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Abstract

Reasoning-focused large language models
(LLMs) are rapidly evolving across various do-
mains, yet their capabilities in handling com-
plex legal problems remains underexplored. In
this paper, we introduce Unilaw-R1, a large lan-
guage model tailored for legal reasoning. With
a lightweight 7-billion parameter scale, Unilaw-
R1 significantly reduces deployment cost while
effectively tackling three core challenges in the
legal domain: insufficient legal knowledge, un-
reliable reasoning logic, and weak business
generalization. To address these issues, we
first construct Unilaw-R1-Data, a high-quality
dataset containing ∼17K distilled and screened
chain-of-thought (CoT) samples. Based on
this, we adopt a two-stage training strategy
combining Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL), which signifi-
cantly boosts the model’s performance on com-
plex legal reasoning tasks and supports inter-
pretable decision-making in legal AI applica-
tions. To assess legal reasoning ability, we
also introduce Unilaw-R1-Eval, a dedicated
benchmark designed to evaluate models across
single- and multi-choice legal tasks. Unilaw-
R1 demonstrates strong results on authorita-
tive benchmarks, outperforming all models
of similar scale and achieving performance
on par with the much larger DeepSeek-R1-
Distill-Qwen-32B (54.9%). Following domain-
specific training, it also showed significant
gains on LawBench and LexEval, exceed-
ing Qwen-2.5-7B-Instruct (46.6%) by an av-
erage margin of 6.6%. Code is available at:
https://github.com/Hanscal/Unilaw-R1.

1 Introduction

In recent years, the rapid iteration of large language
models (LLMs) has significantly propelled the evo-
lution of artificial intelligence towards artificial gen-
eral intelligence (AGI). Models such as OpenAI’s
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o1-series (OpenAI Team, 2024) have enhanced
their ability for complex reasoning tasks by extend-
ing the length of the "chain-of-thought" through an
"exploration-reflection-iteration" mechanism. Sim-
ilar o1-like LLMs, such as QwQ (Qwen, 2025) and
Marco-o1 (Zhao et al., 2024b), have demonstrated
significant improvements across tasks like mathe-
matics, programming, and logical reasoning.

Although general reasoning models exhibit con-
siderable potential, their application in specialized
domains such as legal is limited. Legal reasoning
requires not only legal, economic and mathemati-
cal knowledge, but also step-by-step and verifiable
logic. Existing models face three major challenges:
(1) inconsistencies in legal data increase prepro-
cessing complexity and weaken reasoning (Koe-
necke et al., 2025; Mishra et al., 2025; Sheik et al.,
2024; Steging et al., 2023; Aumiller et al., 2021);
(2) the black-box nature of LLMs lack transparency,
falling short of traceability standards (Wang et al.,
2023; Zhao et al., 2024a; Tong et al., 2024; Chaud-
hary, 2024); and (3) insufficient legal knowledge
leads to unreliable or incoherent reasoning pro-
cesses (Blair-Stanek and Van Durme, 2025; Dahl
et al., 2024). Moreover, effective legal reasoning
must adhere to both the external validity of cod-
ified law and the internal procedural consistency
that ensures fairness and predictability in legal in-
terpretation (Zou, 2021; Raz, 2009; Fuller, 1969).

To address these, we introduce Unilaw-R1, a le-
gal reasoning LLM built upon a high-quality legal
dataset and optimized through a two-stage training
paradigm. Unilaw-R1 overcomes fragmentation,
opacity, and generalization issues in legal AI sys-
tems. Our key contributions are as follows:

• High-Quality Legal Reasoning and Eval
Dataset: We propose Unilaw-R1-Data and
Unilaw-R1-Eval datasets that constructed
from multiple-choice questions. These cover
a wide range of legal topics including civil
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law, criminal law, administrative law, and pro-
cedural law, providing a robust foundation for
training and evaluation in legal scenarios.

• Two-Stage Model Construction Frame-
work: We introduce a two-stage pipeline
involving Supervised Fine-Tuning (SFT) on
high-quality Chain-of-Thought (CoT) reason-
ing data, followed by Reinforcement Learning
(RL) with a legal validity reward function inte-
grated into GRPO. This design improves both
reasoning accuracy and legal conformity.

• Explicit Legal Iterative Inference: Unilaw-
R1 incorporates an iterative multi-agent in-
ference strategy, enabling advanced legal
decision-making and strong generalization
across diverse legal domains.

2 Related Work

The capabilities of large language models have
advanced rapidly through innovations in training
paradigms and reasoning strategies. The o1-series
models (Jaech et al., 2024) introduced iterative
"exploration-reflection" mechanisms that lengthen
the CoT process, thereby improving reasoning
depth. Subsequent efforts such as QwQ (Qwen,
2025), Marco-o1 (Zhao et al., 2024b) and Fin-R1
(Liu et al., 2025) extended this approach across
domains including logic, mathematics, and finance.
In the legal domain, compliant adaptations of o1-
class models, such as HK-O1aw and PatientSeek
(HKAIR, 2024; whyhow ai, 2025), have shown
the potential of LLMs in simulating human-like
legal reasoning. Yu et al. (Yu et al., 2025) further
pushed this frontier by employing test-time scaling
techniques to enhance performance on legal tasks.

Distinct from the above, DeepSeek-R1 (Guo
et al., 2025) takes an efficient reinforcement learn-
ing (RL) approach, training LLMs via thousands
of steps of unsupervised RL combined with a cold-
start corpus and multi-stage curriculum learning.
This strategy results in emergent reasoning capa-
bilities and improved readability, highlighting the
promise of RL in scaling inference power.

Despite significant advancements, applying
LLMs to the legal domain introduces unique chal-
lenges due to domain-specific constraints. Pre-
vious research has emphasized the necessity for
structured legal datasets, transparency, and reliable
performance across scenarios, areas where current
models still fall short. Unilaw-R1 addresses these

gaps through a domain-tailored, multi-stage train-
ing framework and an iterative inference strategy,
enhancing its capability to navigate the complexi-
ties of legal reasoning.

3 Approach

3.1 Overview

We propose a two-stage framework for legal reason-
ing model construction, as illustrated in Figure 1.
In the data generation stage, we construct a high-
quality legal reasoning dataset, Unilaw-R1-Data,
by leveraging a data distillation approach grounded
in DeepSeek-R1 and incorporating an LLM-as-
judge filtering mechanism (Xu et al., 2023) to en-
sure annotation consistency and reasoning rigor. In
the model training stage, we develop the Unilaw-R1
model based on Qwen2.5-7B-Instruct (Yang et al.,
2024), utilizing Supervised Fine-Tuning (SFT) in
combination with the Group Relative Policy Opti-
mization (GRPO) algorithm (Shao et al., 2024).
To further enhance reasoning performance, we
introduce an iterative inference mechanism with
a collaborative Assessor-Reviser agent setup, en-
abling the model to refine its reasoning trajectory
for more accurate, coherent, and legally sound out-
puts. The overall process ensures that the model
delivers structured, standardized outputs aligned
with professional requirements.

3.2 Data Construction

We aim to develop Unilaw-R1-Data, a high-quality
supervised fine-tuning dataset tailored for the le-
gal domain. To this end, we designed a compre-
hensive data construction pipeline that filters and
refines data for accuracy and reliability. We also
rewrite samples to align with the syllogistic rea-
soning framework common in legal analysis. As
shown in Figure 2, the pipeline includes Answer
Check, Chain Rewriting, Explanation Generation
and Chain Selection, where an LLM evaluates
DeepSeek-R1 outputs for correctness and scores
the reasoning paths to ensure logical coherence.

3.2.1 Data Source
Unilaw-R1-Data consists of objective question an-
swering entries in the legal domain, drawn from
two primary sources: the open-source JEC-QA
dataset (Yue et al., 2023) and proprietary data. JEC-
QA includes 26, 365 multiple-choice questions,
each with a question and four options. The propri-
etary portion includes 1, 700 multiple-choice ques-
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Figure 1: The pipeline for constructing Unilaw-R1. The diagram depicts the two-stage construction framework of Unilaw-R1:
Data Generation (using DeepSeek-R1 for reasoning to generate CoT data, followed by quality filtering with the DeepSeek-V3)
and Model Training (including SFT pretraining and GRPO optimization for Unilaw-R1).

tion answering entries from National Judicial Ex-
amination of China from year 2015 to 2021. These
were collected as PDFs, converted to markdown us-
ing Mineru (Wang et al., 2024), and structured into
question-answer pairs via regex-based extraction.
All entries were manually reviewed for accuracy.
From our proprietary data, 800 high-quality sam-
ples were retained to form the Unilaw-R1-Eval set
for model evaluation.

3.2.2 Data Processing

Unilaw-R1-Data was constructed through a rig-
orous, multi-stage process involving data distilla-
tion and filtering. The dataset do not contain any
answer explanations. To collect SFT examples,
we first distilled multiple-choice questions into a
question-thinking-answering format using the rea-
soning model DeepSeek-R1, following its official
parameter configurations during distillation.

Data filtering comprises four key components:
Answer Check, Chain Rewriting, Explanation
Generation and Reasoning Selection. In the
Answer Check stage, we retain only those re-
sponses that strictly align with the reference an-
swers. Specifically, any response generated by
DeepSeek-R1 that diverges from the ground truth
in the dataset is immediately excluded. We apply
exact match to ensure correctness.

For the exactly matched responses, we sampling
10% of it for Chain Rewriting. This component

focuses on restructuring intermediate reasoning
chains to ensure they conform to domain-specific
logic and legal standards. For the unmatched re-
sponses, we sampling 10% of it for Explanation
Generation to keep the diverse style. We input
both the question and corresponding answer into
DeepSeek-V3 and ask it to output the explanation
only. We integrate legal rules and definitions as
rewriting and explanating constraints to ensure the
reasoning paths remain consistent with normative
legal interpretations.

All generated chains from Chain Rewriting and
Explanation Generation modules, along with those
filtered by Answer Check module, are passed into
the Reasoning Selection phase to evaluate the plau-
sibility and legal soundness of multiple reasoning
trajectories using the instruction model DeepSeek-
V3 (Liu et al., 2024). Responses are scored based
on their adherence to legal reasoning principles,
such as the correct application of rules, consistency
with precedent, and logical coherence. These di-
mensions were employed to comprehensively eval-
uate the model’s reasoning trajectory data. The
model’s reasoning path must not only lead to the
correct answer but also demonstrate a valid and
interpretable argumentative structure. When multi-
ple valid paths exist, we prioritize those that align
more closely with recognized legal standards and
practices. Further details on the experimental setup
and findings are provided in Appendix A.
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Figure 2: The pipeline of Data Construction (Stage 1): (1) Data Distillation, (2) Data Filtering, including Answer Check and
Reasoning Selection, Chain Rewriting, and Explanation Generation. "Reasoning" represents the reasoning output, while "Model
Response" refers to the evaluation process of the judgment model.

3.2.3 Data Statistics
After the data processing, we scored and filtered
the reasoning paths, retaining only high-quality tra-
jectories to construct the Unilaw-R1-Data for super-
vised fine-tuning, then randomly selected 8,000 QA
entries — half from the unselected pool and half
from Unilaw-R1-Data — for reinforcement learn-
ing. The Unilaw-R1-Data and Unilaw-R1-Eval
datasets is presented in Table 1. The table system-
atically details the descriptions of these datasets,
including the data used stage, the question type,
and average token length distribution of prompt,
chain of thought reasoning and answer.

The datasets include both knowledge-driven
questions and case-based questions. Knowledge-
driven questions assess the understanding of le-
gal concepts, while case-based questions focus
on the logical analysis of real-world legal scenar-
ios. These two categories comprehensively cover a
wide range of legal business scenarios. For evalu-
ation, Unilaw-R1-Eval is categorized into knowl-
edge and case-based subsets, and each question is
also labeled with its specific legal domain, further
details are provided in Appendix A.5.

3.3 Training Method

Unilaw-R1 is first trained via Supervised Fine-
Tuning (SFT) using a high-quality legal reason-
ing dataset to enhance its reasoning ability. Build-
ing on this, we implement Group Relative Policy
Optimization (GRPO) reinforcement learning to
leverage legal question-answer data, incorporating

Stage Data Number Token Length

SC MC PRM THT ANS

Unilaw-R1-Data 9534 7001 332 723 228

Unilaw-R1-Eval 426 374 176 - 2

Table 1: The data statistics for Unilaw-R1-Data and Unilaw-
R1-Eval, including the number of single-choice (SC) and
multi-choice (MC) questions, as well as the average to-
ken lengths for prompts (PRM), chain-of-thought reasoning
(THT), and answers (ANS).

a triple reward mechanism to improve both the ac-
curacy of response formatting and content. The
Stage 2 in Figure 1 intuitively summarizes the com-
prehensive training framework, illustrating the syn-
ergistic integration of the supervised learning and
reinforcement learning components. Additional
details about the training setup can be found in
Appendix C.

3.3.1 Training Data Template
This section outlines the data training format and
its role in the subsequent training process.
SFT Training Data During the Supervised
Fine-Tuning (SFT) phase, each sample s in the
training dataset S comprises three components,
i.e., s = (x, c, y∗), where x denotes the ques-
tion, c represents the reasoning trace formatted
as <think>...</think>, and y∗ corresponds to
the answer, formatted as <answer>...</answer>.
During the SFT stage, x is used as the input of
the training set, c and y∗ are used as the output of
the training set. This phase enables the model to
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learn structured legal reasoning patterns, refining
its parameters to generate well-formed reasoning
traces and accurate answers.
RL Training Data During the reinforcement
learning (RL) phase, each sample s in the train-
ing dataset S consists of two components, i.e.,
s = (x, y∗), where x denotes the question and
y∗ represents the model’s output, which includes
only the answer without reasoning traces. Rein-
forcement learning further enhances output quality
by improving answer accuracy and ensuring com-
pliance with the expected format.

3.3.2 Supervised Fine-Tuning
We initially performed Supervised Fine-Tuning on
Qwen2.5-7B-Instruct using the LoRA efficient pa-
rameter tuning method to optimize key aspects of
legal reasoning. The fine-tuning was conducted on
the Unilaw-R1-Data dataset, incorporating a high-
quality CoT reasoning process. This fine-tuning
process effectively mitigated the reasoning failures
observed when applying the general-purpose model
to legal reasoning tasks. Following SFT, the model
not only exhibited improved performance in legal
reasoning but also learned to generate reasoning
trajectories in the <think>...</think> format.

3.3.3 Group Relative Policy Optimization
During the reinforcement learning phase, we
employ the Group Relative Policy Optimization
(GRPO) algorithm. In each training iteration, G
candidate outputs {oi}Gi=1 are sampled from the
old policy πold, each assigned a reward ri. The
group-relative advantage Ai then computed as:

Ai =
ri − µ{r}

σ{r}
, (1)

where µ{r} and σ{r} denote the mean and stan-
dard deviation of reward values within the group.
Outputs exceeding group averages receive higher
advantage values for prioritized optimization. The
policy update now maximizes the following objec-
tive function:

JGRPO(θ)= Es∼P (S), {oi}Gi=1∼πθold(O|s)

1

G

G∑

i=1

{
min

[
riAi, clip (ri, 1− ϵ, 1 + ϵ)Ai

]

− β DKL (πθ ∥πref)

}
,

(2)

where ri =
πθ(oi|v)
πθold (oi|v)

represents the importance
sampling ratio that quantifies the relative likelihood

of generating output oi under the new policy πθ
compared to the old policy πθold ; Ai denotes the
group-relative advantage, calculated by normaliz-
ing each reward with respect to the group’s mean
and standard deviation to emphasize outputs that
surpass the group average; the clipping operator
clip(·) restricts the update magnitude within the
trust region [1 − ϵ, 1 + ϵ] to avoid destabilizing
large parameter changes; the minimum operation
between the unclipped term riAi and its clipped
counterpart ensures a conservative update that bal-
ances aggressive improvements with training sta-
bility; and finally, DKL(πθ ∥πref) is the KL diver-
gence and β is the hyper-parameter.

3.3.4 Reward Function Design
In the process of training the reward model based
on GRPO, we employs three reward mechanisms:
accuracy reward, format reward and legal validity
reward.
Accuracy Reward We use the rule-based regular
expressions methods to extract the content within
the <answer>...</answer> tags from the model’s
output. This extracted answer is then compared
against a reference solution. If the output within the
<answer> tags is semantically consistent with the
reference answer, a reward score of 1 is assigned;
otherwise, it receives a score of 0. The accuracy
reward function is defined as follows:

RAcc(y, y
∗) =

{
1, if y = y∗

0, otherwise
(3)

where y is model’s output (from <answer>...
</answer> tags). y∗ is the standard answer.
Format Reward We encourage outputs that in-
clude a sequence of reasoning steps enclosed within
<think>...</think> tags and a concise final
answer enclosed within <answer>...</answer>
tags. A format incentive score of 1 is awarded if all
four tags appear exactly once with no extraneous
content outside these tags; otherwise, a score of 0
is assigned. The format reward function is defined
as follows:

RFmt(y) =

{
1, if the format matches
0, otherwise

(4)

where y denotes the model’s output. Format
matching indicates that the output strictly adheres
to the specified format by containing exactly one
pair of <think> tags and one pair of <answer>
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tags, with no additional content outside these tags.

Legal Validity Reward The precise and con-
textually accurate answers are essential in legal
scenarios. To ensure this, we employ an instruct
model to evaluate whether the reasoning model’s
output aligns with the intended legal solution. This
approach offers a more robust assessment com-
pared to traditional rule-based methods. The model-
based verifier plays a crucial role in ensuring the
correctness of responses, particularly in complex
and nuanced legal contexts.

The evaluation criteria in the prompt provided to
the LLM are largely aligned with those used in the
chain rewriting task, and more details are outlined
in Appendix B. These instructions include the ap-
plication of key legal principles, such as syllogism,
which follows a structure of a major premise (gen-
eral legal rule), a minor premise (specific case fact),
and a conclusion (legal inference). Additionally,
the model is required to adhere to formal legal ci-
tation standards. Based on the model’s output and
its adherence to the rules specified in the prompt,
the output score can be one of the following values:
2, 1, or 0. The score is determined by the extent to
which the model’s output aligns with the expected
answer. The legal validity reward function is thus
defined as follows:

RLegal(y, y
∗) =





2, if y consistent with y∗

1, if y partially consistent with y∗

0, otherwise
(5)

where y represents the model’s output (extracted
from the <think>... </think> tags), and y∗ is the
standard legal answer.
Total Reward The total reward is computed as
the weighted sum of the above rewards, formulated
as follows:

R = αRAcc + βRFmt + γRLegal, (6)

where α = 0.9, β = 0.1, and γ = 0.1.

3.4 Iterative Inference
To enhance response quality in legal language gen-
eration, we propose an iterative inference frame-
work, as shown in Figure 3. It consists of four main
stages: sampling, reviewing, refinement, and final
answer selection. The reviewing and refinement
stages involve a multi-agent setup, with separate
Assessor and Revisor agents. These two stages
are applied over n iterations to progressively refine
candidate responses.

3.4.1 Sampling Chains
Given an input prompt x, we first generate a set
of k diverse candidate responses using the post-
trained legal reasoning language model MUnilaw.
These candidates are generated by sampling with
different parameters to ensure diversity among the
outputs:

{y(0)i }ki=1 ∼ Sampling(MUnilaw(x), k) (7)

Here, y(0)i denotes the i-th candidate in the initial
generation batch (Iter = 0).

3.4.2 Assessing Candidate Responses

Each candidate y(t)i at iteration t is evaluated using
a Assessor agent K, which produces a step-wise
quality score and an actionable feedback:

fb
(t)
i = K(x, y

(t)
i ) (8)

The agent takes a chain as input, scores each
step, and then identifies problematic steps based on
these scores. Responses that fall below a predefined
threshold score are flagged for refinement, with
potential solutions for improvement in the next
stage. A one-shot prompt is provided to guide the
reviewer on how to score each step in the chain
and generate targeted feedback. The prompt for the
Assessor can be found in Appendix D.2.

3.4.3 Revising Problematic Responses
A Revisor agent F is then applied to the selected
low-quality responses to improve their relevance,
coherence, or correctness. For each low-scoring
candidate:

y
(t+1)
i =

{
F(x, fbti, y

(t)
i ), if s(t)i < τ

y
(t)
i , otherwise

(9)

By highlighting specific errors in the reasoning
chain, the targeted feedback enables the Revisor
to address mistakes more effectively, as it clearly
identifies which step are incorrect; We use 1-shot
prompt to teach the Revisor how to fix the error
and improve a reasoning chain based on targeted
feedback. The refined candidate are then passed
into the next review iteration. The prompt for the
Reviser is shown in Appendix D.2.

3.4.4 Final Answer Selection
This review-refine loop continues for n total iter-
ations. At the end of each iteration, we evaluate
whether the refined solutions represent an improve-
ment useing the outcome reward model (ORM).
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Figure 3: Iterative inference pipeline, consisting of four main stages: sampling, reviewing, refinement, and final answer selection.
The reviewing and refinement stages involve a multi-agent setup, with separate Assessor and Revisor agents.

Specifically, we compare the 2k reasoning chains -
k initial and k refined - and retain the top k based
on their global ORM scores. After the final iter-
ation t = n, the final answer is selected via self-
consistency over the retained top k chains. This it-
erative inference process effectively combines gen-
eration diversity with feedback-driven refinement
to produce high-quality legal responses.

4 Experiment

4.1 Datasets
We evaluate our model on Unilaw-R1-Eval dataset
and two additional Chinese legal domain multi-task
benchmarks: LawBench (Fei et al., 2024) dataset
and LexEval (Li et al., 2024). LawBench assesses
the legal capabilities of LLMs across three cogni-
tive levels: memory, understanding, and applica-
tion. It comprises 20 tasks with various formats,
including multiple-choice, extraction, generation,
and regression, simulating real-world legal sce-
narios such as statute prediction, case analysis,
and legal consultation. LexEval, the largest and
most comprehensive Chinese legal benchmarking
dataset, evaluates performance of LLMs across six
cognitive abilities defined by the LexCog taxon-
omy: memory, understanding, logical reasoning,
discrimination, generation, and ethics. It consists
of 14,150 entries across 23 legal tasks, providing a
diverse set for evaluating LLM performance.

We evaluate our model in zero-shot settings.
The inputs to the LLMs are only instructions and
queries. We use Accuracy and F1 to to evaluate
the Unilaw-R1-Eval data. For LawBench and Lex-
Eval datasets, we employ automated evaluation
methods tailored to the diverse task types within
their benchmarks, ensuring objective and consis-
tent assessment of large language models in legal
contexts.

4.2 Baselines
To comprehensively evaluate the reasoning ca-
pabilities of Unilaw-R1 in legal scenarios, we

conducted a thorough comparative assessment
against multiple baseline models. These models in-
clude DeepSeek-R1, DeepSeek-V3, DeepSeek-R1-
Distill-Qwen-32B, DeepSeek-R1-Distill-Qwen-
14B, DeepSeek-R1-Distill-Qwen-7B, Qwen-2.5-
32B-Instruct, Qwen-2.5-14B-Instruct, Qwen-2.5-
7B-Instruct, Unilaw-R1-SFT and Unilaw-R1-RL.
The selection of these models encompasses a spec-
trum ranging from lightweight to high-performance
architectures, taking into account factors such as
reasoning capability and computational resource
consumption. This comprehensive comparison
aims to provide a holistic evaluation the perfor-
mance of Unilaw-R1 within legal applications.

4.3 Main Results

Table 2 presents the results of our comprehensive
benchmarking evaluation across multiple legal busi-
ness scenarios. Unilaw-R1 demonstrated notable
performance advantages despite its lightweight
7B parameter size. Leveraging a two-stage train-
ing framework, it achieved an average score of
53.2%. Remarkably, Unilaw-R1 outperformed
all participating models of similar scale and even
achieved performance comparable to the much
larger DeepSeek-R1-Distill-Qwen-32B (54.9%).
Following domain-specific training, Unilaw-R1 ex-
hibited significant performance improvements in
other legal benchmarks such as LawBench, LexE-
val, surpassing Qwen-2.5-7B-Instruct (46.6%) by
an average margin of 6.6%.

Fine-tuning Qwen-2.5-7B-Instruct on Unilaw-
R1-Data and RL data resulted in the Unilaw-
R1-SFT and Unilaw-R1-RL models, with av-
erage performance improvements of 1.4% and
3.8%，respectively. These results demonstrate
strong cross-task generalization and effectiveness
in legal applications.

4.4 Ablation Study

We conducted an ablation study to assess the perfor-
mance impact of different inference strategies for
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Model Parameters LawBench LexEval Unilaw-R1-Eval Avg.(%)

DeepSeek-R1 671B 61.8 67.2 55.2 61.4
DeepSeek-V3 671B 61.3 65.7 50.6 59.2
DeepSeek-R1-Distill-Qwen-32B 32B 57.0 65.2 42.6 54.9
Qwen-2.5-32B-Instruct 32B 63.8 66.9 42.2 57.6
DeepSeek-R1-Distill-Qwen-14B 14B 51.8 54.8 24.0 43.5
Qwen-2.5-14B-Instruct 14B 58.3 64.3 29.4 50.6
DeepSeek-R1-Distill-Qwen-7B 7B 38.3 47.3 23.6 36.4
Qwen-2.5-7B-Instruct 7B 52.3 57.8 29.9 46.6

Unilaw-R1-SFT 7B 52.2 58.6 33.3 48.0
Unilaw-R1-RL 7B 54.2 60.6 35.6 50.4
Unilaw-R1 7B 56.6 63.5 39.5 53.2

Table 2: Accuracy evaluation of Unilaw-R1-SFT and Unilaw-R1 on different legal benchmarks.

Method
SC MC Avg.

Acc.(%) Acc.(%) F1 Acc.(%)

Zero-shot CoT 53.8 23.2 67.4 39.5
Best-of-k (k = 10) 62.3 25.7 67.9 45.2
Majority Vote 56.8 33.1 66.6 45.7

Iterative Infer. (Iter = 1) 65.5 33.4 71.9 50.5
Iterative Infer. (Iter = 2) 66.3 33.8 72.2 50.6
Iterative Infer. (Iter = 3) 65.7 34.3 71.3 51.0

Table 3: Performance comparison of Unilaw-R1 with different
inference methods on the Unilaw-R1-Eval benchmark.

the Unilaw-R1 model, as well as the convergence
behavior of various combinations of reinforcement
learning reward functions for the Unilaw-R1-SFT
model, using the Unilaw-R1-Eval benchmark.

As shown in Table 3, we compared zero-shot
CoT (Wei et al., 2022), best-of-k sampling, major-
ity vote (Wang et al.) and iterative inference meth-
ods across single-choice (SC) and multi-choice
(MC) tasks. The zero-shot CoT baseline achieved
53.8% accuracy on SC tasks and 23.2% on MC
tasks. Implementing best-of-k (k = 10) sampling
and majority vote led to improvements, raising
the average accuracy from 39.5% to 45.2% and
45.7%, respectively. The iterative inference ap-
proach demonstrated more substantial gains. With
a single iteration, SC accuracy increased to 65.5%
and MC to 33.4%. The performance gains form
further iterations were limited: the second itera-
tion achieved 66.3% accuracy on SC and 33.8% on
MC, while the third iteration reached 65.7% (SC)
and 34.3% (MC), respectively. These results indi-
cate that iterative inference significantly enhances
model performance, particularly in the first itera-
tion. However, additional iterations offer marginal
improvements, suggesting a trade-off between com-
putational cost and performance gains. Therefore,

Figure 4: Comparison of convergence behavior of Unilaw-R1-
SFT under different combinations of reinforcement learning
reward functions on the Unilaw-R1-Eval benchmark.

a single iteration of refinement may provide an
optimal balance for practical applications.

As shown in Figure 4, we also compared two
variants of Unilaw-R1-SFT: one with accuracy and
format rewards (Acc & Fmt), and one with an ad-
ditional legal reward (Acc & Fmt & Legal). The
latter showed faster convergence and higher ac-
curacy, highlighting the effectiveness of the legal
reward function.

5 Conclusion

We introduce Unilaw-R1, a legal-domain reason-
ing LLM that combines distilled chain-of-thought
data, a two-stage Supervised Fine-Tuning (SFT)
followed by Reinforcement Learning (RL) train-
ing pipeline, and iterative inference multi-agent
setup. This approach addresses data fragmentation,
opaque reasoning, and poor generalization, achiev-
ing strong performance on legal benchmarks. Ad-
ditionally, we propose a legal benchmark Unilaw-
R1-Eval, which plays a critical role in assessing the
model’s performance in real-world legal scenarios.
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Limitations

Despite notable advancements, our model faces
several limitations:
Limited Training Data Coverage: Currently,
training data is confined to objective legal multi-
choice questions, and it has not yet reached the sat-
isfactory target. Future training will be expanded
to a broader range of legal datasets.
Single-Modality Architecture: The model text-
only architecture hinders its ability to process le-
gal documents containing visual elements such as
charts and tables. We plan to consider multimodal
extension to address this limitation.
Insufficient Evaluation of CoT Reasoning: Our
current evaluation compares model outputs against
referenced answers but lacks analysis of the
model’s step-by-step legal reasoning. Future evalu-
ations will focus on assessing the model’s ability
to perform structured legal reasoning, such as syl-
logistic reasoning, to align with legal standards.

We are committed to addressing the aforemen-
tioned limitations, expanding our model’s applica-
tion to emerging domains, and promoting broader
adoption to strengthen legal risk management and
compliance, ultimately increasing real-world im-
pact and applicability.
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A Prompts of Data Construction

Throughout the data construction pipeline, we
designed prompts tailored to four critical stages:
data distillation, explanation generation, chain-of-
thought rewriting, and reasoning selection. These
prompts were carefully crafted to guide the model
in producing high-quality, logically consistent, and
legally grounded outputs at each stage.

A.1 The prompt of data distillation

In the data distillation phase, we drew inspiration
from the official prompt design of DeepSeek-R1
and adapted it to the legal domain. Our prompt,
illustrated in Figure 5, was designed to elicit clear,
structured reasoning traces from the base model.
It ensured that the distilled responses were both
informative and aligned with the expected chain-
of-thought (CoT) format, serving as foundational
supervision data for subsequent training stages.

Figure 5: The prompt of data distillation that we used for
DeepSeek-R1.

A.2 The prompt of explanation generation

During the initial stage of data screening, we ap-
plied a regex-based answer check to filter the re-
sponses. For those that failed this check, we uti-
lized the instruction-following model DeepSeek-
V3 to regenerate explanations, providing it with
the original question and answer as context. The
specific prompting strategy used for explanation
generation is illustrated in Figure 6.

A.3 The prompt of chain rewriting

To preserve reasoning diversity, we randomly sam-
pled 10% of the examples that passed the answer
check stage for chain rewriting. These samples
were then used to generate alternative reasoning
chains by leveraging the instruction-following ca-
pabilities of the DeepSeek-V3 model. Specifically,
we provided the model with the original question,

Figure 6: The prompt of explanation generation that we used
for DeepSeek-V3.

reference answer, and existing reasoning as context,
prompting it to reconstruct the reasoning process.
This approach introduces variation in logical path-
ways while maintaining answer consistency. The
detailed prompting strategy used for this reasoning
chain rewriting is illustrated in Figure 7.

A.4 The prompt of reasoning selection
Finally, to ensure the generation of high-quality
reasoning trajectories, we introduced a reasoning
selection data screening process. In this stage, we
proposed five specific evaluation criteria to assess
the model’s reasoning performance. These criteria
were carefully crafted to align with the core ele-
ments of effective legal reasoning. Furthermore, we
designed and refined the prompt shown in Figure
8 to guide the model toward generating accurate
and interpretable responses.

In the initial preprocessing step, we conducted
a detailed evaluation of the model-generated rea-
soning using the DeepSeek-V3 instruction model.
This evaluation followed five predefined judgment
criteria. For each reasoning output, a binary score
of 1 was assigned if it met the criterion, and 0 other-
wise. This binary scoring scheme (0/1) was applied
systematically to ensure the consistency, reliability,
and stability of the evaluation process.

A.5 The statistics of Unilaw-R1-Eval
The Unilaw-R1-Eval comprises 800 curated com-
parative question-answer pairs, and we further con-
structed in a fine-grained and domain-relevant man-
ner. These samples are categorized to reflect the
diverse challenges encountered in real-world le-
gal reasoning. More detailed statistics of question
types are summarized in Table 4.
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Figure 7: The prompt of chain rewriting that we used for DeepSeek-V3.

Figure 8: The prompt for reasoning selection that we used for DeepSeek-V3.

We provide a categorical statistical analysis of
the dataset through two concentric pie charts. Each
chart corresponds to one of the two question for-
mats included in the benchmark: single-choice
(SC) and multi-choice (MC).

As illustrated in Figure 9(a), the chart visualizes
the distribution of question types for the single-
choice tasks, divided into two main categories:

• Case-driven questions, which focus on logi-
cal reasoning and judgment over real or hypo-
thetical legal scenarios.

• Knowledge-driven questions, which test the
model’s mastery of legal definitions, statutes,
and normative concepts.

These above two categories represent comple-
mentary dimensions of legal AI: foundational legal
knowledge and applied legal reasoning. Together,
they cover a broad spectrum of legal domains al-
lowing for domain-specific performance insights,
as the outer ring shows. The legal subdomains
include "Criminal Law", "Criminal Procedure",
"Labor Law", "Commercial Law", "International
Law", "Constitutional Law", "Civil Law", "Civil
Procedure", "Legal History", "Jurisprudence", "In-
tellectual Property", "Economic Law", "Adminis-
trative Law", and "Administrative Procedure". This
layered categorization enables granular evaluation
of a model’s capabilities in both conceptual under-
standing and real-world legal problem-solving.
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As shown in Figure 9(b), the chart reflects the
distribution of multi-choice questions, which re-
quire models to evaluate multiple legal options
simultaneously. These tasks often demand more
comprehensive reasoning chains and sensitivity
to nuanced distinctions between legal provisions.
Similar to the single-choice chart, the inner ring
categorizes questions into knowledge-driven and
case-driven types, while the outer ring provides a
domain-level breakdown. The multi-choice ques-
tions particularly emphasize complex decision-
making scenarios, such as those involving over-
lapping legal principles or multiple liable parties.

By providing detailed categorization for both
question types and domain coverage, Unilaw-R1-
Eval offers a rigorous, fine-grained benchmark
for assessing legal-domain LLMs across knowl-
edge comprehension, reasoning reliability, and gen-
eralization capacity. This dual-structured evalu-
ation framework is instrumental for identifying
both model strengths and performance bottlenecks
across varied legal tasks.

Knowledge Case Total

Single-Choice 99 327 426
Multi-Choice 70 304 374

All 169 631 800

Table 4: The statistics of question types in Unilaw-R1-Eval.

B Prompt of Legal Validity Reward

To enhance the alignment of the model’s outputs
with legal correctness during reinforcement learn-
ing, we incorporate a model-based feedback mech-
anism. Specifically, we utilize an instruction lan-
guage model Qwen2.5-7B-Instruct as a verifier to
assess the quality of the reasoning trajectories gen-
erated by the policy model. This verifier evaluates
each response against predefined legal reasoning
criteria, including logical consistency, legal valid-
ity, and alignment with the expected legal outcome.

The model-based feedback is then used as a re-
ward signal in the RL fine-tuning stage, replacing or
complementing traditional rule-based or reference-
based reward designs. This strategy enables the
training process to dynamically adjust based on
nuanced legal judgments rather than relying solely
on static ground-truth answers. By leveraging the
LLM’s own legal reasoning capabilities, we intro-
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Figure 9: Distribution of question types and legal subdomains
in Unilaw-R1-Eval. The figure presents categorical statistics
for both single-choice (SC) and multi-choice (MC) legal ques-
tions. The inner rings distinguish between knowledge-driven
and case-driven types, while the outer rings represent their
distribution across legal subdomains.

duce a more flexible and context-aware reinforce-
ment signal that supports the development of high-
quality, legally sound responses.

The evaluation criteria used in the Legal Validity
prompt are largely consistent with those in chain-
of-thought rewriting, with an added emphasis on
syllogistic reasoning in legal contexts, applying
legal rules to case facts to derive conclusions.

• Choice Analysis: This emphasizes complete-
ness by systematically analyzing each option
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either sequentially or in groups, ensuring that
all answer choices are explicitly considered.
Inaccurate or incomplete analysis may indi-
cate failures in this structured deductive rea-
soning process, particularly when syllogistic
reasoning is required.

• Legal Format: This assesses the accuracy
and consistency of cited legal provisions, in-
cluding article numbers and their content,
which should align with official legal texts.
Additionally, it requires writing out the full
names of laws rather than abbreviations.

C Details of Training Setup

We provide detailed training configurations used in
both the Supervised Fine-Tuning (SFT) and Re-
inforcement Learning (RL) phases of Unilaw-R1.
In the SFT phase, we utilize LoRA to learn the
<think>...</think>\n\n<answer>...</answer>
format, with a LoRA rank of 8. In the RL phase,
we employ Group Relative Policy Optimization
(GRPO) with a group size of 4, which combines
a model-based reward signal with policy opti-
mization to ensure legal accuracy and reasoning
consistency. The reward signal is generated by a
verifier model (Qwen2.5-7B-Instruct) based on le-
gal principles. All our training and test results were
performed on machines equipped with 8×96GB
NVIDIA H20 GPUs. Key hyperparameters for
both stages are summarized in Table 5.

Parameter SFT RL(GRPO)

Batch Size 16 128
Epochs 5 1
Learning Rate 1.0e-4 1.0e-6
Warmup Ratio 0.1 0.03
Max Sequence Length 4096 4096
Gradient Accumulation 8 4
Optimizer AdamW AdamW
Weight Decay 0.01 0.01
LR Scheduler Cosine Cosine
Evaluation Interval 500 steps 10 steps
Reward Signal – Acc & Fmt & Legal
Reward Granularity – Step-level
Rollout Temperature – 1.0
Rollout Samples – 5
KL Coefficient (β) – 1.0e-2
Clip Parameter (ϵ) – 1.0e-6

Table 5: Training hyperparameters for SFT and GRPO stages.

D Details of Iterative Inference Setup

To enhance the model’s legal reasoning perfor-
mance through iterative refinement, we adopt a

multi-agent setup comprising two collaborative
components: an Assessor agent and a Reviser agent.
These agents operate in tandem to identify and cor-
rect reasoning flaws, enabling a more robust and
interpretable inference process.

D.1 Implementation details

We employ the Qwen2.5-7B-Instruct model to
serve as both the Assessor and Reviser in our itera-
tive inference framework. During the process, we
need to evaluate the outcome quality, the InternLM-
7B was selected as the outcome reward model
(ORM) to computing the chain-level scores. By de-
fault, we sample k = 10 reasoning chains in each
iteration, with the decoding temperature parampter
fixed at 0.9. The maximum number of iterations
is set to 3. We conducted comparative analyses
against three distinct methodological approaches:

• Zero-shot Chain-of-Thought (CoT): Gen-
erates a single reasoning chain per question
without subsequent aggregation.

• Best-of-k Sampling: Produces multiple can-
didate chains for each question and selects the
optimal output base on maximal ORM score.

• Majority Vote: Employs Self-Consistency
mechanisms to determine final answers
through consensus voting across multiple gen-
erated chains.

D.2 The prompt of iterative inference

Assessor Prompt: The Assessor is tasked with crit-
ically evaluating the initial reasoning output from
the Unilaw-R1 model. Its prompt is designed to
identify potential flaws in logic, incompleteness
in option analysis, and inconsistencies with legal
principles or cited laws. As illustrated in Figure
10, the Assessor highlights specific errors or weak-
nesses and provides structured feedback based on
the provided in-context learning question, solution
and feedback.
Reviser Prompt: The Reviser then utilizes both
the original reasoning and the Assessor’s critique to
produce an improved version. As shown in Figure
11, the prompt guides the model to incorporate the
Assessor’s feedback while preserving alignment
with the legal context and the original question in-
tent. The Reviser ensures that the revised output is
not only more accurate but also logically coherent
and legally compliant, using the provided one-shot
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Figure 10: The prompt for assessor the model answer that we used.

Figure 11: The prompt for revising the model answer that the one-shot in-context learning refined content comes at the end.

in-context learning example - including question,
solution feedback, and the refined solution.

Through multiple rounds of Assessor–Reviser
interaction, the system progressively refines its out-
put, achieving higher-quality legal reasoning. This
multi-agent collaboration mimics peer-review pro-
cesses and enhances both the correctness and ex-
plainability in legal decision-making.

D.3 Strategy in instruction model

We prompt the Qwen2.5-7B-Instruct model to
generate explicit reasoning traces enclosed in
<think>...</think> tags. Table 6 summarizes
the model’s performance under different inference
strategies, including zero-shot Chain-of-Thought
(CoT), Best-of-k sampling, Majority Vote, and our
proposed Iterative Inference method with varying
iteration steps (Iter = 1 to Iter = 3). Results

on the Unilaw-R1-Eval benchmark demonstrate
that Iterative Inference consistently improves per-
formance, achieving the highest overall accuracy
(35.9%) with three iterations.

Method
SC MC Avg.

Acc.(%) Acc.(%) F1 Acc.(%)

Zero-shot CoT 43.2 14.2 52.4 29.9
Best-of-k (k = 10) 52.1 10.2 56.0 32.5
Majority Vote 51.9 15.0 60.2 34.6

Iterative Infer. (Iter = 1) 53.1 15.8 61.2 35.6
Iterative Infer. (Iter = 2) 52.2 17.3 63.1 35.8
Iterative Infer. (Iter = 3) 53.3 16.1 61.8 35.9

Table 6: Performance comparison of Qwen2.5-7B-Instruct
with different inference methods on the Unilaw-R1-Eval
benchmark.
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