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Abstract
Tokenization is a crucial step that bridges
human-readable text with model-readable dis-
crete tokens. However, recent studies have re-
vealed that tokenizers can be exploited to elicit
unwanted model behaviors. In this work, we
investigate incomplete tokens, i.e., undecodable
tokens with stray bytes resulting from byte-
level byte-pair encoding (BPE) tokenization.
We hypothesize that such tokens are heavily
reliant on their adjacent tokens and are frag-
ile when paired with unfamiliar tokens. To
demonstrate this vulnerability, we introduce im-
probable bigrams: out-of-distribution combina-
tions of incomplete tokens designed to exploit
their dependency. Our experiments show that
improbable bigrams are significantly prone to
hallucinatory behaviors. Surprisingly, the same
phrases have drastically lower rates of halluci-
nation (90% reduction in Llama3.1) when an
alternative tokenization is used. We caution
against the potential vulnerabilities introduced
by byte-level BPE tokenizers, which may intro-
duce blind spots to language models.

1 Introduction

Tokenization is an important step in the large lan-
guage model (LLM) pipeline, serving as the bridge
between text inputs and the discrete tokens pro-
cessed by the model. Improper tokenization can
lead to undesirable behaviors, such as glitch to-
ken hallucinations (Rumbelow and Watkins, 2023;
Land and Bartolo, 2024) and errors in numerical
reasoning (Singh and Strouse, 2024). Furthermore,
it has been observed that tokenizers can introduce
elements of unfairness (Petrov et al., 2023) and
bias (Ovalle et al., 2024) into models. Given the
increasing duration and cost of model training, in-
vestigating and understanding the impact of the
tokenizer is becoming increasingly important.

Recent works specifically analyze the tokeniza-
tion step to identify inputs that provoke unwanted
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What does "ट能" mean?

The symbol "�능" does not 
have a standard meaning …

"ट能" is a combination of 
characters from different 

writing systems and does not 
have a standard meaning. "ट" 
is a consonant in Devanagari …

What _does _" <0xE0><0xA4> <0x9F> " _mean ?能

What _does _" <0xE0><0xA4> <0x9F>能 " _mean ?

Regular Tokenization (i.e., BPE Tokenization)

Alternative Tokenization

Figure 1: An improbable bigram phrase that combines
two incomplete tokens to cause hallucinatory behaviors
in the Qwen2.5 model. This behavior persists across
multiple models and with well-trained tokens. An alter-
native tokenization of the same phrase does not cause
hallucinations.

model behaviors. Land and Bartolo (2024) propose
embedding layer heuristics to identify glitch tokens
— undertrained tokens that cause hallucinations and
also enable jailbreaks (Geiping et al., 2024). Wang
et al. (2024) create adversarial questions designed
to induce incorrect segmentation by the tokenizer,
which degrades model performance.

In this work, we investigate a specific vulnerabil-
ity associated with incomplete tokens in byte-level
byte pair encoding (BPE) tokenizers. These tokens,
also known as undecodable tokens, are byte-level
tokens that cannot be decoded independently and
must appear in conjunction with certain other to-
kens to form legal Unicode characters. We explore
the fragility of these tokens by constructing improb-
able bigrams, which are unlikely yet permissible
combinations of two incomplete tokens. Similar to
glitch tokens, improbable bigrams cause hallucina-
tions to benign user requests, as seen in Figure 1.
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Tokenizer Vocab
Size

Incomplete
Tokens

Incomplete
Bigrams

Meta-Llama-3.1 128k 1224 71k
Exaone-3.0 102k 1222 36k
Qwen2.5 151k 1320 39k
Mistral-Nemo 131k 1307 135k
Command-R-v01 255k 2956 1479k

Table 1: Vocabulary sizes and number of incomplete
tokens in different tokenizers. Incomplete bigrams refer
to the total number of legal bigrams that can be created
by combining two incomplete tokens.

However, unlike glitch tokens, improbable bigrams
can cause hallucinatory behavior even when their
constituent tokens are well-trained.

Our experiments across multiple LLM families
(such as Llama-3.1, Qwen2.5, and Mistral-Nemo)
demonstrate that these bigrams are significantly
more prone to producing hallucinations compared
to bigrams formed from complete tokens. Intrigu-
ingly, alternative tokenizations of the same phrases
rarely exhibit hallucinations. We believe that our
findings contribute to the growing body of research
on understanding the potential weaknesses of BPE
tokenization, with implications for the development
of more robust language models.

2 BPE Tokenization

Byte pair encoding (BPE), originally developed as
a data compression algorithm (Gage, 1994), has
evolved into a popular tokenization scheme used
by many modern language models (Sennrich et al.,
2016). BPE tokenization iteratively expands the
vocabulary by selecting frequent pairs of exist-
ing tokens as new vocabulary items. In particu-
lar, byte-level BPE, which applies the BPE algo-
rithm at the byte-level rather than the character
level (Wang et al., 2019), offers distinct advantages.
Firstly, byte-level tokenization eliminates out-of-
vocabulary issues by representing all Unicode char-
acters (154,998 in Unicode v16.0) as combinations
of 256 base bytes, ensuring comprehensive cov-
erage. Secondly, it allows for more efficient data
compression. The widespread adoption of byte-
level tokenization in cutting-edge models such as
GPT-4 and Llama 3.1 underscores its effectiveness.

While some have attributed BPE’s effectiveness
to its compression (Gallé, 2019; Goldman et al.,
2024), recent work has challenged this assump-
tion (Schmidt et al., 2024). Bostrom and Dur-
rett (2020) point out that greedy compression pri-

Step 1. Structure Analysis

<0xE0><0xA4>

[Token 5502]

<0x9F><0xE8><0x83><0xBD>

[Token 96808]

<0xE0> needs 2 c-bytes, but has only 1 (<0xA4>)

<0x9F> is a spare 

c-byte

<0xE8><0x83><0xBD> forms 

complete character (能)

Suffix token that has 1 spare c-byte

Prefix token that needs 1 extra c-byte

Step 2. Viability Check

>>> tokenizer.decode([5502, 96808])

ट能

>>> tokenizer.encode("ट能")

[5502, 96808]

Figure 2: Incomplete tokens are analyzed for their struc-
ture to find potential bigram candidates. C-bytes (con-
tinuation bytes) are colored in blue. Tokens with com-
patible structures are tested for viability and reachability
through an decode-encode check.

oritizes frequency over linguistically meaningful
boundaries. This observation is supported by other
works that report model improvements from mor-
phologically motivated modifications to BPE to-
kenizers (Limisiewicz et al., 2024; Bauwens and
Delobelle, 2024). These works demonstrate that
incorrect segmentation by BPE tokenization cause
suboptimal model performance.

3 Incomplete Tokens and Improbable
Bigrams

Byte-level BPE tokenizers are agnostic not only to
morphemes but also to character boundaries. Train-
ing with the BPE algorithm on texts where charac-
ters are encoded with multiple bytes (e.g., Cyrillic
(2 bytes), CJK Unified Ideographs (3 bytes)) often
results in the formation of incomplete tokens. In-
complete tokens contain stray bytes (like <0x9F>
in the token ‘<0x9F>能’) that do not correspond to
recognizable characters. These incomplete tokens
constitute a small but significant portion of the vo-
cabulary in byte-level models. Table 1 presents the
number of discovered incomplete tokens in the vo-
cabularies of various models employing byte-level
tokenizers (see Appendix A for details).

While incomplete tokens are indistinguishable
from complete tokens from the model’s perspective
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Task User prompt

Repeat Repeat this phrase exactly: “{Phrase}”

Definition What does “{Phrase}” mean?

Do You Know? Today I heard about “{Phrase}”. Do you know what this means?

Usernames

I am trying to learn python. What is the output of this? Print the output only with no
further explanation.
Usernames = ['LiquidBoxi胖胖', '{Phrase}', 'ɹǝʞɹɐd', 'Jhocam(҂ `з´ )', 'AR皮球']
print(Usernames[0:2])

Table 2: Prompt templates used to test phrase-level hallucinations of target phrases. At test time, {Phrase} is
replaced with the tested phrase. If the model fails to repeat the phrase in all four prompts, we consider the phrase to
be hallucinatory.

during training, their structure can influence how
they are trained in subtle ways. First, incomplete
tokens can only occur alongside other incomplete
or single-byte tokens, as the “stray bytes” of in-
complete tokens require additional bytes to form a
viable character. This restriction limits the range
of tokens they can be associated with. Second,
the potential characters that stray bytes can form
into may have little to no semantic overlap, leading
to a representation that is inherently ambiguous
and heavily reliant on neighboring tokens for dis-
ambiguation. We hypothesize that these factors
exacerbate one another, causing incomplete tokens
to become overly dependent on their context and
brittle in response to unfamiliar adjacent tokens.

To demonstrate this vulnerability, we create
phrases that exploit incomplete tokens to cause
hallucinations. First, we analyze the structure of
incomplete tokens, categorizing those that end with
stray bytes as prefixes and those that begin with
stray bytes as suffixes. We further label prefixes
and suffixes by the number of stray bytes they re-
quire to form a complete character, to find poten-
tial bigram combinations. We create adversarial
combinations of these tokens, termed improbable
bigrams, as illustrated in Figure 2. These bigrams
exploit the dependency of two incomplete tokens
to complete each other. We note that not all com-
binations are viable due to tokenization rules and
merge priorities. Table 1 lists the number of all pos-
sible legal bigrams created from incomplete tokens
across different tokenizers. To identify bigrams
that are particularly out-of-distribution, we use the
heuristic of multilinguality. When a bigram forms
a string, we check the Unicode script type of each
character. If the string contains characters from
different Unicode scripts, we assume it is highly
unlikely to have been encountered during training.
In our experiments, we demonstrate that improba-

Models Improbable
Bigrams

Baseline
Bigrams

Llama 3.1 48/100 (48%) 0/100 (0%)
Exaone 77/100 (77%) 20/100 (20%)
Qwen2.5 33/100 (33%) 0/100 (0%)
Mistral-Nemo 52/71 (73%) 1/71 (1%)
Command-R 49/100 (49%) 8/100 (8%)

Table 3: Number of hallucinations by improbable bi-
gram phrases (with incomplete tokens) and by baseline
bigram phrases (with complete tokens).

ble bigrams are prone to hallucinations.

4 Hallucination Experiments

Models We experiment using five recently re-
leased instruction-trained models that use byte-
level BPE tokenization: Meta-Llama-3.1-8B-
Instruct1, EXAONE-3.0.-7.8B-Instruct2, Qwen2.5-
32B-Instruct3, Mistral-Nemo-Instruct-24074, and
C4AI-Command-R-v015. We use greedy decoding
for all experiments.
Evaluation Prompts We assess each model’s abil-
ity to accurately process prompts containing im-
probable bigram phrases. We use four prompt
templates designed to induce the model to repeat
a target phrase from the input, regardless of the
phrase’s nonsensical or unusual nature, as detailed
in Table 2. Our goal is to find phrases that mod-
els cannot process for any prompt. Therefore, we

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-
Instruct

2https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-
7.8B-Instruct

3https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
4https://huggingface.co/mistralai/Mistral-Nemo-Instruct-

2407
5https://huggingface.co/CohereForAI/c4ai-command-r-

v01
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consider a phrase to have induced hallucinations
only if the model fails to correctly repeat it across
all four prompt templates.

Incomplete Token Selection For each model, we
construct improbable bigrams using the procedure
outlined in Section 3. Noting that undertrained
tokens often lead to hallucinations, we focus our
experiments on well-trained tokens to isolate con-
founding factors. To do this, we employ the em-
bedding heuristics in (Land and Bartolo, 2024) to
detect whether a token in the vocabulary is under-
trained. Specifically, the heuristics estimate the de-
gree of training for each token by taking L2 norms
and cosine distances in the embedding matrix. We
use these metrics to order the entire vocabulary,
and discard the lower (undertrained) half from our
experiments. From the upper half (well-trained
half) of the vocabulary, we identify the incomplete
tokens and create up to 100 improbable bigrams for
each model. Analysis of the languages used in the
improbable bigrams (Appendix B) show language-
pair distributions differ widely between models.

Baselines To better demonstrate the fragility of
improbable bigrams, we create a baseline of bi-
grams constructed with complete tokens. For each
improbable bigram, we create a complete token
counterpart by replacing the prefix and suffix with
similarly-trained tokens. That is, if the initial in-
complete token is the i-th token in the ranked vo-
cabulary, we find a complete token that is slightly
less trained (e.g. the (i-1)-th token). This method
ensures that each improbable bigram is compared
to a baseline of complete bigrams with a similar
level of undertraining.

Results As shown in Table 3, improbable bigrams
suffer from significantly higher rates of hallucina-
tion than their complete token counterparts across
all tested models. This is distinct from hallucina-
tions involving glitch tokens, as previously inves-
tigated by Land and Bartolo (2024), which was
attributed to undertrained tokens. These results
suggest that even well-trained incomplete tokens
can struggle to faithfully represent textual inputs.

5 Alternative Tokenization

Our previous experiments demonstrate that improb-
able bigram phrases are difficult for models to pro-
cess. We conduct further experiments to attribute
this difficulty to the incomplete tokens. We repeat
the experiments, but pre-segment the target phrase
to avoid character boundary-crossing tokenization.

Models
Incomplete

Token
Hallucinations

Alternative
Tokenization

Hallucinations

Llama 3.1 0.48 0.05 (↓90%)
Exaone 0.77 0.50 (↓35%)
Qwen2.5 0.33 0.12 (↓64%)
Mistral-Nemo 0.73 0.01 (↓98%)
Command-R 0.49 0.55

Table 4: Frequency of hallucinations from improbable
bigram phrases with original tokenization (Incomplete
Tokens) and presegmented tokenization (Alternative
Tokenization). Reduction of hallucinations by alterna-
tive tokenization is denoted by ↓ when applicable.

For instance, the improbable bigram phrase “サー
ミ能” is normally tokenized into incomplete tokens
“サー<0xE3><0x83>” and “<0x9F>能”. However,
it can be presegmented to isolate the character
formed from stray bytes (“ミ”). We split the string
into three parts (“サー”, “ミ”, and “能”) and tok-
enize each separately. Afterwards, the tokens can
be appended together to create an alternative token
representation of the same phrase.

Compared to improbable bigrams, the alterna-
tive tokenization sequences can be suboptimal in
two important ways. First, these sequences cannot
be generated by the tokenizer, ensuring that they
are out-of-distribution for the model. Second, the
sequences consist of more than two tokens, requir-
ing the model to recall more tokens correctly to
repeat the phrase accurately.

Table 4 shows results of the experiment repeated
using the alternative tokenization scheme. De-
spite the suboptimalities of alternative tokenization,
most models, with the exception of Command-
R (discussed in Appendix B) show significantly
higher performance when alternative tokenization
is used. The same phrases tend to hallucinate sig-
nificantly less when alternative tokenization is used,
suggesting that the hallucinatory behaviors are be-
ing caused by the incomplete tokens.

6 Discussion

Risks of Unrepeatability We have used a set of
repetition-inducing prompts as a simple task that
identifies phrases that cause model failures. The
repetition failures, stemming from incomplete to-
kens, are possibly indicative of other robustness
failures linked to incomplete tokens. However, in
certain scenarios, non-repeatability itself can cause
real world harms. We highlight few such scenarios.
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• Reliable Code and Data Handling: When mod-
els interact with code or databases, they must
correctly preserve variable names or fixed val-
ues. If models are unable to preserve certain
phrases, they can compromise the integrity of
data.

• Adversarial unrepeatability: Adversaries may
exploit unrepeatable phrases to avoid inter-
vention from LLM agents. For instance, an
attacker can set their username to an unrepeat-
able phrases to evade a moderator agent.

• Model Fingerprinting: Since improbable bi-
grams are model-specific due to vocabulary
design, they could be used to fingerprint the
architecture behind a closed or anonymized
LLM service. This can facilitate sophisti-
cated targeted attacks on private LLMs (e.g.
adversarial triggers optimized for the target
architecture). This can also create implica-
tions for model evaluations that rely on model
anonymity (e.g. Chatbot Arena).

Circumvention Strategies Our findings suggest
that model developers should consider the conse-
quences of vulnerable tokenizer design. The vulner-
ability of incomplete tokens can be circumvented
by preventing incomplete tokens from entering the
final tokenizer vocabulary (before model training
begins). One method could involve vocabulary
pruning (Bauwens and Delobelle, 2024) after tok-
enizer training to remove incomplete tokens. An-
other method would be to constrain BPE merges to
respect character boundaries during tokenizer train-
ing (Land and Arnett, 2025). If full Unicode cov-
erage is not deemed necessary for a certain model,
developers may opt to choose tokenization at the
character-level before tokenizer-training. We hope
that demonstrating potential vulnerabilities of the
default byte-level BPE can motivate more careful
design of tokenizers.

7 Conclusion

Through improbable bigrams, we demonstrate vul-
nerabilities of incomplete tokens present in byte-
level BPE tokenizers. We conclude that incomplete
tokens are significantly more prone to hallucina-
tory behaviors compared to complete tokens. Our
findings suggest that model developers must be
mindful of potential unwanted behaviors caused by
incomplete tokens.

Limitations

This work provides evidence to suggest the fragility
of incomplete tokens. We assess phrase-level hal-
lucinations as a proxy for larger potential harms
of model misbehavior. We limit our investigations
to phrase-level hallucinations, rather than factual
hallucinations. While we occasionally observe that
the models confidently assert incorrect explana-
tions about what is likely non-existent terminology,
this was not possible to evaluate systematically.
One reason is that the tested phrases contain scripts
spanning many languages beyond the expertise of
the authors. Another is that the baseline levels of
factual hallucination when asked about ordinary
terms in low-resource languages are already very
high. In pilot experiments, we found that even mod-
els with high conversational fluency often make
mistakes in explaining non-existent terms.

Our findings on improbable bigrams causing hal-
lucinations were consistent in all 5 models. How-
ever, our secondary experiment on alternate tok-
enization did not cause improvements for the Co-
here Command-R model. It is difficult to isolate
which design choices of the model contributes to
this effect. One hypothesis is that the model’s sig-
nificantly larger vocabulary size, which is approxi-
mately double the other studied models, may have
impacted token training. We have also conducted
an analysis on the languages of the incomplete
bigrams as a possible explanation, but found it in-
conclusive. A more detailed investigation is left
to future work. There is a possibility that these
findings may be influenced by other unknown and
undocumented dependencies relating to tokenizer
parameters, training parameters, and training data.
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A Incomplete Bigram Construction

UTF-8 characters have a flexible number of bytes.
Each multi-byte character comprises of a starting
byte and continuation bytes. Starting bytes indi-
cate how many bytes the character is composed of.
For example, the starting byte of a 3-byte character
implies the following two characters will be con-
tinuation bytes. A more detailed explanation of the
UTF-8 protocol and byte structures can be found
in (Limisiewicz et al., 2024).

Using starting bytes and continuation bytes, we
can identify whether a byte sequence requires more
continuation bytes to be fulfilled or has excess con-
tinuation bytes. As illustrated in Figure 2, each in-
complete token can be analyzed for their structure.
We test all possible combinations of incomplete bi-
grams by pairing bigrams of complementary struc-
tures. We focus only on bigrams that users could
use to induce the intended incomplete bigram struc-
ture. Note that the resulting character of conjoined
bytes may not always correspond to a usable Uni-
code character. There is also a possibility that the
resulting phrase is tokenized into a different se-
quence of tokens. We test this by performing a
decode-encode test to ensure the resulting string is
valid and indeed tokenizes to the intended prefix
and suffix.

B Role of Languages in Improbable
Bigrams

We analyze the scripts of the improbable bigrams
used in the experiments. Note that the language
distributions of the tested improbable bigrams are
not indicative of all possible improbable bigrams
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in each model’s vocabulary, since the bigrams from
the experiments were selected from the top half
of the vocabulary when ordering by token trained-
ness (Section 4). Figure 3 shows the distribution
of languages of the improbable bigrams for each
model. We observe that improbable bigrams can
occur in a wide variety of languages, with higher re-
source multi-byte scripts such as Chinese, Korean,
and Russian being the most frequent. The diversity
of languages of hallucinations suggest there is no
significant influence caused by languages.

Models had different distributions of language-
pairs, which is influenced by both tokenizer train-
ing and model training. For instance, Exaone
had 17 unique language-pairs while Command-
R had only 3 unique language-pairs. Command-
R’s much larger tokenizer vocabulary may have
impacted the incomplete token selection. All of
the 100 bigrams for Command-R contained He-
brew characters. For comparison, there are no
tokens in the top-half of Llama3.1’s vocabulary
that resolve to Hebrew characters. Command-R
is also the only model analyzed with bigrams of
the Hebrew/Korean language-pair. Bigrams of this
language-pair constitute a majority of the tested im-
probable bigrams for Command-R, and performed
worse when using alternative tokenization.
Alternative Tokenization with Hebrew/Korean
The Command-R model’s improbable bigrams did
not show improvements when using alternative
tokenization. Figure 3 shows that alternative to-
kenization harmed performance for the 81 He-
brew/Korean bigrams. We investigate if the He-
brew/Korean language-pair is particularly prone to
hallucinations when using alternative tokenization.
We collect a total of 38 possible bigrams of this
language combination from the Llama3.1 vocabu-
lary. Repeating the experiments with Llama3.1’s 38
Hebrew/Korean bigram pairs, using alternative tok-
enization reduced hallucinations (20/38) compared
to regular tokenization (32/38). These results sug-
gest that Command-R’s unusual result with alterna-
tive tokenization was not caused by the language-
pairing of its improbable bigrams.
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(a) Improbable Bigrams

(b) Improbable Bigrams (alternative tokenization)

Figure 3: Language-pair distributions of the improbable bigrams used in experiments. Darkened colors indicate
improbable bigrams that cause hallucinations.
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