
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18538–18555
November 4-9, 2025 ©2025 Association for Computational Linguistics

MaZO: Masked Zeroth-Order Optimization for Multi-Task Fine-Tuning of
Large Language Models

Zhen Zhang1, Yifan Yang1, Kai Zhen2, Nathan Susanj2, Athanasios Mouchtaris2,
Siegfried Kunzmann2, Zheng Zhang1

1University of California, Santa Barbara
2Amazon AGI

zhen_zhang@ucsb.edu, zhengzhang@ece.ucsb.edu

Abstract

Large language models have demonstrated ex-
ceptional capabilities across diverse tasks, but
their fine-tuning demands significant mem-
ory, posing challenges for resource-constrained
environments. Zeroth-order (ZO) optimiza-
tion provides a memory-efficient alternative
by eliminating the need for backpropagation.
However, ZO optimization suffers from high
gradient variance, and prior research has largely
focused on single-task learning, leaving its
application to multi-task learning unexplored.
Multi-task learning is crucial for leveraging
shared knowledge across tasks to improve gen-
eralization, yet it introduces unique challenges
under ZO settings, such as amplified gradient
variance and collinearity. In this paper, we
present MaZO, the first framework specifically
designed for multi-task LLM fine-tuning under
ZO optimization. MaZO tackles these chal-
lenges at the parameter level through two key
innovations: a weight importance metric to
identify critical parameters and a multi-task
weight update mask to selectively update these
parameters, reducing the dimensionality of the
parameter space and mitigating task conflicts.
Experiments demonstrate that MaZO achieves
state-of-the-art performance, surpassing even
multi-task learning methods designed for first-
order optimization.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, enabling break-
throughs in various applications (Anthropic, 2024;
DeepMind, 2024; OpenAI, 2024; Bai et al., 2023).
However, the large sizes of LLMs pose signif-
icant memory challenges during training. Tra-
ditional first-order (FO) optimization uses back-
propagation, which requires substantial memory to
store intermediate activations and gradients (Ros-
tam et al., 2024; Kundu et al., 2024). This is-
sue is especially pronounced in fine-tuning tasks

on resource-constrained platforms (e.g. low-end
GPUs or edge devices) (Zhuang et al., 2024). More-
over, certain hardware platforms lack software sup-
port (e.g. automatic differentiation) for backpropa-
gation (Bergholm et al., 2018), further restricting
FO methods. Although parameter-efficient fine-
tuning methods have alleviated some of these chal-
lenges, they still require multiple times the memory
of inference (Bai et al., 2024a; Zhang et al., 2024b).

Zeroth-order (ZO) optimization provides a
memory-efficient alternative by estimating gradi-
ents via forward passes only. Recent advances,
such as MeZO (Malladi et al., 2023), have reduced
memory usage to inference levels while achieving
strong performance in LLM fine-tuning. However,
the gradient variance in ZO methods is proportional
to the number of perturbed parameters, which
makes ZO methods struggle with high-dimensional
parameter spaces, leading to slower convergence,
increased gradient estimation variance, and hard
to scale up (Chen et al., 2024b). Although recent
work (Liu et al., 2024b; Yang et al., 2024c; Chen
et al., 2023; Liu et al., 2024b; Yu et al., 2024) has
addressed some of these issues, most ZO methods
focus on single-task learning, leaving their applica-
tion to multi-task learning largely unexplored.

Multi-task learning is a key paradigm in LLMs to
enable shared representations across diverse down-
stream tasks. This approach improves generaliza-
tion, reduces the need for task-specific models, and
improves performance in a wide range of applica-
tions (Zhang et al., 2023; Radford et al., 2019). De-
spite its advantages, multi-task learning also intro-
duces inherent challenges, particularly when tasks
exhibit conflicting objectives. These conflicts arise
when the optimization signals from different tasks
are misaligned, leading to competing gradients that
prevent the model from learning effectively across
all tasks (Sener and Koltun, 2018; Mahapatra and
Rajan, 2020; Crawshaw, 2020; Zhou et al., 2022;
Shi et al., 2023).

18538

SST2

BoolQ

RTE

WSC

WiC

MultiRC

COPA

SQuAD

20406080100

LLaMA-2-7B
SST2

BoolQ

RTE

WSC

WiC

MultiRC

COPA

SQuAD

20406080100

Mistral-7B

Zero-shot Single-task ZO (shared model) Multi-task ZO MaZO (Ours)

Figure 1: Radar chart comparing the performance of our MaZO method with other methods on LLaMA-2-7B and
Mistral-7B. Larger is better. Shared model means we train the model on one task and test it on all tasks.

The issue of conflicting gradients is further
exacerbated in scenarios involving ZO optimiza-
tion (Liu et al., 2020; Malladi et al., 2023). The
high gradient variance in ZO methods can amplify
inter-task conflicts and make it even more diffi-
cult to balance competing objectives (Zhang et al.,
2024a). Furthermore, ZO methods suffer from
collinearity in gradient estimates (see Section 2.2),
where aggregated gradient directions lack diversity,
and higher rank in Hessian matrix (see Section 3.1),
where slower decay of eigenvalues in multi-task
learning makes the convergence slow. A primary
experiment demonstrated in Figure 1 shows that
vanilla multi-task ZO optimization is only slightly
better than zero-shot on average and is even worse
on many tasks.

To address these challenges, we propose Masked
Zeroth-Order Optimization (MaZO), a novel frame-
work designed for multi-task fine-tuning under ZO
settings. MaZO tackles the problem at parameter
level, which introduces two key innovations: (1) a
weight importance metric that identifies critical pa-
rameters for each task, and (2) a multi-task weight
update mask that selectively updates these parame-
ters while freezing others. By focusing on the most
important parameters, MaZO reduces the dimen-
sion of parameter space, mitigating the high vari-
ance of ZO fine-tuning while preserving the model
capacity. Moreover, unlike traditional approaches
dynamic weighting (Chen et al., 2018; Liu et al.,
2024a; Aghajanzadeh et al., 2023), which are triv-
ial in ZO settings because of collinearity, MaZO
balances multi-task learning conflicts from the per-
spective of weight. It activates distinct parameter
subsets for different tasks based on their impor-

tance scores, allowing MaZO to allocate more ca-
pacity to tasks that require more updates.

Paper Contributions. This paper makes the fol-
lowing novel contributions:

• First ZO-based multi-task fine-tuning frame-
work: We propose Masked Zeroth-Order Op-
timization (MaZO), the first framework specif-
ically designed for multi-task LLM fine-tuning
under ZO optimization.

• Task conflict resolution at the parameter level:
MaZO addresses inter-task conflicts by selec-
tively activating critical parameters for each task.
This parameter-level approach ensures balanced
optimization across tasks under ZO settings.

• State-of-the-art performance: Comprehensive
experiments on LLaMA-2-7B and Mistral-7B
demonstrate that MaZO achieves state-of-the-art
results in multi-task fine-tuning under ZO set-
tings, outperforming multi-task learning methods
designed for first-order (FO) optimization.

2 Preliminaries and Related Work

2.1 Zeroth-Order Optimization

Zeroth-order (ZO) optimization estimates gradients
using forward passes only. A common approach
for ZO gradient estimation is the simultaneous per-
turbation stochastic approximation (Spall, 1992),
which serves as a randomized gradient estimator.
Consider a model with parameters θ ∈ Rd and a
loss function L(θ). Using Taylor expansion, the
randomized gradient can be estimated by perturb-
ing θ with random noise z ∼ N (0, Id) and com-
puting forward and reverse losses:

18539

∇̂L(θ) = L(θ + ϵz)− L(θ − ϵz)

2ϵ
z, (1)

where ϵ is a small scalar. The expectation of
∇̂L(θ) matches the smoothed version of the true
gradient. During training, zeroth-order stochastic
gradient descent (ZO-SGD) updates parameters as:

θ = θ − η∇̂L(θ), (2)
where η is the learning rate.

Recent advances have improved ZO optimiza-
tion for large-scale applications. For example,
MeZO (Malladi et al., 2023) reduces memory us-
age by regenerating random perturbations z using
random seeds instead of storing them. ZO optimiza-
tion offers significant advantages for fine-tuning
LLMs, as it avoids memory-intensive backpropaga-
tion (Liu et al., 2020; Zhang et al., 2024b). Despite
these advantages, the gradient variance of ZO opti-
mization increases linearly with the dimensionality
of the parameter space. This leads to slower conver-
gence and difficulties in large-scale training (Chen
et al., 2024b). To address these challenges, various
methods have been proposed. These include the de-
sign of advanced ZO optimizers (Zhao et al., 2024;
Jiang et al., 2024; Chen et al., 2019); dimensional-
ity reduction techniques (Liu et al., 2024b; Wang
et al., 2024; Yang et al., 2024c; Guo et al., 2024);
hybrid approaches like Addax (Li et al., 2024); full-
batch gradient estimation (Gautam et al., 2024);
exploiting low-rank structures (Zhao et al., 2023;
Yu et al., 2024), and using orthogonal random di-
rections (Kozak et al., 2023).

While these methods have advanced ZO in var-
ious ways, they do not specifically address the
unique challenges of multi-task learning.

2.2 Multi-task Learning
Multi-task learning aims to improve generalization
performance by jointly learning T related tasks
through shared parameters (Chen et al., 2024a).
Classical multi-task learning minimizes a weighted
combination of task-specific losses:

L(θ) =
T∑

t=1

wtLt(θ), s.t.
T∑

t=1

wt = 1, wt ≥ 0,

(3)
where Lt(θ) represents the learning loss for a sin-
gle task t. Parameter updates are performed using
gradient descent.

Multi-task learning under FO optimization has
been widely studied, with different technical routes:
(1) dynamic weight, which adjusts the weight of
different tasks by gradients (Chen et al., 2018;

Sener and Koltun, 2018; Mao et al., 2022), loss
(Liu et al., 2019, 2024a; Kongyoung et al., 2020;
Gong et al., 2024) or uncertainty (Aghajanzadeh
et al., 2023); (2) gradient manipulation (Désidéri,
2012; Liu et al., 2021; Yu et al., 2020); (3) data
mixing and scheduling (Bai et al., 2024b; Ahma-
dian et al., 2024); (4) learning shared and specific
knowledge with model architecture based on LoRA
(Feng et al., 2024; Yang et al., 2024b; Wang et al.,
2023) or MoE (Liu et al., 2023; Gupta et al., 2022);
(5) model merging (Yang et al., 2023).

3 The MaZO Framework

3.1 Challenges in ZO Multi-Task Fine Tuning

Under ZO optimization, multi-task learning faces
unique challenges. Specifically, task-specific ZO
gradient estimates exhibit fundamental collinear-
ity, as the aggregated multi-task learning gradient
aligns with the shared random perturbation z:

g =
T∑

t=1

wtg
t

=

(
T∑

t=1

wt
Lt(θ + ϵz)− Lt(θ − ϵz)

2ϵ

)
z. (4)

Here g and gt are gradients of multi-task learning
and of task t, respectively. This collinearity results
in a lack of directional diversity, limiting optimiza-
tion efficacy. Further discussion can be found in
Appendix H.

As explained in (Malladi et al., 2023), the sur-
prising success of ZO optimization in LLM fine-
tuning is due to the low-rank property of the Hes-
sian matrix. Based on (3), the Hessian matrix in
multi-task fine-tuning can be written as

H =

T∑

t=1

wtH
t, (5)

where Ht is the Hessian associated with single-task
learning loss Lt. Although Ht has a low rank in
the fine-tuning process, H can have a much higher
rank due to the weighted sum of T task-specific
Hessian matrices. Figure 3 empirically verifies our
theoretical claim: the Hessian in multi-task learn-
ing exhibits a broader eigenvalue spectrum than
single-task learning, leading to a higher effective
rank. This further slows down the convergence of
ZO in multi-task LLM fine-tuning.

To address the above challenges, we propose
Masked Zeroth-Order Optimization (MaZO).

18540

Weight Importance S

Row-wise

In
pu
tx

WeightW

&

Task 1…T

Weight
Importance

Multi-task

Norm & Rank

0101

0011

1100

1001

MaskM

Row-wise

Figure 2: Diagram of our MaZO method. The weight importance scoring and weight update mask is calculated
row-wise. The weight importance for each task is calculated independently, and only from the input and weight.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
Eigenvalue Index (sorted descending)

0.0

0.2

0.4

0.6

0.8

1.0

Ei
ge

nv
al

ue

Top-K Eigenvalue Distribution Comparison
Single-Task Learning
Multi-Task Learning

Figure 3: Top-K eigenvalue distribution of the Hessian
matrices in multi-task learning and single-task learn-
ing. These eigenvalue are normalized by dividing by
the maximum value. The slower decay of eigenvalues
in multi-task learning suggests a higher effective rank,
which contributes to the slower convergence of ZO fine-
tuning in multi-task scenarios.

Our approach introduces a novel framework that
solves multi-task learning at parameter level.
MaZO combines weight importance metrics and a
multi-task weight update mask. The weight impor-
tance is derived using two complementary metrics:
(1) a global score which evaluates the theoretical
minimum loss when freezing a parameter, (2) a
greedy score which quantifies the immediate loss
change during a single optimization step. Using
these scores, we construct a weight update mask
that identifies a subset of critical parameters, en-
abling effective optimization by reducing dimen-
sionality and variance while balancing the perfor-
mance among potentially conflicting tasks.

3.2 Multi-Task Weight Update Mask

We first introduce the multi-task weight update
mask, assuming the weight importance scores are
precomputed. We defer the computation of weight
importance scores to the next subsection. In ZO
optimization, the variance of an estimated gradient

increases with the number of training parameters.
Therefore, it is crucial to identify and focus on
critical parameters for effective optimization while
freezing others (Liu et al., 2024b; Guo et al., 2024).

Suppose that we have a weight importance score
matrix St for each task t and a sparsity level ρ. We
unfreeze the top k = ⌈(1− ρ) ·N⌉ parameters in
each row, where N is the total number of param-
eters in that row. The importance scores are com-
pared row-wise due to the approximations involved
in gradient and Hessian estimation following Sun
et al. (2023), which will be detailed in Section 3.4.

Since importance scores across tasks are not di-
rectly comparable due to differing scales, we nor-
malize the scores row-wise for each task:

Ŝt
ij =

St
ij −min(St

i)

max(St
i)−min(St

i)
, (6)

where St
i denotes the i-th row of St; Ŝt

ij is the
normalized score for parameter j in row i for task
t. The overall score across tasks is computed as:

S =
T∑

t=1

Ŝt. (7)

We select the top k parameters based on S in
each row to fine-tune, while freezing the others.
This selection is represented by a binary mask ma-
trix M, where Mij = 1 indicates that parameter j
in row i is unfrozen. The final parameter update is
computed as:

∆Wmasked = ∆W ⊙M, (8)

where ⊙ denotes element-wise multiplication.
When applied to LoRA (Hu et al., 2021), this be-
comes:

∆Wmasked = (A ·B)⊙M, (9)

where A and B are the decomposed matrices of
LoRA.

18541

3.3 Weight Importance
The overall importance score for task t combines
the normalized global and greedy scores with a
weight regularization term:

St = St
global + αSt

greedy + β|W|, (10)

where α and β are hyperparameters controlling the
contributions of each component and |W| is the
absolute value of weight. We now describe the
computation of two complementary metrics: the
global score and the greedy score.

3.3.1 Global Score
The global score is inspired by the Optimal Brain
Surgeon method (Frantar and Alistarh, 2023; Sun
et al., 2023; Das et al., 2023). Unlike pruning,
which sets the parameters to zero, our approach
freezes certain parameters while updating others
via perturbation. Consider the Taylor expansion of
the loss function of task t:

δLt = (gt)⊤ · δθ + 1

2
δθ⊤ ·Ht · δθ +O(∥δθ∥3),

where Ht is the Hessian matrix of task t and gt =
∂Lt

STL
∂θ . Freezing a parameter at position m imposes

the constraint I⊤mδθ = 0, where Im is an indicator
function. The optimization problem becomes:

min
m

{
min
δθ

((
gt
)⊤ · δθ + 1

2
δθ⊤ ·Ht · δθ

)

∣∣∣∣I⊤m · δw = 0

}
.

(11)
This formulation seeks to find the parameter posi-
tion m that, when frozen, results in the maximal
decrease in the loss function while allowing other
parameters to adjust optimally. The inner optimiza-
tion determines the best possible parameter updates
given the constraint, while the outer optimization
identifies the least impactful parameter to fix.

Using Lagrange multipliers, the optimal loss
change (global score) is derived as:

(St
global)m = δLtm =

(
I⊤m ·

(
Ht
)−1 · gt

)2

2
(
(Ht)−1

)
mm

, (12)

This expression quantifies the theoretical maximum
decrease in loss when parameter m is fixed, pro-
viding a measure of its importance to the overall
optimization process. Smaller values indicate less
important parameters, which should be frozen.

3.3.2 Greedy Score
Although the global score provides a theoretical
measure of parameter importance, it may not suf-
fice because the model may not converge to the
optimal situation due to the large variance in the
ZO gradient. Therefore, we also introduce a greedy
score as a practical complement, which considers
the immediate impact of freezing a parameter in a
single optimization step.

For a gradient descent update with learning rate
η and random direction z, the parameter update of
task t is approximated as:

δθ ≈ −ηzzTgt. (13)

Substituting δθ and taking the expectation over
random directions z, we obtain the expected change
in loss:

E(δLt) = −(gt)Tgt · η

+

(
M∑

i=0

(gt
i)

2Ht
ii + 2(gt

i)
THtgt

)
η2

where M is the number of parameters in a LLM.
When we freeze a parameter at position m, the

change of loss (greedy score) will increase by:

(St
greedy)m = δLtm

= (gt
m)2η +Ht

mm(gt
m)2η2

− 4

M∑

j=0

Ht
mj(g

t
m)(gt

j)η
2 (14)

Parameters with lower St
greedy values are consid-

ered less important for the current optimization
step and are better candidates for freezing during
multi-task learning.

3.4 Implementation
To avoid the huge cost of computing the full gradi-
ent and Hessian, we adopt a row-wise approxima-
tion strategy. For a linear layer y = Wx, focusing
on a single row wi, the output is yi = wix. Per-
forming a Taylor expansion of the loss L with re-
spect to yi, we find that both the first-order gradient
∇L(yi) and second-order derivative ∇2L(yi) are
scalars. Substituting ∆yi = ∆wix, the gradient
and Hessian with respect to wi are:

gt =
∂L
∂wi

= ∇L(yi)x, (15)

Ht =
∂2L
∂w2

i

= ∇2L(yi)(xx
⊤). (16)

18542

Here, we replace the gradient with x, and the Hes-
sian with xx⊤ since we only care about the relative
value in a row. This row-wise approximation signif-
icantly reduces computational cost, while still cap-
turing the relative importance of parameters within
each row. However, it also restricts the weight-
importance comparison to the row direction.

Overall Algorithm Flow. The pseudo-code of
the whole MaZO fine-tuning framework is shown
as Algorithm 1 in Appendix C.

4 Experiments

4.1 Experimental Setup

We perform multi-task fine-tuning on three widely
used decoder-only pretrained language models:
LLaMA-2-7B (Touvron et al., 2023), Mistral-7B
(Jiang et al., 2023) and Qwen2.5-32B (Yang et al.,
2024a).

Tasks. We evaluate our approach on a diverse
set of natural language understanding (NLU) and
natural language generation (NLG) tasks from the
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) benchmarks. Specifically, for NLU,
we include SST-2, BoolQ, RTE, WSC, WiC, Mul-
tiRC, and COPA, covering various classification
and reasoning tasks. For NLG, we use SQuAD
for question answering. Additionally, we evaluate
Qwen2.5-32B on the MMLU dataset, which con-
sists of 57 tasks and 14k test examples, showcasing
the scalability of our method. Details on datasets
and evaluation metrics are in Appendix G.

Reproducibility. Comprehensive details essen-
tial for reproducing our results, along with the ab-
lation study, are presented in Appendix B.

Baselines. We compare MaZO with several
baselines. First, we include vanilla ZO optimiza-
tion combined with traditional multi-task learning
(MTL-ZO) techniques as a direct comparison to
MaZO in the ZO setting. Second, we evaluate
single-task learning (STL-ZO), where models are
trained individually on each task to provide an up-
per bound for task-specific performance without
multi-task conflicts, as well as a single-task trans-
fer baseline, where the model is trained on a single
task (SST-2) using vanilla ZO optimization and
evaluated across all tasks to highlight the limita-
tions of single-task training in multi-task scenar-
ios. Third, we include LoRA fine-tuning (Hu et al.,
2021), a parameter-efficient approach, and extend
MaZO to update LoRA matrices under ZO settings.

0 2000 4000 6000 8000 10000
Training Steps

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ev
al

 L
os

s

Convergence Curve

MTL-ZOLoRA
MaZOLoRA

Figure 4: The convergence curve of (1) vanilla multi-
task ZO fine-tuning with LoRA, (2) MaZO with LoRA.

Finally, we compare MaZO against state-of-the-
art first-order (FO) multi-task learning methods,
including CoBa (Gong et al., 2024), FAMO (Liu
et al., 2024a), and MTL-LoRA (Yang et al., 2024b),
to its compatibility with ZO optimization. Details
are discussed in Appendix D. These baselines pro-
vide a comprehensive comparison for assessing
MaZO’s effectiveness and robustness in addressing
the challenges of ZO-based multi-task learning.

4.2 Results on LLaMA-2-7B

MaZO Outperforms Competitors. The results
for LLaMA-2-7B are presented in Table 1. Vanilla
multi-task ZO optimization shows only slight im-
provements over the zero-shot baseline, highlight-
ing its inability to effectively address multi-task
conflicts under ZO settings. Similarly, vanilla
single-task ZO optimization with a shared model
fails to generalize effectively across multiple tasks,
underscoring the inherent challenges of ZO opti-
mization in multi-task scenarios. In contrast, our
proposed MaZO framework achieves the highest
average performance across all tasks and demon-
strates a balanced performance profile. These re-
sults validate MaZO’s ability to mitigate inter-task
conflicts and optimize multi-task learning by se-
lectively focusing on critical parameters. The ef-
fectiveness of MaZO is further evident in its su-
perior performance in both full-model ZO fine-
tuning and LoRA-based fine-tuning, with partic-
ularly pronounced gains in the latter. This under-
scores MaZO’s flexibility and its compatibility with
parameter-efficient fine-tuning techniques.

Dimensionality Reduction Enhances Multi-
Task Learning. The application of LoRA to ZO
fine-tuning significantly improves the performance
of multi-task learning. This improvement can be
attributed to LoRA’s ability to reduce the dimen-
sionality of the parameter space, thereby lowering

18543

Task SST-2 BoolQ RTE WSC WiC MultiRC COPA SQuAD AvgTask Type ———————- Classification ———————- – Multiple Choice – – Generation –

STL-ZO (one model per task) 93.8 83.0 73.5 51.3 62.1 61.0 86.0 79.6 73.8
Zero-Shot 83.8 75.8 57.0 37.5 52.6 46.6 79.0 56.4 61.1
ICL 93.7 78.7 61.2 47.2 59.9 54.3 80 57.7 66.6
STL-ZO(shared model) 93.8 75.8 58.8 43.3 50.6 46.0 75.0 52.2 61.9
MTL-ZO 80.6 74.2 55.6 58.6 51.0 53.8 80.0 62.3 64.5
MTL-ZOLoRA 90.2 80.0 61.0 54.8 56.6 58.0 76.0 74.8 68.9

MTL-ZOMTL-LoRA 88.4 76.8 60.2 60.6 57.6 61.6 79.0 59.4 68.0
MTL-ZOCoBa 82.8 75.3 56.8 60.6 53.4 55.8 77.0 57.6 64.9
MTL-ZOFAMO 91.0 77.6 59.4 56.5 53.4 50.6 78.0 53.9 65.1

MaZO 90.6 76 62.8 56.7 52.6 58.6 82.0 55.5 66.9
MaZOLoRA 91.2 80.0 62.8 61.5 56.6 60.4 80.0 77.7 71.3

Table 1: Performance comparison across tasks using different methods on LLaMA-2-7B. The average score (Avg)
is computed across all tasks. Metrics for these tasks are consistent with MeZO (Malladi et al., 2023). Shared model
indicates training on a single task (SST-2) and testing on all tasks. ICL refers to in-context learning. STL represents
single-task learning and MTL represents multi-task learning.

the variance of gradient estimates. These findings
reinforce the validity of MaZO’s masking strategy,
which optimizes multi-task learning by focusing
on a reduced set of critical parameters.

FO multi-task learning methods do not apply
to ZO. Multi-task learning methods originally de-
veloped for first-order (FO) optimization, such as
CoBa and FAMO, do not achieve effective perfor-
mance in the ZO setting. This can be attributed to
their inability to resolve multi-task conflicts due to
the collinearity problem in ZO gradient estimates.
Under the ZO framework, FO methods can only
adjust the magnitude of the approximated gradient,
but not its direction, resulting in performance degra-
dation. Additionally, MTL-LoRA, the multi-task
version of LoRA does not significantly enhance per-
formance in the ZO setting. This may be due to the
sensitivity of task-specific weights and the diagonal
transformation matrix to noise. Perturbation-based
optimization, as used in ZO, introduces excessive
variance, which undermines the effectiveness of
these FO-based methods.

4.3 Results on Mistral-7B
The results for Mistral-7B in Table 2 reveal trends
similar to those observed with LLaMA-2-7B. De-
spite the relatively low zero-shot performance of
Mistral-7B, vanilla multi-task learning ZO fails
to deliver substantial improvements. This under-
scores the inherent challenges of ZO-based multi-
task learning. In contrast, MaZO consistently out-
performs all other methods. Its ability to mitigate
ZO-specific challenges is evident in its superior
performance, further validating MaZO as a state-of-
the-art solution for ZO-based multi-task learning.

4.4 Results on Qwen2.5-32B

The results of MMLU benchmark on Qwen2.5-32B
are demonstrated in Table 3 that directly apply-
ing multi-task learning (e.g., MTL-ZO) can lead
to a performance drop compared to the zero-shot
baseline. In contrast, our MaZO-based methods
consistently improve performance across settings,
surpassing both the zero-shot and standard multi-
task learning approaches.

4.5 Computational Performance

Figure 4 shows that MaZO converges faster and
achieves a significantly lower loss compared to tra-
ditional multi-task ZO fine-tuning methods. This
holds true both with and without LoRA. This im-
provement can be attributed to the mask mecha-
nism in MaZO, which focuses on optimizing the
most critical parameters, thereby reducing gradi-
ent noise, balancing the inter-task conflicts, and
accelerating convergence.

To evaluate the efficiency of MaZO, we com-
pare its memory usage, search time, and training
time against baseline vanilla multi-task learning
ZO methods, both with and without LoRA. Table 4
summarizes the results. The search time introduced
by MaZO is negligible compared to the overall
training time. MaZO incurs a slight increase in
memory usage (approximately 10%) compared to
baseline multi-task learning ZO methods. This is
primarily due to the additional storage required for
the weight update mask. However, this increase is
marginal and does not significantly impact the over-
all memory efficiency, especially when combined
with LoRA, where the parameter space is already

18544

Task SST-2 BoolQ RTE WSC WiC MultiRC COPA SQuAD AvgTask Type ———————- Classification ———————- – Multiple Choice – – Generation –

STL-ZO (one model per task) 93.6 77.8 74.2 55.3 62.1 62.7 88.0 76.5 73.8
Zero-Shot 56.7 42.4 50.5 52.8 50.3 43.6 79.0 57.2 54.1
ICL 62.3 46.1 56.0 53.2 61.4 53.4 79.0 62.3 59.2
MTL-ZO 58.7 47.2 55.0 53.2 59.8 54.4 79.0 56.3 58.0
MTL-ZOLoRA 89.3 73.2 71.5 51.3 58.1 53.4 80.0 73.5 68.7

MaZO 83.4 56.3 60.2 54.8 58.1 55.8 79 59.4 63.4
MaZOLoRA 90.2 72.4 74.2 54.8 62.1 57.3 82.0 73.5 70.8

Table 2: Performance comparison across tasks using different methods on Mistral-7B. The setting and notation are
the same as Table 1. We exclude the FO MTL methods as they do not have significant improvement.

Method MMLU Score
Zero-Shot 83.1
MTL-ZO 81.2
MTL-ZOLoRA 83.4
MTL-ZOFAMO 82.7
MTL-ZO 83.5
MTL-ZOLoRA 84.1

Table 3: MMLU Scores of different methods on
Qwen2.5-32B.

Method Memory (GB) Search Time (min) Training Time (h)
MTL-ZO 29.0 - 14.3
MaZO 33.3 42 16.6
MTL-ZOLoRA 31.2 - 13.7
MaZOLoRA 33.9 8.5 14.1

Table 4: Comparison of memory usage, search time,
and training time between MTL-ZO and MaZO, with
and without LoRA. While MaZO introduces marginal
memory and runtime overhead due to the mask storage
and search process, it achieves significantly better ac-
curacy. Note that the memory requirement exceeds the
model size (7B) because we use a batch size of 16 and
a maximum token length of 600.

reduced. While MaZO introduces a small memory
overhead, its benefits in terms of faster convergence
and reduced gradient variance outweigh this cost,
making it an effective and practical solution for
multi-task fine-tuning under ZO optimization.

4.6 Various Weight Importance Metrics

To further validate the effectiveness of MaZO,
we compare its performance with three alterna-
tive weight scoring methods: random selection,
magnitude-based scoring, and Wanda scoring. De-
tailed implementation of these methods is de-
scribed in Appendix F. For a fair comparison, we
fix the sparsity level at 50%, consistent with the
sparsity used in the Wanda score. Table 5 summa-
rizes the results of this comparison.

The findings indicate that while both the
magnitude-based and Wanda-based scoring can im-

Task SST-2 BoolQ Copa SQuAD Avg

No Mask 85.4 72.2 80.0 66.0 75.9
Random 86.6 73.0 80.0 63.4 75.8
Magnitude 87.4 75.6 79.0 65.6 76.9
Wanda 88.4 77.8 80.0 62.4 77.2
MaZO 90.2 78.0 81.0 72.3 80.4

Table 5: Comparison of different weight importance
metrics. The sparsity is set to 50% except for No Mask.
Random and Magnitude are done weight-wise while
Wanda and MaZO are selected row-wise.

prove average performance, their improvements
are less pronounced and less balanced across tasks
compared to MaZO. This is because these meth-
ods evaluate the weight importance statically, with-
out considering training dynamics or perturbation-
based insights. In contrast, MaZO dynamically
identifies critical parameters during training, en-
abling more effective optimization and better multi-
task balance under the ZO framework. These re-
sults underscore the superiority of MaZO in lever-
aging weight importance to achieve state-of-the-art
performance in multi-task fine-tuning.

5 Conclusion

In this work, we have presented MaZO, a novel
framework that harnesses masked zeroth-order op-
timization for the multi-task fine-tuning of LLMs.
By incorporating weight importance score along-
side a multi-task weight update mask, MaZO ef-
fectively reduces gradient variance and mitigates
conflicts among tasks. Our experimental results
demonstrate that MaZO not only surpasses cur-
rent zeroth-order optimization methods but also
outperforms leading multi-task learning methods
designed for first-order optimization across a range
of NLP tasks. Furthermore, our parameter-level
approach is not limited solely to zeroth-order op-
timization, offering potential integrations with a
variety of other optimization strategies.

18545

6 Limitations

While MaZO demonstrates strong empirical per-
formance, several limitations warrant discussion.
First, the computation of weight importance intro-
duces additional computational overhead compared
to vanilla ZO methods. However, this cost remains
negligible relative to the memory and computa-
tional demands of model weights and activations.
Second, the effectiveness of MaZO is partially con-
tingent on the quality of gradient and Hessian ap-
proximations. While our current approximations
are effective, they could be further refined through
more sophisticated estimation techniques to en-
hance performance. Finally, we do not provide
a theoretical convergence analysis specifically for
the MaZO approach. However, Sparse MeZO (Liu
et al., 2024b) has already conducted a comprehen-
sive and rigorous analysis of general masking sce-
narios in zeroth-order optimization. We refer inter-
ested readers to their work for detailed theoretical
insights, and therefore do not duplicate these efforts
here.

References
Emad Aghajanzadeh, Tahereh Bahraini, Amir Hossein

Mehrizi, and Hadi Sadoghi Yazdi. 2023. Task weight-
ing based on particle filter in deep multi-task learning
with a view to uncertainty and performance. Pattern
Recognition, 140:109587.

Arash Ahmadian, Seraphina Goldfarb-Tarrant, Beyza
Ermis, Marzieh Fadaee, Sara Hooker, et al.
2024. Mix data or merge models? optimizing
for diverse multi-task learning. arXiv preprint
arXiv:2410.10801.

Anthropic. 2024. Claude 3.5 sonnet. Available at
https://www.anthropic.com/claude/sonnet.

Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang,
Jiaying Lu, Nan Zhang, Tingwei Shi, Ziyang Yu,
Mengdan Zhu, Yifei Zhang, et al. 2024a. Be-
yond efficiency: A systematic survey of resource-
efficient large language models. arXiv preprint
arXiv:2401.00625.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tianyi Bai, Hao Liang, Binwang Wan, Yanran Xu, Xi Li,
Shiyu Li, Ling Yang, Bozhou Li, Yifan Wang, Bin
Cui, et al. 2024b. A survey of multimodal large lan-
guage model from a data-centric perspective. arXiv
preprint arXiv:2405.16640.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M So-
haib Alam, Guillermo Alonso-Linaje, B Akash-
Narayanan, Ali Asadi, et al. 2018. Pennylane: Au-
tomatic differentiation of hybrid quantum-classical
computations. arXiv preprint arXiv:1811.04968.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Dif-
fenderfer, Jiancheng Liu, Konstantinos Parasyris, Yi-
hua Zhang, Zheng Zhang, Bhavya Kailkhura, and
Sijia Liu. 2023. Deepzero: Scaling up zeroth-order
optimization for deep model training. arXiv preprint
arXiv:2310.02025.

Shijie Chen, Yu Zhang, and Qiang Yang. 2024a. Multi-
task learning in natural language processing: An
overview. ACM Comput. Surv., 56(12).

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue
Lin, Mingyi Hong, and David Cox. 2019. Zo-adamm:
Zeroth-order adaptive momentum method for black-
box optimization. Advances in neural information
processing systems, 32.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and
Zaiwen Wen. 2024b. Enhancing zeroth-order fine-
tuning for language models with low-rank structures.
arXiv preprint arXiv:2410.07698.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International conference on
machine learning, pages 794–803. PMLR.

Michael Crawshaw. 2020. Multi-task learning with
deep neural networks: A survey. arXiv preprint
arXiv:2009.09796.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and
Zhiqiang Shen. 2023. Beyond size: How gradients
shape pruning decisions in large language models.
arXiv preprint arXiv:2311.04902.

Google DeepMind. 2024. Gemini 2.0. Available
at https://deepmind.google/technologies/
gemini/.

Jean-Antoine Désidéri. 2012. Multiple-gradient descent
algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024. Mixture-of-loras: An efficient
multitask tuning for large language models. arXiv
preprint arXiv:2403.03432.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Tanmay Gautam, Youngsuk Park, Hao Zhou,
Parameswaran Raman, and Wooseok Ha. 2024.
Variance-reduced zeroth-order methods for
fine-tuning language models. arXiv preprint
arXiv:2404.08080.

18546

https://doi.org/10.1016/j.patcog.2023.109587
https://doi.org/10.1016/j.patcog.2023.109587
https://doi.org/10.1016/j.patcog.2023.109587
https://www.anthropic.com/claude/sonnet
https://doi.org/10.1145/3663363
https://doi.org/10.1145/3663363
https://doi.org/10.1145/3663363
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/

Zi Gong, Hang Yu, Cong Liao, Bingchang Liu, Chaoyu
Chen, and Jianguo Li. 2024. Coba: Convergence
balancer for multitask finetuning of large language
models. arXiv preprint arXiv:2410.06741.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu,
Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert Bas-
tani, Christopher De Sa, Xiaodong Yu, et al. 2024.
Zeroth-order fine-tuning of llms with extreme spar-
sity. arXiv preprint arXiv:2406.02913.

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub-
udhi, Eduardo Gonzalez, Damien Jose, Ahmed H
Awadallah, and Jianfeng Gao. 2022. Sparsely acti-
vated mixture-of-experts are robust multi-task learn-
ers. arXiv preprint arXiv:2204.07689.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xi-
ang, Yukang Lin, Xiangping Wu, Chuanyi Liu, and
Xiaobao Song. 2024. Zo-adamu optimizer: Adapt-
ing perturbation by the momentum and uncertainty
in zeroth-order optimization. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 18363–18371.

Sarawoot Kongyoung, Craig Macdonald, and Iadh Ou-
nis. 2020. Multi-task learning using dynamic task
weighting for conversational question answering. In
Proceedings of the 5th International Workshop on
Search-Oriented Conversational AI (SCAI), pages
17–26, Online. Association for Computational Lin-
guistics.

David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis
Tenorio, and Silvia Villa. 2023. Zeroth-order opti-
mization with orthogonal random directions. Mathe-
matical Programming, 199(1):1179–1219.

Joyjit Kundu, Wenzhe Guo, Ali BanaGozar, Udari
De Alwis, Sourav Sengupta, Puneet Gupta, and
Arindam Mallik. 2024. Performance modeling
and workload analysis of distributed large language
model training and inference. In 2024 IEEE Inter-
national Symposium on Workload Characterization
(IISWC), pages 57–67. IEEE.

Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng,
Meisam Razaviyayn, and Vahab Mirrokni. 2024.
Addax: Utilizing zeroth-order gradients to im-
prove memory efficiency and performance of sgd
for fine-tuning language models. arXiv preprint
arXiv:2410.06441.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. 2024a.
Famo: Fast adaptive multitask optimization. Ad-
vances in Neural Information Processing Systems,
36.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and
Qiang Liu. 2021. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information
Processing Systems, 34:18878–18890.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023.
Moelora: An moe-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Shengchao Liu, Yingyu Liang, and Anthony Gitter.
2019. Loss-balanced task weighting to reduce nega-
tive transfer in multi-task learning.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan
Zhang, Alfred O Hero III, and Pramod K Varshney.
2020. A primer on zeroth-order optimization in sig-
nal processing and machine learning: Principals, re-
cent advances, and applications. IEEE Signal Pro-
cessing Magazine, 37(5):43–54.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng,
Cho-Jui Hsieh, and Yang You. 2024b. Sparse
mezo: Less parameters for better performance
in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751.

Debabrata Mahapatra and Vaibhav Rajan. 2020. Multi-
task learning with user preferences: Gradient descent
with controlled ascent in pareto optimization. In
International Conference on Machine Learning.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning large language models with
just forward passes.

Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin, and
Pengtao Xie. 2022. MetaWeighting: Learning to
weight tasks in multi-task learning. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3436–3448, Dublin, Ireland. Association
for Computational Linguistics.

OpenAI. 2024. Gpt-4o. Available at https://www.
openai.com/gpt-4o.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

P Rajpurkar. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Zhyar Rzgar K Rostam, Sándor Szénási, and Gábor
Kertész. 2024. Achieving peak performance for large
language models: A systematic review. IEEE Access.

18547

https://doi.org/10.18653/v1/2020.scai-1.3
https://doi.org/10.18653/v1/2020.scai-1.3
https://api.semanticscholar.org/CorpusID:221088926
https://api.semanticscholar.org/CorpusID:221088926
https://api.semanticscholar.org/CorpusID:221088926
https://doi.org/10.18653/v1/2022.findings-acl.271
https://doi.org/10.18653/v1/2022.findings-acl.271
https://www.openai.com/gpt-4o
https://www.openai.com/gpt-4o

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn-
ing as multi-objective optimization. Advances in
neural information processing systems, 31.

Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen,
and Xiao-Ming Wu. 2023. Recon: Reducing conflict-
ing gradients from the root for multi-task learning.
arXiv preprint arXiv:2302.11289.

James C Spall. 1992. Multivariate stochastic approx-
imation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic con-
trol, 37(3):332–341.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu,
and Changxing Ding. 2024. Simultaneous computa-
tion and memory efficient zeroth-order optimizer for
fine-tuning large language models. arXiv preprint
arXiv:2410.09823.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guan-
nan Zhang. 2023. Multilora: Democratizing lora
for better multi-task learning. arXiv preprint
arXiv:2311.11501.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024a. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-
ing Guo, Xingwei Wang, and Dacheng Tao. 2023.
Adamerging: Adaptive model merging for multi-task
learning. arXiv preprint arXiv:2310.02575.

Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Denvy
Deng, Feng Sun, Qi Zhang, et al. 2024b. Mtl-lora:
Low-rank adaptation for multi-task learning. arXiv
preprint arXiv:2410.09437.

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios
Mouchtaris, and Zheng Zhang. 2024c. Adazeta:
Adaptive zeroth-order tensor-train adaption for
memory-efficient large language models fine-tuning.
arXiv preprint arXiv:2406.18060.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. arXiv
preprint arXiv:2001.06782.

Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua
Huang. 2024. Subzero: Random subspace zeroth-
order optimization for memory-efficient llm fine-
tuning. arXiv preprint arXiv:2410.08989.

Qi Zhang, Peiyao Xiao, Kaiyi Ji, and Shaofeng Zou.
2024a. On the convergence of multi-objective op-
timization under generalized smoothness. arXiv
preprint arXiv:2405.19440.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li,
Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Ja-
son D Lee, Wotao Yin, Mingyi Hong, et al. 2024b.
Revisiting zeroth-order optimization for memory-
efficient llm fine-tuning: A benchmark. arXiv
preprint arXiv:2402.11592.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo,
and Meng Jiang. 2023. A survey of multi-task learn-
ing in natural language processing: Regarding task
relatedness and training methods. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
943–956, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai,
Yi Qian, and Ivor W Tsang. 2024. Second-order
fine-tuning without pain for llms: A hessian in-
formed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173.

Yequan Zhao, Xinling Yu, Zhixiong Chen, Ziyue
Liu, Sijia Liu, and Zheng Zhang. 2023. Tensor-
compressed back-propagation-free training for
(physics-informed) neural networks. arXiv preprint
arXiv:2308.09858.

Xiaojun Zhou, Yuan Gao, Chaojie Li, and Zhaoke
Huang. 2022. A multiple gradient descent design
for multi-task learning on edge computing: Multi-
objective machine learning approach. IEEE Transac-
tions on Network Science and Engineering, 9(1):121–
133.

18548

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2023.eacl-main.66
https://doi.org/10.18653/v1/2023.eacl-main.66
https://doi.org/10.18653/v1/2023.eacl-main.66
https://doi.org/10.1109/TNSE.2021.3067454
https://doi.org/10.1109/TNSE.2021.3067454
https://doi.org/10.1109/TNSE.2021.3067454

Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen.
2024. Litemoe: Customizing on-device llm serving
via proxy submodel tuning. In Proceedings of the
22nd ACM Conference on Embedded Networked Sen-
sor Systems, SenSys ’24, page 521–534, New York,
NY, USA. Association for Computing Machinery.

A Additional Explanation on Hessian and
Gradient Approximation

Consider a linear layer in an LLM that computes:

y = Wx, (17)

where W ∈ Rm×n, x ∈ Rn, and y ∈ Rm. Fo-
cusing on one particular linear component, let us
analyze a single row wi ∈ Rn of W. The corre-
sponding output is given by:

yi = wi x, (18)

which is a scalar.
To analyze the sensitivity of the loss L with re-

spect to wi, we perform a second-order Taylor ex-
pansion of L with respect to yi:

L(yi +∆yi) ≈ L(yi) +∇L(yi)∆yi

+
1

2
∇2L(yi) (∆yi)

2. (19)

Since yi is a scalar, its second derivative∇2L(yi)
is also a scalar.

Now, the change in yi due to a change in the
weights is

∆yi = ∆wi x. (20)

Substituting this into the second-order term yields:

∂2L
∂w2

i

≈ ∇2L(yi) (xx
⊤). (21)

Since we are primarily interested in comparing
weight importance along the row direction, the ab-
solute scale of the Hessian is not crucial. In prac-
tice, we can drop the multiplicative factor ∇2L(yi)
(or, equivalently, assume it to be a constant) and
write:

∂2L
∂w2

i

∝ xx⊤. (22)

Similarly, one can derive a first-order approx-
imation for the gradient. By retaining only the
first-order term of the Taylor expansion, we have:

L(yi +∆yi) ≈ L(yi) +∇L(yi)∆yi. (23)

With ∆yi = ∆wi x, the gradient with respect to
wi becomes:

∂L
∂wi

≈ ∇L(yi)x. (24)

Similarly, since we are only interested in the rela-
tive value, the factor is dropped:

g ∝ x. (25)

18549

https://doi.org/10.1145/3666025.3699355
https://doi.org/10.1145/3666025.3699355

Algorithm 1 MaZO LLM Fine-Tuning Framework

Input: Pre-trained LLM parameters θ, train-
ing data, tasks t = 1, . . . , T , sparsity level ρ,
hyperparameters α, β, learning rate η
Output: Updated parameters θ∗

for each task t = 1 to T do
Collect evaluation data
Compute St

global with eq. (12)
Compute St

greedy with eq. (14)
Combine scores:

St = St
global + αSt

greedy + β|W|

Normalize St and get Ŝt with eq. (6)
end for
Aggregate: Sum row-wise normalized scores
across tasks:

S =
T∑

t=1

Ŝt

for each weight W in LLM do
for each row i in W do

Select top k parameters in each row
according to corresponding S and construct
weight update mask M

end for
end for
for each training step do

Compute weight update ∆W using ZO
optimization

Apply mask:

∆Wmasked = ∆W ⊙M

Update parameters:

θ ← θ + η∆Wmasked

end for

This derivation shows that, by considering each
row independently (row-wise), we avoid the im-
mense complexity involved in computing the full
Hessian matrix (which is high-dimensional and dif-
ficult to characterize even under diagonalization
assumptions). In other words, computing the Hes-
sian row-wise allows us to circumvent the problem
of determining the eigenvalues or even a reliable
diagonal approximation of the full Hessian.

B Implementation Details and
Reproducibility

B.1 Hyperparameters

The training configuration involves setting a learn-
ing rate of 1e-7 for the full model and 3e-4 for the
LoRA-based components. The batch size is con-
figured to 8, and the training process consists of
30,000 steps. The optimizer used is Stochastic Gra-
dient Descent (SGD). In terms of sparsity, a MaZO
sparsity of 0.9 is applied to the full model, while
0.8 sparsity is utilized for the LoRA components.
Additionally, the LoRA rank is defined as 16.

B.2 Ablation Study

We explore the optimal hyperparameter settings
for MaZO, includeing α, β, sparsity level, and the
LoRA rank. To streamline the process, we per-
form grid searches for each hyperparameter while
keeping the others constant. For most experiments,
we fine-tune the model on SST-2, BoolQ, COPA,
and SQuAD, encompassing binary classification,
multiple-choice, and generation tasks, providing di-
verse evaluation scenarios. However, for the LoRA
rank, we evaluate performance across all tasks.
α and β. To optimize α and β, we fix the

sparsity level at 50% and perform full-model fine-
tuning (without LoRA). The search is conducted in
two stages. First, β is set to zero, and α is tuned,
resulting in an optimal value of α = 10. Next,
with α fixed, β is tuned, yielding an optimal value
of β = 1. These values strike a balance between
the global and greedy weight importance metrics,
ensuring effective parameter selection.

LoRA rank. We examine the impact of LoRA
rank and provide detailed results in Appendix E. In
summary, the results reveal a U-shaped relationship
between rank and performance, reflecting a trade-
off between model capacity and dimensionality.
The optimal rank of 16 minimizes loss and is used
as the default setting for LoRA-based baseline.

Sparsity. We perform a grid search of the spar-
sity level ρ from 0.1 to 0.99. For full-model fine-
tuning, the performance first improves with increas-
ing sparsity and then sharply declines. The peak
performance is achieved at ρ = 0.9. For LoRA
fine-tuning, we jointly optimize sparsity levels and
LoRA ranks. The optimal result is found at a LoRA
rank of 64 and a sparsity level of 0.8. Notably, the
effective number of parameters is equivalent to
64× (1− 0.8) = 12.8, which is less than the best-
performing rank of LoRA baseline. This highlights

18550

that MaZO can further reduce the dimension while
maintaining the model capacity.

C Pseudo-code of MaZO

The pseudo-code of the whole MaZO LLM fine-
tuning framework is shown as Algorithm 1.

D Baseline

D.1 CoBa: Convergence Balancer for
Multitask Finetuning

CoBa (Convergence Balancer) (Gong et al., 2024)
is a novel multi-task learning (MTL) method de-
signed for large language models (LLMs). It dy-
namically adjusts task weights during training to
ensure balanced convergence across tasks, while
maintaining computational efficiency.

Consider an LLM parameterized by θ ∈ Rm,
trained on T ≥ 2 tasks. The loss function for task
t at iteration i is denoted as Lt(θ; i) : Rm → R≥0.
The overall optimization objective is:

min
θ∈Rm

L(θ; i) =
T∑

t=1

ωt(i)Lt(θ; i), (26)

where ωt(i) is the weight of task t at iteration i.
A uniform weight assignment ωt(i) =

1
T ensures

equal attention to all tasks but often leads to varying
convergence rates. CoBa dynamically adjusts ωt(i)
to balance these rates, prioritizing generalization
by deriving weights from validation losses instead
of training losses. CoBa is built upon three main
components:

Relative Convergence Score (RCS) dynam-
ically allocates smaller weights to tasks that
converge faster and larger weights to slower-
converging tasks. It is computed as:

RCSt(i) = softmaxt

(
T

αt(i)∑T
t′=1 |αt′(i)|

)
, (27)

where αt(i) is the convergence slope of task t, de-
rived from the normalized validation loss ratio over
a sliding window of N iterations. The softmax op-
eration ensures differentiation across tasks, with
faster-converging tasks receiving lower weights.

Absolute Convergence Score (ACS) addresses
task divergence by reducing weights for diverging
tasks and increasing weights for converging tasks.
It is computed as:

ACSt(i) = softmaxt

(
−N αt(i)∑i

j=i−N+1 |αt(j)|

)
,

(28)

where normalization is performed along the his-
torical iteration dimension, isolating a task’s own
trajectory. ACS ensures tasks with consistent con-
vergence receive higher weights while diverging
tasks are penalized.

Divergence Factor (DF) determines the relative
influence of RCS and ACS on the final task weights.
It is defined as:

DF(i) = min

(
softmaxi

(
i · αmax(i)∑i
j=1 αmax(j)

)
, 1

)
,

(29)
where αmax(i) is the largest convergence slope
across all tasks at iteration i. DF ensures RCS dom-
inates when all tasks are converging, while ACS
takes precedence when divergence is detected.

The final task weights ωt(i) are computed as:

ωt(i) = DF(i) ·RCSt(i) + (1−DF(i)) ·ACSt(i),
(30)

allowing a seamless transition between RCS and
ACS dominance based on task convergence trends.

The convergence slope αt(i) for task t is calcu-
lated based on the normalized validation loss ratio
L̄val
t (θ; i). Specifically, we fit a linear model to the

validation loss ratios over a sliding window of N
iterations. The observations are defined as:

xt(i) = [i, 1]⊤ (31)

Xt(N ; i) = [xt(s0), . . . ,xt(i)]
⊤ (32)

yt(N ; i) = [L̄val
t (θ; s0), . . . , L̄val

t (θ; i)]⊤ (33)

where s0 = max(0, i−N + 1) is the starting step
of the sliding window. The goal is to compute the
coefficient vector ct(N ; i) = [αt(N ; i), βt(N ; i)]⊤

that minimizes the mean squared error (MSE) be-
tween the predicted and actual validation loss ra-
tios:

ct = argmin
ct

1

2
(Xtct − yt)

⊤(Xtct − yt). (34)

The closed-form solution for ct is given by:

ct = (X⊤
t Xt)

−1X⊤
t yt. (35)

Algorithm The CoBa algorithm is summarized
in Algorithm 2, We use M = 4 with batchsize =
16

18551

Algorithm 2 CoBa Algorithm

Require: Initial parameters θ0, M batches of val-
idation set, history window length N = 5M ,
warm-up steps W = M , number of tasks T ,
initial weights ωi(0) =

1
T .

Ensure: Trained parameters θ.
1: for t = 0 to T do
2: Compute L(θ; i) with training batch xi.
3: Compute L̄val

t (θ; t) with validation batch
vi.

4: Update validation loss history yt(N ; i).
5: Compute αt(i).
6: if i > W then
7: Compute RCS(i), ACS(i), and DF(i)

using Eqs. (27), (28), and (29).
8: Update task weights ωt(i) using Eq.

(30).
9: else

10: Set ωt(i) =
1
T .

11: end if
12: Update model parameters θ using weighted

loss L(θ; i).
13: end for

D.2 FAMO: Fast Adaptive Multitask
Optimization

Fast Adaptive Multitask Optimization (FAMO) is
a dynamic weighting method designed to address
the challenges of multitask learning (MTL), where
directly optimizing the average loss across tasks
often leads to under-optimization of certain tasks.
FAMO ensures balanced task loss reduction using
only O(1) space and time per iteration, making it
computationally efficient and scalable.

The complete FAMO algorithm is summarized
in Algorithm 4.

D.3 MTL-LoRA
MTL-LoRA (Multi-Task Learning LoRA) is a
parameter-efficient fine-tuning method designed
to enhance the multi-task learning (MTL) capabil-
ities of large language models (LLMs). It builds
upon the Low-Rank Adaptation (LoRA) framework
by addressing the challenges of task interference
and suboptimal information sharing in multi-task
scenarios.

LoRA is a parameter-efficient fine-tuning
method that freezes the majority of a pre-trained
model’s parameters and introduces trainable low-
rank matrices to approximate gradient updates. For
a weight matrix W ∈ Rd×k in the original model,

Algorithm 3 PyTorch Implementation of Wanda

Input: Weight matrix W ∈ RCout×Cin , input
activations X ∈ R(N ·L)×Cin , sparsity ratio s ∈
[0, 1]
Output: Pruned weight matrix W
Compute importance scores: metric =
W.abs() ·X.norm(p = 2, dim = 0)
Sort scores within each row: _, sorted_idx =
torch.sort(metric, dim = 1)
Identify indices to prune: pruned_idx =
sorted_idx[:, : ⌊Cin · s⌋]
Set pruned weights to zero: W.scatter_(dim =
1, index = pruned_idx, src = 0)
Return W

LoRA decomposes the gradient update ∆W into
two low-rank matrices B ∈ Rd×r and A ∈ Rr×k,
where r ≪ min(d, k). The updated weight matrix
is expressed as:

W′ = W +∆W = W +BA.

The output of the updated layer for an input x is:

h = (W +BA)x.

MTL-LoRA enhances LoRA by introduc-
ing task-specific transformations and dynamic
information-sharing strategies.

Task-Specific Transformation. MTL-LoRA in-
troduces a learnable task-specific transformation
matrix Λt ∈ Rr×r for each task t. For an input xt

corresponding to task t, the low-rank projection is
modified as:

zt = ΛtAxt,

where A ∈ Rr×k is the shared low-rank matrix.

Dynamic Information Sharing. To improve
cross-task information sharing, MTL-LoRA em-
ploys multiple up-projection matrices Bi ∈ Rd×r

(i = 1, . . . , n) and combines their outputs using a
weighted averaging strategy. The final output for
task t is computed as:

ht = Wxt +

n∑

i=1

exp(wt
i/τ)∑n

j=1 exp(w
t
j/τ)

Bizt,

where wt
i are learnable weights for task t, and τ

is a temperature hyperparameter controlling the
sharpness of the weight distribution.

We set number of up-projection matrices n to 3,
rank to 16 and temperature τ to 0.5

18552

0 5000 10000 15000 20000 25000 30000
Training Steps

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Ev
al

 L
os

s

2, 0.800

4, 0.792

8, 0.771
16, 0.765 32, 0.766

64, 0.785

128, 0.812

256, 0.826

512, 0.842

Evaluation Loss vs Steps for Different LoRA Ranks
with Minimum Points and Ideal Trend Line

Minimum Points Trend
Ideal Trend

Figure 5: The loss curve with different LoRA rank.

E LoRA Rank

We investigate the influence of LoRA rank on the
model’s final performance. Initially, we exclude
weight masking and fine-tune the model with dif-
ferent LoRA ranks. The evaluation loss curves for
ranks ranging from 1 to 512 are plotted in Figure 5.
As the rank increases, the loss forms a U-shaped
curve, with the lowest point occurring at a rank of
16. Ideally, the trend of the lowest point in first-
order (FO) optimization should follow the green
dashed line in Figure 5. However, in the zeroth-
order (ZO) setting, the larger parameter optimiza-
tion space as rank increases leads to a deviation
from this ideal trend.

This U-shaped curve highlights a critical trade-
off: while increasing the rank improves the model’s
capacity, it simultaneously introduces challenges
in optimizing a larger parameter space under ZO
settings. This observation directly motivates our
exploration of sparsity and mask selection strate-
gies, which aim to reduce the number of parameters
being optimized while retaining the most impor-
tant ones. By identifying and focusing on the most
critical parameters, we can mitigate the challenges
posed by ZO optimization and achieve better per-
formance, as demonstrated by our MaZO approach.

F Details of Different Weight Score
Metrics

F.1 Wanda: Pruning by Weights and
Activations

In this section, we introduce Wanda (Pruning by
Weights and Activations), a simple yet effective
method for pruning large language models (LLMs).
Wanda can induce high sparsity in pretrained LLMs

without requiring retraining or weight updates,
making it computationally efficient and easy to
implement.

The key idea of Wanda is to evaluate the impor-
tance of each weight based on both its magnitude
and the corresponding input activation. Specifi-
cally, for a linear layer with weight matrix W ∈
RCout×Cin and input activations X ∈ R(N ·L)×Cin ,
the importance score Sij of weight Wij is defined
as:

Sij = |Wij | · ∥Xj∥2, (36)

where |Wij | is the absolute value of the weight,
and ∥Xj∥2 is the L2 norm of the j-th column of
X, aggregated across all tokens in the batch and
sequence dimensions. This metric effectively com-
bines weight magnitude and input activation infor-
mation to determine the importance of each weight.

Unlike traditional pruning methods that compare
weights globally or layer-wise, Wanda adopts a per-
output comparison strategy (the same as our row-
wise comparison). For a weight Wij connecting
input j to output i, its comparison group is defined
as all weights connected to the same output i:

Gij = {Wuv |u = i}. (37)

Within each comparison group, weights are ranked
by their importance scores Sij , and a predefined
sparsity ratio s% is applied to prune the lowest-
ranked weights.

F.2 Other Metrics

In this section, we introduce two additional heuris-
tic weight importance metrics: random and magni-
tude.

For the random metric, we randomly select 50%
of the weights. It is important to note that the
comparison group is the entire set of weights, rather
than a single row.

For the magnitude metric, we select weights with
the smallest values in a weight, following the ap-
proach described by Liu et al. (2024b).

G Task Details

We consider a diverse set of natural language under-
standing (NLU) and natural language generation
(NLG) tasks.

G.1 Natural Language Understanding Tasks

We select tasks from the GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) benchmarks:

18553

• SST-2 (Stanford Sentiment Treebank): A bi-
nary sentiment classification task.

• BoolQ: A yes/no question-answering task.

• RTE (Recognizing Textual Entailment): A bi-
nary classification task for textual entailment.

• WSC (Winograd Schema Challenge): A pro-
noun resolution task.

• WiC (Word-in-Context): A word sense dis-
ambiguation task.

• MultiRC (Multi-Sentence Reading Compre-
hension): A question-answering task where
each question has multiple correct answers.

• COPA (Choice of Plausible Alternatives): A
multiple-choice task for causal reasoning.

G.2 Natural Language Generation Task

For natural language generation, we include:

• SQuAD (Rajpurkar, 2016): A question-
answering dataset where the model generates
text-based answers from a given passage.

G.3 Dataset Splits and Evaluation Metrics

To ensure computational feasibility, we randomly
sample 500 instances for training, 250 for valida-
tion, and 500 for testing for each task. Performance
is measured using F1 score or accuracy, depending
on the task.

H Discussion of Collinearity

Task-specific ZO gradients: For each task t ∈
{1, . . . , T}, the zeroth-order gradient estimate is
given by

gt =
Lt(θ + ϵz)− Lt(θ − ϵz)

2ϵ
z ≡ αtz, (38)

where αt is a scalar. Thus, every gt is a scalar
multiple of the same random direction z.

Span of all task gradients: The space spanned
by the set of all task gradients is

span{g1,g2, . . . ,gT } = span{z}. (39)

Therefore, the dimension of this span is

dim
(
span{g1,g2, . . . ,gT }

)
= 1. (40)

Aggregated gradient: The combined gradient
used for the update is

g =
T∑

t=1

wtg
t =

(
T∑

t=1

wtαt

)
z, (41)

which clearly lies in the one-dimensional subspace
spanned by z.

Gradient covariance matrix: Define the covari-
ance matrix of the task gradients as

C =

T∑

t=1

πt
(
gt − ḡ

) (
gt − ḡ

)⊤
, (42)

where πt are probability weights (or simply 1/T
for uniform weighting) and the mean gradient is

ḡ =

T∑

t=1

πtg
t. (43)

Since gt = αtz, we have

gt − ḡ = (αt − ᾱ)z, with ᾱ =

T∑

t=1

πtαt. (44)

Thus, the covariance matrix becomes

C =

(
T∑

t=1

πt(αt − ᾱ)2

)
zz⊤. (45)

Since zz⊤ is an outer product of a vector with itself,
it has rank 1. Hence,

rank(C) = 1. (46)

Conclusion: The lack of directional diversity
in the task gradients is mathematically captured by
the fact that all task-specific gradients lie in a one-
dimensional subspace, and the covariance matrix
of these gradients has rank 1. This indicates that no
matter how many tasks are aggregated, the update
direction remains confined to a single direction z
in the parameter space.

18554

Algorithm 4 Fast Adaptive Multitask Optimization
(FAMO)
Require: Initial model parameters θ0, task losses
{Lt,i}Tt=1, learning rates α and β, decay factor
γ.

1: Initialize logits: ξ1 ← 0.
2: for i = 1 to T do
3: Compute task weights:

zi = Softmax(ξt),

where for each i,

zt,i =
exp(ξt,i)∑T

t′=1 exp(ξt′,i)
.

4: Update model parameters:

θt+1 = θt − α
T∑

t=1

(
ct
zt,i
Lt,i

)
∇Lt,i,

with ci =

(
k∑

i=1

zt,i
Lt,i

)−1

.

5: Compute the vector of log-loss differences:

di =



logL1,i − logL1,i+1

...
logLT,i − logLT,i+1


 .

6: Compute the Jacobian of the softmax func-
tion:

(Ji)tt′ =
∂zt,i
∂ξt′,i

= zt,i(δtt′ − zt′,i).

7: Aggregate the gradient by the chain rule:

δi = J⊤
i di.

8: Update logits:

ξi+1 = ξi − β
(
δi + γ ξi

)
.

9: end for

18555

