Interpretability Analysis of Arithmetic In-Context Learning in Large
Language Models

Gregory Polyakov Christian Hepting Carsten Eickhoff Seyed Ali Bahrainian
University of Tiibingen
grigorii.poliakov@uni-tuebingen.de,
christian.hepting@student.uni-tuebingen.de,
{carsten.eickhoff, seyed.ali.bahreinian}@uni-tuebingen.de

Abstract

Large language models (LLMs) exhibit sophis-
ticated behavior, notably solving arithmetic
with only a few in-context examples (ICEs).
Yet the computations that connect those ex-
amples to the answer remain opaque. We
probe four open-weight LLMs, Pythia-12B,
Llama-3.1-8B, MPT-7B, and OPT-6.7B, on ba-
sic arithmetic to illustrate how they process
ICEs. Our study integrates activation patch-
ing, information-flow analysis, automatic cir-
cuit discovery, and the logit-lens perspective
into a unified pipeline. Within this frame-
work we isolate partial-sum representations in
three-operand tasks, investigate their influence
on final logits, and derive linear function vec-
tors that characterize tasks and align with ICE-
induced activations. Controlled ablations show
that strict pattern consistency in the formatting
of ICEs guides the models more strongly than
the symbols chosen or even the factual cor-
rectness of the examples. By unifying four
complementary interpretability tools, this work
delivers one of the most comprehensive inter-
pretability studies of LLM arithmetic to date,
and the first on three-operand tasks. Our code
is publicly available'.

1 Introduction

Numerical reasoning in natural language tasks,
such as solving arithmetic problems, poses a signif-
icant challenge for large language models (LLMs)
(Testolin, 2024). Despite excelling in diverse do-
mains, LLMs struggle with text-based mathemati-
cal problems (Welleck et al., 2022).

A promising approach for improving LLM per-
formance in this area involves the use of in-context
examples (ICEs), where a model is given one
or more task demonstration prior to the main
task. This method has shown considerable promise

"https://github.com/ali-bahrainian/arithmetic-icl-
interpretability

across a variety of tasks, including mathematical
reasoning (Brown et al., 2020; Liu et al., 2023).

Despite this empirical success, the analysis of
multi-step arithmetic involving multiple operands
remains largely unexplored. Gaining clarity on
these mechanisms is vital, not only for enhancing
numerical performance but also for building more
interpretable, controllable, and robust models.

While prior work has begun to explore how
LLMs handle simpler, two-operand arithmetic
tasks (Stolfo et al., 2023; Nikankin et al., 2024),
little is known about how ICEs are used to sup-
port more complex, multi-step operations. This
paper addresses the gap by studying how four
LLMs, Pythia-12B, Llama-3.1-8B, MPT-7B, and
OPT-6.7B, process ICEs when performing three-
operand arithmetic. Our goal is to uncover the
mechanisms underlying in-context learning for nu-
merical reasoning.

To this end, we apply a combination of mechanis-
tic interpretability techniques, including activation
patching, information flow analysis, and automated
circuit discovery. Our analysis reveals a consis-
tent pattern: information from the ICE result token
is integrated by early-layer MLPs and attention
heads, then transmitted to the final task output to-
ken, where it modulates higher-level computations
by interacting with task-specific information.

We focus on two key aspects of the ICE: (/)
symbol-level information, encompassing individ-
ual tokens, operands, operators, and the arithmetic
correctness of the ICE; and (2) pattern-level infor-
mation, which includes consistency in formatting
(e.g., “6” vs. “six”) and the arrangement of tokens
within the equation. Via a comprehensive set of
counterfactual activation patching experiments, we
examine how corrupting these distinct symbol- and
pattern-level structures within an ICE impacts the
model’s internal processing and task accuracy. We
find that pattern-level information is more crucial
for guiding the model towards correct arithmetic

1759

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1759-1778
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/ali-bahrainian/arithmetic-icl-interpretability
https://github.com/ali-bahrainian/arithmetic-icl-interpretability

Experiment

Description

Exp. 1: Information flow analysis

Exp. 2: Activation patching analysis
at ICE’s positions

Exp. 3: Manipulation of ICE result’s
arithmetic correctness

Exp. 4: Manipulation of ICE’s result
format

Exp. 5: Interaction of ICE result’s
arithmetic correctness and format

Exp. 6: Manipulation of the ICE
operands

Exp. 7: Joint Patching interaction
between MLP and attention

Analysis of the activation patterns in the residual stream at ICE and task
tokens.

Identification of MLP and attention modules’ contribution to arithmetic
task solving at individual ICE tokens.

Assessment of the importance of the ICE result’s arithmetic correctness on
the model’s task solving capability.

Examination of the influence of an ICE result with an inconsistent format
relative to the task, in numeral notation or written English.

Analysis of replacing the ICE’s result with an arithmetically incorrect
token in an (a) inconsistent format or (b) as random symbol.

Analysis of the impact of the ICE’s operand symbols (i.e. the numerals in
the equations) on the LLM’s arithmetic task performance.

Analysis of jointly patching in the first layer’s MLP activation of the ICE
result and subsequent layer’s attention modules, as described in Appendix
D.

| Category | Accuracy

‘ Baseline ‘ 100%

‘ Baseline ‘ 100%

‘ Symbol Intervention ‘ 37.4%

‘ Pattern Intervention ‘ 30.6%
Symbol and Pattern In- | (a) 29.2%
tervention (b) 0%

‘ Symbol Intervention ‘ 69.4%

Component Interaction 62.6%

Table 1: Overview and categorization of activation patching experiments conducted to assess the role of specific
tokens within in-context examples (ICE) for arithmetic task solving. For each counterfactual manipulation of the
ICEs’ tokens, Pythia-12B’s task performance is reported. See Section 4 for results. Exp abbreviates Experiment.

solutions than either the specific symbols used or
the arithmetic correctness of the ICE itself.

Building on the notion of function vectors (Todd
et al., 2023; Hendel et al., 2023), we further
show that injecting a distilled representation of
ICE patterns into model activations can substan-
tially improve performance on zero-shot arithmetic
prompts, approaching the accuracy achieved with
full ICEs. This reinforces our conclusion that mod-
els primarily rely on abstract pattern-level cues of
arithmetic ICEs rather than exact symbolic content.

Our main contributions are: (1) We present
the first mechanistic interpretability study focused
on how LLMs process ICEs for complex, three-
operand arithmetic tasks. (2) We identify and
validate the core computational pathway through
which ICE information influences task outputs. (3)
We demonstrate that pattern-level consistency in
ICE formatting plays a more critical role than sym-
bolic correctness or token identity. Finally, we
show that this pattern information can be distilled
into a function vector that boosts zero-shot arith-
metic performance when injected into model acti-
vations, matching one-shot performance.

2 Related Work

Mechanistic Interpretability. Mechanistic In-
terpretability (MI) aims to reverse-engineer the
specific algorithms learned by LLMs by analyz-
ing their internal components (Elhage et al., 2021;
Nanda et al., 2023). A core MI approach involves
causal tracing techniques like activation patching
(Vig et al., 2020; Geiger et al., 2021; Meng et al.,
2023), which, building on causal mediation anal-

ysis (Pearl, 2013), intervene on model activations
to determine component contributions to output.
Related methods include path patching, and auto-
mated circuit discovery with attribution patching
(Wang et al., 2022; Syed et al., 2023; Conmy et al.,
2023). Complementary techniques, such as infor-
mation flow routes (Ferrando and Voita, 2024), ana-
lyze how information naturally propagates through
network pathways. MI has been applied to under-
stand factual recall (Meng et al., 2023), linguistic
phenomena (Wang et al., 2022), and simpler two-
operand arithmetic tasks (Stolfo et al., 2023). Our
work employs a suite of MI techniques, such as
activation patching, information flow analysis and
attribution patching, to investigate complex three-
operand arithmetic with in-context examples.

In-Context Learning (ICL). ICL enables LLMs
to perform tasks with minimal examples, bypass-
ing model fine-tuning (Brown et al., 2020; Liu
et al., 2023). Despite consistent performance gains,
ICL’s underlying mechanisms remain unclear, with
theories positing implicit Bayesian inference (Xie
et al., 2022) or meta-optimization (Dai et al., 2023).
Moreover, recent work suggests ICE structural for-
mat, rather than label correctness, primarily shapes
LLM outputs (Min et al., 2022). Mechanistic ICL
research includes ‘function’ or ‘task’ vectors (Hen-
del et al., 2023; Todd et al., 2023), single vectors
from few-shot prompts intended to encapsulate task
essence, which can improve performance on simple
tasks even without explicit examples. Our study
explores the applicability of such function vectors
to complex three-operand arithmetic, alongside a
detailed mechanistic analysis of how symbolic and

1760

pattern components within full ICEs are processed
for in-context arithmetic reasoning.

Numerical Reasoning in LLMs. While proficient
in basic arithmetic, LLM’s performance often de-
grades with increased calculation complexity and
reasoning (Brown et al., 2020; Henighan et al.,
2020), suggesting reliance on surface-level pat-
tern matching over robust arithmetic understanding
(Testolin, 2024). MI studies are beginning to un-
ravel these internal operations. For instance, Stolfo
et al. (2023) analyzed two-operand arithmetic us-
ing activation patching, finding early MLPs process
operands, with attention routing this information to
the final task token where mid-layer MLPs intro-
duce outcome data. Nikankin et al. (2024) further
examined final-token MLPs, showing individual
neurons implement a “bag of simple heuristics”
responsive to input patterns. Broader mechanis-
tic work reveals models decomposing multi-digit
addition into digit-wise sub-circuits with “double
staircase” attention for managing partial sums and
carries (Quirke and Barez, 2024). Intriguingly,
some LLMs represent numbers geometrically, per-
forming modular addition via vector rotations in
latent space (Nanda et al., 2023; Kantamneni and
Tegmark, 2025). In this paper, we investigate more
intricate three-operand arithmetic. We aim to un-
derstand how LLMs utilize ICEs for these tasks,
assessing the impact of ICEs and explaining how
their symbolic and structural components influence
the model’s computational pathways and output.

3 Methodology

Dataset and Task. We created a dataset named,
Arithmetic-20, for three-operand arithmetic prob-
lems where integers (0-20, ensuring single-token
representation) are presented in numeral or writ-
ten English. Problems involve combining three
operands with operators like addition, subtraction,
or multiplication. We define two prompt types: p1
(with a one-shot ICE) and pg (zero-shot, no ICE).
The dataset comprises instances where an LLM
correctly solves p; but fails on pg, thereby isolating
cases where the ICE is demonstrably beneficial. Ini-
tial tests on Pythia-12B showed one-shot ICEs (p;)
substantially improved accuracy to 52.1% from
28.3% (po), while multi-shot ICEs did not yield
further improvements.

To perform generalizability experiments, we cre-
ated an extended version of our dataset, named
Arithmetic-1000, containing integers from 0 to

999. For this dataset, we used similar templates but
only represented numbers in their numerical form,
as it is impossible to represent larger numbers in
English as single tokens. On this more challenging
dataset, Llama-3.1-8B’s accuracy improved from
a 30.0% zero-shot (pg) baseline to 76.7% with a
one-shot ICE (p1). We used this model exclusively
due to its strong performance and its tokenizer’s
ability to represent large integers as single tokens.
For consistent input lengths in causal analyses, pg
prompts are padded to match p;’s length.

In the further sections, all experiments with
Pythia-12B, OPT-6.7B, and MPT-7B are conducted
on Arithmetic-20, while experiments with Llama-
3.1-8B are conducted on Arithmetic-1000. Fur-
ther details on the dataset generation procedure,
operand selection, and prompt templates are pro-
vided in Appendix A.

Experimental Procedure. Our primary method
for causal analysis is Activation Patching. This
technique allows to interpret the model’s internal
workings via controlled interventions on an MLP
output mgk) or attention output agk) at a specific
layer k and token position ¢. It involves:
1. Activation Recording: During a forward pass
of a prompt p; (which includes a helpful ICE), the
activation states mgk) and Egk) are recorded.
2. Activation Intervention: In a forward pass
of a corresponding prompt pg (identical task, but
without the ICE and initially solved incorrectly),
we substitute (patch in) the recorded activations
mgk) or Eik) at the chosen position ¢ and layer £k,
then continue the forward pass.
3. Impact Assessment: The intervention’s im-
pact is quantified by the shift in logit differences
between the correct outcome r and the original
incorrect prediction 7 from py. We measure the
patching effect (PE) (Zhang and Nanda, 2023)
as LDy« (r,7) — LDy, (r,7), where LD(r,7) =
l(r) — I(7), p§ denotes the patched run, [(r) is the
logit of the token r. A larger PE indicates a stronger
contribution of the patched component to correct-
ing the prediction. All reported PEs are averaged
across numeral and written English formats. The
activation patching example is illustrated in Fig. 6.
To complement our activation patching experi-
ments and further validate findings regarding in-
formation transfer, we also employ Information
Flow Routes. As introduced by Ferrando and Voita
(2024), this method automatically constructs a sub-
graph of the most important computational path-

1761

Patching Effect of the Residual Stream
(1) ICD 1st operand 1.75
(+) ICD 1st operator

(3) ICD 2nd operand 1.50

o
©

(+) ICD 2nd operator 1.25%
(4) ICD 3rd operand =
(=) ICD Equal Sign 1'00%
(8) 1cD Result [INENENNREREND 70.755

(2) Task 1st operand E
(+) Task 1st operator *0.50@
(2) Task 2nd operand !g
(+) Task 2nd operator -0.25 ¢

(6) Task 3rd operand
(=) Task Equal Sign

L

0 5 10 15 20 25 30 35
Layer

Patching Effect of the Residual Stream

(1) ICD 1st operand

(+) ICD 1st operator
(3) ICD 2nd operand 1.5
(+) ICD 2nd operator
(4) ICD 3rd operand
(=) ICD Equal Sign
(8) ICD Result
(2) Task 1st operand -0.5
(+) Task 1st operator
(2) Task 2nd operand
(+) Task 2nd operator
(6) Task 3rd operand
(=) Task Equal Sign

1.0

Log-Scaled Patching Effect

-0.0

N o

0 5 10 15 20 25 30
Layer

Figure 1: Mean PEs caused by manipulating the residual stream at the ICE and task tokens in two models: (left)

Pythia-12B and (right) Llama-3.1-8B.

ways for a given prediction. It operates in a top-
down manner, starting from the final prediction
and recursively tracing back through connections
between model component activations.

Additionally, we utilize Function Vectors
(FVs), compact internal vector representations of
ICEs (Todd et al., 2023). FVs are typically derived
by averaging attention head outputs (that write
to the final token) across a set of ICE-containing
prompts and then selecting a subset of heads that
positively influence correct predictions. The result-
ing vector can then be added to the residual stream
of prompts lacking ICEs to assess performance im-
provements. We adapt this method to investigate if
such vectors can enhance performance in our more
complex three-operand arithmetic tasks. Further
details about this method are in Appendix C.

Finally, we incorporate Automated Circuit Dis-
covery with Edge Attribution Patching (Syed
et al., 2023) to further refine our understanding
of connections between model components.

4 Experimental Results

To assess the information flow of arithmetic in-
context learning, we employed activation patch-
ing in the residual stream for the Pythia-12B and
Llama-3.1-8B LLMs. In Pythia-12B this was fol-
lowed by a detailed analysis of MLP and attention
modules’ contributions towards arithmetic task-
solving. For OPT-6.7B and Llama-3.1-8B we also
focused on analyzing information flow routes to un-
derstand their internal mechanisms. Building upon
this baseline understanding, we conducted coun-
terfactual manipulations of targeted tokens within
the ICE to examine how these specific changes
alter internal processing pathways. These manip-
ulations were categorized into symbol-level and
pattern-level experiments, as summarized in Table

1. Additionally, these experiments were replicated
with the MPT-7B LLM (MosaicML-NLP-Team,
2023), with results outlined in Appendix E.

4.1 Exp. 1: Information Flow Analysis

Residual Stream Patching. To provide an
overview of the information flow within Pythia-
12B, we conducted an intervention on the resid-
ual stream activations (Heimersheim and Nanda,
2024) at both the ICE and task tokens. Figure 1
left shows that the PEs are particularly pronounced
in the early layers at the position of the ICE result
token. This suggests that the information contained
in the result token of the ICE plays a crucial role in
the early stages of the model’s reasoning process.
Subsequently, the PE shifts to the task’s final to-
ken, immediately preceding result generation, with
an even greater amplitude, indicating a strong link
to output correctness. This observation aligns with
Stolfo et al. (2023), who similarly identified the
highest PE at the token directly preceding the re-
sult generation in two-operand arithmetic tasks.
The analysis for Llama-3.1-8B on the
Arithmetic-1000 dataset (Figure 1, right) reveals
a mostly similar information flow. Consistent
with Pythia-12B, a pronounced patching effect
is evident at the ICE result token through the
middle layers and at other ICE tokens in the lower
layers. However, the pattern in Llama-3.1-8B also
shows a notable difference, such as elevated PEs
at the positions of task operators (e.g., “Task 1st
operator”, “Task 2nd operator”). This suggests that
while the core mechanism is similar, Llama-3.1-8B
may employ a more complex strategy.
Information Flow Routes. Here, we construct
a graph representation of a model’s computations
highlighting main processing pathways, as stated
in Section 3. Due to compatibility constraints, this

1762

Information Flow Routes Importance Graph

(1) ICE 1st operand -
(+) ICE 1st operator -
(3) ICE 2nd operand -
(+) ICE 2nd operator -
(4) ICE 3rd operand -
(=) ICE Equal Sign -
(8) ICE Result-

(2) Task 1st operand -
(+) Task 1st operator -
(2) Task 2nd operand -
(+) Task 2nd operator -
(6) Task 3rd operand -
(=) Task Equal Sign-

0 5 10 15 20 25 30
Layer

Information Flow Routes Importance Graph

(1) ICE 1st operand - apges >
(+) ICE 1st operator -
(3) ICE 2nd operand - A —

(+) ICE 2nd operator -
(4) ICE 3rd operand -
(=) ICE Equal Sign -
(8) ICE Result-
(2) Task 1st operand - ey > >
(+) Task 1st operator - -
(2) Task 2nd operand -
(+) Task 2nd operator - e
(6) Task 3rd operand - :
(=) Task Equal Sign -

LA

v

VERTITUVITYVTVYVIIYY

0 5 10 15 20 25 30
Layer

Figure 2: Information Flow Route graphs of two models solving arithmetic in-context learning: OPT-6.7B (left) and
Llama-3.1-8B (right). Nodes represent token representations and edges represent operations that move information

between nodes.

experiment is conducted only on OPT-6.7B and
Llama-3.1-8B. Figure 2 illustrates the resulting in-
formation flow graph, averaged over data samples
with a correct model prediction, using an impor-
tance threshold 7 of 0.035 for OPT-6.7B and 0.050
for Llama-3.1-8B. We provide a detailed analysis
of the effects of varying 7 in Appendix H.

Our analysis of OPT-6.7B (Figure 2, left) re-
veals that early layers up to layers 12 — 19 process
the ICE result token, transferring this information
directly to the final task token. This combined
information then undergoes further processing in
middle to late layers, ultimately leading to the cor-
rect answer. The information flow in Llama-3.1-8B
(Figure 2, right) shows similarities with Pythia, al-
though it is significantly denser, involving a larger
number of activated components. In this model, the
information flow of ICE tokens is initially strong in
the lower layers, and then when it comes to the ICE
result token the flow also engages the middle layers.
At this stage, the information is passed to the final
‘equal sign’ token for subsequent processing. This
general pattern overlaps and confirms the activa-
tion patching results for Pythia-12b, corroborating
the crucial role of the ICE result. Our findings are
also consistent with Nikankin et al. (2024), who ob-
served that in two-operand arithmetic in Llama-3.1-
8B, information from the operands is transferred to
the equal sign token at layers 15 and 16. For our
task prompt, we observe that information from the
task operands is similarly transferred to the final
equal sign at layers 14-16.

While these findings suggest an information flow
from the ICE result to the final task token, the spe-
cific roles of ICE symbols and patterns remain un-
clear. This motivates subsequent experiments with

more localized interventions to uncover the mecha-
nisms that support in-context arithmetic learning.

4.2 Exp. 2: Causal Effect of the ICE on
Correct Result Generation

Local interventions on the ICE activations revealed
the importance of the initial MLP layers at the
result position (see Figure 3b). Importantly, the
first layer’s MLP yielded a high PE of 3.16 at the
ICE’s result. Moreover, significantly high PEs oc-
curred in the first layer at the operands and the
operators. The PE pattern across other layers and
ICE positions remained sparse, suggesting early-
layer MLPs play a key role in processing individual
ICE symbols. In contrast, the PE pattern for the
attention modules (Figure 3a) is less pronounced,
mainly concentrated on the operands and the ICE
result in the second layer, with significantly lower
magnitudes compared to the MLP patching experi-
ments. This suggests that attention modules play a
less direct role in the initial processing of individ-
ual symbols. Given that the first layers of a LLM
are primarily responsible for embedding and direct
representation of the symbol’s information (Tenney
et al., 2019), we hypothesize that the strong effects
in these early layers may be influenced by the cor-
rectness, consistency of ICE format. We test these
hypotheses in Sections 4.3 - 4.4.

4.3 Effect of Manipulating the ICE’s Result

The experiments presented in this subsection focus
on manipulating the result token within the ICE
to assess its impact on the LLM’s reasoning. We
systematically alter both the arithmetic correctness
(symbol-level) and the pattern of the ICE.

Exp. 3: Manipulation of Arithmetic Correct-

1763

Result

Task example: 1 +3+4=8.6+6+3=

Patching Effect of Attention

(1) 1st operand 0.06
(+) 1st operator
0.04
(3) 2nd operand
0.02
(+) 2nd operator
(4) 3rd operand -0.00
=) E | Si
(=) Equal Sign | 002
(8) Result I
0 5 10 15 20 25 30
Layer
(a) Exp. 2
Patching Effect of Attention
1st operand 0.06
1st operator
0.04
2nd operand
0.02
2nd operator
3rd operand -0.00
E | Si
D --0.02
Consistent Result IJ
o 5 10 15 20 25 30
Layer
(c) Exp. 3
Patching Effect of Attention
1st operand 0.06
1st operator
0.04
2nd operand
0.02
2nd operator
3rd operand -0.00
Equal Sign | 002
Inconsistent Result I
0 5 0 15 20 25 30
Layer
(e) Exp. 4
Patching Effect of Attention 010
1st operand .
0.08
1st operator
0.06
2nd operand
0.04
2nd operator
-0.02
3rd operand
-0.00
Equal Sign
--0.02
Symbol Result I
--0.04
0 5 10 15 20 25 30
Layer
(8) Exp. 5
Patching Effect of Attention
1st operand
0.04
1st operator
2nd operand 0.02
2nd operator
-0.00
3rd operand
Equal Sign - _0.02
0

5

10 15 20 25 30
Layer

(i) Exp. 6

Patching Effect of the MLP

(1) 1st operand
(+) 1st operator
(3) 2nd operand
(+) 2nd operator
(4) 3rd operand

(=) Equal Sign

(8) Result I

0 5 10 15 20 25 30 35
Layer

(b) Exp. 2
Patching Effect of the MLP

1st operand

1st operator

2nd operand

2nd operator

3rd operand
Equal Sign

Consistent Result I

0 5 10 15 20 25 30 35
Layer

(d) Exp. 3
Patching Effect of the MLP
1st operand
1st operator
2nd operand
2nd operator
3rd operand
Equal Sign
Inconsistent Result I

0 5 10 15 20 25 30 35
Layer

(f) Exp. 4

Patching Effect of the MLP

1st operand

1st operator

2nd operand
2nd operator
3rd operand
Equal Sign
Symbol Result

0 5 10 15 20 25 30 35
Layer

(h) Exp. 5
Patching Effect of the MLP

1st operand

1st operator

2nd operand
2nd operator
3rd operand

Equal Sign

Result I

[5 10 15 20 25 30 35
Layer

(i) Exp. 6

3.0
25
2.0 Original Result
3
-15
-1.0 2
-05 1
-0.0 0
0 5 10 15 20 25 30 35
Layer
(k) Exp. 2
25
2.0
Counterfactual Consistent Result
15
2
-1.0
1
-0.5
-0.0 0
0 5 10 15 20 25 30 35
Layer
(1) Exp. 3
25
2.0

2 Counterfactual Inconsistent Result
15

-1.0

1
-0.5
-0.0 0

0 5 10 15 20 25 30 35
Layer
(m) Exp. 4

25
2.0
15 Counterfactual Symbol Result
-1.0

1
-0.5 |
-0 O

0 5 10 15 20 25 30 35
Layer
(n) Exp. 5

3.0
2.5
2.0
15
-1.0
-0.5
-0.0

Figure 3: Mean patching effects (PEs) caused by manipulating the activation located at individual ICE tokens at
(a) single layer’s attention modules and (b) single layer’s MLP, with a zoomed-in view of the ICE result layer’s
MLPs in (k). All experiments involving counterfactual manipulations of tokens are highlighted in yellow. In (c), (d),
and (1) the ICE result is replaced with an arithmetically incorrect, yet format-consistent result in either numerals or
written English. Figures (e), (f), and (m) show the replacements with an inconsistent format. In (g), (h), and (n) the
result is replaced with a randomly sampled non-numeral symbol. Lastly, (i) and (j) depict the PEs as a result of
substituting the operands by random non-numeral symbols.

1764

ness (Symbol Intervention). We first investigated
the effect of the result token’s arithmetic correct-
ness while keeping its format consistent with the
task. For example, the ICE was changed from
“I1+3+4=8"to “I+3+4=15". This manipulation de-
creases both the PE at the first layer’s MLP (from
3.16 to 2.53, see Figure 31) and the model’s task
accuracy (to 37.4%). This indicates that the arith-
metic correctness of the result token, a key symbol,
impacts the model’s task-solving capability.
Exp. 4: Manipulation of Format Consistency
(Pattern Intervention). Next, we examined the
effect of format consistency by changing the ICE’s
correct result to an inconsistent format relative to
the task. For instance, the ICE was modified from
“I+3+4=8"to “I1+3+4=eight”. This adjustment re-
sulted in a drastic reduction in PE at the first layer’s
MLP to 1.53, as evident in Figure 3m. Moreover,
the model’s task accuracy decreased from 37.4%
to 30.6%, with outputs often generated in an in-
consistent format. This highlights the importance
of maintaining the format consistency of the result
token, a key aspect of the overall ICE pattern.
Exp. 5: Manipulation of Arithmetic Correctness
and Format Consistency (Combined Symbol
and Pattern Intervention). To further investigate
the interplay between symbol-level and pattern-
level factors, we replaced the ICE result with an
arithmetically incorrect token in an inconsistent
format, altering from “/+3+4=8"to “I+3+4=fif
teen”. This led to a further drop in PE (1.38) and
accuracy (29.2%), slightly below the metrics from
Exp. 4. In another variant, we replaced the ICE re-
sult with a random non-numeral symbol (e.g. “=x"
or “=beta”). This caused the PE at the first layer’s
MLP to drop to its lowest value (.71) among all
experiments and also caused accuracy of 0%.
These results demonstrate that while the result to-
ken’s arithmetic correctness (symbol) plays a role,
its format consistency (pattern) has an even greater
impact on the model’s performance.

4.4 Exp. 6: Causal Effect of Counterfactual
ICE Operands (Symbol Intervention).

To assess the impact of operand symbols, we re-
placed numerical operands in the ICE with random
non-numeral symbols (e.g., “I/+3+4=8" to “al-
pha+house+x=8"). This reduced first-layer MLP
Patching Effects (PEs) by .15, .35, and .40 for the
first, second, and third operands, when compared
to the baseline results shown in Figure 3b, and task
accuracy dropped to 69.4%. These relatively minor

decreases compared to Exp. 3-5 (interventions on
the result token) suggest that operand symbols are
less critical than the ICE result. Attention module
PEs remained unaltered (Figure 3i).

4.5 Exp. 7: Attention and MLP Interaction

To investigate why the patching effect of attention
layers is less pronounced, we conducted two sets of
experiments focusing on their joint interaction with
MLP modules: joint MLP and attention module
patching, and automatic circuit discovery using
edge attribution patching. Our results highlight the
reliance of attention layers on MLP outputs and
underscore the importance of the joint interaction
between them. For a detailed explanation, please
refer to Appendices D and J.

4.6 Exp. 8: Function Vectors

From the experiments 1-6 we concluded that the
performance improvement from ICEs in three-
operand arithmetic is primarily driven by pattern in-
formation (i.e., expected output format) rather than
task-specific arithmetic guidance derived from the
ICE. To further test this, we conducted experiments
using FVs (Hendel et al., 2023; Todd et al., 2023)
for Pythia-12B and Llama-3.1-8B. We posit that
the model extracts this pattern information from the
ICE and applies it to the main task. Consequently,
FVs, designed to capture such pattern information,
should recover a significant portion of the perfor-
mance gained from full ICEs.

FVs were derived following the procedure de-
tailed in Appendix C. For Pythia-12B, given that
our dataset includes prompts with distinct output
formats for word and numerical representations,
we generated FVs separately for these two formats.
For this experiment, we also modified the dataset
generation to ensure no overlap between all ICE
content and task prompts, preventing data leakage
during FV creation. For numerical representations,
baseline zero-shot accuracy was 48.6%, which in-
creased to 64.3% with a one-shot ICE. For word
representations, the corresponding accuracies were
25.7% (zero-shot) and 50.0% (one-shot), respec-
tively. For Llama-3.1-8B, experiments were con-
ducted using only numerical representations, where
the baseline accuracy improved from 30.0% (zero-
shot) to 76.7% (one-shot).

Figure 4a illustrates the change in correct to-
ken probability during the FV head selection pro-
cess (Step 2, Appendix C). This step measures
the impact of replacing original head activations

1765

o010 0.650

0.008 0.625

[

L]
= = s a | 0,005 0.600

0.575

| [-0.003

L] [] Q 0.550
- -0.000 1

Layer

0.525
--0.003
0.500

—— Function Vector; Top-30 Heads

-=- Zero-Shot
~-- One-Shot

0.6 —— Function Vector; Top-10 Heads
Function Vector; Random Heads

~=- Zero-Shot

~=- One-Shot

-=- Two-Shot

0.4 Five-Shot

Function Vector; Random Heads Sos

I\

34323028 2624222018 16141210 8 6 4 2 0

= 03 /r \]* =

““““““““““ 0,010 5 13
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38

Head

Figure 4a: Impact of substituting at-
tention head activations with their ICE-
dataset-averaged counterparts on the
correct token probability in Pythia-
12B. Higher values indicate greater
positive influence.

with their ICE-dataset-averaged counterparts on
prompts initially lacking ICEs. As shown, certain
heads influence this probability positively. We se-
lected the top 30 most influential heads for each
FV in Pythia-12B, and the top 10 for the FV in
Llama-3.1-8B (see Appendix C for more details).
Figure 4b presents the accuracy for Pythia-12B
on numerical prompts, while the results for word-
based prompts are in Appendix C (Figure 7). The
corresponding results for Llama-3.1-8B on numer-
ical prompts are shown in Figure 4c. For Pythia-
12B, adding the FV, particularly in earlier layers,
significantly boosts zero-shot accuracy. For numer-
ical inputs, FVs yielded a 15.7% absolute accu-
racy increase, fully recovering the one-shot perfor-
mance. For word inputs, FVs provided a 18.6%
absolute increase (one-shot ICE: 24.3%). In con-
trast, for Llama-3.1-8B, while the FV did not fully
recover the one-shot performance, it did recover
a significant portion of it. The FV boosted accu-
racy from the 30.0% zero-shot baseline to a peak of
55.0% by 25.0% absolute (one-shot ICE: 76.7%).
Crucially, each FV is a single vector averaged
over diverse ICE prompts containing various arith-
metic operations (e.g., addition, multiplication).
Therefore, an FV is unlikely to encode informa-
tion about any specific operation. Instead, it is
expected to primarily capture common output for-
mat information. These results strongly support
our hypothesis that the pattern information from
ICEs is a predominant factor used by the model
when solving three-operand arithmetic tasks.

4.7 Exp. 9: Partial Sum Representations

In this section, we investigate whether an LLM
utilizes representations of partial sums from the
ICE to successfully solve the target arithmetic

oo 0.475 A\ A
I'u o7 0.450 _/ W \ l N 0.2
10 15 20 25
Layer

Figure 4b: Accuracy of Pythia-12B on
zero-shot numerical arithmetic prompts
after adding a Function Vector (FV) to the
residual stream at the final token position
across different layers. The FV is derived
from numerical ICEs.

30 35 0 5 10 15 20 25 30

Layer

Figure 4c: Accuracy of Llama-3.1-8B on
zero-shot numerical arithmetic prompts
after adding a Function Vector (FV) to the
residual stream at the final token position
across different layers. The FV is derived
from numerical ICEs.

problem. For these experiments, we restrict our
prompts to templates containing addition in the for-
mat “a +b+c=d.x + y+ z =". To probe for
the presence of partial sums (e.g., “a + b”, “b 4+ ¢”,
“a 4 b+ ¢”) at various token positions and layers
within the ICE and task, we employ the Logit Lens
approach (nostalgebraist, 2020). Specifically, we
apply the model’s unembedding matrix to internal
representations and decode the resulting logits into
token space. We then measure whether a particu-
lar partial sum is present among the top decoded
tokens. The dataset for this experiment was gener-
ated to ensure that no partial sums derived from the
same ICE overlap in their numerical values.

As illustrated in the heatmaps of Figure 5, partial
sums like ¢ +b and b+ ¢, as well as the full sum a +
b + ¢, are most prominently decodable at the ICE’s
and task prompt’s ‘=" sign. While the full sum is
expected here, the strong presence of intermediate
partial sums at this position is noteworthy.

These experiments, combined with the informa-
tion flow analysis 4.1 indicate that the model does
not use the arithmetic information about the partial
sums from the ICE. To elaborate, when looking at
Figures 1 and 2 we observe that the information
moves from each ICE token at shallow layers for-
ward to the next tokens until reaching the ICE “="
sign, then it moves to the result token and from
there moves mostly directly to the task’s “=" sign
token in the middle layers. However, on the partial
sum heatmaps (Fig. 5) we see that partial sums ap-
pear at the position of ‘=’ in later layers meaning
that the model did not use this information while
processing the ICE. This strengthens our findings
indicating that the ICE pattern is more important
than its arithmetic correctness in solving a three-
operand arithmetic task.

1766

Partial Sums (a + b) in Top-1 Logit Lens Predictions

0.200

0175

-0.150
-0.125
-0.100
-0.075

-0.050

In.nzs
0.000

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36

]
g
&
B
3
=
°

+ b+ c = d x
Token Position

Partial Sums (b + ¢) in Top-1 Logit Lens Predictions

+ c o= d x o+
Token Position

Partial Sums (a + b + ¢) in Top-1 Logit Lens Predictions
o
8

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34

+ b o+ c = d x
Token Position

Figure 5: Probing internal representations of partial sums from ICEs in Pythia-12B via Logit Lens. The heatmaps
show the fraction of samples where partial sums originating from the ICE (specifically Left: a + b, Middle: b + c,
and Right: a + b + c) are decodable from activations at various layers and token positions, indicating where this

information is represented during processing.
5 Discussion and Key Findings

Our experiments across four LLMs, using activa-
tion patching, information flow analysis, circuit
discovery, function vectors, and logit lens visual-
ization yield four key insights:

(1) ICE information is primarily processed early,
with the result token playing a central role.
Residual stream patching and information flow
analyses (Exp. 1, 2) reveal that ICE tokens are
mostly handled in early layers, where MLPs are
crucial for encoding the result token. Although
attention layers contribute less individually, their
joint interaction with MLPs significantly enhances
downstream performance (Exp. 8). This synergy
is reinforced by automatic circuit discovery (Ap-
pendix J), which consistently highlights early-layer
MLP and attention modules as core components.
(2) Pattern consistency is more critical than sym-
bol identity or arithmetic correctness. Corrupt-
ing both symbolic and structural aspects of the
ICE degraded performance most severely (Exp. 5),
but disruption of the format alone, especially at
the result token (Exp. 4), led to larger accuracy
drops than changing arithmetic correctness (Exp.
3). In contrast, interventions on specific symbols
like operands (Exp. 6) had minimal impact, under-
scoring the importance of higher-level pattern.

(3) A single function vector encoding ICE pat-
terns can substitute for full ICEs. In Exp. 8,
injecting a distilled function vector allowed Pythia-
12B to recover full accuracy even in the absence of
explicit ICEs, showing that general pattern infor-
mation (i.e., not task-specific facts) is sufficient to
drive performance. In the case of the Llama-3.1-8B
while the function vector recovers substantial accu-
racy, in comparison the effect is less pronounced.
(4) LLMs pass forward ICE structure, not arith-

metic content. Information flow graphs (Figures 1,
2) show a shallow propagation path from the ICE
result token directly to the task ‘=" token, bypass-
ing intermediate computation. Heatmaps of partial
sums (Figure 5) further confirm that arithmetic op-
erations are not executed during ICE processing;
rather, they emerge only in later layers of the final
task token. This strongly supports our conclusion:
pattern regularity, and not arithmetic truth, governs
model behavior in multi-step arithmetic tasks.

6 Conclusions and Future Work

In this paper, we studied in-context learning in
three-operand arithmetic tasks and on four LL.Ms.
We use various methods such as activation patching,
information flow graphs, automatic circuit discov-
ery, function vectors and logit lens visulaization
to draw important insights regarding how LLMs
process ICEs in multi-step arithmetic tasks. In par-
ticular, by distinguishing ICE patterns and symbols
we show how important each of these are in re-
sult computation leading to key findings detailed
in Section 5. Detailed processing steps from where
arithmetic ICE and task are provided to an LLM
as input up to the last step where the task result is
predicted are elaborately explained in Appendix I.
Future research may explore path patching meth-
ods, to further explore routes utilized by LLMs to
process arithmetic ICEs.

Limitations

This study opens a window into how large language
models process in-context examples for arithmetic
reasoning, but (1) its insights are based on indi-
rect effects (2) in four specific models and (3) rely
on compute-intensive methods. Future work can
refine the discovered circuit at a finer scale, ap-

1767

ply path-patching for direct causality, and extend
the approach to a wider range of model sizes and
architectures.

Acknowledgments

The authors thank the International Max Planck
Research School for Intelligent Systems (IMPRS-
IS) for their support.

References

Seyed Ali Bahrainian and Andreas Dengel. 2015. Senti-
ment analysis of texts by capturing underlying senti-
ment patterns. Web Intelligence, 13(1):53-68.

Seyed Ali Bahrainian, Jonathan Dou, and Carsten Eick-
hoff. 2024. Text simplification via adaptive teaching.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 6574-6584, Bangkok,
Thailand. Association for Computational Linguistics.

Seyed Ali Bahrainian, Martin Jaggi, and Carsten Eick-
hoff. 2021. Self-supervised neural topic modeling.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3341-3350, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Seyed Ali Bahrainian, Marcus Liwicki, and Andreas
Dengel. 2014. Fuzzy subjective sentiment phrases:
A context sensitive and self-maintaining sentiment
lexicon. In 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), volume 1, pages 361-368.

Seyed Ali Bahrainian, Ida Mele, and Fabio Crestani.
2018. Predicting topics in scholarly papers. In Ad-
vances in Information Retrieval, pages 16-28, Cham.
Springer International Publishing.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. CoRR,
abs/2005.14165.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. 2023. Towards automated circuit dis-

covery for mechanistic interpretability. Preprint,
arXiv:2304.14997.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can gpt
learn in-context? language models implicitly per-
form gradient descent as meta-optimizers. Preprint,
arXiv:2212.10559.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Preprint, arXiv:2205.14135.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy
Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, and 6 others. 2021. A mathemati-
cal framework for transformer circuits. Trans-
former Circuits Thread. Https://transformer-
circuits.pub/202 1/framework/index.html.

Javier Ferrando and Elena Voita. 2024. Information flow
routes: Automatically interpreting language models
at scale. Preprint, arXiv:2403.00824.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. Advances in Neural Information Processing
Systems, 34:9574-9586.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing model behav-
ior with path patching. Preprint, arXiv:2304.05969.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Stefan Heimersheim and Neel Nanda. 2024. How to
use and interpret activation patching. arXiv preprint
arXiv:2404.15255.

Roee Hendel, Mor Geva, and Amir Globerson. 2023.
In-context learning creates task vectors. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 9318-9333, Singapore.
Association for Computational Linguistics.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya

1768

https://doi.org/10.3233/WEB-150309
https://doi.org/10.3233/WEB-150309
https://doi.org/10.3233/WEB-150309
https://doi.org/10.18653/v1/2024.findings-acl.392
https://doi.org/10.1109/WI-IAT.2014.57
https://doi.org/10.1109/WI-IAT.2014.57
https://doi.org/10.1109/WI-IAT.2014.57
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969
https://doi.org/10.18653/v1/2023.findings-emnlp.624

Ramesh, Nick Ryder, Daniel M. Ziegler, John Schul-
man, Dario Amodei, and Sam McCandlish. 2020.
Scaling laws for autoregressive generative modeling.
CoRR, abs/2010.14701.

Subhash Kantamneni and Max Tegmark. 2025. Lan-
guage models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Ida Mele, Seyed Ali Bahrainian, and Fabio Crestani.
2017. Linking news across multiple streams for time-
liness analysis. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Man-
agement, CIKM ’17, page 767-776, New York, NY,
USA. Association for Computing Machinery.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt. Preprint, arXiv:2202.05262.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? Preprint,
arXiv:2202.12837.

MosaicML-NLP-Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable

Ilms. Accessed: 2024-03-03.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint arXiv:2301.05217.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. arXiv preprint arXiv:2410.21272.

nostalgebraist. 2020. Interpreting gpt: the logit lens.
Blog post.

Koyena Pal, Seyed Ali Bahrainian, Laura Mercurio,
and Carsten Eickhoff. 2023. Neural summariza-
tion of electronic health records. arXiv preprint
arXiv:2305.15222.

Judea Pearl. 2013. Direct and indirect effects. CoRR,
abs/1301.2300.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022.
Train short, test long: Attention with linear bi-
ases enables input length extrapolation. Preprint,
arXiv:2108.12409.

Philip Quirke and Fazl Barez. 2024. Understanding ad-
dition in transformers. In The Twelfth International
Conference on Learning Representations.

Federico Ravenda, Seyed Ali Bahrainian, Andrea Ra-
ballo, Antonietta Mira, and Fabio Crestani. 2025. A
self-supervised seed-driven approach to topic mod-
elling and clustering. Journal of Intelligent Informa-
tion Systems, 63(1):333-353.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal
mediation analysis. Preprint, arXiv:2305.15054.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.
Preprint, arXiv:2104.09864.

Aaquib Syed, Can Rager, and Arthur Conmy. 2023.
Attribution patching outperforms automated circuit
discovery. Preprint, arXiv:2310.10348.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. CoRR,
abs/1905.05950.

Alberto Testolin. 2024. Can neural networks do arith-
metic? a survey on the elementary numerical skills
of state-of-the-art deep learning models. Applied
Sciences, 14(2).

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron
Mueller, Byron C Wallace, and David Bau. 2023.
Function vectors in large language models. arXiv
preprint arXiv:2310.15213.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Preprint, arXiv:1706.03762.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388—12401. Curran Associates,
Inc.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-
j-6b: A 6 billion parameter autoregressive lan-
guage model. https://github.com/kingoflolz/
mesh-transformer-jax.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. In-
terpretability in the wild: a circuit for indirect
object identification in gpt-2 small. Preprint,
arXiv:2211.00593.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2022. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8629-8637.

1769

https://arxiv.org/abs/2010.14701
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3132847.3132988
https://doi.org/10.1145/3132847.3132988
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/1301.2300
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/1905.05950
https://doi.org/10.3390/app14020744
https://doi.org/10.3390/app14020744
https://doi.org/10.3390/app14020744
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Fred Zhang and Neel Nanda. 2023. Towards best prac-
tices of activation patching in language models: Met-
rics and methods. Preprint, arXiv:2309.16042.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

A Dataset Generation Procedure

The dataset generation procedure for the three-
operand arithmetic tasks described in Section 3
is adapted from Stolfo et al. (2023).

Problem Formulation. Problems involve three
integer operands N = (ni,ng,n3), arithmetic
operators O € {+,x,—}, and a function f :
O x N — N generating the result » = f(O, N).
For the Arithmetic-20 dataset, each operand and
result is constrained to the set S = {1...20} to
ensure single-token representation.

ICE Generation. A distinct set of operands Ny,
where Ny # N, is used to generate the ICEs. This
ensures no direct overlap between the operands of
the ICE and the main task.

Prompt Templates. The prompts are framed us-
ing natural language templates. Examples are listed
in Table 2, which also reports model accuracy for
each. We tested a variety of templates incorporat-
ing operators like +, —, x. For the Arithmetic-20
dataset, prompts used either numeral notation or
written English. For inclusion in our final set, we
required that a model demonstrate an accuracy of at
least 20% on 60 randomly generated, unique tasks
(30 numeral, 30 written English) for that specific
template. Notably, across models, performance
was generally best on multiplication and addition.

Modifications for the Arithmetic-1000 Dataset.
The procedure for the Arithmetic-1000 dataset was
adapted for Llama-3.1-8B. Operands were sampled
from the expanded range of {0...999}. Due to
tokenization issues with representing larger num-
bers as words, we used only numeral notation for
this dataset. For each template, we generated 50

unique examples. As noted in Table 2, we excluded
the template "The result of = times y times 2" for
Llama-3.1-8B, also due to tokenization issues.

Dataset Filtering. A task instance is included in
our final dataset only if the model’s generated re-
sponse 77 for the prompt with an ICE (p1) is correct
(r1 = r), while its response 7 for the prompt with-
out an ICE (py) is incorrect (g #). This selection
criterion isolates instances where the ICE demon-
strably aids the LLM. We ensure that the dataset
does not contain duplicate problem instances.

Padding for Causal Analysis. For causal anal-
yses requiring consistent input lengths (e.g., acti-
vation patching), pg prompts (zero-shot) are left-
padded to match the length of p; prompts (one-
shot). This padding consists of white spaces fol-
lowed by a single beginning-of-sequence (‘<bos>")
token placed at the positions corresponding to the
ICE in p;. This specific padding method was cho-
sen as preliminary tests indicated it yielded higher
baseline accuracy for pg compared to other padding
strategies.

B Model Description

Following Stolfo et al. (2023), we denote an au-
toregressive LLM as G : X — L, where L repre-
sents the space of logits. The model operates over
a vocabulary V' and processes an input sequence
x = [z1,...27] € X, where each z; € V. In-
stead of generating a probability distribution, G
now produces a logit vector [€ £ : RVl - R
corresponding to the unnormalized log probabili-
ties of the possible next tokens following the input
x. This is based on the same concept as in do-
mains such as text summarization (Pal et al., 2023)
or other sequence-to-sequence (Bahrainian et al.,
2024) generative NLP tasks.

In the current study, we deploy four decoder-
only LLMs: Pythia-12B, OPT-6.7B, MPT-7B, and
Llama-3.1-8B. Pythia-12B (Biderman et al., 2023)
is a 12-billion-parameter model pre-trained on the
deduplicated version of the diverse Pile dataset
(Gao et al., 2020). Its architecture is similar to the
GPT models (Brown et al., 2020), differing pri-
marily in its use of parallel attention (Wang and
Komatsuzaki, 2021) and rotary positional encod-
ings (Su et al., 2023). OPT-6.7B (Zhang et al.,
2022) has 6.7 billion parameters and was trained
on a diverse dataset that includes Common Crawl
and books data, aiming to replicate GPT-3 per-

1770

https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

Task Template Accuracy
Pythia-12B MPT-7B OPT-6.7B Llama-3.1-8B
TRy *k 2z The result of x * y * z = 85% 85% 70% 88%
The result of times y times z = 71.7% 85% 50% —
THRY*kz= 33.3% 60% < 20% 82%
r+y+z The resultof z +y + 2z = 76.7% 28.3% 26.7% 98%
T+y+z= 40% 30% < 20% 100%
(x —y)*2 Theresultof (x —y) * 2z = 38.3% 21.7% < 20% < 20%
r—y—2z Theresultof z —y — zis 20% < 20% < 20% 64%

Table 2: Examples of templates for the in-context examples and the task in numeral or written English format.
Reported are the accuracies of Pythia-12B, MPT-7B, OPT-6.7B, and Llama-3.1-8B. For the first three models,
accuracies are averaged over 30 randomly sampled prompts using numerals and 30 in written English. Due to
tokenization differences, results for Llama-3.1-8B were averaged over 50 prompts using numerals only.

formance while being computationally efficient.
Similarly, MPT-7B (MosaicML-NLP-Team, 2023)
is a 7-billion-parameter model developed by Mo-
saicML. This model shares architectural similari-
ties with the Pythia (Biderman et al., 2023) family,
but incorporates Attention with Linear Biases (AL-
iBi) (Press et al., 2022) instead of positional em-
beddings and utilizes Flash Attention (Dao et al.,
2022). Finally, Llama-3.1-8B (Grattafiori et al.,
2024) is an 8-billion-parameter model from Meta
Al that also uses a standard dense Transformer ar-
chitecture. It incorporates optimizations such as
Grouped Query Attention (GQA) for improved in-
ference efficiency and an expanded vocabulary of
128K tokens. These distinctions allow us to in-
vestigate whether our observations about the roles
of symbols and patterns in arithmetic in-context
learning hold across different architectures.

For Pythia-12B, we formalize the computation
of hidden states hgk) at positiont € 1,...,7T and
layer k during a forward pass as

hgk) _ hgkfl) + agk) + mgk) (1)
a? = AW (hg’“‘l), D 2)
m = wide (W)@
= MLP® (nf))

(

where o is the sigmoid nonlinearity, Wflz) and
Won
block (Vaswani et al., 2017), AR) parametrizes
the attention mechanism, and agk) and mgk) are
the outputs of the attention and MLP modules, re-
spectively. Note that each layer’s hidden state in
Equation 1 can be decomposed into linear contribu-
tions from agk) and mgk) , which allows for separate
patching effects for both modules.

parametrize the MLP of the Transformer

N
+
»
+
o
1

-
4
-
+
©
+
-

&8 887

Y+8+] "<ped>'"<ped>

5)es)@9) eu)es)en)

Figure 6: The experimental procedure involves patching
in the activation from the in-context example of one
arithmetic task (upper part) into the padded positions of
the second arithmetic task (lower part). The interven-
tion is applied either at the MLP (square) or attention
module (circle) of the LLM’s layers. Subsequent layers
are recomputed during the forward pass (gray-colored),
such that the intervention produces a shift in logits com-
pared to the original run.

C Function Vectors Extraction

Method. Function Vectors (FVs) are compact,
causal internal vector representations of ICEs. It
has been shown that adding a single FV to the
model’s residual stream can significantly improve
performance on simple tasks, even when prompts
lack ICEs.

The procedure for obtaining an FV for a selected
task is as follows. For a given prompt ¢, the hidden
representation h; at layer ¢ for the last token can
be expressed as the sum of the output from the
previous layer h@fl, the MLP output m@, and the
sum of attention head outputs 3, ; al ; (where .J

1771

0.50 F====—m—— e ——— e —— Function Vector; Top-30 Heads -
Function Vector; Random Heads

—=- Zero-Shot

0.45 4 —=- One-Shot

0.40
0.35 4
0.30 1

025 | AT AN N TN

Acc.

0.20 4

T T T T T T T T
0 5 10 15 20 25 30 35

Layer

Figure 7: Accuracy of Pythia-12B on zero-shot word-
based arithmetic prompts after adding a Function Vector
(FV) to the residual stream at the final token position
across different layers. The FV is derived from word-
based ICEs.

is the number of heads):

J
Wy =hy_+mj+ > aj; 5
j=1

1. Given a set of prompts S (all containing ICEs),
extract the activations a} ; that each attention head
(¢, 7) writes to the residual stream at the final to-
ken’s position. Average these activations for each
head across all prompts in S: ag; = Iiél Y ics a@j.
2. For each attention head (¢, j), replace its original
activation aj; (on a prompt i € S) with the aver-
aged activation ay; obtained in Step 1. Measure the
influence of this substitution on the probability of
the correct token. Collect the attention heads with
the highest positive influence into a set A.

3. Construct the function vector v by summing the
averaged activations ay; corresponding to the heads
in A:v = Z(Z’,j’)EA Qg

4. Add the function vector v to the model’s residual
stream at various layers and measure the perfor-
mance improvement on prompts without ICEs.

Implementation Details. For Pythia-12B, we
use the Arithmetic-20 dataset, which is restricted
to integers within the range {1,...,20}. This
dataset contains 30 instances per template, covering
both numerical and written English representations,
for a total of 420 samples. We split the dataset
per template, allocating the first 20 instances to the
validation set and the remaining 10 to the test set.
For Llama-3.1-8B, we use the Arithmetic-1000
dataset, which contains a more extensive range of
integers {0,...,999}. This dataset provides 50

examples per template, for a total of 300 samples.
The split is also performed per template, with the
first 30 instances forming the validation set and
the remaining 20 forming the test set. For both
datasets, we ensure that all arithmetic equations are
unique.

For each model, we use its validation set to iden-
tify important attention heads and construct the
function vector. Following (Todd et al., 2023), we
scale the number of heads used to derive the func-
tion vector with the size of the model, using the
top 30 attention heads for Pythia-12B and the top
10 for Llama-3.1-8B. We then add this vector to
the residual stream of the final token at various lay-
ers and measure the model’s performance on the
corresponding test set.

D Exp. 8: Causal Effect of Joint
Attention and MLP Module Patching

The experiments 1-7 in Section 4 consistently high-
lighted the significant role of the first layer’s MLP
in enhancing task performance, particularly when
the ICE result token was manipulated. While these
interventions yielded substantial PEs, the modifi-
cations to the attention modules alone yielded less
pronounced effects. This observation led us to in-
vestigate the interplay between MLP and attention
modules, hypothesizing that their interaction may
be crucial for effectively utilizing the information
encoded in the ICE.

To this end, we conducted a joint patching ex-
periment. We first intervened in the activation of
the first layer’s MLP at the ICE result position, re-
placing activations from incorrect task instances
with those from correct instances. Immediately
following this, we patched in the activation of at-
tention modules in separate experiments for each
subsequent layer. This allowed us to assess how
the information processed by the early-layer MLPs
propagates through the attention mechanism and
influences the model’s overall computation. Fig-
ure 8 illustrates the resulting PEs of each layer’s
attention module. We observed significantly ampli-
fied effects located at every ICE position, with a
particularly notable peak in the early layers 4 — 6
at the ICE’s result. This pattern suggests that the
information extracted by the early MLPs from the
result token is effectively propagated and utilized
by the attention mechanism in subsequent layers.

These findings provide compelling evidence for
the importance of the interaction between MLP and

1772

attention modules in arithmetic in-context learning.
The joint patching experiment revealed a more pro-
nounced and widespread impact on PEs compared
to interventions on either module alone, underscor-
ing the synergistic effect of these components. To
further investigate these interactions, we conduct
a more complex analysis of MLP-attention inter-
actions in Appendix J, where we identify a model
subnetwork associated with arithmetic task solving.

Patching Effect of embedding layer's MLP and Attention

1st operand
3.30

1st operator

3.25
2nd operand

2nd operator -3.20
3rd d
rd operan 215

Equal Sign
Result I I I I I
0 5 10 15 20

Layer

-3.10

25 30

Figure 8: Exp. 8 shows the PE of jointly patching in
the activation at the ICE result first layer’s MLP and
each subsequent layer’s attention modules in distinct
experiments.

E Activation Patching Experiments with
the MPT-7B Model

To assess the generalizability of our findings, we
extended our analysis, as described in Table 1,
to the MPT-7B decoder-only LLM (MosaicML-
NLP-Team, 2023). This model was selected based
on several criteria: (1) decoder-only architecture,
(2) capability of in-context learning, and (3)
single-token tokenization of numbers in both
numeral and written English forms. These criteria
ensured compatibility with our experimental setup
and the ability to perform meaningful activation
patching. Critically, MPT-7B demonstrated a
substantial increase from 6% to 43% accuracy
with the inclusion of a one-shot ICE before the
arithmetic task.

The results of exploring the MPT-7B model’s
processing of in-context examples for solving three-
operand arithmetic tasks are illustrated in Figure
11. Due to the lack of support for the MPT-7B
model in the TransformerLens library (Nanda and
Bloom, 2022), we omit the residual stream patch-
ing Exp. 1. In the baseline Exp. 2, we conducted
localized activation patching in the MLPs and at-

tention modules. We observed strong PEs at the
model’s first and second layers” MLPs and atten-
tion modules located at the position of the result
token. This finding, consistent with our observa-
tions in Pythia-12B in Section 4.2, underscores the
critical role of the result token, a key symbol, in
arithmetic task resolution across different LLMs.

We then proceeded to manipulate the ICE, focus-
ing on both symbol- and pattern-level interventions.
The counterfactual manipulations of the ICE result
tokens in Exp. 3,4, and 5, caused the PEs in both
the inital layers” MLPs and attention modules to
decrease significantly. Analogous to Pythia-12B,
the main effect ofpattern intervention was notably
larger than the main effect of symbol-level interven-
tions, as evident by inspection of the PE measures
in Figures 11c — 11h. Moreover, the replacement
of the ICE operand symbols with non-numeral ran-
dom symbols in Exp. 6 lead to a minor decrease
of PEs compared to the the manipulations of the
ICE result (see Figures 11i, 11j). These outcomes
highlight the result token’s pivotal function in fa-
cilitating arithmetic problem solving, and reaffirm
the importance of formulating ICEs in a consistent
pattern format.

A distinct observation in MPT-7B was the shift
of the peak PE in Exp. 2 to the second MLP layer,
unlike the first layer focus observed in Pythia-12B.
We propose that this shift implies an enhanced in-
teraction between the second layer’s attention mod-
ule and MLP. Hence, the initial attention module
might transfer crucial ICE result information to the
second MLP layer (Wang et al., 2022), where it
aids in successful task completion. This suggests
a potential difference in information processing
pathways between the two models, possibly due
to architectural variations like the use of ALiBi in
MPT-7B. Future research should explore this idea
further and consider the impact of different model
architectures and model sizes on in-context learn-
ing interpretability. Understanding these interac-
tions could provide deeper insights into optimizing
ICEs for better model performance and enhance
our understanding of the mechanisms underlying
in-context learning.

F Prompts with More Detailed Text
Descriptions

In this section we present an experiment showing
the impact of textual task description if prepended
to the in-context example. While some templates in

1773

Patching Effect of the Residual Stream
Description Prompt
(1) ICD 1st operand
(+) ICD 1st operator
(3) ICD 2nd operand
(+) ICD 2nd operator 1.00
(4) 1CD 3rd operand
(=) ICD Equal Sign -0.75
(8) ICD Result
(2) Task 1st operand
(+) Task 1st operator _0.25
(2) Task 2nd operand
(+) Task 2nd operator -0.00

(6) Task 3rd operand
I

(=) Task Equal Sign
0 5 10 15 20 25 30 35
Layer

150

125

-0.50

Figure 9: Mean PEs caused by manipulating the Pythia-
12B’s residual stream at the ICE and task tokens.
Prompts with textual descriptions.

our diagnostic dataset include preceding text (e.g.,
“The result of. ..”, see Table 2), we did not focus on
systematic prompt engineering. Thus, here we con-
duct an experiment to clarify whether additional
textual task description will affect the patching pat-
terns. We formulated a task description prompt and
added it before all the equations and ICEs of our
dataset. For example, the new task was formulated
as: “Perform the arithmetic calculations based on
the sequence of numbers and operators provided. 1
+3+4=8.2+2+ 6=". For the corrupted task,
we removed the ICEs between the task description
prompt and the task prompt. We applied one of
our experiments, namely residual stream patching,
to an alternative dataset with these detailed task
descriptions. The results are presented in Figure 9.
The overall pattern of patching effects remained
similar to the case where no natural language de-
scription of the task was provided, indicating that
the reported findings also hold true for tasks with
more detailed descriptions.

G Compatibility Limitations of the
Information Flow Routes Approach

Due to compatibility constraints, we were only able
to apply the Information Flow Routes approach
to the OPT-6.7B and Llama-3.1-8B models. The
Pythia family of models employs parallel compu-
tation of MLP and attention layers, which would
require substantial modifications to the graph com-
putation algorithm. The MPT-7B model is not cur-
rently supported by the TransformerLens library
(Nanda and Bloom, 2022), and adding such support
would necessitate extensive changes to the library.

H Hyperparameter Selection for
Information Flow Routes

The Information Flow Routes approach requires
the manual selection of the importance threshold,
7. Figure 10 shows the minimal 7 at which com-
ponents of the OPT-6.7B (left) and Llama-3.1-8B
(right) language models are still activated. The
results are averaged over the data samples with
arithmetically correct model predictions.

In the case of OPT-6.7B, we observe that the
Task Equal Sign, ICE Result, and ICE Equal Sign
tokens remain active even for large 7 thresholds,
indicating the model relies heavily on those tokens.
For Llama-3.1-8B, the model relies more on task
prompt tokens. However, the pattern for the ICE
tokens is similar to that of other models. The result
token is active through the middle layers for 7 val-
ues up 0.04, while other ICE tokens are active only
in the bottom layers.

I Step-by-step Processing of ICEs

Setup. The model receives an ICE along with a
three-operand arithmetic prompt.

Early processing. Early MLPs and attention lay-
ers encode the ICE tokens. This is supported by
strong patching effects for these components (Exp.
2-6; Secs 4.2-4.3). (Confirmed for Pythia-12B,
OPT-6.7B, MPT-7B, and Llama-3.1-8B.)

Early aggregation at the result position. Early
attention heads concentrate this processed ICE in-
formation at the result token location, as shown
by a large residual-stream patching effect there
(Exp. 1; Sec. 4.1) and by many heads implicated
at that position via Automatic Circuit Discovery
(Appx. J). The signal then propagates to the mid-
dle layers. (Confirmed for Pythia-12B, OPT-6.7B,
MPT-7B, and LLama-3.1-8B. Llama-3.1-8B also
shows some differences on a dataset with larger
numbers.)

Mid-layer routing to the equals sign. The ICE
signal is then passed directly to the “=" token, con-
firmed by residual-stream activation patching and
information-flow analyses (Exp. 1; Sec. 4.1). Cru-
cially, this signal is pattern-level (e.g., formatting
of the result token), not arithmetic content. Coun-
terfactual patching (Exp. 2-6; Secs. 4.2-4.3) and
the effectiveness of a single, dataset-averaged func-
tion vector in restoring performance corroborate

this. (Confirmed for Pythia-12B, OPT-6.7B, and

1774

Relationship Between T and Important Components
(1) ICE 1st operand -
(+) ICE 1st operator- 0.035
(3) ICE 2nd operand -
(+) ICE 2nd operator - ®
(4) ICE 3rd operand- ®

0.040

0.030

0.025

(=) ICE Equal Sign- *YPPPryyveey
(8) ICE Result - ooy 0.020 -
(2) Task 1st operand-
(+) Task 1st operator- 0.015

(2) Task 2nd operand - 0.010
(+) Task 2nd operator-)

(6) Task 3rd operand- 0.005
(=) Task Equal Sign - S ETEPREETTTTIIRYYITIIIANNY
0 5 10 15 20 25 30
Layer

0.000

Relationship Between T and Important Components
(1) ICE 1st operand -
(+) ICE 1st operator -
(3) ICE 2nd operand -

0.040

0.035
(+) ICE 2nd operator -
(4) ICE 3rd operand -
(=) ICE Equal Sign-
(8) ICE Result-

(2) Task 1st operand -

TN
e 1
STTTT
T
he Ly
STTTTTETY
T
CTETTTTTTITTIIN
(+) Task 1st operator - oquumstmen 0.015
STTTTTTTTTTITNSY
sTTTRTTTYYTY
STTTTITTTTTTTIRTY
T TN U TTTTUTTTIITIIYY

0.030
0.025

~
0.020

(2) Task 2nd operand -
(+) Task 2nd operator -
(6) Task 3rd operand -

(=) Task Equal Sign -

0.010

0.005

0.000

Figure 10: Relationship between activated components and the 7 threshold for the (left) OPT-6.7B model and the

(right) Llama-3.1-8B model.

Llama-3.1-8B. Llama-3.1-8B also shows some dif-
ferences on a dataset with larger numbers.)

Arithmetic appears only late, and is not propa-
gated. Logit Lens shows internal representations
of partial sums from the ICE (e.g., “a + b” from
“a + b + ¢”) emerge only in late layers (Exp. 9;
Sec. 4.7). These representations are not part of the
mid-layer signal and therefore are not what drives
the final answer. (Confirmed for Pythia-12B.)

Final composition at “=". At the equals sign,
the model combines the ICE-derived pattern signal
with the task-prompt context, producing the final re-
sult token. (Confirmed for Pythia-12B, OPT-6.7B,
and Llama-3.1-8B. Llama-3.1-8B also shows some
differences on a dataset with larger numbers.)

Conclusion. Across experiments, the model
pipelines format / pattern information from the ICE
to the “=" position while deferring arithmetic rep-
resentations to late layers that do not influence the
computed answer, explaining why a single function
vector can substantially recover performance.

J Automatic Circuit Discovery with Edge
Attribution Patching

Through our activation patching experiments, we
elucidated the significant role of the initial layers
in LLMs in processing the ICE result token in arith-
metic tasks. These findings represent a founda-
tional step in the investigation in the inner workings
of LLMs’ in-context learning capabilities and set
the stage for more advanced techniques that could
offer even deeper insights. Therefore, we take
a step further in the mechanistic interpretability
regime and consider the identification of a circuit
associated with arithmetic task solving functions.

In this context, a circuit is defined as a subnetwork
of a network’s components and their interactions,
which implements a task at hand (Goldowsky-Dill
et al., 2023; Wang et al., 2022; Conmy et al., 2023).
In our case, we aim at identifying a circuit consist-
ing of a set of connected attention heads and MLP
modules within the Pythia-12B LLM (Biderman
et al., 2023), that significantly contribute towards
solving the arithmetic in-context learning task.

To achieve this, we employed Edge Attribution
Patching (EAP) (Syed et al., 2023), a computation-
ally efficient approximation to activation patching.
Instead of running a separate activation patching
experiment for each layer’s attention head and for
each data point, EAP utilizes a linear combination
of the activations from the forward passes of the
prompts p; and po—with and without the ICE, re-
spectively—along with a single backward pass to
approximate the PE as follows:

EAP (pa|ldo(E = e),)) =~ (ep, — epl)T

0 (6)
@PE(pﬂdO(E = €p,))

P1

Here, e represents the activation of an edge E be-
tween two attention heads or MLP modules. The
term (ep, — e,) reflects the difference in activa-
tions due to the presence or absence of the ICE.
The gradient measures how changes in the edge ac-
tivations influence the PE. The use of do-notation
indicates the causal manipulations of activations e
(Syed et al., 2023).

The EAP scores were leveraged to rank the im-
portance of each edge within the model’s compu-
tational graph. This ranking determines the circuit
that is most relevant to performing the underlying
task. For our purposes, we focused on identifying
and isolating the top 50 attention heads and MLP

1775

Patching Effect of Attention

Task example: 1 +3+4=8.6+6+3=

Patching Effect of the MLP

(1) 1st operand 0.3 (1) 1st operand 0.8
(+) 1st operator o2 (+) 1st operator o6
PE 07 Original Result
(3) 2nd operand (3) 2nd operand
06
(+) 2nd operator 01 (+) 2nd operator 0.4 05
04
(4) 3rd operand “0.0 (4) 3rd operand oo s
(=) Equal Sign (=) Equal Sign 02
-—01 L oo 01
(8) Result (8) Result 0.0 - -
0 5 10 15 20 25 30
[5 10 15 20 25 30 0 5 10 15 20 25 30 Layer
o e (k) Exp. 2
(a) Exp. 2 (b) Exp. 2
Patching Effect of the MLP
Patching Effect of Attention 9
0.8
1st operand 0.25 1st operand
0.20
1st operator 1st operator 06
0.15 Counterfactual Consistent Result
2nd operand 2nd operand PE ¢
0.10 0.4 0.6
2nd operator L 0.05 2nd operator - s
04
3rd operand -0.00 3rd operand _02 0
--0.05
Equal Sign Equal Sign 02
--0.10 ~0.0 01
Consistent Result Consistent Result 0.0
mm018 0 5 10 15 20 25 30
o 5 10 15 20 25 30 0 5 10 15 20 25 30 Layer
aver Laver (1) Exp. 3
(c) Exp. 3 (d) Exp. 3
Patching Effect of the MLP
Patching Effect of Attention atching tllect of the
1st operand 0.25 1st operand 0.8
0.20
1st operator 1st operator 06
2nd operand Z iz 2nd operand PE Counterfactual Inconsistent Result
‘ 2nd operator 04 oo
2nd operator L0.05 P 05
3rd operand -0.00 3rd operand ~02 Z:
--0.05
Equal Sign Equal Sign 02
--0.10 L o0 o1
Inconsistent Result | _oas Inconsistent Result 00
. 0 5 10 15 20 25 30
0 5 10 15 20 25 30 0 5 10 15 20 25 30 Layer
Layer Layer (
m) Exp. 4
(e) Exp. 4 (f) Exp. 4 P
Patching Effect of Attention Patching Effect of the MLP
1st operand 1st operand 0.8
0.4
1st operator 1st operator
0.6
0.3
2nd operand 2nd operand PE 07 Counterfactual Symbol Result
2nd operator 02 2nd operator 0.4 06
’ 05
3rd operand 3rd operand o2 o
N -0.1 03
Equal Sign Equal Sign
02
-0.0
Symbol Result -0.0 Symbol Result 0.1
00
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer Layer
(2) Exp. 5 (h) Exp. 5 (n) Exp. 5
. . Patching Effect of the MLP
Patching Effect of Attention 0.8
e d 1st operand
st operan 0.25
1st operator 0.20 1st operator 0.6
2nd operand 0.15 2nd operand s
0.10 .
2nd operator 2nd operator
~0.05
3rd operand L o.00 3rd operand -0.2
Equal Sign --0.05 Equal Sign
-0.0
Result 010 Result
--0.15
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer
(1) Exp. 6 () Exp. 6

Figure 11: Activation patching experiments with the MPT-7B language model (MosaicML-NLP-Team, 2023). Mean
patching effects (PEs) of individual tokens of the ICE at (a) single layer’s attention modules and (b) single layer’s
MLP, with a zoomed-in version of the ICE result layer’s MLPs in (k). All experiments involving counterfactual
manipulations of tokens are highlighted in yellow. In (c), (d), and (1) the ICE result is replaced with an arithmetically
incorrect token, which is consistent to the prompt’s format in either numerals or written words. Figures (e), (f), and
(m) replace the result with an inconsistent format. In (g), (h), and (n) the result is substituted by a randomly sampled
non-numeral symbol. Lastly, (i) and (j) depict the PEs as a result of replacing the operands with randomly sampled
non-numeral symbols.

1776

(o) (s) (s) (mes) (et)

T ()) () (e ()

() () (D) () e) (e
ey iy Cros @D

Figure 12: Subnetwork circuit of Pythia-12B, consisting of the top 50 most contributing attention heads and MLP
modules for arithmetic in-context learning, as determined by Equation 6 from Edge Attribution Patching (Syed
et al., 2023). This circuit represents the core network components identified as crucial in processing the ICE and
their interactions. Edge widths are drawn proportional to the EAP patching effect scores, highlighting the relative

importance of each edge in the task solving process.

modules that contribute to Pythia-12b’s ability to
solve arithmetic tasks as per their EAP scores.
The circuit responsible for solving arithmetic
tasks in Pythia-12b is depicted in Figure 12. It
primarily involves attention heads and MLP mod-
ules from the initial layers. The most influential
attention heads are located in the first layer’s atten-
tion module, which are directly connected to the
first layer’s MLP module. This configuration un-
derscores the findings from the activation patching
experiments in Section 4. From the first layer’s
MLP, the data is processed and distributed across
attention heads and MLPs in numerous layers.
Next, to further validate our hypothesis that

Pythia-12b predominantly relies on the ICE result
token to solve arithmetic tasks, we conducted an
additional EAP experiment focused on this token.
Therefore, we computed the EAP scores for the
activations associated solely with the ICE result at
position ¢ in the ICE using a modified version of
Equation 6:

EAP (pg\do(E - eg,?) ~ (el) —)T

(7
%PE(pl\do(E =eM))
(&
p1

The architecture of the resulting specialized circuit
is shown in Figure 13. Comparative analysis be-

1777

Figure 13: Circuit of Pythia-12B illustrating the subnetwork composed of attention heads and MLP modules
specifically processing the ICE result token for arithmetic tasks. This circuit, derived using Equation 7, isolates the
components directly involved in analyzing the result token, as identified by their ranked EAP scores. Edge widths

reflect the relative significance of each edge.

tween the circuits handling full-task processing and
the one specifically for the result revealed a 56%
overlap of edges, emphasizing the critical role of
the ICE result token in arithmetic task solving. No-
tably, circuits derived from other operand or opera-
tor tokens within the ICE showed significantly less
overlap, with none exceeding 22%. Interestingly,
both the full-task and result-related circuits showed
primary activity within the first two layers of the
model, suggesting early processing and integra-
tion of the result information. However, deviations
occurred in subsequent layers; the result-related
circuit predominantly involved layers up to MLP
11, whereas the full-task circuit extended across the
model’s entire layer range. This divergence sug-
gests that while the ICE result is processed early,
newer task-relevant information is incorporated in
later layers, supporting insights from Stolfo et al.
(2023) regarding the later layers’ role in introduc-
ing critical information for task completion.

To our knowledge, this is the first study to iden-
tify mechanistic circuits associated with (arith-
metic) in-context learning in Pythia-12b. The cir-
cuits, attention heads, and MLP modules identified
here provide a valuable reference for subsequent
studies involving more complex methods from the
mechanistic interpretability toolbox. For instance,
path-patching (Goldowsky-Dill et al., 2023) could
further refine circuits based on the current results.
In the future we plan to design methods capable of
tracing concept flows separating the information
type based on topics (Mele et al., 2017; Bahrainian
etal., 2021, 2018; Ravenda et al., 2025) (e.g. in the
math domain comparing basic arithmetic versus
differential equations) or even a more generalized
settings such as sentiment (Bahrainian and Den-
gel, 2015; Bahrainian et al., 2014) or other proper-

ties comparing distributions across layers and input
timesteps.

1778

