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Abstract

Word-level quality estimation (WQE) aims to
automatically identify fine-grained error spans
in machine-translated outputs and has found
many uses, including assisting translators dur-
ing post-editing. Modern WQE techniques
are often expensive, involving prompting of
large language models or ad-hoc training on
large amounts of human-labeled data. In this
work, we investigate efficient alternatives ex-
ploiting recent advances in language model in-
terpretability and uncertainty quantification to
identify translation errors from the inner work-
ings of translation models. In our evaluation
spanning 14 metrics across 12 translation direc-
tions, we quantify the impact of human label
variation on metric performance by using mul-
tiple sets of human labels. Our results highlight
the untapped potential of unsupervised metrics,
the shortcomings of supervised methods when
faced with label uncertainty, and the brittleness
of single-annotator evaluation practices.

1 Introduction

Word-level error spans are widely used in machine
translation (MT) evaluation to obtain robust and
fine-grained estimates of translation quality (Lom-
mel et al., 2014; Freitag et al., 2021a,b; Kocmi
et al., 2024b). Due to the cost of manual annota-
tion, word-level quality estimation (WQE) was pro-
posed for assisting in annotating error spans over
MT outputs (Zouhar et al., 2025). Modern WQE
approaches generally rely on costly inference with
large language models (LLMs) or ad-hoc training
with large amounts of human-annotated texts (Fer-
nandes et al., 2023; Kocmi and Federmann, 2023;
Guerreiro et al., 2024), making them impractical
for less resourced settings (Zouhar et al., 2024).
To improve the efficiency of MT quality assess-
ment, several works explored the use of signals
derived from the internals of neural MT systems
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Figure 1: Example of German— English translation with
two sets of human word-level error span annotations and
two examples of continuous and binary WQE metrics.

(Fomicheva et al., 2020b, 2021; Leiter et al., 2024),
for identifying problems in MT outputs, such as
hallucinations (Guerreiro et al., 2023a,b; Dale et al.,
2023a,b; Himmi et al., 2024). However, previous
works focus on sentence-level metrics for over-
all translation quality, and do not evaluate perfor-
mance on multiple label sets due to high annotation
costs (Fomicheva et al., 2022; Zerva et al., 2024).!

In this work, we conduct a more comprehen-
sive evaluation spanning 10 unsupervised metrics
derived from models’ inner representations and pre-
dictive distributions to identify word-level transla-
tion errors. We test three open-source multilingual
MT models and LLMs of different sizes across 12
translation directions, including typologically di-
verse languages and challenging textual domains.
Importantly, we focus on texts with multiple human
annotations to measure the impact of individual an-
notator preferences on metric performance, setting
a “human-level” baseline for the WQE task.

We address the following research questions:
i) How accurate are unsupervised WQE metrics
in detecting MT errors compared to trained metrics
and human annotators? ii) Are popular supervised
WQE metrics well-calibrated? iii) Are the rela-
tive performances of WQE metrics affected by the
variability in human error annotations?

!Other relevant works are discussed in Appendix A
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DivEMT WMT24 QE4PE
Lan, EN—AR,IT, EI:?SJ?{(?H’ EN—IT,NL
gUages  NLTR,UK,VI CS -t
CS—UK
Errors type  Post-edit Annotation Post-edit
Label sets 1 1 6
Domains Wiki Multiple ~ So¢ial
P Biomed
MT Model mBART-50 Aya23 NLLB
# Segments 2580 5124 3888

Table 1: Summary of tested datasets. Error spans are
obtained from explicit error annotations or post-edited
spans. Additional details are available in Appendix B.

We conclude with recommendations for improv-
ing the evaluation and usage of future WQE sys-
tems.

2 Data

We use datasets containing error annotations or
post-edits on the outputs of open-source models to
extract unsupervised WQE metrics from real model
outputs, avoiding potential confounders. We select
the following datasets, summarized in Table 1:

DivEMT (Sarti et al., 2022) contains a single set of
post-edits over translations produced by mBART-
50 (Tang et al., 2021) for a subset of Wiki texts
from the FLORES dataset (Goyal et al., 2022)
spanning six typologically diverse target languages
(EN—AR,IT,NL,TR,UK,VI). We use it to conduct
cross-lingual comparisons over a fixed set of exam-
ples.

WMT24 (Kocmi et al., 2024a) contains error spans
on the outputs of the Aya23-35B LLM (Aryabumi
et al., 2024) produced for the WMT24 General
Translation Shared Task spanning multiple do-
mains across six directions (EN—JA,ZH,HI,CS,RU
and CS—UK). It was selected to extend our evalua-
tion to a state-of-the-art LLM, given the popularity
of such systems in MT (Kocmi et al., 2023).

QEA4PE (Sarti et al., 2025) contains multiple hu-
man professional post-edits over translations pro-
duced by the NLLB 3.3B model (Costa-jussa et al.,
2024) for EN—IT and EN—NL on challenging
textual domains (social posts and biomedical ab-
stracts). This dataset is used to conduct our evalua-
tion across multiple annotation sets.

3 Evaluated Metrics

The following metrics were evaluated using the In-
seq library (Sarti et al., 2023, 2024b). Appendix C
provides additional details on tested metrics.

Predictive Distribution Metrics. We use the
Surprisal of the predicted token t*, as negative
log-probablity —log p(t!|t<;), and the Entropy
H of the output distribution P over vocabulary
V. = S p(tilt<i) logy p(tilt<;). as simple met-
rics to quantify pointwise and full prediction uncer-
tainty (Fomicheva et al., 2020b). For surprisal, we
also compute its expectation (MCD,y¢) and vari-
ance (MCDy,g) with n = 10 steps of Monte Carlo
Dropout (MCD, Gal and Ghahramani, 2016) to ob-
tain a robust estimate and a measure of epistemic
uncertainty in predictions, respectively.”

Vocabulary Projections. We use the LogitLens
(LL, nostalgebraist, 2020) to extract probability
distributions Py, ..., Py_1 over V from interme-
diate activations at every layer [y, ..., Iny_1 of the
decoder. We use the surprisal for the final pre-
diction at every layer (LL-Surprisal) to assess
the presence of layers with high sensitivity to
wrong predictions. Then, we compute the KL
divergence between every layer distribution and
the final distribution Py, e.g. KL(Pn_1||Pn), to
highlight trends in the shift in predictive proba-
bility produced by the application of remaining
layers (LL KL-Div). Finally, we adapt the ap-
proach of Baldock et al. (2021) and use the num-
ber of the first layer for which the final predic-
tion corresponds to the top logit as a metric of
model confidence, [ s.t. argmax P, = t* and
arg max P; # t* Vi < [ (LL Pred. Depth).

Context mixing. We use the entropy of the distri-
bution of attention weights® over previous context
as a simple measure of information locality during
inference (Ferrando et al., 2022; Mohebbi et al.,
2023). Following Fomicheva et al. (2020a), we
experiment with using the mean and the maximum
entropy across all attention heads of all layers as
separate metrics (Attn. Entropyvag/max). Finally,
we evaluate the Between Layer OOD method pro-
posed by Jelenic et al. (2024), which employs gra-
dients to estimate layer transformation smoothness

Epistemic uncertainty reflects models’ lack of knowledge
rather than data ambiguity. MCD is tested only on encoder-
decoder models since Aya layers do not include dropout.

3For the encoder-decoder model, self-attention and cross-
attention weights are concatenated and renormalized.
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Method DivEMT WMT24 QE4PE
AP F1* AP F1* AP FI*

Random 34 50 .05 .09 .17 .27
Surprisal 43 053 08 .13 23 .32
Out. Entropy 46 51 .10 .16 .23 31

8 Surprisal MCD e .43 .53 - - 24 33
@ Surprisal MCD v, .47 | .54 26 34

Z LL Surprisal o .42 53 .09 .15 23 .32
& LL KL-DiV s 43 51 07 12 20 .29
ZLLPred. Depth .39 .51 .06 .12 20 .29
 Att. Entropy wo 37 .50 .05 .09 .18 .28

Att. Entropy v« .34 .50 05 .09 .16 .28

BLOOD psr 34 .50 - - 17 .28

. XCOMET-XL 42 45 09 .19 23 34
& XCOMET-XL coxe .54 |55 15 23 32 .37
& XCOMET-XXL 43 41 .09 20 22 31
“ XCOMET-XXL coxe .56 2557 .16 = .24 .33 .37
. Hum. Editors - - - - 24 34
Z Hum. Editors o - - - - 28 4l
T Hum. Editors yax - - - - 32 47

Table 2: Average Precision (AP) and Optimal F1
(F1*) for metrics across tested datasets. Results are
averaged across all languages and annotators, with
best unsupervised and overall best results highlighted.

for OOD detection (BLOOD).

Supervised baselines. We also test the state-of-
the-art supervised WQE model XCOMET (Guer-
reiro et al., 2024) in its XL (3.5B) and XXL (10.7B)
sizes, using them as binary metrics. Contrary
to the continuous metrics from the previous sec-
tion, binary labels from XCOMET cannot be easily
calibrated to match subjective annotation propen-
sity. Hence, we propose to adapt the XCOMET
metric to use the sum of probability for all error
types as a token-level continuous confidence metric,
s(t*) = p(MINOR) + p(MAJOR) + p(CRITICAL),
which we dub XCOMET conE-

Human Editors. For QE4PE, we report the
min/mean/max agreement between each annota-
tor’s edited spans and those of the other five editors
as a less subjective “human-level” quality measure.

4 Experiments

How Accurate are Unsupervised WQE Metrics?
Table 2 reports the average metrics performance
across all translation directions across the tested
datasets.* We report Average Precision (AP) as it
provides a threshold-independent measure of rank-
ing quality across the full score range. Such a met-
ric enables us to compare continuous metrics with

“Full breakdown available in the Appendix (Tables 5 to 8).

1.0

0.8
XComet XXL Conf.
(AP = 0.48)
XComet XL Conf.
.5 0.6 (AP = 0.46)
0 XComet XXL
9 (AP = 0.34)
T 0.4 XComet XL
(AP = 0.34)
Surprisal MCD Var
(AP = 0.39)
0.2 __. Chance level
(AP = 0.25)
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Figure 2: Precision-Recall tradeoff for binary and
confidence-weighted XCOMET variants and the Sur-
prisal MCDy, metric for DivEMT EN—IT.

different scales and provides an expectation for pre-
cision when the annotator’s annotation propensity
is unknown beforehand. We use the best F1 score
(F1%), i.e. the F1 score for best threshold calibrated
to maximize the precision-recall tradeoff, to sim-
ulate a realistic evaluation setup with calibration
where continuous metric scores are binarized into
positive/negative labels matching human annota-
tion.> Our results show that, despite high variability
in error span prevalence across different models,
languages and annotators, metric rankings remain
generally consistent, suggesting the presence of ro-
bust relations between various signals sourced
from models’ inner workings and translation er-
rors. Among unsupervised metrics, we find those
based on the output distribution to be most effec-
tive at identifying error spans, in line with previous
segment-level QE results (Fomicheva et al., 2020b).
Notably, the Surprisal MCDy, shows strong per-
formances in line with the default XCOMET mod-
els. For the multi-label QE4PE dataset, we find
that the best supervised metrics score on par with
the average consensus of human annotators (Hum.
Editors,yg). In contrast, unsupervised metrics gen-
erally obtain lower performances.

Confidence Weighting Enables XCOMET Cali-
bration. From Table 2 results, default XCOMET
metrics underperform compared to the best unsu-
pervised techniques, a surprising result given their
ad-hoc tuning. On the contrary, our XCOMETconr
method consistently reaches better results across
all tested sets. Figure 2 shows the precision-recall
tradeoff for these metrics on the EN—IT subset of

SAP for the random baseline corresponds to the propor-
tion of tokens marked as errors, which varies greatly across
datasets and annotators.
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Source gx

So why is it that people jump through extra hoops to install Google Maps?

MT . (NLLB) Quindi perché le persone devono fare un salto in piu per installare Google Maps?
salto
Annotator ¢1 Quindi perché le persone devono fare un | passaggio  in pil per installare Google Maps?
devono fare un salto in pitt
Annotator 2 Quindi perché le persone | fanno i salti mortali per installare Google Maps?
devono fare un salto in piu
Annotator t3 Quindi perché le persone | effettuano dei passaggi ulteriori e superflui  per installare Google Maps?
Quindi devono fare
Annotator t4 Allora | perché le persone |fanno un | passaggio in piu per installare Google Maps?
Quindi perché le persone devono fare un salto in pitt
Annotator t5 E allora mi chiedo: perché gli utenti iPhone si affannano tanto per installare Google Maps?
devono fare un salto in pitt
Annotator t6 fanno di tutto  per installare Google Maps?

Quindi perché le persone
2 1 5

Edit Counts (Fig. 3)  Quindi

perché le persone |devono fare |un

6 4
in pit per installare Google Maps?

minor

XCOMET-XL

XCOMET-XXL

minor

Quindi perché le persone devono fare un salto in pit per installare Google Maps?
minor major

Quindi perché le persone | devono fare un salto in pitt  per installare Google Maps?

41 36 51 50 69 51 81 74 76 39 47 53 26 36 24
XCOMET-XL conr Quindi perché le persone |devono fare un |salto in pit per install are Google Maps ?
51 83 .20 20 42 90 95 8 I8 3 .00 ol 00 00 .00
XCOMET-XXL conr Quindi [perché le persone  devono |fare - - in piu| per install are Google Maps ?
05 01 04 00 41 04 59 00 12 .00 g 00 00 00 .00
Surprisal MCD yag Quindi perché le persone [devono fare un to in pit per installare Google Maps ?

Table 3: Annotated example from the EN—IT portion of the QE4PE dataset. Top: Annotator edits with highlighted
final text and replaced text on top, with count-based aggregation showing inter-annotator agreement. Bottom:
Word-level annotations for best-performing metrics discussed in the study.

the DIVEMT dataset.® In their default form com-
monly used for evaluation via the unbabel-comet
library, XCOMET metrics consistently outperform
Surprisal MCDy,y in terms of precision (51-60%,
compared to 34% optimal precision for MCDy,p),
but identify only 32-26% of tokens annotated as
errors, resulting in lower AP. The low recall of
these metrics may be problematic in WQE appli-
cations, where omitting an error could result in
oversights by human post-editors, who trust the
comprehensiveness of WQE predictions. On the
contrary, confidence-weighted XCOMET ¢onr mod-
els show strong performances across the whole
recall range, resulting in consistent improvements
in both F1* and AP Table 2. Concretely, these re-
sults confirm that default XCOMET performance
does not reflect the full capacity of the metric, and
operating with granular confidence scores can
be beneficial when calibration is possible. This
said, for cases with a larger proportion of trans-
lated words labeled as errors, such as the DivEMT
dataset, we remark that the F1* performance of
XCOMETon metrics is very close to that of human
annotators (e.g., Translator 6 for QE4PE results
of Table 6) and unsupervised metrics (e.g., all Di-

SResults for all datasets in the Appendix (Figures 4 to 7).

vEMT languages in Table 7). While this can be
attributed in part to a higher number of subjective
choices when more errors are identified, these re-
sults suggest that supervised metrics might still
underperform on problematic texts, despite our pro-
posed confidence-weighting procedure.

Metrics Performance for Multiple Annotations.
While our evaluation so far employed human error
span annotations as binary labels, we set out to as-
sess how more granular labeling schemes impact
the performance of these metrics. Given L sets of
binary labels (up to 6 per language for QE4PE),
we assign a score s € {1,...,L} toevery MT
token using the number of annotators that marked
it as an error, resulting in edit counts reflecting
human agreement rate. Table 3 provides an exam-
ple of six human annotations with proposed edits,
and labels derived from best-performing metrics.
Figure 3 presents the correlation of various met-
rics when the number of annotators available is in-
creased, with median values and confidence bounds
are obtained from edit counts across all combina-
tions of L label sets.” The increasing trend for
correlations across all reported metrics indicates

=1 corresponds to binary labels from previous sections.
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Figure 3: Spearman correlation between WQE metric
scores and human edit counts across multiple annotation
sets for QE4PE EN—IT (left) and EN—NL (right).

that these methods reflect well the aleatoric uncer-
tainty in error span labels, i.e. the disagreement
between various annotators. In particular, the Sur-
prisal MCDy,r metric sees a steeper correlation
increase than other well-performing metrics, sur-
passing default XCOMET supervised approaches
for higher correlation bins. This suggests the epis-
temic uncertainty derived from noisy model predic-
tions might be a promising way to anticipate the
aleatoric uncertainty across human annotators for
WQE. We observe that 95% confidence intervals
for high-scoring metrics are largely overlapping
when a single set of labels is used, indicating that
rankings of metric performance are subject to
change depending on subjective choices of the
annotator. While this poses a problem when at-
tempting a robust evaluation of WQE metrics, we
remark that including multiple annotations largely
mitigates this issue. As a result, we recommend
explicitly accounting for human label variation by
including multiple error annotations in future WQE
evaluations to ensure generalizable findings.

5 Conclusion

We conducted a comprehensive evaluation of super-
vised and unsupervised WQE metrics across multi-
ple languages and annotation sets. Our results show
that i) While unsupervised metrics generally lag
behind state-of-the-art supervised systems, some

uncertainty quantification methods based on the
predictive distribution show promising correlation
with human label variation; ii) Popular supervised
WQE metrics have generally low levels of recall,
and can benefit from confidence weighting to when
calibration is possible; and iii) Individual annotator
preferences are key confounders in WQE evalua-
tions and can be mitigated by making use of multi-
ple annotation sets. We offer the following practical
recommendations for evaluating WQE systems:

* Use agreement between multiple human anno-
tations to control the effect of subjective prefer-
ences and rank WQE metrics robustly.

* Employ an in-distribution calibration set of error
spans before testing to ensure fair metric com-
parisons, and favor evaluations accounting for
precision-recall tradeoffs to ensure their usability
across various confidence levels.

* Previous work showed the effectiveness of visual-
ization reflecting prediction confidence (Vascon-
celos et al., 2025), such as highlights for various
error severity levels (Sarti et al., 2025). Consider
using continuous WQE metrics in real-world ap-
plications such as WQE-augmented post-editing
to convey fine-grained confidence variations.
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Limitations

Our findings are accompanied by several limita-
tions. Firstly, our choice of tested datasets was
limited by the availability of annotated outputs
generated by open-source MT models. While
several other datasets matching these criteria ex-
ist (Fomicheva et al., 2022; Yang et al., 2023; Dale
et al., 2023b), we restricted our assessment to a suf-
ficient subset to ensure diversity across languages
and tested models to support our findings. To facili-
tate comparison with other datasets, our evaluation
for WMT24 treats available error spans as binary la-
bels and does not directly account for error severity
in human-annotated spans. Our choice of unsu-
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pervised metrics was primarily driven by previous
work on uncertainty quantification in MT, and ease
of implementation for popular methods in mech-
anistic interpretability literature (Ferrando et al.,
2024). However, our choices in the latter category
were limited, as most methods are now developed
and tested specifically for decoder-only transformer
models. Finally, despite their strong performance,
we found unsupervised methods based on MCD to
require substantial computational resources, and as
such we could not evaluate them on Aya23 35B.
While our primary focus was to establish baseline
performances across various popular methods, fu-
ture work should leverage the latest insights from
more advanced techniques, such as those requiring
the tuning of vocabulary projections (Belrose et al.,
2023; Yom Din et al., 2024) or the identification
of “confidence neurons” to modulate predictive en-
tropy (Stolfo et al., 2024).
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A Additional Background

In this section, we provide additional background
information regarding the topics of our work.

Unsupervised Quality Estimation for Machine
Translation. The use of unsupervised signals
from MT models for the task of MT quality estima-
tion was introduced by Fomicheva et al. (2020b).
Their evaluation revealed that high-performing un-
supervised methods could rival state-of-the-art su-
pervised QE models in predicting sentence-level
translation quality. Since then, several evalua-
tion campaigns assessed the quality of QE meth-
ods (Specia et al., 2021; Zerva et al., 2022; Blain
et al.,, 2023; Zerva et al., 2024), including a
shared task dedicated to explainable QE metrics
(Fomicheva et al., 2021). However, such eval-
uations have typically focused on segment-level
evaluation quality, with word-level error spans be-
ing generally obtained by attributing the predic-
tions of supervised segment-level metrics (Rubino
et al., 2021; Rei et al., 2023). By contrast, recent
work on LLMs evaluates various metrics to de-
tect errors from the generator model, without the
need for additional systems, both at the sentence
level (Fadeeva et al., 2023) and at the token level
(Fadeeva et al., 2024). Our work follows the lat-
ter approach by testing unsupervised metrics ex-
tracted from an MT model during generation, akin
to out-of-distribution detection in signal processing
research (Hendrycks and Gimpel, 2017).

Actionable Insights from Interpretability. Ad-
vances in interpretability research have elucidated
multiple mechanisms underlying decision-making,
knowledge representation, and biases in LMs (Fer-
rando et al., 2024). However, a better understand-
ing of the model’s inner workings often did not
translate to tangible gains in model design and
other practical applications, which remain rarely
explored (Mosbach et al., 2024). Some exam-
ples in this direction include using targeted ma-
chine unlearning methods for safety-critical sce-
narios (Barez et al., 2025), or the use of attribu-
tion for trustworthy context citations in LM genera-
tions (Cohen-Wang et al., 2024; Sarti et al., 2024a;
Qi et al., 2024). In this work, signals extracted
from model internals are employed to detect errors
in models’ generated outputs.

Uncertainty Estimation for Language Models
The estimation of uncertainty in language mod-

els has garnered increasing attention (Baan et al.,
2023), particularly in the context of generation
tasks for which the set of plausible responses is
large (Giulianelli et al., 2023). Predictive uncer-
tainty is typically decomposed into its aleatoric and
epistemic components, representing respectively
the irreducible variability in the modeled phenom-
ena, and the improvable confidence in model pre-
dictions (Kiureghian and Ditlevsen, 2009). Pop-
ular methods for uncertainty estimation involve
the calibration of predictive probabilities to reflect
aleatoric uncertainty (Jiang et al., 2020; Ulmer
et al., 2022; Zhao et al., 2023; Chen et al., 2023),
and conformal sets prediction (Zerva and Martins,
2024; Ravfogel et al., 2023). In this work, we lever-
age uncertainty signals from the predictive distribu-
tion of MT models and their internal processing to
efficiently predict the resulting generation quality
at a fine-grained, token-level scale.

Human Label Variation. Human label variation
is a type of uncertainty that arises from the inherent
variability in human judgments (Plank et al., 2014;
Plank, 2022), which can be hard to disentangle
from actual annotation mistakes (Snow et al., 2008;
Weber-Genzel et al., 2024). The use of multiple
references was recently recommended to ensure
a sound evaluation of generative LMs reflecting
human-plausible levels of variability (Giulianelli
et al., 2023), contrary to standard practices that em-
ploy a single set of “gold” labels. In our analysis
on QE4PE data containing multiple edits, we adopt
a perspectivist approach® to ensure a robust assess-
ment of WQE metrics by accounting for annotators’
disagreement (Uma et al., 2021).

B Details about Models and Datasets

B.1 MT Models

mBART-50 1-to-many. The original multilin-
gual BART (mBART-25) model by Liu et al. (2020)
is an encoder-decoder Transformer model pre-
trained on monolingual documents in 25 languages
with the BART denoising objective for sequence-
to-sequence learning (Lewis et al., 2020). Tang
et al. (2021) extended mBART-25 by including 25
additional languages during pre-training and per-
forming multilingual translation fine-tuning across
50 languages. In this work, we employ the one-
to-many version of the model specialized in out-
of-English translation that was employed by Sarti

8pdai.info
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et al. (2022) to produce part of the translations
post-edited by DivEMT annotators.’ The model is
a standard Transformer with 12 layers of encoder
and 12 layers of decoder, with model dimension of
1024 and 16 attention heads (~680M parameters).

NLLB 3.3B (No Language Left Behind) is a col-
lection of multilingual MT models covering up to
202 languages, including low-resource directions
(Costa-jussa et al., 2024). The largest NLLB model
available is a mixture-of-experts model with 54.4B
parameters, which comes with high computational
cost. In this work we employ the largest available
dense variant of the model (~3.3B parameters),
which was used by Sarti et al. (2025) for collecting
the QE4PE post-editing dataset.!® The model is
an encoder-decoder Transformer with 24 layers for
each module, a model dimension of 2048 and 16
attention heads per layer.

Aya23 35B is a large language model introduced
by Aryabumi et al. (2024) to improve the multilin-
gual capabilities of the original Aya model (Ustiin
et al., 2024) on a selected set of 23 languages. The
model was included in the WMT?24 evaluation of
Kocmi et al. (2024a), yielding the best translation
performance among the tested open-source models.
The model is a decoder-only Transformer model
with 40 layers, a model dimension of 8196 and 64
attention heads per layer.

B.2 Datasets

DIivEMT was created by (Sarti et al., 2022) to
evaluate the impact of language typology on MT
quality, and how that would influence the productiv-
ity of human post-editors working with those sys-
tems. The dataset includes out-of-English machine
translations for Wiki data produced by Google
Translate and mBART-50 1-to-many, with edits
made by professional translators in six languages.
In this work, we evaluate unsupervised metrics on
the mBART-50 1-to-many model, converting the
human post-edits into token-level labels.

WMT24 employed in this study is taken from
the General Machine Translation Shared Task at
WMT 2024 (Kocmi et al., 2024a). It contains evalu-
ation of several machine translation systems across
English— {Czech, Hindi, Japanese, Chinese, Rus-
sian} (634 segments) and Czech— Ukrainian (1954
segments). The human evaluation was conducted

9facebook/mbart—large—50—one—to—many—mmt
"%facebook/n11b-200-3. 38

using the Error Span Annotation protocol (ESA,
Kocmi et al., 2024b), which has human annota-
tors highlighting erroneous spans in the transla-
tion and marking them as either MINOR or MA-
JOR errors. This dataset covers the news, social,
and speech (with automatic speech recognition) do-
mains. We adopt the official prompting setup from
the WMT24 campaign, using the Aya23 model
alongside the provided prompt and three in-context
translation examples per language to ensure unifor-
mity with previous results.!!

QE4PE The QE4PE dataset was created by Sarti
et al. (2025) for measuring the effect of word-level
error highlights when included in real-world hu-
man post-editing workflows. The QE4PE data
provides granular behavioral metrics to evaluate
the speed and quality of post-editing of 12 anno-
tators for EN—IT and EN—NL across four error
span highlighting modalities, including the unsu-
pervised Surprisal MCDy,z method and the super-
vised XCOMET-XXL we also test in this study. Pro-
vided that the presence of error span highlights was
found to influence the editing choices of human
editors, we limit our evaluation to the six human
annotators per language that post-edited sentences
without any highlights (3 for the Oracle Post-edit
task to produce initial human-based highlights, and
3 for the No Highlight modality in the main task).
This prevents us from biasing our evaluation of
WQE metrics in favor of the metrics that influenced
editing choices. We use the post-edited versions to
synthetically create error spans, which can be used
as binary labels to evaluate WQE metrics.

C Details about Tested Metrics

Monte Carlo Dropout (MCD) is a technique
introduced by Gal and Ghahramani (2016) for
estimating model uncertainty at inference time.
MCD utilizes the dropout mechanism in neural
networks (Srivastava et al., 2014), a regularization
technique commonly employed during training, to
produce a set of noisy predictions from a unique
model at inference time, thereby approximating
Bayesian inference. For a given input x, T" forward
passes are performed through the network. In each
pass t € T, a different random dropout mask ©;
is applied, resulting in a slightly different output
probabilities p(z | ©;). The set of T" predictions
{p(z | ©1),...,p(z | Or)} can be seen as sam-

"wmt-conference/wmt-collect-translations
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ples from an approximate posterior distribution. In
this work, we employ the mean of the negative log
probabilities as a robust estimate of surprisal:

1 I
T Z —log p(z[6¢)

t=1

Surprisal MCDayg = yep =

Moreover, we estimate predictive uncertainty by
calculating the variance of predictive probabilities
under the same setup:

T

% Z (—log p(2|0¢) —Gen)

t=1

Surprisal MCDy,, =

Vocabulary Projections. The Logit Lens (nos-
talgebraist, 2020) is an interpretability technique
used to understand the internal workings of Trans-
former models, particularly how their predictions
evolve layer by layer. Activations h; produced
by the model layer [ are projected to vocabulary
space using the model unembedding matrix, Wy,
commonly used to produce output logits. For the
NLLB and mBART-50 models, we apply a final
layer normalization before the projection, as per
the model architecture. In contrast, for the Aya
model, we scale the logits by 0.0625 (the default
logit_scale defined in the model configuration).
Following the residual stream view of the Trans-
former model (Elhage et al., 2021), the resulting
logits provide a view into the model’s predictive
confidence at that specific depth of processing.

Context mixing. Several works studied the mix-
ing of contextual information across language
model layers to attribute model predictions to spe-
cific input properties (Ferrando et al., 2022; Mo-
hebbi et al., 2023; Ferrando et al., 2023 inter alia).
In this work, we employ simple estimates of con-
text relevance using attention weights produced
during the Transformer attention operation. More
specifically, for every attention head at every layer
of the decoder module, we extract a score for each
token in the preceding context, employing cross-
attention weights to account for source-side context
in encoder-decoder models.

XCOMET is a suite of MT evaluation metrics
introduced by Guerreiro et al. (2024), extending
the popular COMET metric (Rei et al., 2020) to
combine sentence-level and word-level error span
prediction for improved explainability of results.
XCOMET metrics are available in 3B (XL) and 11B
(XXL) sizes and support both reference-based and

reference-less usage, hence enabling usage for qual-
ity estimation purposes. Concretely, XCOMET mod-
els are Transformer encoders fine-tuned from pre-
trained XLMR encoders (Goyal et al., 2021) using
a mix of sentence-level Direct Assessment scores
and word-level MQM error spans. In this work,
we focus on the word-level error span prediction
capabilities of the model in a quality estimation
setup, where it classifies every input token accord-
ing to MQM severity levels {OK, MINOR, MAJOR,
CRITICAL} using a learned linear layer.'?

Token-level Evaluation. Error spans used as la-
bels in our evaluation are defined at the character
level, while metric scores depend on the tokeniza-
tion employed by either the MT model (for unsuper-
vised metrics) or XCOMET (for supervised metrics).
To facilitate comparison, we label tokens as part
of an error span if at least one character contained
within them was marked as an error or edited by
an annotator. Tables 3 and 4 provide examples of
various segmentations for the same MT output.

Constraining generation Evaluating metrics at
the word level can be challenging due to the need
for perfect uniformity between model generations
and annotated spans. For this reason, we extract un-
supervised metrics during generation while force-
decoding the annotated outputs from the MT model
to ensure perfect adherence with annotated error
spans. In general, such an approach could introduce
a problematic confounder in the evaluation, as ob-
served results may be the product of constraining a
model towards an unnatural generation, rather than
reflecting the underlying phenomena. However, in
this study, we carefully ensure that the generation
setup matches exactly the one of previous works
where the annotated translations were produced,
using the same MT model and the same inputs.'?
Hence, the constraining process is a simple insur-
ance of conformity in light of potential discrep-
ancies introduced by different decoding strategies,
and does not affect the soundness of our method.

The default XCOMET metric was used with the
unbabel-comet library (v2.2.6).

BGeneration parameters are not relevant in this setting,
provided that they only alter the selection of the following
output token, which we do via force-decoding.
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Source gy So the challenges in this are already showing themselves. I'm likely going to have a VERY difficult time
getting a medical clearance due to the FAA’s stance on certain medications.

MT + (Aya23) TakZe problémy s tim se jiZ projevuji. Pravdépodobng budu mit PRESNE obtiZny as dostat 1éka¥ské
potvrzeni kvili postoji FAA k nékterym 1ékim.

minor major

Annotator TakZe problémy s tim se jiz projevuji. Pravdépodobné budu mit _ dostat 1ékarské
potvrzeni kvili postoji FAA k nékterym 1ékim.

minor minor
XCOMET-XL Tak?e problémy s tim se jiZ projevuji. Pravdépodobn& budu mit PRESNE obtizny &as dostat Iékarské
minor
potvrzeni kvili postoji FAA k nékterym lékdm
minor major
XCOMET-XXL TakZe problémy s tim se jiZ projevuji .  Pravdépodobné budu mit |PRESNE obtizny Cas dostat
1ékaiské potvrzeni kvtli postoji FAA k nékterym 1ékam.
0.23 0.28 026 028 (17 0.19 031 ot 023 040 048 0.79
XCOMET-XL conr TakZe problémy s  tim se jiZz projevuji . Pravdépodobné¢  budu  mit -
0.65 076 0.64 0.50 051 0.19 034 027 020 020 021
obtizny | | Cas| dostat lékarské potvrzeni kvili postoji FAA k nékterym 1ékim
0.25 0.24 026 031 (29 023 0.26 001 0.01 0.03 v0-37 . 030
XCOMET-XXL cone | TakZe |problémy s [tim |se |jiz  projevuji, . Pravdépodobné budu [PRESNE fobtizny
032 024 0.10 0.13 001 0.00 000 000 000 0.00
Cas dostat lékarské  potvrzeni kvuli postoji FAA k nékterym 1ékim 0%
0.88 1.93 188 084 g 113 0.89 ol 0.44 022 0.09 2.09
Out. Entropy Takze |problémy |s| tim 'se jiz projevuji . Pravdépodobné budu mit
370 009 140 1.02 0.64 0.69 0.24 0.80 1.01 0.55 0.18

tas |dostat] 1ékaiské potvrzeni kvili postoji FAA 'k ndkterym lékim .

Table 4: Annotated example from the EN—CS portion of the WMT24 dataset. Top: Annotator edits with highlighted
Error Span Annotation of minor and - errors. Bottom: Word-level annotations for best-performing metrics
discussed in the study.

| QE4PE,; QE4PE:> QE4PE;3s QE4PE.s QE4PE;s QE4PE.s QE4PE..,
| AP F1* | AP F1" | AP F1" | AP F1" | AP F1° |AP FI" ||AP FI*
Random Baseline | .08 .14 | .15 .26 | .06 .12 |.11 .19 | 22 36 | .18 .30 [ .13 .23

Surprisal A1 20 |21 31 |11 7 |16 25 |30 40 |25 3519 28
Out. Entropy A2 18 |22 30 | .10 .16 | .17 24 | 30 39 |26 34 (.19 27
Surprisal MCD e | .12 20 | .22 32 | .11 .17 | .16 26 | 30 .41 |26 .36 | .19 .29
Surprisal MCD v | .13 .21 | .26 .33 | .12 .20 | .19 .27 | .31 40 | .29 .36 | .22 .30
LL Surprisal es: | .11 .19 | 21 32 [ .11 .16 [ .16 .25 | .29 40 | .26 35 |.19 .28
LL KL-DiV ypsr 09 16 | .19 28 | 08 .14 | .13 21 |25 37 |22 31| .16 25
LL Pred. Depth [ .09 .16 | .18 .28 [.07 .13 |.14 21 [.25 .37 |21 31 (.16 .24
Attn. Entropy e | 11 .16 |17 27 |12 17 |11 19 |23 36 | .19 31| .15 24
Attn. Entropy yae [ .09 .14 | 15 26 [ .10 .18 [ .09 .19 | .20 36 .16 30 || .13 .24

Method

BLOOD g1 08 .14 |.16 26 |.06 .12 |.11 .19 [ .23 36 |.18 .30 | .14 .23
XCOMET-XL A1 24 |22 35 ].10 20 |.16 30 | .27 35 |.23 341 .18 .30
XCOMET-XL coxr 20 25130 36 | .14 21 |25 31 |.37 40 | .31 36| .26 .32
XCOMET-XXL A3 .27 | 22 32 .10 .24 | .17 31 | .28 32 |.23 .31 .19 .30

XCOMET-XXL o | .19 .27 | 31 36 | .17 .24 | .26 .32 | .37 .41 |33 .39 | .27 .33

Human Editors v, | .17 33 | 26 38 | .10 .21 |.16 .26 | .25 .36 |.23 .30 .19 31
Human Editors . | .20 .38 | 29 43 | .14 30 | 22 39 | 32 38 | .30 40| 25 .39
Human Editors v,x | .24 43 | 31 47 | 20 41 | .24 43 | 37 50 | 33 .50 || .28 .46

Table 5: WQE metrics’ performance for predicting error spans from the six edit sets over NLLB 3.3B translations in
the EN—IT QE4PE dataset (Sarti et al., 2025). Best unsupervised and overall best metric results are highlighted.
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| QE4PE,; QE4PE:> QE4PE;3 QE4PE.s QE4PE;s QE4PE.s QE4PE..
| AP F1* | AP F1" | AP F1" | AP F1" | AP F1° |AP FI" [|AP FI"
Random Baseline | .07 .14 | .34 .51 |22 36 | .19 32 |.13 24|22 36| .20 .32

Method

Surprisal A2 19 | 41 51 130 39 |29 37 |21 30 | .31 4127 36
Out. Entropy A1 18 | 41 51 |31 37 |29 36 |.20 27 |31 39|27 35
Surprisal yeo we A2 19 |42 52 |31 40 |30 .40 | .21 30 |31 42 || .28 37
Surprisal yeo vax 321 145 53 1 .36 41 | .34 40 | 24 32 ) .36 42 )31 .38
LL Surprisal es: | .12 .19 | 42 .53 | 30 40 [.29 .38 | .21 .30 [.31 41 || .27 37
LL KL-DiV 55 09 15|39 52|28 37 |25 34 |.17 26 .29 38|25 34

LL Pred. Depth 09 16 | 37 52|26 37 |24 33 .17 25 |.27 38| .23 33
Attn. Entropy 09 15 |37 51|22 36 |.20 32 .13 24 | .23 37 (.21 .32
Attn. Entropy wax | .09 .15 | 35 51 | .22 36 | .18 32 | .12 24 | .21 .37 | .19 32

BLOOD 51 07 13 |35 51 |22 36 (.19 32 |.14 24|23 361 .20 .32
XCOMET-XL A3 27 139 39 |31 44|28 32 .20 35|31 44 .27 .38
XCOMET-XL coxr 24 31 |47 53 |43 45 |40 43 | 29 36 | 43 46 || 38 42
XCOMET-XXL A3 28139 29|30 35|26 35 (.19 31 .30 351 .26 .32

XCOMET-XXLcows | 24 30 | 48 53 | 43 45 | 40 42 |31 35 | 43 45| 38 42

Human Editors v,y | .16 .29 | 43 51 | 34 45 | 33 47 | 26 42 | 36 .46 | 32 43
Human Editors n | .17 33 | 44 51 | 34 45 | 33 47 | 26 42 | 36 .46 | 32 43
Human Editors v,x | .19 .36 | 46 .51 | 36 .51 | .37 53 | 32 51 | 40 .53 || .35 .49

Table 6: WQE metrics’ performance for predicting error spans from the six edit sets over NLLB 3.3B translations in
the EN—NL QEA4PE dataset (Sarti et al., 2025). Best unsupervised and overall best metric results are highlighted.

Italian Dutch Arabic Turkish Vietnamese Ukrainian Average
| AP F1" | AP F1" | AP F1" | AP F1* | AP F1* | AP F1' || AP F1”
Random Baseline | 25 .40 | .28 43 | .33 49 | 34 50 | .35 .52 | .48 .65 || .34 .50

Surprisal 34 45|36 46|42 51|43 54|46 55 |55 65 |43 53
Out. Entropy 37 43|39 45|45 50|49 52|48 54 |58 .65 | .46 51
Surprisal yep av 34 45 |37 47|43 52|44 54|46 55 |56 65 || .43 53
Surprisal ycp va 39 46 | .41 47 | 47 53 149 55148 .55 | .61 .67 | 48 .54
LL Surprisal ues: | .33 44 | 36 45 | 41 51 | 44 54 | 44 55 |55 66 || 42 .53
LL KL-DiV yer 34 42|37 45|41 51|44 52|44 52 |56 .65 |43 51
LL Pred. Depth | .30 42 | .32 44|39 50| .40 .52 (.39 .53 | .54 .66 | .39 .51
Attn. Entropy we | 28 41 | 30 43 | 35 49 | 37 51|40 52 | .50 .65 || .37 .50
Attn. Entropy ax | .25 41 | 26 43 | 34 49 | 34 50 | 35 52 | 47 .65 || 34 50

Method

BLOOD g1 26 40 | 28 43|35 52|35 50 (.36 52 |49 65| .35 .51
XCOMET-XL 34 39 | 37 44| 41 47 | 44 50| 42 44 | 56 44 || 42 45
XCOMET-XLcone | 46 47 | 49 50 | 51 53 | .58 .56 | .53 .55 | .68 .67 || .54 .55
XCOMET-XXL 34 36 |35 35| .43 47 |45 48 | 43 42 | 57 41 || 43 42

XCOMET-XXLcons | 48 49 | 50 50 | 55 .54 |58 .56 | .56 .57 | .70 .67 || .56 .55

Table 7: WQE metrics’ performance for predicting error spans from multiple edit sets (one per language) over
mBART-50 translations across the six topologically diverse target languages of DIVEMT (Sarti et al., 2022).
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En—Ja En—Zh En—Hi Cs—»Uk En—Cs En— Ru Average
| AP F1* | AP F1" | AP F1* | AP F1* | AP F1" | AP F1* || AP FI*
Random Baseline | .02 .03 | .03 .07 | .03 .07 | .05 .09 |.06 .11 |.08 .16 | .05 .09

Surprisal .03 07].05 09 |.05 .09]|.14 20].10 .16 |.13 .19 | .08 .13
Out. Entropy .03 .08 |.06 .11 |.06 .10 |.20 .27 |.12 .18 |.14 .20 || .10 .16
LL Surprisal sesr .03 07 ].05 09 |.05 .09 |.14 20 |.10 .16 |.13 .19 | .08 .13
LL KL-DiV ggsr 02 05]1.04 07 |.04 08)|.10 .17 .09 .15 | .12 .19 | .07 .12
LL Pred. Depth 02 05].04 08|.04 09|.09 .18 |.08 .14 |.11 .18 || .06 .12
Attn. Entropy e 02 031.03 07|.03 .07|.03 .09 .05 .11 |.07 .16 || .04 .09
Attn. Entropy yax | .01 .03 | .03 .07 | .03 .07 |.03 .09 |.05 .11 |.08 .16 || .04 .09

Method

XCOMET-XL 04 09|05 .11 .06 .12 | .13 28 |.11 24 |.16 .32 .09 .19
XCOMET-XL coxr 08 14|10 .16 .10 .19 |.18 30 |.19 29 | .24 321 .15 .23
XCOMET-XXL .04 11 |06 .13 .05 .11 |.13 28 |.11 24 |.16 .33 | .09 .20

XCOMET-XXL cone | 07 15| .09 19 | .09 .17 | .19 29 | .22 .30 |.28 .33 | .16 .24

Table 8: WQE metrics’ performance for predicting error spans from the ESA annotations (one set per language)
over Aya23-35B outputs for the WMT24 dataset (Kocmi et al., 2024a).

Italian T1 Italian T2 Italian T3
___ XCometXXLConf. _ XComet XL ___ XCometXXLConf. _ XComet XL XComet XXL Conf. XComet XL
(AP =0.33) (AP = 0.23) (AP = 0.37) (AP = 0.27) T (AP=10.26) T (AP=0.16)
____ XComet XL Conf. ____ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var XComet XL Conf. Surprisal MCD Var
(AP =0.31) AP = 0.29) T (AP=10.36) ~ (AP=1031) T (AP=10.25) ~ (AP=019)
___ XComet XXL . Chance level XComet XXL Chance level XComet XXL Chance level
(AP = 0.23) (AP = 0.18) ~ (AP=10.28) =T (AP=0.22) T (AP=0.17) =TT (AP =10.11)
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Figure 4: Precision-recall curves for XCOMET metrics and Surprisal MCDy,y, for all annotators of QE4PE EN—IT.
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Dutch T1 Dutch T2 Dutch T3
___ XCometXXLConf. ~__ XComet XL XComet XXL Conf. XComet XL XComet XXL Conf. XComet XL
(AP = 0.43) (AP =0.31) — (AP=0.31) " (AP = 0.20) T (AP =10.40) T (AP=0.28)
___ XCometXLConf.  __ Surprisal MCD Var XComet XL Conf. Surprisal MCD Var XComet XL Conf. Surprisal MCD Var
(AP =0.43) (AP = 0.36) T (AP =0.29) T (AP=0.24) T (AP =0.40) T (AP=0.34)
____ XComet XXL __. Chance level XComet XXL Chance level XComet XXL Chance level
(AP = 0.30) (AP =0.22) T (AP=0.19) ~T (AP=013) T (AP=1027) ~T (AP=0.19)
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Figure 5: Precision-recall curves for XCOMET metrics and Surprisal MCDy,y for all annotators of QE4PE EN—NL.
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Figure 6: Precision-recall curves for XCOMET metrics and Surprisal MCDy,y on all DIVEMT languages.
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Figure 7: Precision-recall curves for XCOMET metrics and Out. Entropy on all WMT?24 languages.
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