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Abstract

Graphical User Interface (GUI) agents are ex-
pected to precisely operate on the screens of
digital devices. Existing GUI agents merely de-
pend on current visual observations and plain-
text action history, ignoring the significance
of history screens. To mitigate this issue, we
propose UI-Hawk, a multi-modal GUI agent
specially designed to process screen streams
encountered during GUI navigation. UI-Hawk
incorporates a history-aware visual encoder to
handle the screen sequences. To acquire a bet-
ter understanding of screen streams, we select
four fundamental tasks—UI grounding, Ul re-
ferring, screen question answering, and screen
summarization. We further propose a curricu-
lum learning strategy to subsequently guide
the model from fundamental tasks to advanced
screen-stream comprehension. Along with the
efforts above, we have created a benchmark
FunUI to quantitatively evaluate the fundamen-
tal screen understanding ability of MLLMs. Ex-
tensive experiments on FunUI and GUI navi-
gation benchmarks consistently validate that
screen stream understanding is essential for
GUI tasks. Our code and data are now available
at https://github.com/IMNearth/UIHawk.

1 Introduction

Smartphones have become integral to daily life,
raising the importance of autonomously operating
graphical user interfaces (GUI). The task of fol-
lowing instructions on the GUI, formalized as GUI
navigation, offers substantial potential to automate
complex tasks, reduce human workload, and im-
prove user experiences across various applications.

Recent advances in multimodal large language
models (MLLMs) have greatly accelerated the
development of GUI navigation agents, by ei-
ther prompting GPT-4V (OpenAl, 2023) as the
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zero-shot task executor (Yang et al., 2023; Wang
et al., 2024; Zhang et al., 2024a) or directly tuning
MLLMSs on the downstream GUI tasks (Zhan and
Zhang, 2023; Hong et al., 2024).

These agents base their decision making primar-
ily on current visual observations. Although textual
action history is included to substitute the global
context (Zhan and Zhang, 2023), plain text based
action history such as “click [x1, y1, x2, y2],
then scroll up" struggles to capture the nuanced
details of clicked UI element, thereby hindering the
progress (Zhang et al., 2024b). The rich semantics
embedded within the screens is necessary for GUI
agents to accurately control mobile devices. As
shown in Figure 1, precisely grounding the search
bar facilitates the prediction of a click action, fol-
lowed by selecting “hiking trail" as the search op-
tion. Agents could read out the action semantics
by grounding and referring to the corresponding
screen. The screen stream demonstrating that it has
searched for “hiking trial" and opened a related ar-
ticle supports the agent to mark the task as “done”.
This underscores the importance of understanding
screen streams during GUI navigation.

The development of screen stream understand-
ing encounters two major challenges: (1) Efficient
representation of screen sequences, especially for
MLLMs with limited context window (Bai et al.,
2023; Yang et al., 2024) is challenging. (2) As illus-
trated in Figure 1, the instructions associated with
the screen streams could “refer” to different ele-
ments, requiring the agents to “ground” its under-
standing in the correct regions. Additionally, user
instructions could pose complex questions about
the screen, necessitating the agent to analyze, “an-
swer” and “summarize”. Building a sophisticated
model endowed with these capabilities is difficult.

In this paper, we introduce UI-Hawk, a MLLM-
based GUI agent equipped with screen stream un-
derstanding capabilities. Firstly, we enable UI-
Hawk to harness screen sequences by incorporat-
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Figure 1: Example of a GUI navigation episode together with the UI understanding tasks supported by
UI-Hawk. User instruction is "I want to use Chrome to discover a new hiking trail." Bounding boxes predicted by
UI-Hawk are represented by red rectangles. Navigation actions are denoted by yellow hands and yellow rectangles.

ing a history-aware visual encoder, which explic-
itly models the temporal dependencies of images.
Then, to mitigate the challenge of obtaining effi-
cient visual representations, we borrow the resam-
pler from TextHawk (Yu et al., 2024) with 16x
compression ratio to process the visual tokens, en-
abling UI-Hawk to handle multiple steps of his-
tory screens. This specific architecture empowers
UlI-Hawk to effectively perceive the fine-grained
details involved in the entire navigation process.
Lastly, to substantially acquire the screen stream
understanding capabilities, we adopt a curriculum-
like training paradigm. We initially train UI-Hawk
on several single-step screen understanding tasks,
including Ul grounding, Ul referring, screen ques-
tion answering and screen summarization, and then
transfer the model as an agent on episodic naviga-
tion tasks to facilitate screen stream understanding.

Considering the significance of these fundamen-
tal capabilities (Cheng et al., 2024; Fan et al., 2024),
we introduce FunUI, a comprehensive benchmark
to quantitatively evaluate the single-step under-
standing of screens. FunUI contains 2150 Chinese
screenshots and 9347 English screenshots, cover-
ing 32k annotated samples with a variety of icons,
texts and widgets. We assure the diversity of the
FunUI dataset by collecting nine categories of ques-
tions. Evaluation results on FunUI benchmark and
episodic GUI navigation tasks demonstrate that
Ul-Hawk establishes a new standard for screen
understanding. Our further ablation experiments
prove that, equipped with advanced screen stream
understanding capabilities, UI-Hawk achieves new
state-of-the-art performance on both English and
Chinese GUI navigation tasks, improving the pre-

diction accuracy by 7.7% and 6.7%, respectively.
Our contributions are summarized as follows.
We introduce a GUI agent, UI-Hawk, that can ef-
fectively process stream of screens via a history-
aware visual encoder.

» We focus on four fundamental tasks for screen un-
derstanding, and validate the usefulness of these
tasks towards episodic navigation through our
curriculum learning strategy.

* We rigorously construct a comprehensive screen
understanding benchmark FunUI, encompassing
32k samples with over 120 types of Ul elements.

» Experiments demonstrate that possessing the
screen stream understanding capability is the key
to enhancing the performance of GUI navigation.

2 Methodology

To enable screen stream understanding, UI-Hawk
introduces two key characteristics: (1) an opti-
mized model architecture for efficient screen per-
ception, detailed in Section 2.1, and (2) the curricu-
lum learning paradigm encompassing a wide range
of screen tasks, as outlined in Section 2.2.

21

Given that mobile device screenshots typically have
high and variable resolutions, a highly efficient and
fine-grained perception capability is crucial for de-
veloping effective mobile GUI agents. We begin
by identifying several essential requirements: the
ability to handle multiple images of any resolution
simultaneously, efficient compression of visual to-
kens, accurate OCR functionality, and precise refer-
ring and grounding capabilities. Among existing

Model Architecture
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Figure 2: Model architecture of UI-Hawk. The text tokenizer, layer normalization, and skip connections are
omitted for simplicity. During pre-training, the visual encoder is trained together with the LLM to obtain fine-grained
perception capabilities. During fine-tuning, the visual encoder is frozen and the LLM is tuned with the resampler.

foundational MLLMs, TextHawk (Yu et al., 2024)
stands out as the closest to fulfilling these needs.
Specifically, Ul-Hawk inherits several key features
from TextHawk: (1) a shape-adaptive cropping
strategy that processes images of any resolution, to
perceive fine-grained details across various screen
sizes; (2) a carefully designed resampler with 16x
compression ratio, to efficiently encode visual to-
kens; (3) a detection head for direct modeling of
bounding boxes, to explicitly improve the ground-
ing abilities. We replace the original language back-
bone InternLLM1.0-7B (Team, 2023) of TextHawk
with Qwen2-7B (Yang et al., 2024), and employ
SigLIP-SO (Zhai et al., 2023) as the visual encoder.
The model architecture is depicted in Figure 2.

Different from TextHawk, UI-Hawk places a
strong emphasis on modeling historical screens, as
visual history often contain valuable details perti-
nent to ongoing tasks. Despite proprietary MLLM-
based agents (Yan et al., 2023; Zheng et al., 2024;
Zhang et al., 2024a; He et al., 2024) being capa-
ble of processing multiple screenshots, such ca-
pability is lacked for open-sourced MLLM-based
agents, most of which rely solely on text-based
history, like chain-of-actions (Zhan and Zhang,
2023) or chain-of-action-thoughts (Zhang et al.,
2024b). To address this gap, UI-Hawk incorpo-

rates images of observed screens as model inputs,
and explicitly add special tokens (e.g., “<History
Screenshot>") for each historical screen to ex-
plicitly represent the screen streams. Unlike Tex-
tHawk, we devise a curriculum-like tuning strat-
egy to understand screen streams, where Ul-Hawk
starts with learning across multiple images with
single-step screen-related tasks and then extends to
serialized GUI navigation tasks, as detailed in the
following Section 2.2. Moreover, previous models
faced challenges with efficiently modeling visual
history, as encoding each page required thousands
of visual tokens (Bai et al., 2023; Ye et al., 2023).
To overcome this, UI-Hawk downscales history im-
ages to a quarter of their original size. As UI-Hawk
employs a much larger visual token compression
ratio of 16, a typical historical screenshot is divided
into 8 sub-images along with a global thumbnail,
using only 144 visual tokens.

2.2 Model Training

We train UI-Hawk from scratch by utilizing the
pre-training mixtures from TextHawk (Yu et al.,
2024). As TextHawk has not encountered mobile
screen images during pre-training, we supplement
the pre-training mixtures with the screen annotation
dataset collected in Section 3.1. We unfreeze the
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Task | #Samples | Data Source
| ZH | EN | ZH | EN

UI Grounding 580k 16k | Ours (Bai et al., 2021)

UI Referring 600k 109k | Ours (Li et al., 2020)
Screen QA 1200k | 288k | Ours | (Hsiao et al., 2022)
Screen Sum. 50k 78k | Ours | (Wangetal., 2021)
GUI Navigation | 55k | 87k | Ours | (Luetal,2024)

Table 1: Summary of the fine-tuning data of Ul-
Hawk. “Screen Sum.” is short for screen summarization
task. For GUI navigation tasks, we measure the number
of samples by counting the time steps in each episode.

ViT by LoRA (Hu et al., 2021) and train UI-Hawk
for one epoch. This is also one-step further than
TextHawk which froze the ViT during pre-training.
Our pre-training improves both the OCR and the
screen infographics understanding ability of UI-
Hawk, taking 7 days on 128 Tesla V100.
Nonetheless, the pre-trained model still lacks the
understanding of semantics on the screen carried
by UI elements. For example, ICON_HEART is
an icon with heart shape, but can represent differ-
ent meaning of “liking" or “adding to favorite" on
different screens. Consequently, a two-stage fine-
tuning scheme is adopted. Table 1 summarizes the
training data. In stage one, Ul-Hawk includes a
broad range of screen-related single-step tasks to
obtain the basic screen understanding capabilities.
The training sequence contains multiple images,
with format “[img1] question answer [img2]
question answer ". The question-answer
pairs are sampled from different single-step tasks
to enable flexibly switch between screen streams.
In stage two, we utilize sequential GUI navigation
tasks as the training data, enabling UI-Hawk to
learn to deal with screen streams based on user
instructions and execution history. The input se-
quence contains the history screens, history actions,
current screen and user instructions. UI-Hawk is
required to output the correct action API (see Ap-
pendix C.2). These GUI navigation tasks are bilin-
gual and are detailed in Section 3.3. The entire
fine-tuning takes 3 days on 32 Tesla V100. We
kindly refer readers to Appendix B for details.

3 Dataset and Task Formulation

In this section, we demonstrate the process of gen-
erating tasks and dataset for model training and
evaluation. In Section 3.1, we detail the screen
data collection. While in Section 3.2, we explain
how we formulate the screen-related tasks. In Sec-
tion 3.3, we demonstrate the sequential navigation
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spectabilis plant uk
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Figure 3: Examples from GUI-Odyssey dataset. Left:
The region of clicked element (red bounding box) is
larger than area where click action is considered correct
(shadowed orange circle). Right: The region of clicked
element is smaller than the area of correct click actions.

tasks used to train model as a GUI agent.

3.1 Data Collection

Mobile Screens It is essential to assemble a di-
verse range of mobile screens to obtain screen
understanding ability. For Chinese screens, fol-
lowing (Wu et al., 2023), we use an automated
traversal tool to crawl screens from more then 420
apps, sorted by download counts in the app mar-
ket. We filter the duplicated screens, with meth-
ods detailed in Appendix A.l1. As a result, we
gather 115k unique Chinese images in total (113k
for training and 2k remains for evaluation). For
English screens, we use the widely adopted RICO
dataset (Deka et al., 2017), which serves as the im-
age foundation for several screen-related tasks (Li
et al., 2020; Bai et al., 2021; Hsiao et al., 2022;
Wang et al., 2021). In total, there are 72k images
(63k for training and 9k for evaluation).

Screen Annotations Detecting Ul elements on
the screen is crucial for data construction (Baech-
ler et al., 2024; You et al., 2024). We find exist-
ing UI detection models have some deficiencies
(See Appendix A.1 for more details). Therefore,
we manually collected 270k UI element detection
annotations for both Chinese and English mobile
screens and train an RT-DETR (Zhao et al., 2024)
based UI detection model. Our model is responsi-
ble for detecting basic UI elements covering ICON
(133 types, extended from (Sunkara et al., 2022)),
TEXT, IMAGE, INPUT_FIELD and KEYBOARD.
Similar to previous works (You et al., 2024; Fan
et al., 2024), we group basic elements into asso-
ciated items, namely high-level widgets. Since
screen annotations enable textual representation of
screens (Baechler et al., 2024), we refer the task
of generating such annotations solely based on the
input image as screen annotation task, used as a
pre-training task mentioned in Section 2.2. An ex-
ample of screen annotation is shown in Figure 6(c).
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3.2 Fundamental Tasks

The process of GUI screen streams can be divided
into several minor steps (Zhang et al., 2024b), in-
cluding describing the screen, referring to the target
Ul elements and generating the corresponding ac-
tion coordinates. Hence, we identify from previous
works (Bai et al., 2021; Li et al., 2020; Hsiao et al.,
2022; Wang et al., 2021) that four fundamental
one-step tasks are crucial for screen stream under-
standing, as shown in Figure 1. Specifically, these
fundamental tasks includes:

* UI Referring: This task requires the model to
describe the UI element based on its position on
the screen, emphasizing the understanding of the
functionality and semantics of Ul elements.

* UI Grounding: UI Grounding task measures the
regional localization capability. The model is
required to accurately locate Ul elements based
on the instructions (i.e. output bounding boxes).

* Screen Question-Answering: For this task, the
model has to answer questions related to element
relationships. We categorize the questions into
nine major types, detailed in Appendix A.2.

¢ Screen Summarization: This task involves sum-
marizing the main contents or functions of the
screen with several sentences.

In short, we collect samples for these fundamental
tasks via two methods: For English screens, which
already have widely recognized datasets, we sim-
ply employ the corresponding dataset for each task
to keep consistent with previous models (You et al.,
2024; Baechler et al., 2024). For Chinese screens,
we utilize the screen annotation generated with our
Ul detection model to prompt GPT-4V and gener-
ate corresponding question-answer pairs. Figure 5
summarizes the data collection pipeline. After gen-
eration, we conduct manual check to ensure the
correctness of these samples. The used prompts,
more visualized examples for each task and other

details can be found in Appendix A.2.

3.3 GUI Navigation Tasks

To fairly evaluate the screen stream processing abil-
ity, two GUI navigation datasets are selected for
English and Chinese mobile screens, respectively.

GUI-Odyssey+ GUI-Odyssey (Lu et al., 2024)
is a comprehensive dataset for evaluating GUI nav-
igation agents on cross-app tasks, comprising of
7,735 navigation episodes from six categories of
apps. Within GUI-Odyssey, the click events are
recorded by coordinates (z,y). As shown in Fig-
ure 3, such representation hinders the precise eval-
uation of click actions. To tackle with the prob-
lem, we augment the click event annotations via
the bounding boxes of the corresponding UI ele-
ments recognized by our Ul detection model. The
augmented dataset is called GUI-Odyssey+.

GUI-Zouwu There is a lack of GUI naviga-
tion episodes collected for Chinese mobile phones,
whose screen layout is vastly different from English
mobile devices. Therefore, we manually collected
3232 episodes, resulting in the first large-scale Chi-
nese GUI dataset, GUI-Zouwu. GUI-Zouwu spans
137 apps from 6 daily scenarios, including trip
(34.2%), shopping (18.3%), medical (15.5%), so-
cial (15.0%), locallife (9.6%) and message (7.3%).
For a detailed collection process of the data, please
refer to Appendix A.3. In consistent with GUI-
Odyssey+, the click events in GUI-Zouwu are an-
notated by the bounding box of UI elements.

4 FunUI Benchmark

The evaluation of the UI understanding capabilities
of MLLMs remains a open question. The main
challenge lies in the lack of consensus on what
constitutes the fundamental aspects of UI under-
standing, as well as the absence of a comprehensive
benchmark that jointly captures the diverse types
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Model | Tool Information Shopping Media Social Multi-Apps | Overall | ClickAcc
GPT-4V~™ 10.6 9.8 11.2 7.6 5.0 11.2 9.2 34
GPT-40" 37.2 29.9 28.9 28.5 27.2 25.1 29.5 13.2
CogAgent 12.9 10.0 14.2 10.5 9.0 8.4 10.3 7.5
SeeClick 6.8 6.4 5.8 7.2 8.1 5.5 6.5 6.5
OdysseyAgent | 81.5 63.6 62.2 72.5 72.5 68.8 70.8 43.8
Ul-Hawk 88.2 70.9 66.8 82.4 814 80.1 79.4 76.3

Table 2: Sequential navigation performance on GUI-Odyssey+ dataset. We report the overall action matching
score on six categories of navigation tasks, including tool, information, shopping, media, social and multi-apps, and
the overall action matching score. “ClickAcc” stands for the accuracy of click actions, reflecting the grounding
ability of models. *Due to the budget limit, we randomly sampled 500 instances for each task category for evaluation.

of screen elements and tasks. Prior works typically
introduced the evaluation tasks independently to
assess narrow abilities such as grounding (Bai et al.,
2021) or captioning (Li et al., 2020).

To address this gap, we introduce FunUI, a
bilingual evaluation benchmark that unifies and
standardizes four fundamental Ul understanding
tasks that are previously studied in isolation: UI
grounding and Ul referring tasks are designed to
access the regional location and identification abili-
ties of models, whereas screen question answering
and screen summarization tasks require more in-
tegrated analysis of the screen contents. We posit
that these four capabilities form the essential build-
ing blocks for robust GUI navigation agents. Con-
cretely, FunUI distinguishes with previous bench-
marks (Hsiao et al., 2022; Li and Li, 2022; Cheng
et al., 2024) on three key aspects:

 Bilingual: FunUI comprises of 2150 Chinese
screens and 9347 English screens from Android
devices, annotated with 14k and 18k samples,
respectively. To the best of our knowledge, this
is the first benchmark that enables the assessment
of Chinese UI understandings.

* Comprehensive: Instead of concentrating on a
single aspect, FunUI includes different evalua-
tion dimensions of Ul understanding, ranging
from fine-grained Ul grounding and UI referring,
to complicated screen question answering and
screen summarization.

 Diverse: FunUI covers various types of question
answering pairs, including grounding and refer-
ring questions about 120+ icons and widgets, and
complex questions with related to elements rela-
tions and arithmetics. This is more challenging
for models to answer than text-related tasks used
in GUICourse (Chen et al., 2024b).

To ensure reliable evaluation under real sce-
narios, FunUI is carefully crafted: (1) For En-

glish screens, we meticulously select the union
of test images from authoritative dataset, i.e.
WidgetCaption (Li et al., 2020), RefExp (Bai
et al., 2021), ScreenQA (Hsiao et al., 2022) and
Screen2Words (Wang et al., 2021), so that models
trained for English screens could be consistently
compared with previous SOTA methods, i.e. Ferret-
UI (You et al., 2024). (2) For Chinese screens, we
recruited experienced annotators to label the ques-
tions along with the bounding boxes of related UI
elements, enforcing the samples to be novel and
excluded in existing resources. Details about the
construction of FunUI benchmark can be found in
Appendix A.4. The basic statistics of FunUI are
illustrated in Figure 4.

Consequently, by systematically organizing
these tasks as fundamental UI understanding capa-
bilities, we further demonstrate their individual con-
tributions and synergistic impact for downstream
GUI navigation (see Table 5 in Section 5.3).

S Experiments

5.1 Experimental Setup

Baselines We adopt different types of MLLMs
as the baselines: (1) the proprietary GPT-4V (Ope-
nAl, 2023) and GPT-40 (OpenAl, 2024) (2) the
open-source models like Qwen-VL-Chat (Bai et al.,
2023) and InternVL2-8B (Chen et al., 2024c), (3)
models specifically designed for GUI tasks, includ-
ing MLLMs for screen understanding like Spot-
light (Li and Li, 2022), Ferret-UI (You et al., 2024)
and SeeClick (Cheng et al., 2024), and MLLMs
targeted for GUI navigation like CogAgent (Hong
et al., 2024) and OdysseyAgent (Lu et al., 2024).
Since currently all Ul-specific models are trained
under English contexts, we compare UI-Hawk with
three generalist MLLMs that could understand Chi-
nese (GPT-4V, Qwen-VL-Chat and InternVL2-8B).
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Model \ GRD \ REF SQA SUM
| Acc | CIDEr Fl CIDEr

GPT-4V* \ 2.3 \ 23.5 74.7 34.8
Spotlight® - 141.8 - 106.7
Ferret-UI' - 140.3 - 115.6
SeeClick 29.6 - 28.3 102.3
UI-Hawk \ 63.9 \ 1443 859 106.5

(a)Results on English screens.

Model \ GRD REF SQA SUM
\ Acc  CIDEr F1 GPT

GPT-4V* | 20 5.5 524 60.8
Qwen-VL ‘ 22 1.3 457 473

InternVL2 - 14.5 604 779
Ul-Hawk— | 63.9 62.3 509 787
UI-Hawk 67.6 66.2 53.6 795

(b)Results on Chinese screens.
Table 3: Performance of UI understanding on FunUI
benchmark. GRD: grounding, REF: referring, SQA:
screen question answering, SUM: screen summarization.
*Due to the budget limit, we randomly sampled 500
samples for each task for evaluation. fPerformance of
the close-source model from its original paper.

Evaluation Metrics For fundamental tasks, we
use the accuracy computed at IoU=0.5 for UI
grounding, SQuAD-F1 score (Hsiao et al., 2022)
for screen question answering, and CIDEr for UI
referring. With regard to screen summarization, we
utilize CIDEr for English evaluation and GPT-40
as the judger for Chinese evaluation, since the an-
notated Chinese screen summarizations are longer
and more complicated. For GUI navigation, we
employ the widely used action matching score as
the metric (Zhan and Zhang, 2023; Rawles et al.,
2024; Lu et al., 2024). Details are in Appendix C.

5.2 Main Results

Screen Understanding Table 3 demonstrates the
performance of UI-Hawk compared with previous
state-of-the-art models on various screen under-
standing tasks. On English screens, compared to
Spotlight and Ferret-Ul, UI-Hawk possesses su-
perior results in Ul referring and screen question-
answering. Compared with SeeClick, UI-Hawk
exhibits better performance on grounding, even
though SeeClick uses 320k English screenshots for
training. Although UI-Hawk slightly falls short on
screen summarization, the results are still compet-
itive. Since there is a lack of Chinese Ul-specific
models, we compare UI-Hawk with GPT-4V and
Qwen-VL. We additionally include a minor version

Model \ UI-PT \ UI-SFT \ GRD \ NAV
TextHawk X X 18.0 71.6
TextHawk+UI X Ve 54.7 75.9
UI-Hawk-Naive v X 33.8 75.7
UI-Hawk v v 63.9 79.4

Table 4: Ablation study on the effect of Ul-related
training phrases. As TextHawk is pre-trained purely on
document-related tasks, we label x on the “UI-PT” col-
umn to distinguish it with our pre-training that involves
screen annotation data. The accuracy of English Ul
grounding task (GRD) and the overall action matching
score on GUI-Odyssey+ dataset (NAV) are reported.

of UI-Hawk, UI-Hawk-Minus, which is fine-tuned
on a total of 128k Chinese samples, where each
fundamental task accounts for 32k samples. As
shown in Table 3(b), even Ul-Hawk-Minus sur-
passes Qwen-VL and InternVL?2 on grounding and
referring by a large margin, and it achieves on-
par performance with GPT4V in screen question
answering. This underscores the scarcity of Ul-
related information in general data, proving the
significance of constructing such training samples
to acquire the domain-specific knowledge. Overall,
Table 3 suggests that UI-Hawk is a bilingual model
with advanced screen understanding capabilities.

GUI Navigation We follow the evaluation
methods used by CogAgent (Hong et al.,
2024), SeeClick (Cheng et al., 2024) and GUI-
Odyssey (Lu et al., 2024) to assess the performance
of UI-Hawk under in-domain settings. As shown
in Table 2, SeeClick performs poorly, as it only
predicts the “CLICK” actions and does not general-
ize well to GUI-Odyssey+. Ul-Hawk significantly
outperforms all other models, achieving a 9% abso-
lute increase in overall action matching score and a
32.5% absolute increase in the prediction accuracy
of click operations compared to the most capable
OdysseyAgent. The results validate that UI-Hawk
represents a state-of-the-art GUI agent.

5.3 Ablation Studies

The Impact of Training Strategy To further il-
lustrate the validity of the collected data and associ-
ated training strategy, highlighting the differences
between UI-Hawk and TextHawk (Yu et al., 2024),
we conducted ablation experiments on training
phases, where “UI-PT” represents the pre-training
that involves the curated screen annotation dataset
and “UI-SFT” refers to the stage one screen un-
derstanding fine-tuning. Since the ability for se-
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Li | Grounding | Referring | ScreenQA | Screen Sum. | . |  GUI-Odyssey+ | GUI-Zouwu
ine History
| EN CN | EN CN | EN CN | EN CN | | Overall ClickAcc | Overall ClickAcc

(1) T 71.7 66.9 41.2 49.3
2) \% 75.7 71.9 44.8 56.5
3) v v \ 77.8 74.5 46.1 59.2
“4) v v \% 77.7 73.9 46.0 58.4
(5) Vv v 77.6 73.6 46.5 58.4
(6) v v \'% 77.3 73.1 45.6 57.7
(@) v v v v v v v v T 72.7 68.1 433 55.6
(8) v v v v v v v v \'% 78.3 75.1 459 58.4
© | Full Data V| 794 763 | 479 61.4

Table 5: Ablation study on the effect of fundamental Ul tasks and different history representations. "T" and
"V" represents textual and visual history, respectively. Following (Lu et al., 2024), the default history length is set
as 4 across all experiments. A “v"” indicates we sample 32k examples for that language from the corresponding
task, resulting in a total of 64k samples across both languages as the training data. For English grounding tasks, we
repeat the original 16k training samples to 32k for a fair comparison.

quential GUI navigation must be acquired through
training on corresponding data, all these ablation
models underwent the stage-two fine-tuning, which
we omit in the table for brevity.

We compare Ul-Hawk with the original Tex-
tHawk model, TextHawk+UI model that is continu-
ally trained with our two-stage fine-tuning scheme,
and UI-Hawk-Naive that only undergoes our Ul-
related pre-training phrase. Results on Table 4
demonstrate that: (1) screen annotation task is ben-
eficial for structural understanding of screens; (2)
our proposed four fundamental screen understand-
ing tasks are crucial for the enhancement of both
grounding and navigation capabilities.

The Impact of Fundamental Screen Understand-
ing To further investigate the influence of each
fundamental task towards the final navigation per-
formance, we randomly sample 64k data for each
task to conduct the stage one fine-tuning. As shown
in Table 5, each fundamental task contributes to the
improvement of navigation performance, within
which UI grounding task influences the prediction
of click operations most. The model trained on the
averagely mixed data (line 8) has outstanding per-
formance on GUI-Odyssey+ but is marginally infe-
rior to the model trained solely on screen question
answering (line 5) on GUI-Zouwu. We attribute
this to the Chinese screen summarization task, as in
line 6 its positive influence is minimal. We finally
build UI-Hawk with all collected samples as the
training data, which excels in both English and Chi-
nese GUI navigation tasks. These results validate
the significance of enhancing screen understanding
in the development of autonomous GUI agents.

The Impact of Screen Streaming History mod-
eling of sequential decision-making tasks has long
been a problem, especially for MLLMs with lim-
ited context windows. To gain a deep insight on the
effect of screen streaming encountered during navi-
gation, we further conduct an ablation study on us-
ing plain text-based historical actions only, or using
screen sequences of historical screenshots together
with historical actions. The results presented in Ta-
ble 5 indicate that visual history information has an
essential impact on GUI navigation. Such impact
is much more significant than the impact brought
by fundamental screen abilities, demonstrating that
screen stream understanding is not only beneficial
but also essential for GUI navigation.

6 Related Works

Automatic execution of user instructions on mobile
devices has been a trend. Early works (Shi et al.,
2017; Deka et al., 2017; Liu et al., 2018) concen-
trated on synthetic web or mobile screens. Later,
datasets are collected on real webs and apps (Burns
et al., 2021; Sun et al., 2022; Deng et al., 2024;
Lu et al., 2024) and further scaled-up to facili-
tate the training (Rawles et al., 2024; Chen et al.,
2024a). Recent progress in this area are dominated
by proprietary MLLM-based agents (Yang et al.,
2023; He et al., 2024), relying on visual prompt-
ing (Yan et al., 2023; Zheng et al., 2024), complex
context modeling (Zhang et al., 2024b,a) or self-
refine (Kim et al., 2024) capabilities of language
models to generalize on user interfaces. The lack
of screen-related training make such agents strug-
gles with grounding to correct Ul elements (Yan
et al., 2023; Zheng et al., 2024), even with the
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view hierarchy or other annotations as additional
inputs (Wen et al., 2023; Wang et al., 2024). To
deal with this problem, this work constructs a uni-
versal GUI agent UI-Hawk by customizing a open-
sourced MLLM on multiple fundamental screen-
related tasks aimed for better screen understanding.
Since screen understanding is significant (Bai
et al., 2021; Zhang et al., 2021; Venkatesh et al.,
2022), several works utilize open-sourced MLLMs
as the foundation and fine-tunes the model on par-
tial aspects of screen-related tasks (Li and Li, 2022;
Jiang et al., 2023; Hong et al., 2024; Cheng et al.,
2024). However, these models only takes text-
based history, overlooking the information carried
by historical screen streams. To bridge the gap, we
propose to integrate the screen stream processing
capability into GUI agents. Through a history-
aware visual encoder and an efficient resampler,
Ul-Hawk achieves state-of-the-art performance on
GUI navigation by using screen streams as input.

7 Conclusion

In this paper, we introduced UI-Hawk, a GUI agent
focused on screen stream understanding. Leverag-
ing the efficient architecture to tackle with screen
streams, Ul-Hawk excels in four fundamental
screen understanding tasks, including Ul ground-
ing, Ul referring, screen question answering, and
summarization. For a comprehensive assessment,
we established the bilingual FunUI benchmark to
evaluate the screen comprehension of MLLMs. Ex-
tensive experiments demonstrates that Ul-Hawk
sets new state-of-the-art performance on GUI navi-
gation tasks, highlighting the importance of robust
screen understanding for autonomous GUI agents.

Limitations

As layout styles evolve, general knowledge of Ul
elements remains transferable. Since there exists
numerous widly-adoped high-quality annotations
on RICO datasets, we utilize these data to con-
struct the basic UI tasks for English screen. Our
ablation study (see Table 5) shows that such trans-
ferable UI knowledge improve the performance on
GUI-Odyssey+ dataset, whose screens are newly
collected. However, to build a practically reliable
GUI agent in real life, it is still essential to have up-
dated screens and apps as training data. We leave it
for future work to collect more training samples on
up-to-date English apps, and explore the long-term
effect to understand whether UI-Hawk could adapt

to evolving GUI designs.
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A Data Collection

Here we provide the details about our data collec-
tion process. In Section A.1, we demonstrate how
we collect screen annotations and convert it into a
pre-training task. In Section A.2, we provide the
details about the prompting of GPT-4V to generate
samples. In Section A.3, we illustrate the design of
GUI-Zouwu and the data collection process.

A.1 Screen Annotation

Screens collected by automated traversal often have
a high degree of repetition (Feiz et al., 2022). We
employ a pixel-wise filtering algorithm combined
with screen structure to eliminate duplicate images.

Screen Filtering We observe that the screenshots
collected through automated traversal often con-
tain many duplicates, as clickable elements do not
always lead to a page transition. Therefore, we
utilize a two-step filtering algorithm to remove the
duplicates. We first perform a pixel-wise check
of the images, with the goal of filtering out iden-
tical screens to reduce the computational load on
subsequent algorithms. Then, we use our trained
RT-DETR model to detect the UI elements, thereby
extracting the structural information of the screen.
We define a screenshot as duplicated if its struc-
ture remains unchanged while unimportant content,
such as carousel images or advertisements, varies.
Therefore, we mask regions in the screen that are la-
beled as “IMAGE” and then perform the pixel-wise
comparison of the masked images. About 15% of
the screens are filtered.

Screen Annotation We find existing Ul detec-
tion models have some deficiencies. Recent open-
sourced Ul element detection models (Sunkara
et al., 2022; Fan et al., 2024) have severe issues
including inaccurate bounding boxes and missed
detections. As shown in Figure 6(a), IconNet de-
tects bounding boxes that are smaller than the ac-
tual elements, and it misses detecting the app icons
for Photos and YouTube. Moreover, these models
are trained on English data, hence perform poorly
on Chinese mobile screens. Therefore, we build our
own RT-DETR model by manually collecting 270k
bounding boxes from both Chinese and English

screens. These annotations were manually anno-
tated by human annotators, with each annotation
individually created and subsequently reviewed by
our data quality team, achieving an average recall
of 95% for various Ul elements. An illustration ex-
ample is shown in Figure 6(b). Following (Baechler
et al., 2024), we construct the textual representation
of a screen by considering the containment relation-
ships between the elements. See Figure 6(c) for
an example. We define the screen annotation task,
which requires the model to generate the structured
textual representation of screens by taking the im-
age solely as the input.

A.2 Fundamental Tasks

The ability to understand screen streams is built
upon the understanding of individual screens.
Therefore, we designed four fundamental tasks to
help the model comprehend screen contents.

UI Referring This task requires the model to de-
scribe the Ul element based on its position on the
screen, emphasizing the understanding of the func-
tionality and semantics of Ul elements. For English
screens, we utilize the open-sourced dataset Wid-
get Caption (Li et al., 2020). For Chinese screens,
we distinguish the data by the UI types, where
question-answer pairs related to ‘TEXT’ elements
(i.e. OCR) are generated by templates and others
are generated by prompting GPT-4V. We finally
construct 600k referring samples.

Ul Grounding This task measures the regional
localization capability. The model is required to
accurately locate Ul elements based on the in-
structions. For English screens, Referring Expres-
sion (Bai et al., 2021) dataset is used. For Chinese
screens, since grounding is the reverse process of
referring, we utilize GPT-4-Turbo to rewrite the re-
ferring question-and-answer pairs as the grounding
data, resulting in 580k Chinese grounding samples.

Screen question answering For this task, the

model has to answer questions related to element

relationships. Specifically, we categorize the ques-
tions into nine major types, which are:

* Identification Questions: These involve queries
about what something is, such as “What is the
doctor’s name?" when presented with a doctor’s
information, but not directly telling you that this
person is a doctor.

* Attribution Questions: Such questions involve
associated attributes of screen elements, such as
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Figure 5: Overall data collection pipeline.

“What is the rating of the xxx?" and “Who is the
author of the book yyy?".

Relationship questions: These include compar-
isons between two or more screen elements, such
as “Which one has a higher price, A or B?" or
“Which shopping market is the farthest away?"

Localization questions: These questions provide
a detailed description of a specific screen element
and then ask about its location on the screen, such
as “Where is the 2019 MacBook Air product
located on the screen?"

Operation Questions: These questions involve
operations on the screen, such as “How to open
the shopping cart?"

Temporal Questions: Any questions related to
time or date fall into this category, such as “What
is the current time on the screen?" or “What are
the departure and arrival dates of the flight?"

Numerical Questions: These contain any ques-
tions related to numbers or calculations, such as
“How many items are there in the cart?" or “What
is the lowest price of the science fictions?"

Judgement Questions: These questions involve
making yes/no or true/false determinations. For
example, “Is it possible to upgrade to VIP? "

For English screens, we employ the Google
ScreenQA datset (Hsiao et al., 2022). For Chi-
nese screens, we prompt GPT-4V as a good ex-
pert (Azaria et al., 2024) by faked in-context sam-
ples to generate question-answer pairs correspond-
ing to these major categories. In total, we obtain
1200k Chinese samples.

Screen Summarization This task involves sum-
marizing the main contents or functions of the
screen. Specifically, for English screens, existing
Screen2words (Wang et al., 2021) dataset is ap-
plied to maintain a fair comparison with previous
SOTA models (You et al., 2024). For Chinese, we
employ GPT-4V to concisely describe the screen
within three sentences. Around 50k Chinese screen
descriptions are annotated by GPT-4V.

As shown in Figure 4(d), the generated Chinese
summarizations are longer than English ones, mak-
ing them less suitable for evaluation using CIDEr.
Therefore, we utilize GPT-40 as the judger and
score the response from four different perspectives.

Figure 5 summarizes the data collection pipeline.
The prompts we used are summarized in Figure 8
and Figure 9. Note that due to the poor recogni-
tion ability of GPT-4V on Chinese characters, we
include detected screen annotations as additional
input to reduce the hallucinations during data gener-
ation. Apart from the referring text data generated
by templates, we conduct manual verification for
all sample pairs. We recruit around 50 annotators,
and allocate data for each annotator on a per-image
basis. Annotators are required to verify the model-
generated answers and correct the errors for each
assigned image. Once the human annotation is
completed, our data quality team conducts accep-
tance checks. Specifically, in each round, 10% of
the images are sampled for inspection. If the accu-
racy of the sampled data exceeds 95%, it passes;
otherwise, the data undergoes a second round of
annotation. The average number of annotation-
verification rounds per image is 2.6.
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(c) Screen annotation

Figure 6: Comparison of different detection models. (a) The detection outcomes from IconNet (Sunkara et al.,
2022). (b) The detection outcomes from RT-DETR model trained by us. (c) Corresponding screen annotation.

A.3 GUI-Zouwu

To evaluate the influence of screen streaming in
Chinese mobile devices, we construct GUI-Zouwu
dataset. We first identify six major scenarios from
daily life, involving trip, shopping, medical, social,
locallife and message. We collect data from the top
apps involved in each scenario. For each scenario,
instead of using predefined task templates, we in-
struct annotators to first explore the app and then
create tasks based on the functionalities the app
can perform. This approach ensures the diversity
of tasks. Once the tasks are defined, we ask the
annotators to complete the tasks based on the given
instructions. The data quality team then checks the
accuracy of the collected sequences and the quality
of the task instructions. Finally we obtain 3232
instruction-episode pairs, covering 137 apps, with
an average of 20 navigation episodes per app and
15 apps per scenario.

A.4 FunUI Benchmark

As we have mentioned in Section 4, we build

FunUI benchmark by two methods:

* For English screens, we carefully select the union
of test images from authoritative dataset (Li et al.,
2020; Bai et al., 2021; Hsiao et al., 2022; Wang
et al., 2021). And we have removed some re-
peated images in the union set from the training
split of each dataset to ensure that no data con-

Task | EN CN
UI Grounding | 565 3124
UI Referring 3621 3369
Screen QA 9186 5525
Screen Sum. 4310 2150

Table 6: #Samples of each fundamental task in FunUI
benchmark. “Screen QA” and “Screen Sum.” represent
screen question answering task and screen summariza-
tion task, respectively.

tamination. We did so for two reasons: (1) consis-
tency of evaluation: Models trained for English
screens could be consistently compared with pre-
vious SOTA methods, i.e. Ferret-UI (You et al.,
2024). (2) leveraging existing resources: We ob-
served that although the difficulty of these author-
itative datasets are moderate, the performance of
models were suboptimal (see Table 3), especially
on Ul grounding and screen question answering
tasks. This indicates that the potential of these
datasets has not been fully explored. Therefore,
we believe that these datasets still hold signifi-
cant value and are worth utilizing as evaluation
data. This is also an environmentally friendly
approach that reduces resource consumption.

» For Chinese screens, we recruited experienced
annotators to label the questions along with the
bounding boxes of related UI elements, enforcing
the samples to be novel and excluded in existing
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resources. Annotators are also required to ex-
clude the questions and screens that might lead
to privacy leakage. Specifically, we selected 10
annotators with the highest accuracy from the
pool of workers who labeled the training data of
four fundamental tasks (we have mentioned in
Appendix A.2). We required annotators to follow
the prompts in Figure 8 and Figure 9, while also
taking into account human usage habits and the
primary functionality of the current screen. As
these data are used for evaluation, our data qual-
ity team reviewed all the samples and retained
only the correct ones, resulting in 14k samples.

The detailed statistics for each evaluation task are
presented in Figure 4 and Table 6. Visualized
examples are shown in Figure 7.

B Training Details

During the whole training, we adopt AdamW op-
timizer, with 81 = 0.9, 82 = 0.95, and a weight
decay of 0.05. All the training is conducted on
Tesla V100 GPUs.

Pre-Training For pre-training, we utilize images
of various sizes and aspect ratios. As we employ
SigL.IP-SO (Zhai et al., 2023), each sub-image is
sized at 224 x 224. The language backbone is
Qwen2-7B (Yang et al., 2024). We employ an ef-
fective batch size approaching 1500 and we train
UI-Hawk for about one epoch on a data mixture of
screen annotation data and other document-related
data used in (Yu et al., 2024). The resampler, the
LoRA for ViT and LLM, and the randomly initial-
ized detection head are updated. The learning rate
is linearly increased to 1.5 x 10~* during the first
3% of steps, then gradually decays to 5 x 1076
following a cosine schedule.

Supervised Fine-Tuning During fine-tuning, we
integrate LORA weights into the LLM and jointly
train the entire model, excluding the visual encoder.
At stage one, we set the context length as 2048 and
fine-tune the model on four fundamental screen
tasks for one epoch, using a batch size of 256. At
stage two, we adapt the model to sequential tasks
by increasing the context length to 4096. The batch
size is set as 64. During each fine-tuning stage, the
learning rate is linearly increased to 2¢~° at the
beginning 3% of steps, then gradually reduced to 0
using cosine decay schedule.

C Evaluation Details

C.1 Fundamental Tasks

UI Grounding Previous work often employ a
relatively low IoU threshold, such as IoU =
0.1 (Baechler et al., 2024), when evaluating ground-
ing tasks. However, in the field of object detection,
setting the IoU threshold at 0.5 is more widely
used (Everingham et al., 2010). This stricter stan-
dard prevents the exaggeration of the performance
(as shown in Table 8).

UI Referring For referring, we apply the CIDEr
metric (Vedantam et al., 2015) as (Li et al., 2020)
has done, as this task is relatively straightforward
and the responses are typically one sentence long.

Screen QA Following (Hsiao et al., 2022), we uti-
lize the SQuUAD-F1 score as the evaluation metric.
For a specific question, we compile all candidate
answers, whether they are long or short, into a ref-
erence list. The model’s response is then compared
to this list to calculate the score.

Screen Summariztion As dipicted in Figure 4,
there is a significant difference in the length distri-
bution between Chinese and English summariza-
tions, where English length measured by words and
Chinese by characters. Hence, for English sum-
marizations, we use the CIDEr metric as (Wang
et al., 2021). For Chinese summarizations, we em-
ploy GPT-40 as the judger to score the responses
from the following four aspects: (1) Content: As-
sesses how well the summary captures the main
content and functionality of the screen; (2) Struc-
ture: Judges the accuracy in reflecting the layout
and structure of the screen; (3) Fluency: Evaluates
the naturalness and readability of the generated
text; (4) Authenticity: Measures whether the sum-
marizations is truthful and free from hallucinations.
We instruct GPT-40 to assign a score between 0
and 10 for each aspect, and compute the final score
as an average of these four scores multiplied by 10.
The detailed scores can be found in Table 7.

C.2 GUI Navigation

Action Space Following (Zhang et al., 2024b),

we unify the action space into 5 kinds of actions:

CLICK, SCROLL, TYPE, PRESS and DONE:

e CLICK(bbox=[x1, y1, x2, y21): click (in-
cluding long press) the Ul element whose exact
bounding box is [x1, y1, x2, y2].
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| Content  Structure Fluency  Authenticity | GPT-Score
GPT-4V* ‘ 5.52 5.83 7.64 5.34 ‘ 60.8
Qwen-VL 4.13 4.32 6.44 4.02 473
InternVL2-8B 7.34 7.50 8.41 7.91 77.9
UI-Hawk-Minus 7.45 7.71 8.53 7.79 78.7
UI-Hawk 7.51 7.84 8.60 7.85 79.5

Table 7: Details of the evaluation for Chinese screen summarization. We evaluate from four perspectives:
content(0-10), structure(0-10), fluency(0-10) and authenticity(0-10). The final GPT-Score is 10x the average score.

(en) | GPT-4V  SeeClick  UI-Hawk
ToU=0.1 274 62.1 85.5
TIoU=0.5 2.3 29.6 63.9
Al | 2503 3257 2159

Table 8: Impact of IoU thresholds on grounding ac-
curacy. Obviously, a low IoU threshold exaggerates the
model’s performance, especially for those models with
inaccurate bounding box predictions.

SCROLL(direction="up|down|left|right"):
swipe the screen to a specified direction.

TYPE(text="..."): type text with keyboard.

PRESS (button="home |back|recent”): press
the system level shortcut buttons provided by
Android OS. “press home" means directly going
to the home screen, “press back" means mov-
ing to the previous screen, “press recent” means
jumping to the most recent app.

DONE(status="complete|impossible”): stop
and judge whether the task has been completed.

Metrics We utilize the action matching
score (Rawles et al., 2024; Zhan and Zhang, 2023)
to evaluate the action prediction accuracy. An
action is considered correct if both the action type
and the details (i.e. scroll direction, typed text,
clicked position and pressed button) match the
gold ones. Previous works take CLICK action as
correct if the predicted click point fall within a
14% screen distance from the gold gestures, which
is very inaccurate as shown in Figure 3. Therefore,
as our datasets contains the bounding boxes of the
elements, we define CLICK actions to be correct
if the predicted click point or the center of the
predicted bounding box falls within the ground
truth bounding box (Li et al., 2022; Zhang et al.,
2023). For SCROLL actions, we compare whether
the predicted direction matches the ground truth.
For TYPE actions, if the Average Normalized
Levenshtein Similarity (ANLS) between the
predicted text and the ground truth is lower than

ViT | LLM | GRD-zh  GUI-Zouwu
SigLip-SO | InternLM1.0 63.8 453
SigLip-SO | Qwen2 67.6 479
SigLip-SO | InternLM2.5 67.9 474

Table 9: Influence of difference language backbones.

Unfreeze ViT \ GRD-zh GUI-Zouwu

62.5 42.0
67.9 474

X
v

Table 10: Comparison between freezing and unfreez-
ing the ViT during pre-traning.

0.5, we consider it correct. For PRESS actions, we
compare the predicted button with the ground truth
and consider it as correct if the two are exactly
the same. For DONE actions, we consider the
prediction correct as long as the action type is
accurately predicted.

D Further Analysis
D.1 Choice of Model Structure

We have explored the influence of different ar-
chitectures, together with the training settings in
our preliminary experiments to support both Chi-
nese and English screen understanding. As most
MLLMs have native support for English, we put
the emphasis on Chinese performance.

Language backbone We select three LLMs,
including InternLM1.0 used by TextHawk, In-
ternLM2.5 which is superior to InternLM1.0, and
the most recent Qwen?2 as the candidates. As shown
in Table 9, Qwen2- and Intern.M2.5-based agents
show better grounding performance, with Qwen2-
based agent excelling in sequential navigation tasks.
Thus, UI-Hawk is built with Qwen2 backbone.

Unfreezing ViT during pre-training We fol-
low TextHawk (Yu et al., 2024) to use SigLip-SO
as the visual encoder. Although TextHawk froze
the ViT during the entire training process, several
works have illustrated that train ViT is beneficial for
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Model FT? ‘ History ‘ Overall ClickAcc.

Qwen2-VL | V T 58.6 30.8
UI-Hawk v T 73.9 69.3
OdyAgent v A% 70.8 43.8
TextHawk v v 71.6 65.8
UI-Hawk v \Y 79.4 76.3

Table 11: Comparison between the textual (T) and
visual (V) history across various agents fine-tuned
on GUI-Odyssey+ dataset.

obtaining advanced grounding capabilities (Chen
et al., 2024c¢). Therefore, we conduct an ablation
study. Table 10 validates that unfreezing ViT dur-
ing pre-training leads to better grounding ability,
and further improves the navigation performance.

D.2 TImpact of Screen Streams across MLLMs

To further demonstrate the effectiveness of apply-
ing screen streams into history, we have added two
LoRA fine-tuned baseline models, Qwen2-VL and
TextHawk. As shown in Table 11, under textual his-
tory settings, UI-Hawk surpasses Qwen2-VL (they
share the same Qwen?2 language backbone), vali-
dating our architecture advantages. Moreover, even
T-history based UI-Hawk is better than V-history
based TextHawk, showing the significance of Ul-
related training process. At the result, V-history
based UI-Hawk performs the best, validating the
effectiveness of both model and training strategies.
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Figure 7: Qualitative examples of UI-Hawk in FunUI benchmark. In most cases, UI-Hawk can perform the
tasks well. While in some cases where the screen is obstructed or the question contains implicit app knowledge,
Ul-Hawk’s answer would be inaccurate. As shown in the Chinese example of screen question answering task,
UI-Hawk fails to identify the most recently added image but conduct OCR to answer the question.
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Shared System Prompt

Your name is GUI-Expert, a user interface interaction assistant specifically designed for the
Android operating system.

- As a virtual assistant, you can interact with users through the operating system’s interface, assist
them in resolving requests, and provide descriptions of the content displayed in screenshots.

## Use Guidelines:

1. You are provided a screenshot of the current smartphone, along with a textual representation of
the current screen.

2. The textual representation is called “Screen Annotation", which is composed of a series of
detected Ul elements.

3. Each UI element has a class, which is expressed in capital letter. The class is sometimes
followed by a description, and then 4 numbers between 0 and 999 represent the bounding box of
each element.

Your task is to respond to user requests by reviewing the screenshots of the mobile app
interface.

UI Grounding Prompt

| '

Given the screenshot and the screen annotation, I need you to generate referring question-answer
pairs: Given a description of an element, provide the corresponding bounding box.

Based the provided referring question-answer pairs, you should convert the questions
and answers: While maintaining the original question-answer relationship, place the description
of the element into the question and respond with the element’s bounding box in the answer. Your
output must strictly adhere to the JSON format.

UI Referring Prompt

Given the screenshot and the screen annotation, I need you to generate referring question-answer
pairs: Given the bounding box of an element, describe the corresponding element.

## Requirements:

1. Question-answer pairs related to ICON: Users may ask questions about icons. Based
on elements classified as ICON in the screen annotation, generate potential questions and
corresponding answer pairs.

2. Question-answer pairs related to TEXT: The app interface contains a large amount of text.
Based on elements classified as TEXT and containing Chinese characters in the screen annotation,
generate potential user questions and provide the corresponding text from the screenshot.

3. Question-answer pairs related to WIDGET: The app interface consists of multiple basic
elements that form various interactive controls. Users may ask questions about the meaning or
functionality of these controls. Based on the higher-level elements identified as WIDGET in the
screen annotation, generate potential question-answer pairs.

## Response Format
{ “icon”: [{uqlv‘, ““‘ H, uau: u‘“//}, ], “te.xt”.' [{“q//‘, u“‘ N, aan: u‘“u}, ], “Widget”.' [{uqn: u‘“//,
uan: u.“ H}, “.] }

Figure 8: Data collection prompt for UI grounding and UI referring tasks. Note that we use the Chinese version
of above prompts to generate Chinese data.
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Shared System Prompt

Your name is GUI-Expert, a user interface interaction assistant specifically designed for the
Android operating system.

- As a virtual assistant, you can interact with users through the operating system’s interface, assist
them in resolving requests, and provide descriptions of the content displayed in screenshots.

## Use Guidelines:

1. You are provided a screenshot of the current smartphone, along with a textual representation of
the current screen.

2. The textual representation is called “Screen Annotation", which is composed of a series of
detected Ul elements.

3. Each Ul element has a class, which is expressed in capital letter. The class is sometimes
followed by a description, and then 4 numbers between 0 and 999 represent the bounding box of
each element.

Your task is to respond to user requests by reviewing the screenshots of the mobile app
interface.

Screen QA Prompt

Given the screenshot and the screen annotation, I need you to generate question-answer
pairs about the screen contents. You should consider this task from the following aspects:
{$screen_qa_types_and_examples).

Please generate 10 potential questions and provide corresponding answers.

## Response FOrmat.' [{“q”«' n.“n’ “a”.' “‘“u}, {“q": n“'u’ nau: n."n}’ {nqu: “.“H’ uan:
“« n} ]
e [y aee

Screen Summarization Prompt

Given the screenshot and the screen annotation, I need you to summarize the screen contents.
You should carefully observe the screenshot and summarize the contents. Ensure that your
description is clear and concise. Answer within threee sentences. The screen summarization
should include all important information on the screen and also focus on the screen layout,
describing the content in a top-to-bottom, left-to-right order. Note that:

1. For apps with specific names, directly use the app name instead of referring to it generically as
“the app.”

2. Do not include inherent phone information, such as battery level, network signal, time, or
on-screen keyboard.

Figure 9: Data collection prompt for screen question-answering (QA) and screen summarization tasks. Note
that we use the Chinese version of above prompts to generate Chinese data.
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