
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18368–18383
November 4-9, 2025 ©2025 Association for Computational Linguistics

Combining Constrained and Unconstrained Decoding via Boosting:
BoostCD and Its Application to Information Extraction

Marija Šakota Robert West
EPFL, Lausanne, Switzerland

{marija.sakota, robert.west}@epfl.ch

Abstract

Many recent approaches to structured NLP
tasks use an autoregressive language model M
to map unstructured input text x to output text y
representing structured objects (such as tuples,
lists, trees, code, etc.), where the desired output
structure is enforced via constrained decoding.
During training, these approaches do not re-
quire the model to be aware of the constraints,
which are merely implicit in the training out-
puts y. This is advantageous as it allows for dy-
namic constraints without requiring retraining,
but can lead to low-quality output during con-
strained decoding at test time. We overcome
this problem with Boosted Constrained Decod-
ing (BoostCD), which combines constrained
and unconstrained decoding in two phases:
Phase 1 decodes from the base model M twice,
in constrained and unconstrained mode, obtain-
ing two weak predictions. In phase 2, a learned
autoregressive boosted model combines the
two weak predictions into one final prediction.
The mistakes made by the base model with vs.
without constraints tend to be complementary,
which the boosted model learns to exploit for
improved performance. We demonstrate the
power of BoostCD by applying it to closed in-
formation extraction. Our model, BoostIE, out-
performs prior approaches both in and out of
distribution, addressing several common errors
identified in those approaches.

1 Introduction

Extracting structured semantic information from
unstructured text is essential for many AI tasks,
including knowledge discovery (Ji and Grishman,
2011), knowledge base maintenance (Tang et al.,
2019), symbolic representation, reasoning (Ji et al.,
2022), and planning. Beyond these applications,
a growing number of NLP tasks now explicitly
require structured outputs as part of their formula-
tion. Some examples are code generation (Poesia
et al., 2022), SQL generation (Scholak et al., 2021),

INPUT TEXT: Carol Dollard works
in development at PepsiCo, the

company behind Pepsi.

base model
M*

[s] Carol Dollard
[r] employer
[o] PepsiCo [e]

[s] PepsiCo
[r] produces
[o] Pepsi [e]

[s] Carol Douglas
[r] employer
[o] PepsiCo [e]

[s] PepsiCo
[r] product or
material produced
[o] Pepsi [e]

boosted
model M

b

FINAL OUTPUT:

[s] PepsiCo [r] product or material
produced [o] Pepsi [e]

constrainedunconstrained

*autoregressive closed information extraction model
red not in the knowledge base, green present in the knowledge base
[s], [r], [o], and [e] mark the subject, relation, object and end of triplet

PHASE 1

PHASE 2

x

x

y
c

y

y
u

Should not be
generated as

Carol Douglas is
not in the text

Should not be
generated as Carol

Dollard is not in the
knowledge base

Figure 1: Overview of BoostCD, exemplified on the
task of closed information extraction (BoostIE). Phase 1
applies the base model twice on input x: unconstrained
and constrained. Phase 2 combines the two resulting
weak predictions yu and yc into final prediction y using
a boosted model, which during training learns to undo
mistakes made by the base model.

constituency parsing (Deutsch et al., 2019), and
various information extraction (Cao et al., 2021;
Josifoski et al., 2023; Orlando et al., 2024).

Many recent approaches for these tasks use au-
toregressive models trained on pairs of unstructured
input text and structured output targets, coupled
with constrained decoding (Josifoski et al., 2023,
2022; Whitehouse et al., 2023; Cao et al., 2021). In
real-world tasks, the constraints can often change,
so constrained decoding offers an easy way to adapt
the schema without the need to retrain the model.
Constrained decoding also helps steer the model
the right way when it is already close to generating
the correct output (e.g., when the only problems
are minor surface form discrepancies). However,

18368

on the downside, as the model remains unaware of
the explicit constraints until decoding at inference
time, it may generate less plausible outputs when
the input data or the constraints at inference time
deviate from those seen during training.

We illustrate in Fig. 1, which shows an exam-
ple of outputs of the autoregressive model with
constrained decoding on the closed information ex-
traction (cIE) task, where the goal is to extract com-
plete sets of fact triplets (subject, relation, object)
from text, where all entities and relations must be
present in a predefined knowledge base (KB). In the
provided example, the base model is a cIE model
trained on exhaustive data (i.e., facts in the text
are fully expressible under KB constraints). The
shown input text differs from the training data by
containing facts that are not expressible under KB
constraints. The base model generates two triplets
when run in unconstrained mode. For the first one,
the entity present in the text, “Carol Dollard”, is
not present in the KB. Because the base model was
trained on exhaustive data, when prompted in an
unconstrained manner, it generates a correct triplet
that captures this entity. When constrained, how-
ever, instead of removing this triplet entirely (as it
does not comply with the KB), the model resorts to
generating a triplet with a wrong entity with a simi-
lar name (“Carol Douglas”). For the second triplet,
the unconstrained model generates correct entities
but makes a formatting error in the relation (“pro-
duces” instead of “product or material produced”).
In this case, constrained decoding helps by correct-
ing the relation name. Ideally, we seek a method
able to recognize patterns in the constrained and
unconstrained outputs to combine their strengths
and recover from their errors, without having to
know the explicit constraints already at training
time (which would reduce flexibility as constraints
change, e.g., as the KB evolves).

To overcome these problems, we introduce
Boosted Constrained Decoding (BoostCD), a
method with the ability to correct systematic errors
that an autoregressive model trained for a structured
NLP task might make during constrained as well
as unconstrained generation. BoostCD works in
two phases: Phase 1 decodes from the base model
M twice for the input text x, in constrained and
unconstrained mode, obtaining two weak predic-
tions yc and yu. In phase 2, a learned autoregressive
boosted model combines the two weak predictions
into one final prediction y. Empirically, the mis-
takes made by the base model with vs. without

constraints tend to be complementary, which the
boosted model learns to exploit during training for
improved performance.

To demonstrate the power of the BoostCD
paradigm, we apply it to closed information ex-
traction (cIE; cf. Fig. 1) as an example of a struc-
tured task with constraints (defined by the content
of the knowledge base) that tend to change dynam-
ically in real-life settings. We further enhance the
resulting cIE model, BoostIE, with Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
for improving performance on out-of-distribution
data. We show that BoostIE outperforms previous
methods both in-distribution (on synthetic data it
was trained on) and out-of-distribution (on random
Wikipedia paragraphs). We also demonstrate that
BoostIE lowers the rate of common errors made by
earlier techniques.

Contributions. Our contributions are as follows:
(i) We propose BoostCD, a new method for train-

ing autoregressive language models for structured
NLP tasks.

(ii) We instantiate BoostCD for the closed in-
formation extraction (cIE) task, obtaining a model
termed BoostIE, and conduct a detailed evaluation,
showing that BoostIE outperforms existing meth-
ods both in-distribution (by 17.05 and 12.56 abso-
lute points in micro and macro F1, respectively)
and out-of-distribution (by 10.94 and 12.54 abso-
lute points in micro and macro F1, respectively).

(iii) A detailed error analysis confirms that
BoostIE lowers the rate of common errors made by
previous cIE models, as well as disadvantages of
vanilla constrained decoding for this task.

(iv) We share our code, models, and data for
researchers to reuse and extend: https://github.
com/epfl-dlab/BoostCD

2 Method: BoostCD

Language models trained for structured NLP tasks
in a supervised manner can often perform reason-
ably well even without the constraints imposed, but
the constraints are still required to guarantee 100%
valid generations, and they can steer the model
to pick the one correct output when multiple out-
puts might seem plausible a priori (e.g., when an
entity has multiple aliases). However, when the
constraints require altering the unconstrained out-
put significantly (e.g., when an entity generated in
unconstrained mode is not present in the KB), per-
formance can suffer from imposing the constraints

18369

https://github.com/epfl-dlab/BoostCD
https://github.com/epfl-dlab/BoostCD

(for a more formal evaluation of this, see analysis
in Appendix H.1).

We hence seek a method that enjoys the benefits
of constraints without suffering from their nega-
tive side effects. In developing such a method, we
draw inspiration from boosting (Schapire, 1990),
a classic ensemble learning technique that aims
to improve performance by iteratively combining
weaker models into a single stronger one. The
idea is to train models sequentially, where each
new model focuses on the mistakes made by the
previous ones. The final prediction is formed by ag-
gregating the outputs of all models, often through
weighted voting or summation. Our method,
Boosted Constrained Decoding (BoostCD), trains
a new model, the boosted model, to predict the
ground-truth output based on both the constrained
and the unconstrained generation from the autore-
gressive base model together with the input text.
This way of training allows the boosted model to
recover from systematic mistakes made by the base
model without requiring explicit knowledge of the
constraints at training time.

For intuition, consider the cIE task as illustrated
in Fig. 1: in the example, unconstrained decod-
ing extracted a triplet (Carol Dollard, employer,
PepsiCo) that was not extracted by constrained de-
coding (because Carol Dollard is not in the KB);
and constrained decoding extracted a triplet (Carol
Douglas, employer, PepsiCo) that was not extracted
by unconstrained decoding (because Carol Douglas
is not mentioned in the input text). By seeing such
candidate triplets together with the ground-truth
triplet set (which contains neither of the above can-
didate triplets), the boosted model learns to recog-
nize that entities occurring only in the constrained
but not the unconstrained output (or vice versa) in-
dicate triplets that were erroneously extracted by
the base model and should thus be discarded. Note
that this is but one of the many potential patterns
that the boosted model might learn.

Pipeline. The BoostCD pipeline is shown in Fig. 1.
For illustration, we use the example of cIE, al-
though our method can be applied to any struc-
tured extraction task. Under the assumption that
we have a dataset which consists of pairs (x,y),
where x is the input text, and y = {(s,r,o)|(s,r,o)∈
E ×R×E} (a set of triplets constrained to the KB
that contains all entities E and relations R), our
training pipeline consists of two phases:

(i) Phase 1: We use a base model M, trained in
an autoregressive manner on (x,y) pairs, to make
two parallel passes. In one pass, we let the model
generate in an unconstrained manner: by sending
input text x to the model M without imposing any
constraints, we obtain the output yu. In the other
pass, we generate by imposing constraints: by pro-
viding the input text x and using M with constrained
decoding, we obtain the output yc.

(ii) Phase 2: In this phase, we train the boosted
model Mb to correct the errors that the base model
M made in phase 1. Mb is trained in an autore-
gressive way to map (x,yu,yc) (i.e., the original
input together with both phase-1 predictions) to the
ground-truth output y.

During the inference, we repeat the steps from
both phases: (1) we make two parallel passes with
the base model M to generate constrained and un-
constrained predictions (ŷc and ŷu) and (2) we send
(x, ŷu, ŷc) to the boosted model Mb to make a final
prediction ŷ. This prediction can be made with or
without constrained decoding.

In the following sections, we apply BoostCD to
the cIE task by curating the data and modeling to fit
its needs. We emphasize that this paradigm can be
used for other structured tasks, with adaptations of
the data and modeling. Also note that we use only
one step of boosting in our pipeline, although in
principle there is nothing that restricts this pipeline
to one iteration only. For our setting, we found one
step to be sufficient, but for other applications, it is
possible to explore multiple iterations of the same
algorithm.

3 Application to information extraction

To assess BoostCD, we apply it to the cIE task and
refer to the resulting boosted model as BoostIE.

3.1 Data

To train the base model, we need data that is ex-
haustive, i.e. the input is fully expressible under
constraints. In other words, there should be no
facts in the text that we cannot express with entities
and relations from the KB. We need this to train a
model that is exhaustive. For cIE, this means that
the base model should extract all the facts present
in the text, regardless of constraints (i.e., perform
open information extraction). If this was not the
case, the model will likely learn to drop random
triplets, and hence the performance would drop.
For the boosted model, we can simulate the setting

18370

in which some samples express entities in the text
that do not exist in the KB. For a fraction of the
data we randomly remove some entities from the
KB making it impossible for a base model to gener-
ate them in the constrained setting. We also remove
these entities from the target triplet set by removing
each triplet that contains the entity in question. By
providing these samples during training, we let the
model learn what happens when the entity in text is
not present in the KB and hopefully bring it closer
to generating the correct output.

By curating the data for the boosted model this
way, we also prevent the boosted model from learn-
ing what is present in the KB, as this changes for
every data point. Instead, the boosted model is
forced to learn patterns in the constrained and un-
constrained outputs from the base model and rely
on input information. This makes the model more
flexible if KB is changing over time. Data gener-
ated in this way also has some samples for which
no triplets are extractable (i.e. they are not present
in the KB). As a result, the boosted model is trained
to produce an empty set for some samples, which
might not be the case for the base model. This does
not guarantee that the boosted model would be able
to do it for the text that has no triplets at all, but
from our results, this seems to be the case.

3.2 Model and inference for cIE

Modeling. We follow the same setting for mod-
eling as Josifoski et al. (2023). Both base and
boosted models are based on FlanT5 (Chung et al.,
2022), and are trained to autoregressively gener-
ate a linearized sequence of the corresponding
triplet set y when prompted with the input text
x. Training is done by maximizing the target se-
quence’s conditional log-likelihood with teacher
forcing (Sutskever et al., 2011) and cross-entropy
loss. We also use dropout (Srivastava et al., 2014)
and label smoothing (Szegedy et al., 2016).

Output linearization. We represent triplets as
model-compatible sequences using delimiters: [s],
[r], [o], and [e] mark the subject, relation, and
object, and the end of each triplet. We concatenate
the triplets in the order they appear in the text to
form the final sequence.

Inference. Similarly to Josifoski et al. (2023), we
use constrained beam decoding during inference
time. Valid prefixes that follow both linearization
and KB constraints are dynamically generated.

3.3 DPO finetuning

As we currently do not have access to a well-
aligned dataset for cIE that is made on real-world
data (see Sec. 4), the process of training base and
boosted models is done with synthetic data that
might not highly resemble natural text. As a conse-
quence, this might hinder the performance of our
model in the wild. In an attempt to overcome this,
we propose to tune the model with Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
using data more similar to the real-world one.

DPO is a reward-free method for aligning lan-
guage models with human preferences by directly
optimizing for preferred outputs over less preferred
alternatives. In our case, we use DPO to adapt
the model toward generating more accurate and
faithful structured outputs on real-world text.

For DPO finetuning, we use around 600 sam-
ples from the REBEL dataset (Huguet Cabot and
Navigli, 2021), and an additional 100 samples for
validation. We chose this dataset because it was
crafted from the real Wikipedia text, although only
by collecting text from the first paragraphs of Wi-
kipedia articles. That means that it still differs
from randomly crawled Wikipedia text. To identify
samples the most similar to the real text, we train
a RoBERTa classifier (Liu et al., 2019) that can
distinguish real text (random text from Wikipedia
articles, not limited to the abstracts) from Wiki-
cIE Code text (for more details about the classifier,
see Appendix F). We use this classifier to pick the
samples with the highest probability of being real
Wikipedia text. Since cIE model trained on this
data, GenIE (Josifoski et al., 2022), is not exhaus-
tive, and SynthIE does not perform well outside of
the training distribution, we decide to use a large
language model to choose samples with a fitting
target from one of these two models (if any of the
two can produce it). For each text sample, to col-
lect ranked candidate triplet sets, we run GenIE
and SynthIE in constrained manner. We then let
GPT-41 decide which one of the two options is bet-
ter and use this information for ranking. If none
of the options are good, we discard the sample.
This way, we collect the data that (1) resembles
real text more and (2) for which we have a qual-
ity solution from one of the existing models. This
procedure allows the model to learn a preference
signal aligned with real-world patterns, without re-
quiring gold-standard annotations. We note that

1We use gpt-4-0613 version of GPT-4.

18371

this might systematically discard harder samples,
but is a good starting point to attempt to generalize
to a different data distribution.

4 Evaluation setup

Knowledge base. We use the subset of Wikidata
(Vrandečić, 2012), using entities that are connected
to English Wikipedia pages and relations that ap-
pear at least once in the REBEL training dataset.
Our catalogue consists of 2.6M entities and 888 re-
lations. For the unique representation of each entity,
we use its English Wikipedia title. For relations,
we use their label in Wikidata.

Data. For training the base model M, we use a
subset of 300K samples from the train split of Wiki-
cIE Code used for training SynthIE models (see
Appendix B for details). This is a synthetic da-
taset and we use it because there is no real-text
dataset with inputs that are fully expressible under
KB constraints (see Sec. 3.1 for a further explana-
tion of this requirement). The boosted model Mb
was trained on an additional 100K samples from
the same dataset. We also train a SynthIE model
on all 400k samples for a fair comparison. 100K
samples used for training the boosted model have
been altered as explained in Sec. 3.1, and 40% of
the randomly chosen samples have been altered.
For each altered sample, up to three entities were
removed, uniformly. The validation and test data
were crafted in the same way, each being a sub-
set of the corresponding Wiki-cIE Code of 10K
samples. Wiki-cIE Code is imperfect as it does
not have the same properties as the real-world text,
but can demonstrate the abilities of this training
technique effectively.

Baselines. To isolate the effects of this training
technique, we compare BoostIE with the SynthIE
model of the same size, trained on the same 400K
samples used in the BoostIE pipeline (without alter-
ations). We also compare our method with ReLiK
cIE model of similar size,2 as this is the state-of-
the-art model right now. We provide results with
and without using DPO after initial training. For
more details about the baselines, see Appendix C.

Metrics and implementation detail. We evalu-
ate the performance in terms of micro and macro
precision, recall, and F1 score. All results are re-
ported with 95% confidence intervals constructed

2We use “relik-ie/relik-cie-large”, see https:
//huggingface.co/relik-ie/relik-cie-large

from 50 bootstrap samples. For more details on
evaluation metrics, see Appendix D. For details on
implementation, see Appendix E.

5 Results

5.1 Evaluation on Wiki-cIE Code

Performance evaluation. We first evaluate our
method on in-distribution data. We use the metrics
mentioned in Sec. 4 on the random subset of 10K
samples from the test split of Wiki-cIE Code. We
evaluate it on non-edited, as well as Wiki-cIE Code
with entities randomly removed from the KB, as
described in Sec. 3.1. We report results in Table 1.

ReLiK does not perform on Wiki-cIE Code
nearly as well as SynthIE and BoostIE. This is
expected, as it was not trained on this data, and
Wiki-cIE Code has a different distribution from
REBEL on which ReLiK was trained.

Second, we notice that all the models perform
worse for the samples where some entities are ran-
domly removed from the KB. This is in line with
our expectations, especially for SynthIE, as it was
trained to extract exhaustively, and cannot han-
dle instances where this is not possible. Precision
is more affected by this modification of the data.
Micro-recall stays almost the same, while macro-
recall drops much less than precision. This happens
because the models tend to output wrong triplets ei-
ther related to the removed entity (in unconstrained
mode) or related to a similarly named entity (in
constrained mode). Triplets related to the correct
entities present in the graph mostly stay in the out-
put, maintaining the recall relatively high.

For BoostIE models, there is a noticeable im-
provement both for edited samples with removed
entities and for the non-edited ones. The improve-
ment is visible for both micro and macro scores.
We suspect that this happens because by using
BoostCD (1) we are implicitly including the in-
formation about the presence or lack of an entity in
the KB and (2) we include the information about er-
rors SynthIE, which is used as a base model, makes
regardless of the KB. Examples of the latter can be
wrong disambiguation of certain entities in the KB,
or the less adequate relations for the scenario (for
instance, using “location” instead of “located in or
next to body of water” for text expressing an entity
“Niagara” being located in the “Lake Ontario”).

The difference in scores for constrained and un-
constrained settings is higher for BoostIE mod-
els than for SynthIE. This happens because, un-

18372

https://huggingface.co/relik-ie/relik-cie-large
https://huggingface.co/relik-ie/relik-cie-large

Overall Removed Same
Precision Recall F1 Precision Recall F1 Precision Recall F1

Micro

BoostIE (constrained) 57.23 ± 0.79 48.24 ± 0.63 52.35 ± 0.63 38.69 ± 1.84 45.99 ± 1.79 42.02 ± 1.64 63.91 ± 0.94 48.79 ± 1.03 55.33 ± 0.96

BoostIE (unconstrained) 54.72 ± 0.89 46.31 ± 0.73 50.16 ± 0.73 31.62 ± 1.62 43.76 ± 1.82 36.71 ± 1.57 64.86 ± 0.91 46.93 ± 1.01 54.45 ± 0.95

BoostIE + DPO (constrained) 59.45 ± 0.65 46.65 ± 0.65 52.28 ± 0.59 43.03 ± 1.82 43.90 ± 1.68 43.46 ± 1.55 64.82 ± 0.94 47.31 ± 0.96 54.70 ± 0.91

BoostIE + DPO (unconstrained) 56.39 ± 0.82 44.81 ± 0.73 49.94 ± 0.72 35.41 ± 1.80 41.94 ± 1.80 38.39 ± 1.65 64.58 ± 1.02 45.50 ± 0.95 53.38 ± 0.93

ReLiK (filtered) 22.89 ± 0.57 20.80 ± 0.58 21.79 ± 0.53 17.21 ± 1.01 18.37 ± 1.12 17.77 ± 0.96 24.58 ± 0.66 21.43 ± 0.56 22.89 ± 0.57

SynthIE 400k (constrained) 31.71 ± 0.77 39.81 ± 0.68 35.30 ± 0.68 13.57 ± 0.92 40.41 ± 1.85 20.31 ± 1.20 45.90 ± 1.03 39.67 ± 0.83 42.56 ± 0.88

SynthIE 400k (unconstrained) 33.40 ± 0.81 34.83 ± 0.77 34.10 ± 0.73 15.18 ± 0.98 34.54 ± 1.73 21.09 ± 1.19 45.98 ± 1.17 35.00 ± 0.88 39.75 ± 0.96

Macro

BoostIE (constrained) 58.35 ± 2.46 46.11 ± 1.02 48.81 ± 1.39 37.51 ± 2.55 39.47 ± 3.11 36.01 ± 2.20 61.96 ± 3.30 46.26 ± 1.62 50.28 ± 1.95

BoostIE (unconstrained) 43.81 ± 1.78 35.78 ± 0.97 37.34 ± 1.20 26.69 ± 2.14 32.59 ± 3.04 27.24 ± 2.01 53.21 ± 3.11 38.12 ± 1.23 42.31 ± 1.63

BoostIE + DPO (constrained) 59.09 ± 2.50 44.74 ± 1.10 48.29 ± 1.50 39.32 ± 2.93 38.34 ± 2.70 36.55 ± 2.12 61.58 ± 3.21 45.00 ± 1.58 49.27 ± 1.87

BoostIE + DPO (unconstrained) 42.89 ± 1.75 32.91 ± 0.97 35.23 ± 1.07 28.33 ± 2.18 31.59 ± 2.51 27.85 ± 1.71 50.84 ± 3.18 35.54 ± 1.29 39.73 ± 1.66

ReLiK (filtered) 17.22 ± 0.99 12.81 ± 0.54 12.92 ± 0.56 11.63 ± 1.38 11.96 ± 0.80 10.59 ± 0.75 17.20 ± 1.36 13.14 ± 0.53 13.18 ± 0.66

SynthIE 400k (constrained) 40.29 ± 1.60 38.77 ± 0.95 36.25 ± 1.12 21.22 ± 1.87 31.72 ± 3.54 22.67 ± 2.11 47.97 ± 2.15 38.26 ± 0.73 39.68 ± 1.21

SynthIE 400k (unconstrained) 35.58 ± 1.28 33.76 ± 1.16 32.28 ± 1.05 16.94 ± 1.39 27.10 ± 3.41 18.88 ± 1.71 46.26 ± 2.53 34.04 ± 0.86 37.04 ± 1.34

Table 1: Results on Wiki-cIE Code dataset: Overall - whole test set, Removed - test samples with removed random
entities (and triplets) from the target and KB, Same - test samples without entity removal. For BoostIE, constrained
and unconstrained refers to the final boosted model mode of operation. We report both micro and macro results,
with 95% CI. Best results are in bold.

like SynthIE which tends to generate triplets with
wrong entities when something is not present in the
KB, BoostIE is able to recognize this setting. This
is expected, as BoostCD used for training BoostIE
models specifically addresses this issue. We spec-
ulate that, in the case of BoostIE, constrained de-
coding helps filter out triplets with missing entities
rather than causing the model to generate triplets
with incorrect ones. In other words, BoostIE as-
signs a higher probability to the output that does not
include entities missing from the KB. For macro
scores, the difference is present for both original
and edited samples. This likely means that BoostIE
detects some systematic errors that happen for rare
relations when using SynthIE.

Finally, the usage of DPO does not result in sig-
nificant improvements over the standard BoostIE
model on this data. This is expected given its use
was aimed at improving real-data performance (see
Sec. 5.2 for evaluation on natural text). Still, the ab-
sence of performance degradation, for both micro
and macro socres, is a positive sign.

Performance by relation frequency. As men-
tioned earlier, relations expressed in the natural
text are imbalanced: there is a small number of
relations that are present very often and a large
number that are rare. Training on real data can lead
to bad performance on those rare relations, which
would be masked by the overwhelming presence of
common relations. Wiki-cIE Code was constructed
with this in mind. To verify that our method does
not compromise the performance on rare relations,

0

20

40

60

80

N
um

be
r o

f r
el

at
io

ns

Distribution of relations

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9
2

10
2

11
2

12
2

13
2

14
2

15
2

16
2

17
2

18

Relation frequency in REBEL's training dataset

0.0

0.2

0.4

0.6

0.8

1.0

F1

BoostIE
SynthIE 400k

ReLiK (+filter)
BoostIE + DPO

Figure 2: Impact of the relation frequency. Relations
are bucketed based on their frequency; bucket 2i con-
tains relations occurring between 2i and 2i+1 times. The
histogram shows the number of relations per-bucket.
The line plots depict the per bucket F1 scores evaluated
on Wiki-cIE Code test dataset with confidence intervals
constructed by bootstrapping.

as well as to evaluate the performance of ReLiK
in this light, we mimic the experiment by Josifoski
et al. (2023) and bucket relations by their frequency
in REBEL training set which follows the natural
distribution of relations. We report results in Fig. 2.
ReLiK performs worse for rare relations. This is
expected, as parts of their pipeline were trained
with real-world data. When it comes to BoostIE
models, they perform consistently better than Syn-
thIE for all relation buckets and maintain stable
performance over rare and common relations.

18373

5.2 Evaluation on natural text

Micro Precision Recall F1

BoostIE + DPO 48.89 ± 18.16 27.76 ± 11.78 34.93 ± 11.97

BoostIE 22.68 ± 11.85 17.38 ± 11.02 19.33 ± 10.12

ReLiK 25.88 ± 18.38 22.58 ± 15.33 23.99 ± 16.38

SynthIE 400k 6.74 ± 3.91 13.34 ± 10.19 8.76 ± 4.96

Macro
BoostIE + DPO 23.87 ± 4.92 20.85 ± 3.91 20.87 ± 4.13

BoostIE 15.50 ± 3.20 13.62 ± 2.88 13.49 ± 2.77

ReLiK 9.52 ± 0.95 9.55 ± 2.84 8.33 ± 1.35

SynthIE 400k 5.38 ± 1.95 6.05 ± 2.66 5.35 ± 2.11

Table 2: Human evaluation on Wikipedia text. The best
results are bolded. Results are reported with 95% CI.

To better understand the performance of both our
BoostIE models, as well as ReLiK and SynthIE out
of distribution, we manually annotate 50 random
samples from Wikipedia text (see Appendix A for
data collection process). During this process, each
Wikipedia text sample is assigned a ground truth
triplet set (see Appendix G for annotation process
details). We then compare all models on this data.
We run both BoostIE and SynthIE with constrained
decoding, as evaluations on Wiki-cIE Code suggest
this improves performance. Results are presented
in Table 2. We note that Wikipedia text does not
fully reflect the real-world text, as it is a highly
structured and factual text. Nonetheless, it is a
good starting point for evaluating cIE models.

From Table 2, SynthIE performs the worst. This
matches our expectations as SynthIE was trained
on the data that has little resemblance to the Wiki-
pedia text. Next, BoostIE performs slightly worse
than ReLiK in terms of micro metrics, but a little
better in terms of macro metrics. We see this as a
good sign. BoostIE manages to be on par with Re-
LiK without the need for a separate retrieval model.
We suspect that the reason why BoostIE is better
in macro metrics is because ReLiK was trained on
the REBEL dataset, which has heavy-tailed dis-
tribution of relations. Finally, BoostIE with DPO
performs by far the best over both micro and macro
metrics. This highlights the importance of the DPO
step, and the potential it has to adapt the language
model to the a differently distributed data.

5.3 Error analysis

To further examine what kind of errors previous and
our method make, we collect 50 random samples of
text from Wikipedia (see Appendix A for the data
collection process). We compare SynthIE, ReLiK

and BoostIE with and without the DPO step. By
manual inspection, we identify five types of errors:

(i) Unexhaustive triplets: triplet set does not
include some correct triplets

(ii) Incorrect related triplets: triplet set in-
cludes some incorrect triplets about correct entities

(iii) Misclassified entity: entities in the triplets
are wrongly identified as similarly named ones

(iv) Unrelated triplets: triplet set includes
triplets unrelated to the text or entities in the text

(v) Entity-centered triplets: triplets in the
triplet set are centered around one entity

Some errors can happen at the same time, e.g.
there can be a triplet set that is both unexhaustive
and contains unrelated triplets. We annotate the
chosen sample and report the results in Table 3.

From the results, it is clear that SynthIE struggles
with the Wikipedia data in multiple ways. Most of
the samples contain at least some unrelated triplets
(60%). We also notice that it has the highest per-
centage of samples with misclassified entities (9%).
Both of these errors stem from the constrained de-
coding issues – when the entity is not present in
the KB but is expressed in the text, SynthIE tends
to produce triplets with similarly-named entities
(misclassified) or even completely unrelated ones.
This is confirmed by the BoostIE results, as both of
these problems are largely mitigated for BoostIE.

SynthIE also produces the highest percentage of
samples with triplet sets centered around one entity
(16%). We notice that BoostIE without DPO has
similar issues (11%). We believe this error comes
from a bad distribution of triplet sets in the Wiki-
cIE Code used for training both of these models.
ReLiK and BoostIE with DPO which were either
trained with different data (REBEL), or exposed to
it through DPO, suffer from this suffer from this to
a much lesser degree (0% and 6% respectively).

Among all error types, unexhaustive generations
exhibit the least variance across the four models.
Despite intentionally training SynthIE and BoostIE
models on an exhaustive dataset, on the real text,
they fall short similarly to ReLiK trained on an
unexhaustive dataset (REBEL). We suspect that
the limited performance of BoostIE without DPO
might be due to a significant mismatch between
the training data distribution and the real-world
text. In the case of BoostIE with DPO, although
the data used during fine-tuning more closely re-
sembles Wikipedia text, it includes some outputs
from GenIE, which is trained on REBEL. We ex-
pect that some of these outputs are not exhaustive.

18374

This likely contributed to the persistence of unex-
haustive generations. In Appendix H, we provide a
few additional analyses of common cIE approaches,
setting the stage for further research in this area.

SynthIE ReLiK BoostIE BoostIE + DPO

Unexhaustive 0.33 ± 0.09 0.38 ± 0.11 0.32 ± 0.11 0.38 ± 0.10

Incorrect related 0.36 ± 0.11 0.28 ± 0.10 0.26 ± 0.11 0.12 ± 0.09

Misclassified entity 0.09 ± 0.07 0.04 ± 0.04 0.00 ± 0.00 0.00 ± 0.00

Unrelated 0.60 ± 0.11 0.14 ± 0.09 0.28 ± 0.10 0.08 ± 0.06

Entity-centered 0.16 ± 0.08 0.00 ± 0.00 0.11 ± 0.07 0.06 ± 0.05

Table 3: Error analysis on Wikipedia text samples. Num-
bers represent fraction of samples with the given type
of error. Result are shown with 95% CI.

6 Related work

6.1 Closed information extraction

Older cIE methods usually rely on the combina-
tion of entity recognition (Tjong Kim Sang, 2002)
and linking (Milne and Witten, 2008a) with rela-
tion extraction (Milne and Witten, 2008b) to obtain
the set of triplets constrained to the KB. However,
these methods often have problems with error prop-
agation due to their architecture (Mesquita et al.,
2019; Trisedya et al., 2019). A newer approach that
combines entity linking and relation extraction is
proposed by Orlando et al. (2024). In recent years,
however, autoregressive methods have dominated
the field. For the cIE task, this was first introduced
by Josifoski et al. (2022). Josifoski et al. (2022)
also introduced the usage of constrained decoding
for this task. The same approach was adopted by
Josifoski et al. (2023) and Whitehouse et al. (2023).

Another line of research in this field relies
on building a good training dataset for the cIE
task. Huguet Cabot and Navigli (2021) intro-
duced REBEL, a dataset of fact triplets constructed
using distant supervision. Similarly, Trisedya
et al. (2019) introduce WikiNER, a dataset that
is also made using distant supervision, but aug-
mented with co-reference resolution and dictionary-
based paraphrase detection. More recently, White-
house et al. (2023) presented WebIE, a multilingual
distant-supervision dataset, with the introduction
of some human-annotated samples as well. Josi-
foski et al. (2023) synthetically generated their data
specifically having distributional (i.e. relational fre-
quency issue) and exhaustiveness issues in mind.

The emergence of LLMs raises the question of
their ability to perform this task. As shown by Josi-
foski et al. (2023), LLMs struggle with tasks that

require structured output. For cIE, they also have
no knowledge of the KB. Geng et al. (2024a) at-
tempt to overcome this issue by combining an LLM
with constrained decoding, but their evaluation on
synthetic data limits broader conclusions.

6.2 Constrained decoding

Structured NLP tasks require the output to be in
a certain form. To overcome this, different forms
of constrained decoding have been proposed. Cao
et al. (2021) address the entity-disambiguation con-
straints by generating a prefix trie at the decod-
ing time, forcing output to be valid entities from
the KB. Geng et al. (2024b) introduce grammar-
constrained decoding, focusing on generalizing
the constrained decoding to a wider variety of
tasks. Park et al. (2024) introduce grammar-
aligned decoding, which aims to correct the condi-
tional probability of the LLM’s distribution condi-
tioned on the given grammar constraint. Koo et al.
(2024) propose a method that addresses downsides
of constrained decoding related to the tokeniza-
tion issues by using automata-based constraints.
Beurer-Kellner et al. (2024) propose a method that
speeds up the constrained decoding that works in a
subword-aligned fashion.

7 Discussion

7.1 Implications for cIE

Despite numerous efforts through years to solve
cIE, current approaches struggle with performance
on the real data, as well as adaptability to differ-
ent KBs. Our method could be a step closer to
an efficient and high-performing system that over-
comes these issues. Our experiments show that
BoostIE (BoostCD applied to cIE) improves the
performance of constrained decoding, which is of-
ten used for cIE systems. Additionally, BoostIE
does not directly learn what is present in the KB,
which is the case for most current approaches, mak-
ing it more adaptable to changes in the KB. Our
experiments on Wiki-cIE Code also show that our
method maintains a good performance over rare
relations, while the evaluation on real Wikipedia
data indicates that BoostIE is better at generalizing
to out-of-distribution data. This seems to be the
case especially when using DPO with data that re-
sembles the target distribution. With that in mind,
along with the fact that DPO does not degrade
performance on the original data distribution, we
draw attention that this can be used as an unexpen-

18375

sive way to improve the overall performance of the
model. In an ideal scenario, our base model would
be trained on an exhaustive dataset with more real-
istic text. This is not trivial to collect, so finetuning
with DPO and a smaller finetuning dataset can be a
good way to overcome this limitation.

7.2 Implications for other tasks

Although our present evaluation has focused on
the benefits of BoostCD for closed information ex-
traction, nothing about the method is inherently
restricted to this task. A similar pipeline can be
exploited for a wide range of structured NLP tasks,
including tagging, parsing, code generation, JSON
generation, and many more. We leave the evalu-
ation of BoostCD on such other tasks for future
work and hope that researchers and developers will
benefit from BoostCD in practice.

Limitations

Entity surface form variations. Our current
pipeline might have issues with entities that are
presented in the text in a very different way than in
the knowledge base (e.g. as acronyms or aliases).
Since our model has no external knowledge, it can-
not disambiguate between these cases vs. an entity
that is present in the text but not in the KB. This is
also something that we cannot expect from a small,
specialized, model to know on its own, as it does
not have broad knowledge of the external world.
This is possibly an area where LLMs would excel.

Inference speed. Although we are using small
language models for this task and we consider our
approach to be scalable, inference requires three
runs of a model (constrained and unconstrained
base model run, and the run of the boosted model).
This is less efficient than SynthIE or similar models,
but is still faster and cheaper than running an LLM.
Also note that the constrained and unconstrained
run of the base model can be parallelized.

Training dataset. The dataset we used for training
does not resemble real data, and has other distribu-
tional issues. One particular case of such issue is
the distribution of entities in the triplet sets. Due
to the way Wiki-cIE Code was generated, most of
the triplets in triplet sets are centered around one
or two entities. Real data often describes many
more entities in a few sentences. Because of this,
both SynthIE and BoostIE have troubles with text
that expresses triplets about many entities in a sin-

gle sentence or paragraph. This can be solved by
different sampling of triplet sets when generating
synthetic data for training, focusing on introducing
variety of entities into them.

Real-world data performance. While BoostIE
improved the overall performance on the sampled
Wikipedia text, it is still far from perfect. Addi-
tionally, Wikipedia does not fully reflect the per-
formance of our model in the wild, as it is still a
very factual and structured text. In future work,
it would make sense to perform a further evalua-
tion on the real text, as it might help identify other
failure modes.

Acknowledgments

We would like to thank Ivan Zakazov, Alexander
Sharipov, Lorenzo Drudi, Kamel Charaf, Haolong
Li and Saibo Geng for helping with the human
evaluation. We also thank Yiyang Feng for help
with the initial exploration. West’s lab is partly sup-
ported by grants from the Swiss National Science
Foundation (200021_185043 and 211379), Swiss
Data Science Center (P22_-08), H2020 (952215),
Microsoft Swiss JRC, and Google, and by generous
gifts from Facebook, Google, and Microsoft.

References
Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.

2024. Guiding llms the right way: Fast, non-invasive
constrained generation. Preprint, arXiv:2403.06988.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
Preprint, arXiv:2010.00904.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert
Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, and 16
others. 2022. Scaling instruction-finetuned language
models. Preprint, arXiv:2210.11416.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019.
A general-purpose algorithm for constrained sequen-
tial inference. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 482–492, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Saibo Geng, Berkay Döner, Chris Wendler, Martin Josi-
foski, and Robert West. 2024a. Sketch-guided con-
strained decoding for boosting blackbox large lan-
guage models without logit access. In Proceedings
of the 62nd Annual Meeting of the Association for

18376

https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2010.00904
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/K19-1045
https://doi.org/10.18653/v1/K19-1045
https://doi.org/10.18653/v1/2024.acl-short.23
https://doi.org/10.18653/v1/2024.acl-short.23
https://doi.org/10.18653/v1/2024.acl-short.23

Computational Linguistics (Volume 2: Short Papers),
pages 234–245, Bangkok, Thailand. Association for
Computational Linguistics.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2024b. Grammar-constrained decoding
for structured nlp tasks without finetuning. Preprint,
arXiv:2305.13971.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1148–1158, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S. Yu. 2022. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems, 33(2):494–514.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626–4643,
Seattle, United States. Association for Computational
Linguistics.

Martin Josifoski, Marija Sakota, Maxime Peyrard, and
Robert West. 2023. Exploiting asymmetry for syn-
thetic training data generation: SynthIE and the
case of information extraction. arXiv preprint
arXiv:2303.04132.

Terry Koo, Frederick Liu, and Luheng He. 2024.
Automata-based constraints for language model de-
coding. Preprint, arXiv:2407.08103.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Filipe Mesquita, Matteo Cannaviccio, Jordan Schmidek,
Paramita Mirza, and Denilson Barbosa. 2019. Knowl-
edgeNet: A benchmark dataset for knowledge base
population. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 749–758, Hong Kong, China. Association for
Computational Linguistics.

David Milne and Ian H. Witten. 2008a. Learning to link
with wikipedia. In Proceedings of the 17th ACM Con-
ference on Information and Knowledge Management,
CIKM ’08, page 509–518, New York, NY, USA. As-
sociation for Computing Machinery.

David Milne and Ian H. Witten. 2008b. Learning to link
with wikipedia. In Proceedings of the 17th ACM Con-
ference on Information and Knowledge Management,
CIKM ’08, page 509–518, New York, NY, USA. As-
sociation for Computing Machinery.

Riccardo Orlando, Pere-Lluís Huguet Cabot, Edoardo
Barba, and Roberto Navigli. 2024. Retrieve, read
and link: Fast and accurate entity linking and relation
extraction on an academic budget. In Findings of
the Association for Computational Linguistics: ACL
2024, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick,
Nadia Polikarpova, and Loris D’Antoni.
2024. Grammar-aligned decoding. Preprint,
arXiv:2405.21047.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. Preprint,
arXiv:2201.11227.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Robert E. Schapire. 1990. The strength of weak learn-
ability. Mach. Learn., 5(2):197–227.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

18377

https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://aclanthology.org/P11-1115/
https://aclanthology.org/P11-1115/
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342
https://arxiv.org/abs/2407.08103
https://arxiv.org/abs/2407.08103
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.18653/v1/D19-1069
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150
https://arxiv.org/abs/2405.21047
https://arxiv.org/abs/2201.11227
https://arxiv.org/abs/2201.11227
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on International Conference on Machine Learning,
ICML’11, page 1017–1024, Madison, WI, USA. Om-
nipress.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2818–2826.

Jizhi Tang, Yansong Feng, and Dongyan Zhao. 2019.
Learning to update knowledge graphs by reading
news. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2632–2641, Hong Kong, China. Association for Com-
putational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural relation extrac-
tion for knowledge base enrichment. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 229–240, Florence,
Italy. Association for Computational Linguistics.

Denny Vrandečić. 2012. Wikidata: a new platform for
collaborative data collection. In Proceedings of the
21st International Conference on World Wide Web,
WWW ’12 Companion, page 1063–1064, New York,
NY, USA. Association for Computing Machinery.

Chenxi Whitehouse, Clara Vania, Alham Fikri Aji,
Christos Christodoulopoulos, and Andrea Pierleoni.
2023. WebIE: Faithful and robust information extrac-
tion on the web. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7734–7755,
Toronto, Canada. Association for Computational Lin-
guistics.

A Collection of Wikipedia text

We collect Wikipedia text using Wikipedia API, by
randomly taking Wikipedia articles and extracting
1 chunk of text that has at most 4 sentences per
each article. All the sentences have to be part of
the same paragraph (i.e. we are not keeping chunks
that contain “\n” in them).

B Wiki-cIE Code

Wiki-cIE Code is a fully synthetic dataset intro-
duced by Josifoski et al. (2023). It was used for

training the range of SynthIE models. The data-
set consists of around 1.8M training data samples,
10K validation, and 50K test samples generated
by the now discontinued OpenAI model, code-
davinci-002. The data was synthetically made,
starting from sampling triplet sets. Triplet sets
are generated by a biased random walk on a sub-
set of the Wikidata knowledge graph (Vrandečić,
2012). Text that corresponds to these triplets was
then generated by an LLM. Each text sample was
generated by providing a triplet set and asking the
LLM to write the text that only expresses those
triplets. This way, an exhaustive, high-quality data
was made. The main disadvantage of this dataset is
the fact that the text does not resemble real text, as
it is very clean and does not contain a lot of details.

C Baselines

GenIE. Josifoski et al. (2022) introduce GenIE,
an end-to-end autoregressive langauge model that
does cIE, based on BART (Lewis et al., 2020). This
model was trained on REBEL, the dataset made
with distant supervision on Wikipedia abstracts.
The method also employs constrained decoding.
Given all of this, the model has issues that stem
from constrained decoding, bad alignment between
triplets and text in the data, as well as bad distri-
bution of relations in the training set. We do not
compare against GenIE as it was already shown
by Josifoski et al. (2023) that it performs worse
than SynthIE. We use it to generate DPO data (see
Sec. 3.3).

SynthIE. As a part of efforts to mitigate some of
the issues raised by GenIE, Josifoski et al. (2023)
introduce SynthIE. This is a model trained on syn-
thetic data, Wiki-cIE Code, that has better align-
ment between text and triplets, as well as better
distribution of relations in the training set. How-
ever, SynthIE still uses constrained decoding, and
the synthetic data it was trained on does not resem-
ble real data, which causes issues when the model
is used in practical settings.

ReLiK. Differently from SynthIE and our BoostIE
models, ReLiK (Orlando et al., 2024) utilizes a
retriever-reader architecture to solve cIE task. The
retriever module encodes the input text and re-
trieves the most relevant entities and relations from
the KB. Then, the reader module takes as input the
text and each retrieved entity or relation separately
and maps them to a specific span of the text. The

18378

https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.18653/v1/D19-1265
https://doi.org/10.18653/v1/D19-1265
https://aclanthology.org/W02-2024/
https://aclanthology.org/W02-2024/
https://aclanthology.org/W02-2024/
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.18653/v1/2023.acl-long.428
https://doi.org/10.18653/v1/2023.acl-long.428

modules for cIE were trained on REBEL dataset
(Huguet Cabot and Navigli, 2021), raising a con-
cern that this model might exhibit the issues with
rare-relation performance.

D Metrics

We evaluate performance using standard precision,
recall, and F1 metrics across all settings. A pre-
dicted fact is considered correct only if the relation
and both associated entities are correct. Formally,
let the set of predicted triples for a document d ∈D
be denoted as Pd , and the corresponding set of gold
triples as Gd . Then, the micro-averaged precision
and recall are defined as follows:

micro-precision =
∑

d∈D
|Pd ∩Gd |

/∑

d∈D
|Pd |, (1)

and

micro-recall =
∑

d∈D
|Pd ∩Gd |

/∑

d∈D
|Gd |. (2)

Micro scores provide a useful aggregate view
of model performance, especially in terms of over-
all accuracy. However, they can obscure dispari-
ties in datasets with class imbalance—for instance,
when certain entities or relations appear far more
frequently in both training and test data. This is be-
cause micro-averaging gives equal weight to each
instance, whereas macro-averaging assigns equal
weight to each class. To account for such imbal-
ances, we also report macro-averaged scores.

Let P(r)
d and G(r)

d denote the predicted and gold
triples for relation r ∈ R in document d. Then,
macro-precision is defined as:

1
|R|

∑

r∈R

(
;
∑

d∈D
|P(r)

d ∩G(r)
d |
/∑

d∈D
|P(r)

d |
)
, (3)

and macro-recall as:

1
|R|

∑

r∈R

(
;
∑

d∈D
|P(r)

d ∩G(r)
d |
/∑

d∈D
|G(r)

d |
)
. (4)

E Implementation

As mentioned in Sec. 3.2, BoostIE uses two FlanT5
models. For both models, we use ’google/flan-t5-
base’ version3, which has ∼250M parameters. The

3https://huggingface.co/google/flan-t5-base

models were trained using the Adam optimizer with
a learning rate of 3e-4, 0.1 gradient clipping on the
Euclidean norm, and a weight decay of 0.05. They
were trained with batch size 80, for a maximum
of 10K steps. We used a polynomial learning rate
scheduler with 1000 warm-up steps and a final
learning rate of 3e-05. All the experiments were
run on a single NVIDIA Titan X Maxwell 12GB
GPU, taking around 24h for the training of the base
model, and around 16h for boosted model. The
DPO finetuning was done on the same machine
with the trl library4, using learning rate 5e-5, batch
size 2, β 0.1 and running it for 5 epochs, taking
around 20min to finetune. During inference, we
run all our models with 10 beams.

F DPO data preprocessing

To collect the data for DPO finetuning, we first
train a RobERTa classifier that distinguishes Wiki-
cIE Code text from real Wikipedia text. We use
the ’roberta-base’ model5 as the basis for our clas-
sifier. To do that, we take 5K samples from the
Wiki-cIE Code training split (labeled as ’0’) and
collected 5K samples of Wikipedia text (labeled
as ’1’) in the way described in Appendix A. For
the validation set, we collect in total of 3K samples
in the same way. The classifier achieves an accu-
racy of 98.27% on the validation set, highlighting
again how different SynthIE data is from the real
Wikipedia one.

G Human annotations

Construction of candidate triplet sets. We start
by randomly choosing 50 samples of Wikipedia
text. Since it is not trivial to annotate the text, as
the knowledge of a whole KB with more than 2.6M
entities and almost 900 relations, we attempt to get
as exhaustive set of candidate triplets as possible
by combining outputs from multiple models. For
that, we use SynthIE, GenIE, ReLiK, BoostIE, and
BoostIE with DPO.

Because these models were trained on different
datasets, and have different strengths and disadvan-
tages, by combining all of them, we are hoping to at
least have a set of triplet candidates that include all
the correct triplets, while also possibly including
many incorrect ones. This procedure ensures that
our precision estimate is correct, up to human error.

4https://huggingface.co/docs/trl/en/index
5https://huggingface.co/FacebookAI/

roberta-base

18379

https://huggingface.co/google/flan-t5-base
https://huggingface.co/docs/trl/en/index
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base

SynthIE (constrained) SynthIE (unconstrained)

Unexhaustive 0.33 ± 0.09 0.23 ± 0.11
Incorrect related 0.36 ± 0.11 0.46 ± 0.13
Misclassified entity 0.09 ± 0.07 0.03 ± 0.03
Unrelated 0.60 ± 0.11 0.26 ± 0.11
Entity-centered 0.16 ± 0.08 0.34 ± 0.11
Entity/relation not in the KB 0.00 ± 0.00 0.72 ± 0.11

Table 4: Error analysis for SynthIE model in constrained
and unconstrained mode on Wikipedia real text.

For the recall, our estimation will not necessarily be
correct, but the ranking of the models will stay the
same (as they all might be missing some potential
triplets that none of the models generated).

Instructions. The annotators were given instruc-
tions in Fig. 3.

Annotation task. To ensure quality results, our an-
notation was done by 2 Ph.D. students and 4 MSc
students. None of them were familiar with our
work, avoiding any possible biases. For each anno-
tation sample, the annotator was presented with the
text and list of candidate triplets. For each triplet,
they had to decide whether the triplet is expressed
in the text or not, based on the instructions provided
in Fig. 3. The annotation was done in three stages.
First, one Ph.D. student and all MSc students anno-
tated the data, with each contributing to an equal
part. Then, the second Ph.D. student annotated all
the samples. Finally, one of the paper’s authors
resolved the conflicts.

H Additional analysis of cIE methods

H.1 Constrained vs. unconstrained
generation

As mentioned in Sec. 2, we suspect that errors that
stem from the constrained and unconstrained de-
coding are complementary (see Fig. 1). To support
this claim, we perform an analysis of the errors
that occur during constrained and unconstrained
decoding. We use the same error classification and
Wikipedia data as in Sec. 5.3. We also add another
type of error that only happens during the uncon-
strained decoding – Entity/relation not in the KB
– which covers the case for which generated entities
or relations are not present in the knowledge base.
The results are shown in Table 4.

In Table 5, we show examples of SynthIE out-
puts in both constrained and unconstrained man-
ner, on real Wikipedia text. Overall, SynthIE does
open information extraction well (i.e. without KB
constraints), but constrained decoding only works

when there are not many deviations between facts
in the text and the KB.

H.2 Analysis with negation

We suspect that, since ReLiK was trained to match
retrieved entities and relations with spans of text
identified as relevant, it is more likely to find a
relation between two entities in the text that are
not connected. To confirm this, we edit samples
from the test split of Wiki-cIE Code, created by
Josifoski et al. (2023) for the SynthIE model, by
replacing “is” in text with “is not”. For example:
“Groovin’ Blue is not an album by Curtis Amy,
released on Pacific Jazz Records” would be used
instead of “Groovin’ Blue is an album by Curtis
Amy, released on Pacific Jazz Records”. We test
both SynthIE (without constrained decoding) and
ReLiK on this modified data. Neither of the two
models performs well on this task, but there are
indicators that SynthIE is able to somewhat model
the lack of relation between two entities. In the
case of ReLiK, this happens rarely. For examples,
see Table 6

H.3 GPT-4o pipeline

In Sec. 5.3, we show some of the disadvantages
of the current approaches with the smaller LMs.
However, LLMs are more powerful in terms of
their external knowledge, which can be a useful
thing when extracting information facts. The pitfall
with LLMs for this task is the KB. As they do not
possess information about what is present in our
KB, they are struggling to output the triplets in the
correct format, or under correct constraints.

Under the assumption that one has unlimited re-
sources for this task, we tried using GPT-4o with
a form of retrieval-augmented generation (RAG).
In this way, the LLM has the information about
our KB. Here we present some of the key improve-
ments to the standard prompt that resulted in better
outputs (manually evaluated):

• Entity retrieval: We noticed that it is impor-
tant for entity retrieval to be high-recall. This
means that we did not care if many entities
were not relevant, as long as all the relevant
ones were included. GPT-4o seems to be able
to filter the non-relevant entities, but cannot
come up with the new ones. In our case, we
used a mix of entities retrieved by ReLiK,
SynthIE, and GenIE (both in an unconstrained
setting). We did not include relation retrieval

18380

text constrained unconstrained

Slaughter fought for law and order with his six-
shooter, a shotgun, and a repeating Henry ri-
fle. He arrested desperados like the Jack Taylor
Gang and brought them to justice.He also be-
came a prominent poker player, often playing
all night long. He was reportedly good at bluff-
ing. He often played with the cattle baron John
Chisum.

{(’Slaughter_(band)’, ’armament’, ’Shotgun’),
(’Slaughter_(band)’, ’armament’, ’Rifle’),
(’Slaughter_(band)’, ’armament’, ’Henry_ri-
fle’)}

{(’Slaughter_(poker)’, ’armament’, ’Henry_ri-
fle’), (’Slaughter_(poker)’, ’armament’, ’Shot-
gun’), (’Slaughter_(poker)’, ’armament’, ’Six-
shooter’), (’Slaughter_(poker)’, ’unmarried
partner’, ’John_Chisum’)}

Carol Dollard, who once worked in product de-
velopment for PepsiCo, told Gladwell: "I’ve
seen many times where the sip test will give
you one result and the home-use test will give
you the exact opposite.". For example, although
many consumers react positively to the sweeter
taste of Pepsi in small volumes, it may become
unattractively sweet when drunk in quantity.

{(’Carol_Douglas’, ’instance of’, ’Human’),
(’PepsiCo’, ’industry’, ’Food_industry’), (’Pep-
siCo’, ’product or material produced’, ’Pepsi’),
(’Carol_Douglas’, ’employer’, ’PepsiCo’)}

{(’Carol_Dollard’, ’employer’, ’PepsiCo’),
(’Carol_Dollard’, ’described by source’, ’Glad-
well_Encyclopedic_Dictionary’), (’PepsiCo’,
’product or material produced’, ’Pepsi’)}

In June 1998, the founders became unhappy
with the direction in which 3Com was taking
the company, and left to found Handspring.

{(’3Com’, ’followed by’, ’Handspring_(com-
pany)’)}

{(’3Com’, ’replaced by’, ’Handspring_(com-
pany)’), (’3Com’, ’significant event’, ’June_-
1998’)}

The merger also brought the game download
site FilePlanet into the IGN group; as of 2011
both FilePlanet and the GameSpy website still
operate as video game-related web sites.

{(’Mergers_and_acquisitions’, ’facet of’, ’Soft-
ware_as_a_service’), (’Mergers_and_acquisi-
tions’, ’facet of’, ’Software’), (’Video_game_-
industry’, ’product or material produced’,
’Video_game’), (’Video_game_industry’, ’in-
stance of’, ’Industry_(economics)’), (’Merg-
ers_and_acquisitions’, ’facet of’, ’Video_-
game_industry’)}

{(’Merger_of_FilePlanet_and_GameSpy’,
’business division’, ’FilePlanet’), (’Merger_of_-
FilePlanet_and_GameSpy’, ’business division’,
’GameSpy’)}

Keith Taylor and Mike Scarrott called it the
"Boomerang Nebula" in 1980 after observing
it with the Anglo-Australian telescope at the
Siding Spring Observatory. Unable to view it
with great clarity, the astronomers saw merely a
slight asymmetry in the nebula’s lobes suggest-
ing a curved shape like a boomerang.

{(’Boomerang_Nebula’, ’astronomical filter’,
’Visual_perception’), (’Boomerang_Nebula’,
’parent astronomical body’, ’Sun’), (’Visual_-
perception’, ’subclass of’, ’Perception’)}

{(’Boomerang_Nebula’, ’site of astronom-
ical discovery’, ’Siding_Spring_Observa-
tory’), (’Boomerang_Nebula’, ’named after’,
’Boomerang’), (’Boomerang_Nebula’, ’discov-
erer or inventor’, ’Keith_Taylor_(astronomer)’),
(’Boomerang_Nebula’, ’discoverer or inventor’,
’Mike_Scarrott’)}

Table 5: Examples of generation with SynthIE in constrained and unconstrained mode

Text ReLiK SynthIE (unconstrained)

The Verwall Alps are not a mountain range in
Austria’s Vorarlberg region, which borders the
Samnaun Alps.

[[’Verwall_Alps’, ’country’, ’Austria’], [’Vo-
rarlberg’, ’country’, ’Austria’], [’Vorarlberg’,
’location’, ’Austria’], [’Samnaun_Alps’, ’coun-
try’, ’Austria’]]

[[’Verwall_Alps’, ’different from’, ’Vorarl-
berg’], [’Vorarlberg’, ’shares border with’,
’Samnaun_Alps’]]

Windows Nashville was not a codename for a
cancelled release of Microsoft Windows.

[[’Windows_Nashville’, ’edition or translation
of’, ’Microsoft_Windows’]]

None

"The Land of Mist" is not a fantasy short story
published in the Strand Magazine. It is not in
the public domain.

[[’The_Land_of_Mist’, ’published in’, ’The_-
Strand_Magazine’]]

[[’The_Land_of_Mist’, ’different from’ ’Fan-
tasy_short_story’], [’The_Land_of_Mist’, ’pub-
lished in’, ’Strand_Magazine’], [’The_Land_-
of_Mist’, ’different from’, ’The_Land_of_-
Mist’], [’The_Land_of_Mist’, ’copyright sta-
tus’, ’Public_domain’]]

Münchner Illustrierte is not a German maga-
zine.

[[’Münchner_Illustrierte’, ’instance of’, ’Maga-
zine’]]

None

"Groovin’ Blue" is not an album by Curtis Amy,
released on Pacific Jazz Records.

[[’Groovin\’_Blue’, ’performer’, ’Curtis_-
Amy’], [’Curtis_Amy’, ’record label’, ’Pacific
_Jazz_Records’]]

[[’Groovin\’_Blue, ’different from’, ’Groovin’_-
Blue_(Curtis_Amy_album)’], [’Groovin\’_-
Blue’, ’record label’, ’Pacific_Jazz_Records’]]

Table 6: Examples of outputs from ReLiK and SynthIE on negated Wiki-cIE Code data samples

18381

Text GPT-4o GPT-4o + filter by entities

A film adaptation of Asada’s work, directed
by Yōjirō Takita, is known as When the Last
Sword Is Drawn. A ten-hour 2002 television
jidaigeki based on the same novel starred Ken
Watanabe. A Japanese Manga Series, Rurouni
Kenshin, by Nobuhiro Watsuki, notably sets
place in the war, and the aftermath. Western
interpretations include the 2003 American film
The Last Samurai directed by Edward Zwick,
which combines into a single narrative historical
situations belonging both to the Boshin War,
the 1877 Satsuma Rebellion, and other similar
uprisings of ex-samurai during the early Meiji
period.

(’Rurouni_Kenshin’, ’creator’, ’Nobuhiro_Wat-
suki’), (’The_Last_Samurai’, ’director’, ’Ed-
ward_Zwick’)

(’Rurouni_Kenshin’, ’creator’, ’Nobuhiro_Wat-
suki’), (’The_Last_Samurai’, ’director’, ’Ed-
ward_Zwick’)

Carol Dollard, who once worked in product de-
velopment for PepsiCo, told Gladwell: "I’ve
seen many times where the sip test will give
you one result and the home-use test will give
you the exact opposite.". For example, although
many consumers react positively to the sweeter
taste of Pepsi in small volumes, it may become
unattractively sweet when drunk in quantity.

(’PepsiCo’, ’product or material produced’,
’Pepsi’)

(’PepsiCo’, ’product or material produced’,
’Pepsi’)

At the time he ran a chain of health food shops
in the United States, with which she became
involved. The couple now live in London and
have two daughters.

(’John_Henry_Richardson’, ’residence’, ’Lon-
don’)

None

However, the U.S. Bank Tower does surpass
both the Salesforce Tower and the Wilshire
Grand Center in roof height, making it the only
building in California whose roof height ex-
ceeds 1,000 feet (300 m). Because local build-
ing codes required all high-rise buildings to
have a helipad, it was known as the tallest build-
ing in the world with a rooftop heliport from
its completion in 1989 to 2010 when the China
World Trade Center Tower III opened.

(’Wilshire_Grand_Center’, ’roof height
comparison’, ’Salesforce_Tower’), (’U.S._-
Bank_Tower’, ’located in’, ’California’),
(’U.S._Bank_Tower’, ’has part’, ’Heliport’),
(’U.S._Bank_Tower’, ’heliport timeframe end’,
’China_World_Trade_Center_Tower_III’)

(’Wilshire_Grand_Center’, ’roof height compar-
ison’, ’Salesforce_Tower’)

Thorpe immediately is enchanted by Doña
María and gallantly returns her plundered jew-
els. Her detestation of him softens as she too
begins to fall in love.

None None

Table 7: Examples generated by GPT-4o pipeline. Second column presents raw outputs after being prompted with
our pipeline. Third column presents results where triplets containing entities which are not in the retrieved entities
are removed.

18382

Figure 3: Human evaluation instructions. Annotators are provided with the sheet with text and candidate triplets,
and with the detailed instructions.

as we find this to be a harder task than entity
retrieval, which requires the model to almost
be able to do cIE on its own. Theoretically,
with LLMs that have longer context sizes, in
our case, it is possible to send the whole list
of relations. We did not test this but expect
that this would improve the performance.

• Sketch of triplet generation: We noticed that
GPT-4o produces better outputs when a sketch
of a triplet generation by some other model
is provided. Anecdotally, the outputs were
better even when the sketches were bad. For
the sketch, we used the output of the SynthIE
model

• Encourage reasoning: LLM was performing
vastly better when it was encouraged to ex-
plain the reasoning behind the choice of the
triplets

We did not perform a formal evaluation of this
method as it was not the focus of our study. All
our findings from this section are based on manual
inspection of the results. One thing we draw atten-
tion to is that LLMs have likely been exposed to
the data we used for our manual inspection during

their pretraining. Second thing to be careful about
are rare relations. As they do not appear often, it is
likely that an LLM would prioritize more common
relations when generating the output. Regardless
of that, we showcase our attempt as a starting point
for the other researchers. For examples of gener-
ated outputs with GPT-4o on the real Wikipedia
data, see Table 7.

18383

