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Abstract
Hierarchical text classification aims to classify
documents into multiple labels within a hier-
archical taxonomy, making it an essential yet
challenging task in natural language process-
ing. Recently, using Large Language Models
(LLM) to tackle hierarchical text classification
in a zero-shot manner has attracted increasing
attention due to their cost-efficiency and flexi-
bility. Given the challenges of understanding
the hierarchy, various HTC prompting strate-
gies have been explored to elicit the best per-
formance from LLMs. However, our empirical
study reveals that LLMs are highly sensitive to
these prompting strategies—(i) within a task,
different strategies yield substantially different
results, and (ii) across various tasks, the rel-
ative effectiveness of a given strategy varies
significantly. To address this, we propose a
novel ensemble method, HiEPS, which inte-
grates the results of diverse prompting strate-
gies to promote LLMs’ reliability. We also
introduce a path-valid voting mechanism for
ensembling, which selects a valid result with
the highest path frequency score. Extensive
experiments on three benchmark datasets show
that HiEPS boosts the performance of single
prompting strategies and achieves SOTA re-
sults. The source code is available at https:
//github.com/MingxuanXia/HiEPS.

1 Introduction

Hierarchical Text Classification (HTC) (Sun and
Lim, 2001) is a significant but challenging task in
Natural Language Processing (NLP) that aims to
assign multiple labels to a document within a hier-
archical taxonomy. Unlike standard text classifica-
tion with a flat and limited label space, HTC deals
with complex label hierarchies, where higher-level
labels represent broader concepts, while lower-
level ones capture more specific subtopics. In
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Figure 1: An example of zero-shot HTC using GPT-
3.5 on WOS, where the ensemble of diverse prompting
strategies offers a stable and robust solution.

recent years, HTC has attracted growing atten-
tion from both academia and industry (Zhang
et al., 2025; Tabatabaei et al., 2024), driven by its
practical relevance in real-world applications such
as document organization (Kowsari et al., 2017),
product categorization in e-commerce (McAuley
and Leskovec, 2013), and information retrieval
(Lehmann et al., 2015).

Traditional HTC methods (Zhou et al., 2020;
Chen et al., 2021; Wang et al., 2022b) typically
train models on large amounts of labeled data
within a static taxonomy, rendering them resource-
intensive for data collection and re-training when
the taxonomy changes over time. Therefore, re-
cent studies have increasingly focused on zero-shot
HTC (Bhambhoria et al., 2023; Bongiovanni et al.,
2023; Paletto et al., 2024), where classification is
performed through pre-trained language models (Li
et al., 2024) without access to any labeled training
data. In particular, large language models (LLMs)
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Figure 2: The relative Micro-F1 of different prompting
strategies (see section 2.2 for details) under different
scenarios, showing LLMs are highly sensitive to them.
Given a task and an LLM, the relative Micro-F1 of
a prompting strategy is calculated by subtracting the
average Micro-F1 of all strategies from its own.

(Zhao et al., 2023) exhibit considerable promise for
zero-shot HTC, owing to their advanced capabili-
ties in language comprehension and generation.

In this work, we focus on zero-shot HTC using
LLMs, where the complexity of capturing the hi-
erarchical taxonomy makes prompt design one of
the most crucial issues in determining performance.
So far, different prompting strategies have been
explored to tackle the challenges of HTC, includ-
ing flattened (Bhambhoria et al., 2023), per-parent
(Chen et al., 2024), or global (Zhang et al., 2025)
prompting. While most existing works study these
strategies individually, our empirical studies reveal
that, LLMs are highly sensitive to prompting
strategy for HTC——as shown in Figure 2, (i)
within a single scenario, different prompting strate-
gies yield substantially different results; and (ii)
across different scenarios, the relative effectiveness
of a given strategy varies significantly. This in-
dicates that relying on the result from one single
prompting strategy often leads to unstable and un-
reliable performance in zero-shot HTC.

To address the instability of single outputs from
LLMs, one of the most widely adopted strategies is
ensembling. In particular, self-consistency (Wang
et al., 2023) integrates the results from different de-
coding paths and demonstrates superiority on hard
tasks, such as reasoning and code generation (Chen
et al., 2023). Nevertheless, this sampling-based
ensemble method is still confined to a single HTC
prompting strategy, thus remaining vulnerable to
LLMs’ prompt sensitivity, see discussion in sec-
tion 3.3. To this end, we propose a novel ensemble
framework for HTC called HiEPS, which ensem-
bles the results of diverse prompting strategies. As
shown in the example in Figure 1, by combining

results based on diverse interpretations of the label
hierarchy, HiEPS realizes the mutual complemen-
tarity of the advantages offered by these strategies,
thus improving LLMs’ stability and robustness for
HTC. Specifically, given the results from different
prompting strategies, we introduce a path-valid vot-
ing mechanism for integration that selects a valid
label path with the highest path frequency score,
which not only ensures the trustworthiness but also
improves the performance against majority voting.

Empirically, we validate the effect of HiEPS on
three benchmark datasets and various LLMs, show-
ing that HiEPS largely improves single prompting
strategies and establishes state-of-the-art perfor-
mance on HTC tasks. Besides, our cost analysis
indicates that although using multiple prompting
strategies makes HiEPS more computationally ex-
pensive, it can achieve significant improvements,
and we also introduce some options to reduce re-
source consumption; see Appendix A for details.

2 The Proposed Method

2.1 Preliminaries

Given a taxonomy structure T = (Y, E ,R), which
commonly takes the form of a tree, Hierarchi-
cal Text Classification (HTC) aims to classify a
document x into its label path y. Specifically,
Y =

⋃L
l=1 Yl denotes the node (label) set, where L

is the number of layers in the taxonomy structure
and Yl denotes the label set of layer l. E represents
the set of edges directed from the parent nodes
to their children nodes, and R denotes the root
node, i.e., the parent node of Y1. The taxonomy
path y = [y1, . . . , yL] is a list of L labels, where
yl ∈ Yl denotes its corresponding label for layer
l. Besides, the taxonomy structure can also be
a directed acyclic graph (DAG), where one node
can have multiple parents with different meanings,
which is more realistic. In this study, we focus
on zero-shot HTC using large language models
(LLMs), where we verbalize the label taxonomy
and prompt LLMs to classify the input documents.

2.2 Diverse Prompting Strategies

Due to the inherent complexity of hierarchical
structures, taxonomies can be verbalized in various
ways through different prompting strategies. In this
paper, we explore a range of prompting strategies
that encompass diverse perspectives in interpret-
ing the taxonomy, including local strategies that
transform HTC into simpler sub-tasks, and global
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Figure 3: Examples, advantages, and challenges of different prompting strategies. The taxonomy structure follows
the hierarchical tree in Figure 4.

strategies that emphasize a holistic understanding
of global information. A detailed overview of these
strategies, including their respective advantages
and limitations, is presented as follows:

Per-path prompting is a local strategy that sim-
plifies HTC into label path classification, aiming to
directly identify the correct label path from all pos-
sible paths in the taxonomy. This method simplifies
the model’s understanding of complex hierarchies
and mitigates the uncertainty in decision-making
across different layers. Nonetheless, the repeated
inclusion of non-leaf node descriptions often leads
to lengthy prompts, which can adversely impact
the model’s ability to process and understand the
input effectively.

Per-parent prompting is a local strategy that
reformulates HTC as a series of parent-node classi-
fication tasks. Specifically, starting from the root
node as the initial parent, the model classifies the
given sample into one of the current parent’s child
nodes. The selected child node then becomes the
new parent, and this process continues recursively
until a leaf node is reached. This method aligns
with the generation process of the label hierarchy
and benefits from a reduced decision space at each
step, which can notably improve classification ac-
curacy. However, this method is prone to error ac-
cumulation, as incorrect decisions at earlier stages
can propagate through subsequent classifications.

Flattened prompting is a local strategy that aims
to directly identify the correct label from all leaf
nodes in the taxonomy. The corresponding tax-
onomy path is then recovered by propagating the
selected leaf node to its ancestors. Note that we
only apply this strategy for tasks with tree struc-
tures, since tasks with DAG structures may incur
ambiguity during propagation. By concentrating

Label Taxonomy

Majority Voting

Layer 1: B(4) > A(1)

Layer 2: E(3) > C(1) = D(1)

Layer 3: H(3) > I(2) > F(0) = G(0)

Result: B-E-H

Path-Valid Voting

Path A-C-F: 0.11 * 0.12 * 03 = 0

Path A-C-G: 0.11 * 0.12 * 03 = 0

Path B-D-H: 0.81 * 0.22 * 0.63 = 0.006912

Path B-E-I: 0.81 * 0.62 * 0.43 = 0.018432

Result: B-E-I

A

C D

F

𝓡

G I

B

E

H

1 4

0

1 31

0 3 2

Different Ensemble Process

Correct node           Incorrect node       Frequency

Figure 4: An example of using majority voting and path-
valid voting for ensembling.

on the most fine-grained labels, this approach helps
the model bypass a complex understanding of inter-
mediate hierarchical levels. Nevertheless, it heav-
ily challenges the model’s capability to accurately
understand and differentiate nuanced semantic vari-
ations among fine-grained labels.

Two global strategies, Global-BFS and Global-
DFS, first present the full taxonomy structure using
breadth-first search (BFS) and depth-first search
(DFS), respectively, and then query the LLM to se-
lect the correct labels for the given sample. These
approaches leverage the full label hierarchy, al-
lowing the model to thoroughly understand inter-
label relationships and hierarchical dependencies.
Specifically, BFS facilitates better differentiation of
semantic meanings among labels at the same hier-
archy level, while DFS excels at guiding the model
through plausible label paths. The core challenge
of this strategy lies in its reliance on the model’s
capability to accurately process and interpret the
tree-structured descriptions.

2.3 HiEPS: Ensembling Prompting Strategies

Our preliminary study illustrated in Figure 2 shows
that LLMs are highly sensitive to prompting strate-
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Table 1: Ratios of invalid paths using majority voting.

GPT-3.5 Qwen2.5

WOS DBpedia Amazon WOS DBpedia Amazon

13.5% 12.4% 14.9% 10.5% 7.6% 24.2%

Figure 5: Comparison of Example-F1 scores between
majority voting results with valid paths and invalid ones.

gies in HTC, implying that relying on a single strat-
egy often leads to unreliable results. This is be-
cause the strengths and limitations of each strategy
manifest differently when applied across various
tasks or LLMs. To address this, we propose a sim-
ple yet effective method HiEPS, which ensembles
the results of diverse prompting strategies to com-
bine their respective strengths.

Formally, after prompting the LLM with differ-
ent strategies, we obtain a list of predicted label
paths P̂ . To ensemble these label paths into a fi-
nal prediction ŷ, we propose to conduct layer-wise
voting and reformulate P̂ into {Sl}Ll=1, where Sl

represents the list of predicted labels for layer l. An
intuitive way is to conduct majority voting individ-
ually on each layer, namely:

ŷl = argmax
y∈Yl

#{i|S(i)
l = y} (1)

where #{·} counts the number of elements in the
given set and S

(i)
l denotes the i-th element in Sl.

However, voting for each layer independently
may lead to results with invalid label paths, see the
statistics in Table 1 and the example in Figure 4.
This not only compromises the method’s trustwor-
thiness but also undermines the method’s effective-
ness, where Figure 5 demonstrates that the majority
voting results with invalid paths suffer from sub-
stantial degradation. The primary cause leading to
such invalid paths is that, given the complex and
large-scale label structure in HTC, LLMs some-
times fail to produce a valid path under a single
prompting strategy (see discussion in section 3.3),
and consequently reach invalid ensembled results.

To this end, we propose a novel path-valid voting
method for ensembling, which selects a valid label
path with the highest path frequency. Specifically,
the path frequency is defined as the product of the
frequencies of each label in the path:

PathFrequency(y) =
L∏

l=1

(
#{i|S(i)

l = yl}
|Sl|

)l

(2)
where |Sl| denotes the length of label list Sl. Note
that the frequencies are powered by their layer num-
bers to make the result more focused on the fine-
grained labels. The final results of path-valid voting
are then formalized as:

ŷ = argmax
y∈P

PathFrequency(y) (3)

where P denotes the set of all valid paths in the
hierarchical taxonomy.

Remark. Although HiEPS and Self-Consistency
(SC) (Wang et al., 2023) both first generate multiple
results and then integrate them, they have notable
distinctions: (i) HiEPS ensembles multiple prompt-
ing strategies, while SC relies on single prompting
strategies and performs ensembling by repeatedly
sampling. In essence, given the fact that LLMs are
highly sensitive to the choice of HTC prompting
strategies, the superiority of HiEPS stems from the
ability to incorporate multi-perspective structural
understanding for ensemble—something SC is in-
herently incapable of achieving on its own; (ii)
HiEPS adopts a path-valid voting mechanism dur-
ing the ensemble, which turns out to be more trust-
worthy and effective than simple majority voting
as implemented in SC. See section 3 and Appendix
B.1 for more experimental analysis.

2.4 Multi-answer Prompting
In addition to the prompting strategies introduced
in section 2.2 that have the LLM output a single
answer, we also investigate multi-answer prompt-
ing strategies, which allow the LLM to propose
multiple possible answers, improving the recall of
the correct labels1. Specifically:

Per-path-multi prompting queries LLMs to out-
put all possible label paths from the taxonomy.

Per-parent-multi prompting follows per-parent
prompting but allows the LLM to output multiple
possible labels for each step. During the process,

1The results of how multi-answer prompting improves the
recall of HiEPS can be found in Table 4.
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Table 2: Comparisons of Micro-F1 (%), Macro-F1 (%), and Example-F1 (%) using GPT-3.5. Average results over
three runs are reported. The best result is bold and the second best is underlined. ↑ means the improvement of
HiEPS over the best strategy (marked in red) of the eight ensembled strategies introduced in section 2.

Method
WOS DBpedia Amazon

Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1

BART-NLI 57.42 52.32 57.42 71.60 62.76 71.60 22.83 8.45 22.83
BART-NLI+LLM 61.95 51.83 61.92 85.33 79.38 85.20 35.96 15.96 34.29
UP 62.90 49.41 62.90 78.14 63.38 78.14 38.68 13.86 38.69
HiLA+UP 57.74 43.92 57.74 79.03 65.37 79.03 44.16 16.79 44.16

Per-path 59.77 50.53 58.62 80.43 70.00 79.70 60.37 24.73 59.96
Per-parent 57.21 45.52 56.14 78.40 64.10 76.41 62.30 25.86 61.91
Flattened 58.65 47.23 55.02 82.06 75.67 78.93 - - -
Global-BFS 57.65 48.09 56.63 74.54 66.34 73.48 59.98 22.50 59.49
Global-DFS 57.79 49.02 56.79 81.02 71.64 79.57 60.90 24.11 60.39
Per-path-multi 46.66 42.02 51.33 61.68 55.99 67.43 50.64 19.16 56.48
Per-parent-multi 48.96 47.66 50.35 63.43 61.27 65.65 55.07 23.97 57.60
Flattened-multi 50.68 47.47 51.81 69.02 66.08 71.58 - - -

CoT 57.73 45.50 57.08 82.20 73.68 80.51 64.24 26.86 63.66
SC with mv 58.88 45.49 58.41 84.62 76.40 83.43 65.64 26.87 64.92
SC with pvv 58.80 44.38 58.44 88.72 77.44 86.43 65.71 26.98 65.51
ToT 60.37 50.13 58.73 81.50 69.57 80.06 61.84 26.60 58.65

HiEPS 65.41 ↑5.6 55.11 ↑4.6 65.39 ↑6.8 91.87 ↑9.8 84.61 ↑8.9 91.87 ↑12.2 67.07 ↑4.8 29.99 ↑4.1 67.01 ↑5.1
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Figure 6: Examples of multi-answer prompting. The
taxonomy follows the hierarchical tree in Figure 4.

the chosen nodes become the new parent nodes,
and the union of their children is then used as the
candidate label set for the next step.

Flattened-multi prompting queries LLMs to
output all possible labels from all the leaf nodes
in the taxonomy tree. Like flattened prompting,
the results are obtained by propagating the selected
leaf nodes to their ancestors, and it is only applied
for tree-structured tasks.

Overall, the aforementioned local, global, and
multi-answer prompting strategies are used for the
ensemble in HiEPS. Figure 3 and 6 show examples
for each of them. Note that though the results
of multi-answer prompting are not label paths but
rather a subtree of the taxonomy, we directly use
this subtree for evaluation as well as frequency

calculation when ensembling. Besides, HiEPS is
not limited to these strategies and can be further
extended by incorporating others.

3 Experiments

3.1 Setup

Datasets and Evaluation Metrics. We conduct
experiments on the following three public datasets:
1) Web Of Science2 (WOS) (Kowsari et al., 2017)
consists abstracts of research papers which are la-
beled into a two-layer taxonomy tree, with 7 and
134 classes; 2) DBpedia3 (Lehmann et al., 2015)
consists of Wikipedia articles with a three-layer
taxonomy tree, with 9/70/219 classes; 3) Ama-
zon4 (McAuley and Leskovec, 2013) consists of
Amazon product reviews which are labeled into a
three-layer taxonomy DAG, with 6/64/472 classes.
For WOS and Amazon, we randomly sample 10%
of the full datasets for evaluation, namely, 4698
and 5000 samples. For DBpedia, which contains
hundreds of thousands of articles, we randomly
sampled 5000 for evaluation. Following previous
works (Chen et al., 2024; Zhang et al., 2025), we
use Micro-F1, Macro-F1, and Example-F1 as the
metrics for overall performance evaluation.

2https://huggingface.co/datasets/web_of_
science

3https://www.kaggle.com/datasets/danofer/
DBpedia-classes

4https://www.kaggle.com/datasets/kashnitsky/
hierarchical-text-classification
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Table 3: Comparisons of Micro-F1 (%), Macro-F1 (%), and Example-F1 (%) using Qwen2.5-14B.

Method
WOS DBpedia Amazon

Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1

BART-NLI 57.42 52.32 57.42 71.60 62.76 71.60 22.83 8.45 22.83
BART-NLI+LLM 56.64 44.96 56.63 73.90 68.23 73.83 33.17 12.00 32.44
UP 62.90 49.41 62.90 78.14 63.38 78.14 38.68 13.86 38.69
HiLA+UP 57.74 43.92 57.74 79.03 65.37 79.03 44.16 16.79 44.16

Per-path 62.27 49.95 61.50 86.83 77.19 86.60 53.24 19.68 52.67
Per-parent 58.46 48.07 58.38 77.87 63.14 76.22 58.40 24.40 57.21
Flattened 61.62 48.79 61.53 84.26 76.98 82.88 - - -
Global-BFS 56.26 42.84 55.57 71.18 60.18 68.31 48.61 14.31 47.25
Global-DFS 59.14 46.61 58.20 74.72 64.27 72.61 55.43 18.38 53.63
Per-path-multi 51.98 48.45 53.34 68.20 61.44 70.92 46.52 19.64 48.85
Per-parent-multi 46.68 46.73 47.51 60.85 51.82 61.60 47.90 19.83 46.87
Flattened-multi 51.42 46.12 51.98 65.55 55.14 67.82 - - -

CoT 57.34 42.94 57.17 83.69 70.89 82.53 60.70 20.86 58.25
SC with mv 58.57 44.83 58.47 86.42 74.98 85.67 62.44 21.71 59.87
SC with pvv 58.81 44.53 58.70 89.81 80.39 89.34 62.52 21.87 62.09
ToT 63.89 53.53 63.02 84.26 75.77 82.27 51.19 19.94 44.64

HiEPS 65.01 ↑2.7 53.80 ↑3.9 65.01 ↑3.5 92.33 ↑5.5 85.07 ↑7.9 92.33 ↑5.7 62.59 ↑4.2 25.38 ↑1.0 62.46 ↑5.3

Baselines. For a comprehensive comparison, we
exploit the following three types of baselines: 1)
Zero-shot HTC methods. BART-NLI (Yin et al.,
2019) transforms HTC into a textual entailment
task and BART-NLI+LLM (Bhambhoria et al.,
2023) first retrieves a few candidate labels through
pre-trained entailment predictors and then uses
LLMs for selection. UP (Bongiovanni et al., 2023)
adopts pretrained embedding models to calculate
the similarity between class names and leaf nodes,
and then up-propagates their relevance scores to the
full hierarchy for classification. HiLA+UP (Paletto
et al., 2024) first leverages LLMs to create a deeper
layer for the label hierarchy, and then adopts UP
on the augmented taxonomy. 2) LLM for zero-shot
HTC with different prompting strategies, as intro-
duced in section 2.2 for details. 3) LLM for zero-
shot HTC with advanced prompting techniques.
Zero-shot CoT (Kojima et al., 2022), based on
global-DFS prompting, employs chain-of-thought
prompting by adding "Let’s think step by step" be-
fore each answer. Self-Consistency (SC) (Wang
et al., 2023) first samples diverse label paths using
global-DFS5 with CoT prompting and then gen-
erates the results using majority voting (SC with
mv) or path-valid voting (SC with pvv). ToT (Yao
et al., 2023), like per-parent-multi prompting, se-
lects multiple possible children when classifying
parent nodes, and then identifies the true label from
all the selected leaf nodes where the label path
leading to that node is treated as the final result.

5Global-DFS is adopted as the base strategy for SC (and
CoT) since it offers the greatest potential for performance
improvements. Please refer to Appendix B.1 for more details.

Implementation Details. In our main experi-
ments, we exploit a closed-source model gpt-3.5-
turbo-0125 (GPT-3.5) and an open-source model
Qwen2.5-14B-Instruct (Qwen2.5) as the LLM for
zero-shot HTC. We also investigate the effective-
ness of HiEPS on more LLMs in section 3.4. We de-
ploy open-source models on NVIDIA RTX A5000
GPUs, while the closed-source models are accessed
through their official APIs. For the sampling-based
method self-consistency, we sample the decoding
path 10 times with a temperature of 0.8, and for
other LLM generation processes, the temperature
is set to a lower value of 0.5. For baseline BART-
NLI and UP, we use BART-Large-MNLI (Yin et al.,
2019) and mpnet-all (Reimers and Gurevych, 2019)
as the pre-trained language model, following their
original implementation.

3.2 Main Results

The comparison results of HiEPS with baselines
using GPT-3.5 and Qwen2.5 are shown in Table
2 and Table 3. Overall, HiEPS outperforms all
baselines on all tasks. For example, on DBpe-
dia, HiEPS improves the Micro-F1, Macro-F1,
and Example-F1 of the best baselines by margins
of 3.15%, 5.23%, and 5.44% when using GPT-
3.5, and 2.52%, 4.68%, and 2.99% when using
Qwen2.5. The superior results in all scenarios im-
ply the effectiveness of our proposed method.

Specifically, HiEPS largely improves the base-
lines based on pretrained entailment predictors
(BART-NLI and BART-NLI+LLM) or embedding
models (UP and HiLA+UP), especially on the hard
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Figure 7: The relative layer-wise accuracy of different
prompting strategies, where "L#" indicates the #-th layer.
Given a layer of a task, the relative layer-wise accuracy
of a prompting strategy is calculated by subtracting the
average accuracy of all strategies from its own.

task, Amazon, where HiEPS with GPT-3.5 out-
performs the best of them by margins of 22.91%,
13.20%, and 22.85% on the three metrics.

Also, HiEPS achieves significant improvements
over individual prompting strategies. In particular,
HiEPS improves the Example-F1 scores of the best
prompting strategy on WOS, DBpedia, and Ama-
zon by notable margins of 6.8%, 12.2%, and 5.1%
when using GPT-3.5, and 3.5%, 5.7%, and 5.3%
when using Qwen2.5. This indicates that HiEPS
effectively mitigates the instability of individual
prompting strategies, and the ensemble of them
can lead to better performance.

In terms of advanced prompting techniques, CoT
outperforms global-DFS prompting on DBpedia
and Amazon by thinking step by step. By sam-
pling and ensembling different decoding results,
the self-consistency-based method achieves better
performance than CoT, where SC with pvv outper-
forms SC with mv, indicating the significance of
obtaining a valid label path. Moreover, ToT outper-
forms per-parent prompting on WOS and DBpedia
by evaluating different child nodes. Even so, these
advanced prompting methods still underperform
HiEPS in all settings since they solely rely on one
prompting strategy.

3.3 Further Analysis
In this subsection, we conduct further analysis to
understand why the ensemble of diverse prompting
strategies can boost performance.

Complementarity Effects of HiEPS. We show
that different prompting strategies exhibit distinct
strengths at varying levels of the hierarchy, making
their integration achieve complementary effects to
boost performance. Specifically, we compare the

Figure 8: Comparison of the ratios of valid paths.

accuracies on each layer of the taxonomy when
applying these strategies using GPT-3.5, and visu-
alize the relative accuracy in Figure 7. As shown
in the heat map, per-path prompting achieves the
best result on the first layer of DBpedia, while
flattened prompting achieves the best on the other
two. Similarly, on Amazon, per-parent prompting
achieves the best result on the first two layers while
global-DFS achieves the best on the last one. These
phenomena can be attributed to the different prop-
erties of individual strategy (as discussed in section
2.2). By making an ensemble of their strengths,
HiEPS offers a robust HTC solution.

Comparison of the Ratios of Valid Paths. An-
other factor causing LLMs’ instability for HTC is
that using a single prompting strategy may result in
invalid label paths (including generating labels out-
side the taxonomy, although such instances are rela-
tively rare). As shown in Figure 8, most prompting
strategies failed to produce valid paths over 10% of
the time. This is because HTC tasks involve a large
number of labels and complex semantic structures,
making it difficult for LLMs to follow the hierar-
chical label relationships. Through the ensemble
of multiple results with a path-valid voting mecha-
nism, HiEPS effectively mitigates this issue, which
hardly produces any invalid paths, thereby enhanc-
ing its stability and trustworthiness. It is worth
noting that generating valid paths does not neces-
sarily equal high performance. For example, even
when applied with path-valid voting, SC with pvv
still remains suboptimal in certain scenarios, such
as WOS. This further highlights the importance of
HiEPS in integrating diverse strategies.

Comparison to Self-Consistency. Moreover, we
find that leveraging multiple prompting strategies
leads to more diverse and informative results com-
pared to SC, which uses multiple decoding re-
sults based on a single prompting strategy. In Ta-
ble 4, we report the recalls and the average num-
ber of predicted labels (#La.) of self-consistency

18207



Table 4: Comparisons of Recall and the average number of predicted labels (#La.) before ensemble.

Method
WOS GPT-3.5 WOS Qwen2.5 DBpedia GPT-3.5 DBpedia Qwen2.5 Amazon GPT-3.5 Amazon Qwen2.5

Recall #La. Recall #La. Recall #La. Recall #La. Recall #La. Recall #La.

Self-consistency 68.02 20.0 69.84 20.0 92.25 30.0 94.26 30.0 74.05 30.0 71.25 30.0
HiEPS w/o multi 76.77 10.0 77.16 10.0 96.27 15.0 96.64 15.0 75.67 12.0 71.17 12.0
HiEPS 91.46 21.8 87.67 21.6 98.41 28.6 98.74 29.9 81.00 20.6 78.68 20.8

Table 5: Comparisons of Micro-F1 (%), Macro-F1 (%), and Example-F1 (%) using different LLMs on Amazon.
The best result is bold and the second best is underlined. ↑ means the improvement of HiEPS over the best strategy.

Method
Llama3.1-8B-Instruct Ministral-8B-Instruct Qwen2.5-7B-Instruct GPT-4o-mini

Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1

Per-path 49.16 14.77 48.91 38.81 11.12 37.55 49.44 15.88 48.85 59.42 23.52 58.67
Per-parent 53.78 20.96 53.47 48.47 15.16 45.28 53.01 18.77 51.34 64.17 27.12 62.83
Global-BFS 50.32 13.40 49.17 33.44 5.71 31.99 42.77 10.95 41.70 59.87 22.17 59.34
Global-DFS 50.96 13.46 50.00 35.82 9.05 32.94 51.58 14.99 50.76 61.18 24.38 60.69
Per-path-multi 42.22 13.78 44.50 36.04 8.57 36.35 37.66 9.97 39.54 53.23 21.89 53.98
Per-parent-multi 45.76 18.99 47.58 42.70 9.15 40.70 44.75 8.41 44.23 53.98 24.99 53.24

HiEPS 59.25 ↑5.5 22.60 ↑1.6 59.24 ↑5.8 53.23 ↑4.8 17.59 ↑2.4 51.98 ↑6.7 56.40 ↑3.4 20.64 ↑1.9 55.99 ↑4.7 65.85 ↑1.7 29.04 ↑1.9 65.75 ↑2.9

Method
Claude 3.5 Haiku Gemini-2.0-Flash GPT-4o DeepSeek-R1

Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1

Per-path 54.70 19.25 53.53 69.82 33.76 69.62 67.67 32.84 66.18 67.83 29.95 67.80
Per-parent 64.43 28.27 62.87 66.72 30.73 66.14 69.04 31.70 67.53 68.69 32.80 68.67
Global-BFS 59.62 22.22 58.03 67.73 31.11 67.53 66.43 31.36 64.88 69.92 32.36 69.83
Global-DFS 58.06 20.27 55.77 68.91 31.81 68.59 69.34 33.16 68.03 70.12 32.44 70.04
Per-path-multi 57.83 27.05 61.15 66.07 31.92 67.94 61.23 27.29 64.49 64.42 30.09 67.50
Per-parent-multi 56.89 25.78 59.46 62.33 31.29 64.55 62.11 29.14 64.88 60.25 28.45 63.82

HiEPS 66.49 ↑2.1 30.24 ↑2.0 66.38 ↑3.5 70.71 ↑0.9 34.01 ↑0.3 70.70 ↑1.1 70.69 ↑1.4 34.05 ↑0.9 70.09 ↑2.1 71.57 ↑1.5 34.10 ↑1.3 71.57 ↑1.5

Table 6: Ablation studies of path-valid voting and multi-answer prompting in HiEPS.

Model Method
WOS DBpedia Amazon

Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1 Micro-F1 Macro-F1 Example-F1

GPT-3.5
HiEPS with mv 63.65 55.79 63.63 89.27 82.88 89.27 66.15 30.20 66.12
HiEPS w/o multi 63.19 52.85 63.07 90.79 83.84 90.72 65.76 28.52 65.69
HiEPS 65.41 55.11 65.39 91.87 84.61 91.87 67.07 29.99 67.01

Qwen2.5
HiEPS with mv 63.71 54.02 63.71 90.88 83.87 90.88 61.26 24.76 61.23
HiEPS w/o multi 63.72 52.59 63.72 90.93 82.85 90.93 62.10 24.97 61.44
HiEPS 65.01 53.80 65.01 92.33 85.07 92.33 62.59 25.38 62.46

and HiEPS before aggregating the results, where
HiEPS achieves much higher recalls on all tasks
but a smaller number of labels on most tasks. We
also report the results of HiEPS w/o multi, which
do not adopt multi-answer prompting. Though pro-
ducing much fewer labels, it still achieves higher
recalls compared to self-consistency on most tasks.

3.4 Results on More LLMs

We further validate the effectiveness of HiEPS on
more LLMs. Specifically, we compare HiEPS to
each of the ensembled prompting strategies on
Amazon using eight advanced LLMs: Three open-
source LLMs, including Llama3.1-8B-Instruct,
Ministral-8B-Instruct, and Qwen2.5-7B-Instruct;
Four General-purpose closed-source LLMs, includ-
ing GPT-4o-mini, Claude-3.5 Haiku, and Gemini-
2.0-Flash, which are cost-effective, and GPT-4o,
which is full-scaled; A reasoning-oriented LLM,

DeepSeek-R1 (671B). As shown in Table 5, HiEPS
demonstrates superiority across all the evaluated
LLMs, which highlights its success in unifying the
advantages of diverse prompting strategies.

3.5 Ablation Studies

In this section, we compare HiEPS with two of its
variants: 1) HiEPS with mv, which uses majority
voting instead of path-valid voting for ensembling,
and 2) HiEPS w/o multi, which does not apply
multi-answer prompting. As shown in Table 6,
HiEPS improves the Micro-F1 and Example-F1 of
HiEPS with mv on all scenarios. For Macro-F1,
HiEPS achieves better results on half of the sce-
narios while suffering from decrements of 0.21%-
0.68% on others. Despite this, HiEPS demonstrates
an overall enhancement, where its improvements
on the other two metrics surpass the minor reduc-
tion in Micro-F1. Moreover, SC with pvv also
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achieves better performance than SC with mv on
most tasks and metrics, see Table 2 and 3, which
clearly shows the effectiveness of path-valid voting.

Compared to HiEPS w/o multi, HiEPS achieves
superior results on all scenarios in all metrics.
Specifically, when using GPT-3.5 on WOS, HiEPS
outperforms HiEPS w/o multi by margins of 2.22%,
2.26%, and 2.32% in the three metrics. This stems
from the significant improvements in recall (see
Table 4 discussed above) when allowing LLMs to
output multiple possible answers.

4 Related Work

4.1 LLM for Hierarchical Text Classification

Existing methods explore various ways to use
LLMs for HTC. Bhambhoria et al. (2023) adopts
LLMs to select the most relevant labels from the
candidate labels retrieved by pre-trained entailment
predictors. Chen et al. (2024) applies per-parent
prompting with few-shot examples that are re-
trieved by the elaborately trained encoders. TELE-
Class (Zhang et al., 2025) proposed to query LLMs
to produce core classes in the pruned taxonomy.
Schmidt et al. (2024) proposed path-wise classifi-
cation aiming to select the most relevant label path
in the taxonomy. Despite directly adopting LLMs
for prediction, HiLA (Paletto et al., 2024) leverages
the LLM to create a deeper layer for the label hier-
archy, achieving finer-grained similarity matching
between documents and labels. In this paper, we
reveal that LLMs are highly sensitive to prompting
strategies and propose an ensemble framework to
boost performance.

4.2 Ensemble Methods in LLM

Ensemble methods (Lakshminarayanan et al., 2017;
Ganaie et al., 2022) aim to combine several individ-
ual models to obtain better generalization perfor-
mance. In the era of LLMs, ensemble techniques
have attracted increasing attention, where one of
the most representative methods, self-consistency
(Wang et al., 2023), aggregates the predictions sam-
pled from multiple decoding paths, demonstrating
notable effectiveness in many NLP tasks, such as
math word problem (Cobbe et al., 2021; Shen et al.,
2021b), reasoning (Wang et al., 2023; Weng et al.,
2023), code generation (Chen et al., 2023), un-
certainty estimation (Xiong et al., 2024), dialog
system (Thoppilan et al., 2022), and hallucination
mitigation (Zhang et al., 2024b). In addition to
sampling-based ensembles, other methods aim to

promote diversity by varying the inputs to LLMs,
including using different prompt templates (Zhou
et al., 2022; Zhang et al., 2024a), altering in-context
examples (Lu et al., 2022; Pitis et al., 2023), or
multi-lingual prompting (Qin et al., 2023). In this
paper, we propose a novel ensemble method that
combines diverse HTC prompting strategies, which
is orthogonal to existing ensemble methods.

5 Conclusion

In this paper, we propose HiEPS, a novel ensem-
ble method addressing the instability of LLMs in
zero-shot HTC. HiEPS integrates diverse prompt-
ing strategies, enabling mutual compensation of
their strengths, while the proposed path-valid vot-
ing guarantees the generation of valid label paths,
improving both performance and reliability. Ex-
tensive experiments demonstrate that HiEPS out-
performs individual strategies and achieves state-
of-the-art results on benchmark datasets. We hope
our work will inspire future research to explore
ensemble techniques for tackling complex tasks.

Limitations

In this paper, we explore the ensemble of diverse
prompting strategies for hierarchical text classifi-
cation using large language models. While these
strategies are intuitive and easy to implement, they
can be further improved through techniques like
label space pruning, taxonomy expansion, or incor-
porating more detailed descriptions of labels, and
we leave the exploration of them to future work.
Moreover, the proposed path-valid voting mecha-
nism assumes that each level of the hierarchy has a
single true label. When this assumption does not
hold, e.g., in multi-label per-level settings with un-
known label counts, this method requires further
adaptation to remain effective.

Ethical Considerations

While the HTC datasets used in our paper are all
publicly available and are widely adopted by re-
searchers, utilizing LLMs for prediction may in-
clude bias and unfairness. Indeed, if HiEPS is used
with such biased predictions, it may unpleasantly
yield unfair and biased predictions based on charac-
teristics like race, gender, disabilities, LGBTQ, or
political orientation. To alleviate this issue, we rec-
ommend that potential users first use bias reduction
and correction techniques to remove biased text
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and predictions so as to improve overall fairness
and ethical standards.
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A Cost Analysis

In this section, we conduct a cost analysis for
HiEPS. The primary cost of HiEPS lies in the input
side, and in our experiment, we have adopted the
input token caching technique to reduce the com-
putational cost by caching the prompting strategies
(instructions). This allows the model only to pro-
cess the given document for each new incoming
raw input, which has reduced more than half of
our time consumption. Based on this, we report
the average running time and cost per sample on
DBpedia using GPT-3.5 (0.5/1.5 USD per 1M in-
put/output tokens) in Table 7, indicating that:

1. HiEPS achieves superior performance while
incurring higher resource consumption, i.e.,
x3.3 running time and x2.6 cost compared
to the best baseline SC with pvv (n=10).

2. Simply increasing the computational over-
head of baselines is insufficient to match the
performance of HiEPS, where we upgrade
the best baseline SC with pvv by sampling
n=40 times, which surpasses the running time
and cost of HiEPS, while its performance still
falls behind HiEPS by a margin of 1.25%,
4.73%, and 2.75% on the three metrics.

3. HiEPS is a method that only involves LLM
inference, with a cost of less than 1 cent per
sample, making the overall cost modest.

HiEPS with prompting strategy selection. We
further introduce HiEPS-SS, namely, HiEPS with
prompting strategy selection, which selectively dis-
cards strategies to reduce resource consumption
under the scenario where a validation set is given.
During the selection, the strategies are ranked by
their contribution to HiEPS from least to most sig-
nificant, and progressively removed from HiEPS
in this order, until its performance drop on Micro-
F1 reaches 1% on the validation set. Note that

the contribution of each strategy is measured by
the performance drop when removing a strategy
from HiEPS on the validation set. As shown in Ta-
ble 8, while maintaining competitive performances
(performance drops of less than 1%), HiEPS-SS
can significantly reduce the resource consumption,
namely, with a reduction of about 50% compu-
tational cost and 25%~50% running time.

Furthermore, one can use taxonomy pruning
(Zhang et al., 2025), or fast inference techniques
like speculative decoding (Leviathan et al., 2023) to
further reduce the resource consumption of HiEPS.
We leave these explorations to future works.

B Additional Experimental Results

B.1 Self-Consistency with Different Base
Prompting Strategies

Since SC commonly integrates Chain-of-Thought
(CoT) prompting to support step-by-step thinking,
it aligns better with global strategies (global-BFS
and global-DFS), which are designed to encour-
age holistic structure understanding and decision-
making, rather than with local strategies (per-path,
per-parent, and flattened). In fact, global-DFS gen-
erally outperforms global-BFS, which is shown
in Figure 2. Therefore, we adopt global-DFS as
the base strategy for SC (as well as for CoT) in
our main experiments. The experimental results
in Table 9 further illustrate that global-DFS is the
strongest base strategy for SC, where it achieves
the best results on two of the three datasets.

In Table 9, we also show the results of other
prompting strategies combined with SC using GPT-
3.5 on WOS, DBpedia, and Amazon, where we
report the results of w/o SC (direct prompting),
SC-mv (SC with majority voting), and SC-pvv
(SC with path-valid voting). We perform n=40
samplings for SC to ensure that the resource con-
sumption of these baselines is at the same level as
that of HiEPS. For per-parent and flattened prompt-
ing, only majority voting is adopted, since path-
valid voting is not compatible with them. The
results indicate that, though applying SC (espe-
cially SC-pvv) can improve the performance of
direct prompting in most cases6, the performance
of SC with any single prompting strategy still lags

6In a few cases, SC-mv or SC-pvv slightly underper-
forms direct prompting, such as when using Global-BFS on
WOS and the Macro-F1 on WOS. We speculate that for such
knowledge-oriented tasks like WOS, the Chain-of-Thought
prompting in SC might interfere with the model’s ability to
make correct judgments.
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Table 7: The average running time and cost (per sample) of different methods on DBpedia using GPT-3.5.

Method Time (s) Input Tokens Output Tokens Cost (1e-3 USD) Micro-F1 Macro-F1 Example-F1

Per-path 0.8 1805 7 0.91 80.43 70.00 79.70
Per-parent 1.8 1111 6 0.56 78.40 64.10 76.41
Flattened 0.7 816 3 0.41 82.06 75.67 78.93
Global-BFS 0.8 1902 12 0.97 74.54 66.34 73.48
Global-DFS 1.0 2088 22 1.08 81.02 71.64 79.57
Per-path-multi 1.1 1826 8 0.93 61.68 55.99 67.43
Per-parent-muti 2.0 1134 6 0.58 63.43 61.27 65.65
Flattened-multi 1.0 837 4 0.42 69.02 66.08 71.58
CoT 1.8 2106 94 1.19 82.20 73.68 80.51
SC with pvv (n=10) 2.8 2106 813 2.27 88.72 77.44 86.43
ToT 2.1 1413 20 0.74 81.50 69.57 80.06
HiEPS 9.1 11518 67 5.86 91.87 84.61 91.87
SC with pvv (n=40) 13.9 2106 3294 5.99 90.62 79.88 89.12

Table 8: Results of HiEPS with prompting strategy selection (HiEPS-SS). #St. denotes the number of the adopted
strategies. Time ↓ and Cost ↓ indicate the reduction ratio of running time and cost, respectively. Experiments are
conducted using GPT-3.5.

Dataset Method #St. Micro-F1 Macro-F1 Example-F1 Time ↓ Cost ↓ Discarded Strategies

WOS
HiEPS 8 65.41 55.11 65.39 - - -
HiEPS-SS 4 65.16 54.19 65.11 50% 54% Per-parent, Per-path, Global-BFS, Global-DFS

DBpedia
HiEPS 8 91.87 84.61 91.87 - - -
HiEPS-SS 5 90.97 84.34 90.97 30% 48% Per-path-multi, Per-path, Global-BFS

Amazon
HiEPS 6 67.07 29.99 67.01 - - -
HiEPS-SS 4 66.18 29.42 66.11 25% 54% Per-path-multi, Per-path

Table 9: Comparisons of different prompting strategies combined with Self-Consistency using GPT-3.5. The best
result is bold and the second best is underlined. ↑ means the improvement of HiEPS over the best SC baselines.

Dataset Method
Micro-F1 Macro-F1 Example-F1

w/o SC SC-mv SC-pvv w/o SC SC-mv SC-pvv w/o SC SC-mv SC-pvv

WOS

Per-path 59.77 57.80 60.51 50.53 48.75 49.24 58.62 57.72 60.25
Per-parent 57.21 59.15 - 45.52 48.43 - 56.14 57.95 -
Flattened 58.65 59.14 - 47.23 46.27 - 55.02 58.38 -
Global-BFS 57.65 56.46 56.46 48.09 46.79 44.21 56.63 56.44 56.41
Global-DFS 57.79 58.89 58.74 49.02 45.80 44.19 56.79 58.61 58.60

HiEPS 65.41 ↑4.9 55.11 ↑4.6 65.39 ↑5.1

DBpedia

Per-path 80.43 81.52 84.27 70.00 70.00 73.69 79.70 80.63 82.44
Per-parent 78.40 82.98 - 64.10 69.51 - 76.41 81.69 -
Flattened 82.06 83.90 - 75.67 76.72 - 78.93 80.44 -
Global-BFS 74.54 79.56 87.92 66.34 70.30 76.98 73.48 78.64 86.00
Global-DFS 81.02 85.65 90.62 71.64 77.25 79.88 79.57 84.52 89.12

HiEPS 91.87 ↑1.3 84.61 ↑4.7 91.87 ↑2.8

Amazon

Per-path 60.37 61.69 64.36 24.73 25.59 26.44 59.96 61.63 63.78
Per-parent 62.30 62.61 - 25.86 27.08 - 61.91 61.70 -
Global-BFS 59.98 59.30 60.65 22.50 23.61 24.56 59.49 59.23 59.48
Global-DFS 60.90 66.01 66.08 24.11 27.76 27.85 60.39 65.30 66.05

HiEPS 67.07 ↑1.0 29.99 ↑2.1 67.01 ↑1.0

behind HiEPS, which highlights that a simple en-
semble over multiple decoding paths with a single
prompting strategy is insufficient to tackle the core
challenge of HTC, namely, understanding the hier-
archical structure and making decisions accurately.
In contrast, HiEPS achieves superior performance
by integrating the strengths of different prompting

strategies, enabling the model to comprehend the
hierarchical structure from multiple perspectives
and effectively integrate their decisions.

B.2 Heat Maps of Macro-F1 and Example-F1

Following the analysis of relative Micro-F1 scores
in Figure 2, we further present the heat maps il-
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(a) Comparison on WOS. (b) Comparison on DBpedia. (c) Comparison on Amazon.

Figure 9: Comparison with BERT trained on datasets of different sizes. The results of HiEPS are depicted with
dashed lines, whereas those of BERT are shown with solid lines.

(a) Comparison on relative Macro-F1.

(b) Comparison on relative Example-F1.

Figure 10: The relative Macro-F1 and Example-F1 of
different prompting strategies under different scenarios

lustrating the relative Macro-F1 and Example-F1
scores of different prompting strategies, in Fig-
ure 10. We observe that the differences among
strategies become even more substantial in terms
of Macro-F1. Overall, these results reaffirm the key
observations that: (i) within a single scenario, dif-
ferent prompting strategies result in notably diverse
performance; and (ii) across different scenarios, the
effectiveness of each strategy varies considerably.
This highlights the instability of relying on a single
prompting strategy for HTC with LLMs.

B.3 Comparisons with Supervised Method
We further compare HiEPS with the supervised
method to provide an intuitive illustration of the
current capabilities of LLMs in HTC. In particular,

we fine-tune BERT (bert-base-uncased) on datasets
of different sizes, using a binary cross-entropy loss
over the entire label space. We use an NVIDIA
RTX A5000 GPU to train the model for 50 epochs
with Adam optimizer with a learning rate of 3e−
5. The batch size is fixed as 32 with a maximum
sequence length of 512.

As shown in Figure 9, on the WOS dataset,
HiEPS attains comparable Example-F1 and Micro-
F1 scores to those of BERT trained with 2,000
labeled instances, while surpassing it in Macro-
F1. On DBpedia, HiEPS achieves Example-F1
and Micro-F1 results similar to BERT trained with
2,000 instances and matches the Macro-F1 per-
formance of BERT trained with 3,000 instances.
For the Amazon dataset, HiEPS performs on par
with BERT trained with 10,000 to 20,000 instances
in Example-F1 and Micro-F1 and notably outper-
forms BERT trained with 40,000 samples in Macro-
F1. These results suggest that, with the support
of HiEPS, LLMs can effectively substitute super-
vised methods under limited annotation budgets.
Furthermore, LLMs exhibit a particular strength
in handling long-tail categories, a prevalent chal-
lenge in HTC, thus yielding superior performance
in Macro-F1 compared to supervised counterparts.

C More Related Works

Hierarchical Text Classification methods based
on deep learning (Kowsari et al., 2017) can be
broadly categorized into local and global ap-
proaches, where local approaches use deep neural
networks as local classifiers to classify child nodes
(Kowsari et al., 2017; Shimura et al., 2018; Baner-
jee et al., 2019), while global approaches focus on
building a global classifier for the entire hierarchy,
such as using recursive regularization (Gopal and
Yang, 2013), Graph Neural Network (GNN)-based
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encoder (Huang et al., 2019), or joint document
label embedding space (Chen et al., 2021). Re-
cent methods based on pre-trained language models
(PLM) like BERT have demonstrated further perfor-
mance gains through prompt-tuning (Wang et al.,
2022b) or contrastive learning (Wang et al., 2022a).
However, these methods require large amounts of
labeled data, which is often expensive and time-
consuming to collect. To address this, recent works
have explored HTC under limited resources, includ-
ing weakly-supervised HTC (Meng et al., 2019;
Shen et al., 2021a; Zhang et al., 2025) that only
requires unlabeled training data, few-shot HTC (Ji
et al., 2023; Chen et al., 2024; Ji et al., 2024) which
requires a few labeled data, and zero-shot HTC
(Bhambhoria et al., 2023; Bongiovanni et al., 2023;
Paletto et al., 2024) which does not require any
training samples or labels. These methods leverage
the prior knowledge within PLMs to perform HTC
via similarity matching, entailment prediction, and
particularly, prompting large language models (Mi-
naee et al., 2024).

D More Discussions

Discussions on In-Context Learning. To en-
hance LLM’s reliability, another commonly used
method is to conduct in-context learning (Brown
et al., 2020), which leverages the model’s ability
to learn from examples provided in the prompt.
However, on the one hand, this technique requires
collecting few-shot labeled data, which is particu-
larly difficult for rare classes. On the other hand,
in-context learning is not as effective for HTC due
to the extreme semantic ambiguity in the expansive
hierarchical label sets (Chen et al., 2024). Chen
et al. (2024) address this issue through elaborately
trained encoders that promote the effectiveness of
similarity matching on fine-grained labels when
retrieving few-shot examples. In general, the in-
vestigation of in-context learning falls beyond the
scope of our study.

Distinction between HTC and Reasoning Tasks.
Moreover, we distinguish our proposed method
from reasoning-based approaches. While both
HTC and reasoning are complex tasks, their core
challenges differ fundamentally: reasoning focuses
on multi-step logical deduction, whereas HTC in-
volves comprehending the semantics and relation-
ships within the large and structural taxonomies.
To address this, HiEPS is specifically designed for
HTC, which leverages diverse perspectives to inter-

pret the label hierarchy and integrate their respec-
tive advantages. Empirically, we observe that ad-
vanced reasoning methods like Chain-of-Thought
prompting (Wei et al., 2022) are less effective for
HTC tasks that are knowledge-oriented, like WOS,
where HiEPS achieves notably stronger results.

E Full Prompt Design

The full prompt designs of different prompting
strategies are listed in Table 10 to 17.
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Table 10: Full prompts of per-path prompting on WOS.

You will be provided with an academic abstract, and please select its domain type from the following taxonomy paths: [civil engineering,
green building; medical science, birth control; electrical engineering, digital control; psychology, problem-solving; psychology,
schizophrenia; medical science, hepatitis c; biochemistry, enzymology; psychology, prejudice; medical science, fungal infection;
computer science, parallel computing; civil engineering, smart material; mechanical engineering, manufacturing engineering;
mechanical engineering, thermodynamics; civil engineering, water pollution; mechanical engineering, computer-aided design;
electrical engineering, state space representation; medical science, psoriasis; psychology, gender roles; medical science, dementia;
psychology, depression; medical science, alzheimer’s disease; civil engineering, ambient intelligence; medical science, migraine;
psychology, prenatal development; biochemistry, polymerase chain reaction; medical science, polycythemia vera; computer
science, symbolic computation; medical science, psoriatic arthritis; computer science, cryptography; electrical engineering,
pid controller; psychology, antisocial personality disorder; computer science, bioinformatics; medical science, senior health;
computer science, operating systems; psychology, borderline personality disorder; medical science, stress management; computer
science, algorithm design; medical science, hereditary angioedema; medical science, rheumatoid arthritis; psychology, false
memories; psychology, attention; medical science, hypothyroidism; medical science, parkinson’s disease; psychology, prosocial
behavior; medical science, digestive health; psychology, media violence; medical science, headache; medical science, idiopathic
pulmonary fibrosis; electrical engineering, system identification; medical science, atopic dermatitis; medical science, mental health;
medical science, hiv/aids; electrical engineering, electrical generator; medical science, menopause; civil engineering, remote
sensing; biochemistry, cell biology; medical science, emergency contraception; computer science, data structures; computer
science, distributed computing; electrical engineering, electrical circuits; psychology, seasonal affective disorder; medical science,
cancer; civil engineering, stealth technology; electrical engineering, operational amplifier; biochemistry, southern blotting; medical
science, medicare; medical science, overactive bladder; mechanical engineering, machine design; medical science, sports injuries;
electrical engineering, signal-flow graph; biochemistry, human metabolism; medical science, irritable bowel syndrome; computer
science, structured storage; electrical engineering, lorentz force law; medical science, anxiety; medical science, sprains and
strains; computer science, computer programming; biochemistry, immunology; mechanical engineering, hydraulics; computer
science, machine learning; medical science, osteoarthritis; electrical engineering, microcontroller; psychology, child abuse; medical
science, myelofibrosis; psychology, eating disorders; medical science, children’s health; medical science, skin care; computer
science, software engineering; medical science, osteoporosis; electrical engineering, electric motor; mechanical engineering, fluid
mechanics; medical science, multiple sclerosis; computer science, image processing; civil engineering, suspension bridge; medical
science, allergies; civil engineering, solar energy; computer science, network security; biochemistry, genetics; civil engineering,
construction management; electrical engineering, control engineering; medical science, smoking cessation; civil engineering,
rainwater harvesting; medical science, addiction; computer science, computer graphics; medical science, autism; psychology,
social cognition; biochemistry, northern blotting; computer science, computer vision; mechanical engineering, internal combustion
engine; electrical engineering, voltage law; electrical engineering, electrical network; biochemistry, molecular biology; psychology,
person perception; mechanical engineering, materials engineering; medical science, crohn’s disease; medical science, kidney
health; medical science, weight loss; medical science, heart disease; medical science, lymphoma; electrical engineering, electricity;
medical science, asthma; psychology, leadership; medical science, ankylosing spondylitis; medical science, low testosterone;
electrical engineering, analog signal processing; computer science, relational databases; medical science, atrial fibrillation; medical
science, bipolar disorder; medical science, diabetes; mechanical engineering, strength of materials; medical science, parenting;
medical science, healthy sleep; civil engineering, geotextile; psychology, nonverbal communication]. Just give the taxonomy path as
shown in the provided list.

Table 11: Full prompts of per-parent prompting on WOS.

Step 1

You will be provided with an academic abstract, and please select its domain type from the following categories: [mechanical engineering,
medical science, electrical engineering, computer science, civil engineering, biochemistry, psychology]. Just give the category
names as shown in the provided list. Each of these candidate categories contains a set of fine-grained sub-categories as follows: mechanical
engineering: (fluid mechanics, hydraulics, computer-aided design, manufacturing engineering, machine design, thermodynamics, materials
engineering, strength of materials, internal combustion engine); medical science: (alzheimer’s disease, parkinson’s disease, sprains
and strains, cancer, sports injuries, senior health, multiple sclerosis, hepatitis c, weight loss, low testosterone, fungal infection, diabetes,
parenting, birth control, heart disease, allergies, menopause, emergency contraception, skin care, myelofibrosis, hypothyroidism, headache,
overactive bladder, irritable bowel syndrome, polycythemia vera, atrial fibrillation, smoking cessation, lymphoma, asthma, bipolar disorder,
crohn’s disease, idiopathic pulmonary fibrosis, mental health, dementia, rheumatoid arthritis, osteoporosis, medicare, psoriatic arthritis,
addiction, atopic dermatitis, digestive health, healthy sleep, anxiety, psoriasis, ankylosing spondylitis, children’s health, stress management,
hiv/aids, migraine, osteoarthritis, hereditary angioedema, kidney health, autism); electrical engineering: (electric motor, digital control,
microcontroller, electrical network, electrical generator, electricity, operational amplifier, analog signal processing, state space representation,
signal-flow graph, electrical circuits, lorentz force law, system identification, pid controller, voltage law, control engineering); computer science:
(symbolic computation, computer vision, computer graphics, operating systems, machine learning, data structures, network security, image
processing, parallel computing, distributed computing, algorithm design, computer programming, relational databases, software engineering,
bioinformatics, cryptography, structured storage); civil engineering: (green building, water pollution, smart material, ambient intelligence,
construction management, suspension bridge, geotextile, stealth technology, solar energy, remote sensing, rainwater harvesting); biochemistry:
(molecular biology, enzymology, southern blotting, northern blotting, human metabolism, polymerase chain reaction, immunology, genetics, cell
biology); psychology: (prenatal development, attention, eating disorders, borderline personality disorder, prosocial behavior, false memories,
problem-solving, prejudice, antisocial personality disorder, nonverbal communication, leadership, child abuse, gender roles, depression, social
cognition, seasonal affective disorder, person perception, media violence, schizophrenia).

Step 2

You will be provided with an academic abstract, and please select its domain type from the following categories: [symbolic computation,
computer vision, computer graphics, operating systems, machine learning, data structures, network security, image processing,
parallel computing, distributed computing, algorithm design, computer programming, relational databases, software engineering,
bioinformatics, cryptography, structured storage]. Just give the category names as shown in the provided list. These candidate categories
belong to the same coarse-grained category: computer science.
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Table 12: Full prompts of flattened prompting on WOS.

You will be provided with an academic abstract, and please select its domain type from the following categories: [green building, birth
control, digital control, problem-solving, schizophrenia, hepatitis c, enzymology, prejudice, fungal infection, parallel computing,
smart material, manufacturing engineering, thermodynamics, water pollution, computer-aided design, state space representa-
tion, psoriasis, gender roles, dementia, depression, alzheimer’s disease, ambient intelligence, migraine, prenatal development,
polymerase chain reaction, polycythemia vera, symbolic computation, psoriatic arthritis, cryptography, pid controller, antisocial per-
sonality disorder, bioinformatics, senior health, operating systems, borderline personality disorder, stress management, algorithm
design, hereditary angioedema, rheumatoid arthritis, false memories, attention, hypothyroidism, parkinson’s disease, prosocial
behavior, digestive health, media violence, headache, idiopathic pulmonary fibrosis, system identification, atopic dermatitis,
mental health, hiv/aids, electrical generator, menopause, remote sensing, cell biology, emergency contraception, data structures,
distributed computing, electrical circuits, seasonal affective disorder, cancer, stealth technology, operational amplifier, southern
blotting, medicare, overactive bladder, machine design, sports injuries, signal-flow graph, human metabolism, irritable bowel
syndrome, structured storage, lorentz force law, anxiety, sprains and strains, computer programming, immunology, hydraulics,
machine learning, osteoarthritis, microcontroller, child abuse, myelofibrosis, eating disorders, children’s health, skin care, software
engineering, osteoporosis, electric motor, fluid mechanics, multiple sclerosis, image processing, suspension bridge, allergies,
solar energy, network security, genetics, construction management, control engineering, smoking cessation, rainwater harvesting,
addiction, computer graphics, autism, social cognition, northern blotting, computer vision, internal combustion engine, voltage law,
electrical network, molecular biology, person perception, materials engineering, crohn’s disease, kidney health, weight loss, heart
disease, lymphoma, electricity, asthma, leadership, ankylosing spondylitis, low testosterone, analog signal processing, relational
databases, atrial fibrillation, bipolar disorder, diabetes, strength of materials, parenting, healthy sleep, geotextile, nonverbal
communication]. Just give the category names as shown in the provided list.

Table 13: Full prompts of gloabl-BFS prompting on WOS.

You are a helpful assistant for the task of academic abstract classification on the Web Of Science dataset. This dataset has a hierarchical
labeling structure with two levels of labels:
Domains (Level 1):
[mechanical engineering, medical science, electrical engineering, computer science, civil engineering, biochemistry, psychology]
Subdomains (Level 2):
[fluid mechanics, hydraulics, computer-aided design, manufacturing engineering, machine design, thermodynamics, materials
engineering, strength of materials, internal combustion engine] (subdomains of mechanical engineering); [alzheimer’s disease,
parkinson’s disease, sprains and strains, cancer, sports injuries, senior health, multiple sclerosis, hepatitis c, weight loss, low
testosterone, fungal infection, diabetes, parenting, birth control, heart disease, allergies, menopause, emergency contraception, skin
care, myelofibrosis, hypothyroidism, headache, overactive bladder, irritable bowel syndrome, polycythemia vera, atrial fibrillation,
smoking cessation, lymphoma, asthma, bipolar disorder, crohn’s disease, idiopathic pulmonary fibrosis, mental health, dementia,
rheumatoid arthritis, osteoporosis, medicare, psoriatic arthritis, addiction, atopic dermatitis, digestive health, healthy sleep, anxiety,
psoriasis, ankylosing spondylitis, children’s health, stress management, hiv/aids, migraine, osteoarthritis, hereditary angioedema,
kidney health, autism] (subdomains of medical science); [electric motor, digital control, microcontroller, electrical network, electrical
generator, electricity, operational amplifier, analog signal processing, state space representation, signal-flow graph, electrical
circuits, lorentz force law, system identification, pid controller, voltage law, control engineering] (subdomains of electrical engineering);
[symbolic computation, computer vision, computer graphics, operating systems, machine learning, data structures, network security,
image processing, parallel computing, distributed computing, algorithm design, computer programming, relational databases,
software engineering, bioinformatics, cryptography, structured storage] (subdomains of computer science); [green building, water
pollution, smart material, ambient intelligence, construction management, suspension bridge, geotextile, stealth technology, solar
energy, remote sensing, rainwater harvesting] (subdomains of civil engineering); [molecular biology, enzymology, southern blotting,
northern blotting, human metabolism, polymerase chain reaction, immunology, genetics, cell biology] (subdomains of biochemistry);
[prenatal development, attention, eating disorders, borderline personality disorder, prosocial behavior, false memories, problem-
solving, prejudice, antisocial personality disorder, nonverbal communication, leadership, child abuse, gender roles, depression,
social cognition, seasonal affective disorder, person perception, media violence, schizophrenia] (subdomains of psychology);
You will be provided with an academic abstract, and please select its domain type and subdomain type from the above label hierarchy.
Separate the selected domain and subdomain by ’||’. Just give the category names as shown in the provided label hierarchy.

Table 14: Full prompts of gloabl-DFS prompting on WOS.

You are a helpful assistant for the task of academic abstract classification on the Web Of Science dataset. This dataset consists of seven
domains, each containing multiple subdomains. The domain label structure is as follows:
"computer science": [ "symbolic computation", "computer vision", "computer graphics", "operating systems", "machine learning",
"data structures", "network security", "image processing", "parallel computing", "distributed computing", "algorithm design",
"computer programming", "relational databases", "software engineering", "bioinformatics", "cryptography", "structured storage" ],
"medical science": [ "alzheimer’s disease", "parkinson’s disease", "sprains and strains", "cancer", "sports injuries", "senior health",
"multiple sclerosis", "hepatitis c", "weight loss", "low testosterone", "fungal infection", "diabetes", "parenting", "birth control",
"heart disease", "allergies", "menopause", "emergency contraception", "skin care", "myelofibrosis", "hypothyroidism", "headache",
"overactive bladder", "irritable bowel syndrome", "polycythemia vera", "atrial fibrillation", "smoking cessation", "lymphoma",
"asthma", "bipolar disorder", "crohn’s disease", "idiopathic pulmonary fibrosis", "mental health", "dementia", "rheumatoid arthritis",
"osteoporosis", "medicare", "psoriatic arthritis", "addiction", "atopic dermatitis", "digestive health", "healthy sleep", "anxiety",
"psoriasis", "ankylosing spondylitis", "children’s health", "stress management", "hiv/aids", "migraine", "osteoarthritis", "hereditary
angioedema", "kidney health", "autism" ], "civil engineering": [ "green building", "water pollution", "smart material", "ambient
intelligence", "construction management", "suspension bridge", "geotextile", "stealth technology", "solar energy", "remote sens-
ing", "rainwater harvesting" ], "electrical engineering": [ "electric motor", "digital control", "microcontroller", "electrical network",
"electrical generator", "electricity", "operational amplifier", "analog signal processing", "state space representation", "signal-flow
graph", "electrical circuits", "lorentz force law", "system identification", "pid controller", "voltage law", "control engineering" ], "bio-
chemistry": [ "molecular biology", "enzymology", "southern blotting", "northern blotting", "human metabolism", "polymerase chain
reaction", "immunology", "genetics", "cell biology" ], "mechanical engineering": [ "fluid mechanics", "hydraulics", "computer-aided
design", "manufacturing engineering", "machine design", "thermodynamics", "materials engineering", "strength of materials",
"internal combustion engine" ], "psychology": [ "prenatal development", "attention", "eating disorders", "borderline personality
disorder", "prosocial behavior", "false memories", "problem-solving", "prejudice", "antisocial personality disorder", "nonverbal
communication", "leadership", "child abuse", "gender roles", "depression", "social cognition", "seasonal affective disorder",
"person perception", "media violence", "schizophrenia" ]
You will be provided with an academic abstract, and please select its domain type and subdomain type from the above label hierarchy.
Separate the selected domain and subdomain by ’||’. Just give the category names as shown in the provided label structure.
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Table 15: Full prompts of per-path-multi prompting on WOS.

You will be provided with an academic abstract, and please select its all possible domain types from the following taxonomy paths: [civil
engineering, green building; medical science, birth control; electrical engineering, digital control; psychology, problem-solving;
psychology, schizophrenia; medical science, hepatitis c; biochemistry, enzymology; psychology, prejudice; medical science,
fungal infection; computer science, parallel computing; civil engineering, smart material; mechanical engineering, manufacturing
engineering; mechanical engineering, thermodynamics; civil engineering, water pollution; mechanical engineering, computer-
aided design; electrical engineering, state space representation; medical science, psoriasis; psychology, gender roles; medical
science, dementia; psychology, depression; medical science, alzheimer’s disease; civil engineering, ambient intelligence; medical
science, migraine; psychology, prenatal development; biochemistry, polymerase chain reaction; medical science, polycythemia
vera; computer science, symbolic computation; medical science, psoriatic arthritis; computer science, cryptography; electrical
engineering, pid controller; psychology, antisocial personality disorder; computer science, bioinformatics; medical science, senior
health; computer science, operating systems; psychology, borderline personality disorder; medical science, stress management;
computer science, algorithm design; medical science, hereditary angioedema; medical science, rheumatoid arthritis; psychology,
false memories; psychology, attention; medical science, hypothyroidism; medical science, parkinson’s disease; psychology,
prosocial behavior; medical science, digestive health; psychology, media violence; medical science, headache; medical science,
idiopathic pulmonary fibrosis; electrical engineering, system identification; medical science, atopic dermatitis; medical science,
mental health; medical science, hiv/aids; electrical engineering, electrical generator; medical science, menopause; civil engineering,
remote sensing; biochemistry, cell biology; medical science, emergency contraception; computer science, data structures; computer
science, distributed computing; electrical engineering, electrical circuits; psychology, seasonal affective disorder; medical science,
cancer; civil engineering, stealth technology; electrical engineering, operational amplifier; biochemistry, southern blotting; medical
science, medicare; medical science, overactive bladder; mechanical engineering, machine design; medical science, sports injuries;
electrical engineering, signal-flow graph; biochemistry, human metabolism; medical science, irritable bowel syndrome; computer
science, structured storage; electrical engineering, lorentz force law; medical science, anxiety; medical science, sprains and
strains; computer science, computer programming; biochemistry, immunology; mechanical engineering, hydraulics; computer
science, machine learning; medical science, osteoarthritis; electrical engineering, microcontroller; psychology, child abuse; medical
science, myelofibrosis; psychology, eating disorders; medical science, children’s health; medical science, skin care; computer
science, software engineering; medical science, osteoporosis; electrical engineering, electric motor; mechanical engineering, fluid
mechanics; medical science, multiple sclerosis; computer science, image processing; civil engineering, suspension bridge; medical
science, allergies; civil engineering, solar energy; computer science, network security; biochemistry, genetics; civil engineering,
construction management; electrical engineering, control engineering; medical science, smoking cessation; civil engineering,
rainwater harvesting; medical science, addiction; computer science, computer graphics; medical science, autism; psychology,
social cognition; biochemistry, northern blotting; computer science, computer vision; mechanical engineering, internal combustion
engine; electrical engineering, voltage law; electrical engineering, electrical network; biochemistry, molecular biology; psychology,
person perception; mechanical engineering, materials engineering; medical science, crohn’s disease; medical science, kidney
health; medical science, weight loss; medical science, heart disease; medical science, lymphoma; electrical engineering, electricity;
medical science, asthma; psychology, leadership; medical science, ankylosing spondylitis; medical science, low testosterone;
electrical engineering, analog signal processing; computer science, relational databases; medical science, atrial fibrillation; medical
science, bipolar disorder; medical science, diabetes; mechanical engineering, strength of materials; medical science, parenting;
medical science, healthy sleep; civil engineering, geotextile; psychology, nonverbal communication]. Separate your choices by ’||’.
Just give the taxonomy paths as shown in the provided list.

Table 16: Full prompts of per-parent-multi prompting on WOS.

Step 1

You will be provided with an academic abstract, and please select its all possible domain types from the following categories: [mechanical
engineering, medical science, electrical engineering, computer science, civil engineering, biochemistry, psychology]. Separate your
choices by ’||’. Just give the category names as shown in the provided list. Each of these candidate categories contains a set of fine-grained
sub-categories as follows: mechanical engineering: (fluid mechanics, hydraulics, computer-aided design, manufacturing engineering, machine
design, thermodynamics, materials engineering, strength of materials, internal combustion engine); medical science: (alzheimer’s disease,
parkinson’s disease, sprains and strains, cancer, sports injuries, senior health, multiple sclerosis, hepatitis c, weight loss, low testosterone,
fungal infection, diabetes, parenting, birth control, heart disease, allergies, menopause, emergency contraception, skin care, myelofibrosis,
hypothyroidism, headache, overactive bladder, irritable bowel syndrome, polycythemia vera, atrial fibrillation, smoking cessation, lymphoma,
asthma, bipolar disorder, crohn’s disease, idiopathic pulmonary fibrosis, mental health, dementia, rheumatoid arthritis, osteoporosis, medicare,
psoriatic arthritis, addiction, atopic dermatitis, digestive health, healthy sleep, anxiety, psoriasis, ankylosing spondylitis, children’s health,
stress management, hiv/aids, migraine, osteoarthritis, hereditary angioedema, kidney health, autism); electrical engineering: (electric motor,
digital control, microcontroller, electrical network, electrical generator, electricity, operational amplifier, analog signal processing, state space
representation, signal-flow graph, electrical circuits, lorentz force law, system identification, pid controller, voltage law, control engineering);
computer science: (symbolic computation, computer vision, computer graphics, operating systems, machine learning, data structures,
network security, image processing, parallel computing, distributed computing, algorithm design, computer programming, relational databases,
software engineering, bioinformatics, cryptography, structured storage); civil engineering: (green building, water pollution, smart material,
ambient intelligence, construction management, suspension bridge, geotextile, stealth technology, solar energy, remote sensing, rainwater
harvesting); biochemistry: (molecular biology, enzymology, southern blotting, northern blotting, human metabolism, polymerase chain reaction,
immunology, genetics, cell biology); psychology: (prenatal development, attention, eating disorders, borderline personality disorder, prosocial
behavior, false memories, problem-solving, prejudice, antisocial personality disorder, nonverbal communication, leadership, child abuse,
gender roles, depression, social cognition, seasonal affective disorder, person perception, media violence, schizophrenia).

Step 2

You will be provided with an academic abstract, and please select its all possible domain types from the following taxonomy paths:
[computer science, symbolic computation; computer science, computer vision; computer science, computer graphics; computer
science, operating systems; computer science, machine learning; computer science, data structures; computer science, network
security; computer science, image processing; computer science, parallel computing; computer science, distributed computing;
computer science, algorithm design; computer science, computer programming; computer science, relational databases; computer
science, software engineering; computer science, bioinformatics; computer science, cryptography; computer science, structured
storage; biochemistry, molecular biology; biochemistry, enzymology; biochemistry, southern blotting; biochemistry, northern
blotting; biochemistry, human metabolism; biochemistry, polymerase chain reaction; biochemistry, immunology; biochemistry,
genetics; biochemistry, cell biology]. Separate your choices by ’||’. Just give the taxonomy paths as shown in the provided list.
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Table 17: Full prompts of flattened-multi prompting on WOS.

You will be provided with an academic abstract, and please select its all possible domain types from the following categories: [green
building, birth control, digital control, problem-solving, schizophrenia, hepatitis c, enzymology, prejudice, fungal infection, parallel
computing, smart material, manufacturing engineering, thermodynamics, water pollution, computer-aided design, state space repre-
sentation, psoriasis, gender roles, dementia, depression, alzheimer’s disease, ambient intelligence, migraine, prenatal development,
polymerase chain reaction, polycythemia vera, symbolic computation, psoriatic arthritis, cryptography, pid controller, antisocial per-
sonality disorder, bioinformatics, senior health, operating systems, borderline personality disorder, stress management, algorithm
design, hereditary angioedema, rheumatoid arthritis, false memories, attention, hypothyroidism, parkinson’s disease, prosocial
behavior, digestive health, media violence, headache, idiopathic pulmonary fibrosis, system identification, atopic dermatitis,
mental health, hiv/aids, electrical generator, menopause, remote sensing, cell biology, emergency contraception, data structures,
distributed computing, electrical circuits, seasonal affective disorder, cancer, stealth technology, operational amplifier, southern
blotting, medicare, overactive bladder, machine design, sports injuries, signal-flow graph, human metabolism, irritable bowel
syndrome, structured storage, lorentz force law, anxiety, sprains and strains, computer programming, immunology, hydraulics,
machine learning, osteoarthritis, microcontroller, child abuse, myelofibrosis, eating disorders, children’s health, skin care, software
engineering, osteoporosis, electric motor, fluid mechanics, multiple sclerosis, image processing, suspension bridge, allergies,
solar energy, network security, genetics, construction management, control engineering, smoking cessation, rainwater harvesting,
addiction, computer graphics, autism, social cognition, northern blotting, computer vision, internal combustion engine, voltage law,
electrical network, molecular biology, person perception, materials engineering, crohn’s disease, kidney health, weight loss, heart
disease, lymphoma, electricity, asthma, leadership, ankylosing spondylitis, low testosterone, analog signal processing, relational
databases, atrial fibrillation, bipolar disorder, diabetes, strength of materials, parenting, healthy sleep, geotextile, nonverbal
communication]. Separate your choices by ’||’. Just give the category names as shown in the provided list.
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