 0.012s (1 * 80G A800) 0.016s

Note: Here FacLens denotes FacLens (last token, middle layer). Before training FacLens, we
extract hidden question representations of training questions, a process that takes 71.856s. SAT
Probe involves a feature extraction step, where attention weights are extracted for probing,
taking 132.860s.

Table 2: Efficiency evaluation of FacLens (seconds).
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Figure 6: Performance of cross-LLM FacLens w/o and w/ DA. In each heatmap, the element in the i-th row and
j-th column represents the performance on the j-th target domain, with label information transferred from the i-th
source domain.

Familiarity involves multiple conversations with
the LLM. As FacLens uses the middle-layer hidden
question representations, it runs faster than Prompt-
ing, PPL, LoRA, and Self-Evaluation that involve
more layers in the LLM. SAT Probe extracts atten-
tion weights across all layers and attention heads,
so FacLens runs faster during prediction.

Unsupervised domain adaptation performs well
for cross-LLM FacLens. Given an LLM, we train
FacLens with the training data of the correspond-
ing domain and directly test it on the test data of
another domain. The results in the upper part of
Figure 6 are unsatisfactory. After unsupervised DA
(MMD loss with linear kernel), the cross-LLM Fa-
cLens can work much better in the target domain,
as depicted in the the lower part of Figure 6. Fur-
thermore, we observe that FacLens shows better

transferability between LLMs of similar scales. In
future work, we will explore more effective meth-
ods to enhance FacLens’s transferability between
LLMs of very different scales.

Question-aligned strategy is necessary to mini-
batch training of cross-LLM FacLens. Figure 7
shows that our question-aligned strategy for mini-
batch training significantly enhances the perfor-
mance of cross-LLM FacLens. Particularly on
the NQ dataset released by Google, which con-
sists of questions from real users and covers more
diverse questions, the estimation of PS (Z) and
PT (Z) is more likely to be influenced by the sam-
pling process in a mini-batch. Hence, integrating
the question-aligned strategy fosters the training
process more on NQ.
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Figure 7: Evaluation of the question-aligned mini-bath training strategy. Similar trends appear on other pairs of
source and target domains.

6 Conclusion

In this paper, we find that the hidden representa-
tion of a fact-seeking question contains valuable
information for identifying potential non-factual
responses (i.e., NFP). We also discover that sim-
ilar NFP patterns emerge in hidden question rep-
resentations sourced from different LLMs. These
findings support our lightweight and transferable
NFP model, FacLens, which enables more efficient
development and application. We hope this work
can inspire future research on LLMs’ factuality.

Limitations

This paper assumes access to the parameters of
LLMs, which limits the application of FacLens
to API-based black-box LLMs. With the grow-
ing availability of advanced open-source LLMs,
research on white-box methods is becoming in-
creasingly important, making our work meaning-
ful. However, we also recognize the necessity of
designing effective and efficient NFP models for
black-box LLMs in our future work.
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PQ EQ NQ

Pos Neg (factual) Pos Neg (factual) Pos Neg (factual)

LLaMA2-7B-Chat 74.9 25.1 70.3 29.7 57.2 42.8
LLaMA3-8B-Instruct 65.5 34.5 61.6 38.4 48.2 51.8
Mistral-7B-Instruct-v0.2 73.0 27.0 68.2 31.8 55.5 44.5
Qwen2-1.5B-Instruct 86.2 13.8 80.1 19.9 75.9 24.1

Table 3: Positive and negative sample ratios in different NFP datasets (%). A NFP dataset is built based on an
LLM and a QA dataset. A positive (non-factual) sample indicates the LLM m cannot provide the queried facts in
response to the fact-seeking question q, whereas a negative (factual) sample indicates the LLM m can provide the
queried facts in response to the fact-seeking question q.
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Figure 8: Illustration of different labeling processes for training FacLens.

as such short strings are likely to appear as sub-
strings within unrelated words. PQ initially con-
tains 14,267 questions. After eliminating dupli-
cates and removing the above special questions,
11,360 unique questions remained. EQ contains
100K questions. We randomly sample 7,200 ques-
tions from EQ, ensuring uniform coverage across
all question topics. After eliminating duplicates
and removing special questions, we retain 7,159
questions from EQ. The full NQ dataset is huge
(about 42GB), so we download a simplified de-
velopment set of NQ. In this paper, we focus on
the case of short answers, so we select questions
whose answers are comprised of 30 characters or
less. Hence, we include 1,244 questions sourced
from NQ. Table 3 shows the ratios of positive and
negative samples in each NFP dataset, where a pair

of QA dataset and LLM corresponds to an NFP
dataset.

B More Efficient Process of Training
Data Construction

In Section 4.2, we explained that the transferability
of FacLens can reduce overall development costs
of FacLens for multiple LLMs by lowering the
costs of obtaining labels for training. Figure 8 pro-
vides the illustration, where the gray dashed lines
indicate that the corresponding steps are omitted.

C Experimental Settings

C.1 Perplexity (PPL) on a Question
We regard the PPL of a fact-seeking question as a
baseline. In specific, we predict y = 1 if the PPL
value exceeds a certain threshold. We extend the
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calculation of PPL to be conducted in each layer to
obtain multiple PPL values for a text and determine
the layer based on the NFP performance on labeled
data. Formally, PPL on a question calculated in the
ℓ-th layer is formulated as,

PPL = exp

(
1

|q|
∑

vk∈q
− log (pℓ (vk|v<k))

)
(7)

pℓ (vk|v<k) = Softmax (m≤ℓ (v<k)WU )vk (8)

where q is a fact-seeking question, vk is the k-th
token in q, v<k represents the set of tokens pre-
ceding the k-th token, and WU is the pre-trained
unembedding matrix of the LLM m that converts
the hidden token representations into distributions
over the vocabulary.

C.2 Hyper-Parameter Settings
In terms of baselines, we adopt hyper-parameter
settings recommended by their authors. Since we
extend PPL to be calculated in each hidden layer,
we determine the specific layer according to PPL’s
performance on the labeled data. We introduce
the Prompting-based method, which encourages
an LLM to answer whether it knows the factual
responses via prompt “Question: {question}\Can
you provide a factual response to the above ques-
tion? If you can, please reply yes or Yes. If you can
not, please reply no or No.\nAnswer: {label}\n”.
The probabilities of predicting tokens “yes”, “Yes”,
“no” and “No” are normalized for prediction.

For the Self-Evaluation (Fully FT), we train the
model on 4*80G A800 GPUs, with a learning rate
of 1e-6, batch size of 32, and epochs of 12, and
we also determine the training epochs based on the
performance on the validation set. Self-Evaluation
(Fully FT) needs to fully fine-tune an LLM. There-
fore, to mitigate overfitting, the learning rate sched-
uler employs a cosine decay strategy with 5% of
the training steps dedicated to linear warm-up. Ad-
ditionally, the final learning rate is set to one-tenth
of its initial value. For LoRA, we integrate adapters
on all “q_proj”, “k_proj”, “v_proj”, and “o_proj”
layers, while maintaining the original weights of
the language model unchanged. The configura-
tion is as follows: we specify a rank of 128 and
an alpha of 256, with a learning rate of 1e-4, a
batch size of 32, and the training is conducted
over 32 epochs. We employ the same learning

rate scheduler as used in Fully SFT. Because LoRA
is a parameter-efficient fine-tuning technique, the
training process requires only a single 80G A800
GPU. Note that we chose hyperparameters (r=128
and alpha=256), which are larger than those used
in the original LoRA paper, to introduce more train-
able parameters, thereby enhancing the modeling
capacity of the LoRA adapters. Although these
values are larger than those used in the original
LoRA paper, the additional trainable parameters re-
main significantly smaller than those of the original
LLM. For instance, with LLaMA2, LoRA adapters
with r=128 and alpha=256 introduce only 1.95%
trainable parameters.

C.3 Why Certain Baselines Are Unsuitable
for the QA Datasets

In Table 1, Entity-Popularity and SAT Probe are
not suitable for certain datasets. Here, we explain
the reasons. Entity-Popularity uses Wikipedia page
views to approximate the entity’s popularity. How-
ever, EQ and NQ datasets do not provide relevant
Wikipedia page views, and not every subject entity
in the two datasets can be uniquely matched to a
Wikidata entity. As a result, Entity-Popularity is
unsuitable for EQ and NQ. For the baseline SAT
Probe, each question is assumed to contain con-
straint tokens, and the model extracts LLMs’ atten-
tion to the constraint tokens to probe factuality. The
authors of SAT Probe have restricted the formats of
questions to directly identify the constraint tokens.
However, extracting constraint tokens from free-
form questions can be challenging. For PQ and EQ,
which are template-based, extracting constraint to-
kens is relatively straightforward. However, SAT
Probe is not suitable for NQ, as questions in NQ
come from real users and exhibit diverse structures.

The core of the SAT Probe is using an LLM’s atten-
tion weights to constraint tokens within a question
to reflect the LLM’s factual accuracy. In the origi-
nal paper, the SAT probe is implemented by a linear
layer, optimized by logistic regression. To compare
the effectiveness of hidden representations and at-
tention weights, we employ the same MLP struc-
ture and CE loss for both SAT Probe and FacLens.

D Supplementary Experiments

D.1 Ante-Hoc NFP vs. Post-Hoc NFD
In Figure 9, we supplement the performance com-
parison between hidden representation-based ante-
hoc and post-hoc methods on EQ and NQ. The
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Figure 9: Performance comparison of FacLens (ante-hoc NFP) with INSIDE and SAPLMA (post-hoc NFD) on EQ
and NQ.
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Figure 11: Visualizations of NFP features.

results further highlight that FacLens (our ante-hoc
NFP method) has the potential to outperform the
post-hoc NFD methods.

D.2 Demonstrations of FacLens’s
Transferability

In Section 4.2, we compare FacLens fm, trained on
an individual domain, with FacLens fmix, trained

on the mixture domain. The results show that fmix

exhibits comparable performance to fm on the test
set of the corresponding individual domain. We
supplement the results based on questions from
EQ and NQ in Figure 10, further demonstrating no
significant concept shifts between domains.

Besides, we supplement more visualizations of the
NFP features in Figure 11, further demonstrating
that a unified classification boundary can be applied
to the NFP task for different LLMs.

D.3 Performance of FacLens (avg)
We use the averaged hidden representation of all
tokens in a question as input to FacLens, denoted
as FacLens (avg). Comparing the results in Table 1
and Table 4, we observe that FacLens (last token)
performs more stably. Therefore, we recommend
using the hidden representation of the last token in
a question as the hidden question representation.

D.4 Evaluation on HotpotQA
Table 5 shows the prediction performance of dif-
ferent NFP methods on HotpotQA. The observa-
tions are consistent with that in Table 1, indicating
FacLens can also handle the more complex fact-
seeking questions.

D.5 Cross-LLM FacLens for LLMs of
Distinct Hidden Dimensions

Both Qwen2-1.5B-Instruct (Yang et al., 2024a) and
Gemma-7B-it (Banks and Warkentin, 2024) have
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LLaMA2 LLaMA3 Mistral Qwen2

PQ EQ NQ PQ EQ NQ PQ EQ NQ PQ EQ NQ

FacLens (avg, last layer) 87.9 84.8 63.8 84.2 82.4 60.6 86.9 85.3 63.3 90.1 84.8 70.6
FacLens (avg, 2nd to last layer) 87.5 85.1 59.9 84.5 83.0 54.9 87.4 85.8 64.9 89.6 84.4 70.7
FacLens (avg, middle layer) 88.5 85.9 66.0 85.5 84.8 62.8 87.5 84.7 67.6 89.0 86.2 70.8

Table 4: Prediction performance of FacLens (avg) (AUC %).

LLaMA2 LLaMA3 Mistral Qwen2

PPL 55.2 55.2 54.4 53.5
Prompting 62.5 61.0 63.0 62.1
Entity-Popularity – – – –
SAT Probe – – – –
Self-Familiarity 55.3 56.8 54.5 53.7
LoRA (Parameter-Efficient FT) 72.9 68.0 66.9 70.8
Self-Evaluation (Fully FT) 75.0 69.3 71.1 72.1

FacLens (last token, last layer) 74.3 68.6 74.1 72.1
FacLens (last token, 2nd to last layer) 74.7 68.3 74.7 72.7
FacLens (last token, middle layer) 75.5 66.9 74.9 71.4

Table 5: Prediction performance of different NFP methods on HotpotQA (AUC %).
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Figure 12: Evaluation of cross-LLM FacLens on LLMs
of different hidden dimensions. Questions are from NQ.

different hidden dimensions compared to LLaMA2-
7B-Chat, LLaMA3-8B-Instruct, and Mistral-7B-
Instruct-v0.2. The hidden dimension of Qwen2-
1.5B-Instruct is 1536, and the hidden dimension of
Gemma-7B-it is 3072, while the hidden dimension
of LLaMA2-7B-Chat, LLaMA3-8B-Instruct, and
Mistral-7B-Instruct-v0.2 is 4096. A FacLens spe-
cially trained for the source-domain LLM cannot
be directly used for a target-domain LLM whose

hidden dimension is distinct from that of the source-
domain LLM. Hence we introduce a linear layer
to reshape the target-domain hidden question rep-
resentations to match the dimension of the source
domain’s hidden question representations, and still
adopt Eq. 6 to conduct domain adaptation. In Fig-
ure 12, we can see that although two LLMs have
different hidden dimensions, the cross-LLM Fa-
cLens can work well.

D.6 Kernel Selection for MMD Loss

In the MMD loss, the data features are mapped
into a reproducing kernel Hilbert space (RKHS)
determined by a kernel function. Then distribution
distance between different data domains is mea-
sured within the RKHS. We minimize the MMD
loss to find a domain-invariant NFP feature space.
Here, we evaluate two commonly employed kernel
functions: the linear kernel and the Gaussian ker-
nel (Gretton et al., 2012). As depicted in Figure 13,
the linear kernel tends to perform better. This sug-
gests that the features extracted by genc for NFP
tasks are already inherently discriminative.

E Demo & Case Study

Human Evaluation via Demo. We have imple-
mented a demo of FacLens. In the demo, a user
can choose a specific LLM, and then enter a fact-
seeking question in the text box. After submitting
the question, FacLens will return whether the LLM
knows the factual answer. Then the user can decide
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Figure 13: Evaluation of kernels used by MMD loss for training cross-LLM FacLens. The results are derived from
the NQ dataset. Similar trends are observed on other QA datasets.

whether to call the LLM to generate the response.
If the user decides to query the LLM, the demo will
provide the response generated by the LLM. Ac-
cording to the prediction of FacLens and the LLM’s
response, the user can score the performance of Fa-
cLens. We recruited 22 volunteers, consisting of
11 females and 11 males with bachelor’s degrees
or higher, to use our demo and rate its performance.
3 points indicate that the prediction of FacLens is
correct, 2 points indicate that FacLens acknowl-
edges its lack of confidence in the prediction result,
and 1 point indicates that the prediction of FacLens
is incorrect. We received 680 de-duplicated user
queries, with 127 (18.7%) receiving 1 point, 70
(10.3%) receiving 2 points, and 483 (71.0%) re-
ceiving 3 points.

FacLens in the Demo. Taking LLaMA2-7B-
Chat (abbreviated as LLaMA2) as the example,
we integrate its NFP datasets, i.e., LLaMA2-

PQ, LLaMA2-EQ, and LLaMA2-NQ, to train a
FacLens. Specifically, we use instances from
LLaMA2-PQ, and LLaMA2-EQ for training, and
instances from LLaMA2-NQ for validation. That
is because NQ, released by Google, consists of
questions posed by real users. We set the learn-
ing rate to 1e-3, and determine the training epochs
based on the performance on the validation set. On
the validation set, we use FacLens to predict the
probability p (y = 1|x) for each instance. Then we
calculate the averaged probability p (y = 1|x)pos
based on positive instances in the validation set,
as well as the averaged probability p (y = 1|x)neg
based on negative instances in the validation set.
p (y = 1|x)pos and p (y = 1|x)neg are used as the
thresholds for predicting whether the LLM knows
the factual answers. Clearly, given a question, Fa-
cLens predicts the probability of LLaMA2 gen-
erating a non-factual response. If the probabil-
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ity is larger than p (y = 1|x)pos, the demo out-
puts “The LLM does not know the factual answer”;
If the probability is smaller than p (y = 1|x)neg,
the demo outputs “The LLM knows the fac-
tual answer”; otherwise, the demo outputs “I
am not sure if the LLM knows the factual an-
swer”. Similarly, we train FacLens for LLaMA3-
8B-Instruct, Mistral-7B-Instruct-v0.2, and Qwen2-
1.5B-Instruct, respectively.

Case Study and Future Work. Taking LLaMA2-
7B-Chat as an example, we show some good cases
at the end of this paper, based on questions from
our human evaluation. These questions cover a
range of topics, such as movies, TV series, mu-
sic, brands, games, and science. We observe that
FacLens works well on most questions, but it is
more likely to mistakenly predict on questions re-
lated to periodic events. The recurrence of similar
events could impact FacLens ’s judgments. In other
words, LLMs could have limited self-awareness in
recognizing the nuances of periodic events. We
plan to enhance FacLens’s ability to better handle
such questions in future work.
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Good Case
User Question:
Who was the screenwriter for The Toy?

Prediction from FacLens:
The LLM does not know the factual answer.

Main Response from LLM:
The screenwriter for the 1982 film “The Toy” is:

Tom Mankiewicz

Note:
The LLM’s response is incorrect. The screenwriter is not Tom Mankiewicz.

Good Case
User Question:
Who is the director of TV series The Happy Family?

Prediction from FacLens:
The LLM does not know the factual answer.

Main Response from LLM:
I apologize, but I don’t have access to information on the director of a specific TV series called “The Happy Family.” Could
you please provide more context or details about the series, such as its release date, network, or any other relevant information?
This will help me provide a more accurate answer.

Note:
The LLM acknowledges that it does not know the factual answer.

Good Case
User Question:
Who wrote the lyrics for the song I Can Do It With A Broken Heart?

Prediction from FacLens:
The LLM does not know the factual answer.

Main Response from LLM:
I apologize, but I don’t have access to the lyrics of the song “I Can Do It With A Broken Heart” as it may be a private or
unreleased song. Additionally, I cannot provide lyrics for songs that are not publicly available or have not been released.

Note:
The LLM acknowledges that it does not know the factual answer.

Good Case
User Question:
Which TV series does the character Sheldon Lee Cooper come from?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
The character Sheldon Lee Cooper is from the popular TV series “The Big Bang Theory.”

Note:
The LLM’s response is correct.
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Good Case
User Question:
Who founded KFC?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
KFC, or Kentucky Fried Chicken, was founded by Colonel Harland Sanders.

Note:
The LLM’s response is correct.

Good Case
User Question:
Which is heavier, 1kg iron or 1kg cotton?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
Both 1 kg of iron and 1 kg of cotton weigh the same amount, 1 kilogram.

Note:
The LLM’s response is correct.

Bad Case
User Question:
Which team won the women’s volleyball championship at the 2004 Athens Olympics?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
The United States women’s volleyball team won the gold medal at the 2004 Athens Olympics.

Note:
The LLM’s response is incorrect. The correct answer is the Chinese women’s volleyball team.

Bad Case
User Question:
Who won the Turing Award in 2016?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
The Turing Award for 2016 was awarded to Yoshua Bengio, Geoffrey Hinton, and Yann LeCun for their contributions to the
development of deep learning.

Note:
The LLM’s response is incorrect. The correct answer is Tim Berners-Lee.
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Bad Case
User Question:
Where was the 2006 World Expo held?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
The 2006 World Expo was held in Aichi, Japan, from March 25 to September 25, 2005.

Note:
The LLM’s response is incorrect. The correct answer is Chiang Mai, Thailand.

Bad Case
User Question:
Who won the Nobel Prize in Physics in 1903?

Prediction from FacLens:
The LLM knows the factual answer.

Main Response from LLM:
The Nobel Prize in Physics was not awarded in 1903. The Nobel Prize in Physics was first awarded in 1901, and the first
Nobel Prize ceremony was held in 1904. Therefore, there was no Nobel Prize in Physics awarded in 1903.

Note:
The LLM’s response is incorrect. The correct answer is Henri Becquerel, Pierre Curie, and Marie Curie.
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