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Abstract

Chain-of-thought (CoT) prompting enhances
reasoning in large language models (LLMs) but
often leads to verbose and redundant outputs,
thus increasing inference cost. We hypothesize
that many reasoning steps are unnecessary for
producing correct answers. To investigate this,
we start with a systematic study to examine
what is the minimum reasoning required for a
model to reach a stable decision. We find that
on reasoning tasks like math, models typically
converge to their final answers after 60% of the
reasoning steps, suggesting substantial redun-
dancy in the remaining content. Based on these
insights, we propose three inference-time strate-
gies to improve efficiency: (1) early stopping
via answer consistency, (2) boosting the prob-
ability of generating end-of-reasoning signals,
and (3) a supervised method that learns when to
stop based on internal activations. Experiments
across five benchmarks and five open-weights
LLMs show that our methods significantly re-
duce token usage with little or no accuracy
drop. In particular, on NaturalQuestions, An-
swer Consistency reduces tokens by over 40%
while further improving accuracy. Our work
underscores the importance of cost-effective
reasoning methods that operate at inference
time, offering practical benefits for real-world
applications.

1 Introduction

Large language models (LLMs) exhibit strong rea-
soning capabilities through step-by-step generation,
known as chain-of-thought (CoT) reasoning (Wei
et al., 2022; Cobbe et al., 2021; Fang et al., 2024).
However, this approach often leads to unnecessar-
ily long and verbose reasoning traces, resulting in
high inference cost and latency. This overthink-
ing phenomenon has become a practical bottleneck,

'Additional details about the project are available on
its Hugging Face page: https://huggingface.co/spaces/
launch/reasoning_earlystop

Question:

Marilyn's first record sold 10 times as many copies as Harald's. If they sold 88,000
copies combined, how many copies did Harald sell?

Model Generation:

<think> Okay, so | need to figure out how many copies Harald sold. </think> 1000

</think> 8000
Converged!

Figure 1: R1-Qwen-32B converges early on a GSM8K
example, suggesting that later steps could be skipped.

especially in real-time or resource-constrained sce-
narios (Sui et al., 2025).

To improve reasoning efficiency, recent studies
have introduced methods that allow models to gen-
erate accurate answers with fewer steps. These
include reinforcement learning with length-aware
rewards (Luo et al., 2025; Hou et al., 2025), fine-
tuning on variable-length CoT traces (Han et al.,
2024; Xia et al., 2025), and prompt-based ap-
proaches that request concise reasoning (Xu et al.,
2025; Nayab et al., 2024; Han et al., 2024). These
methods typically require retraining on curated data
or task-specific prompt design. In contrast, we ex-
plore inference-time techniques that improve effi-
ciency without sacrificing accuracy. Particularly,
we hypothesize that LLMs often internally con-
verge on an answer before completing the full rea-
soning trace, an insight we formalize as answer
convergence. Recognizing such convergence can
enable more efficient inference by allowing early
stopping without sacrificing accuracy.

To investigate this, we start with a reasoning
model early-stopping study that systematically trun-
cates explicit CoTs to assess when the model’s an-
swer generated answer converges, i.e., when the
answer remains unchanged despite additional rea-
soning steps. Our experiments reveal that models
often converge well before completing the full rea-
soning chain, suggesting substantial redundancy
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and highlighting the potential for improving effi-
ciency through early stopping. Figure 1 shows an
example where the model answer converges early
despite receiving only partial reasoning, indicating
that the remaining steps contribute little to the final
prediction. As shown in Figure 2, this pattern holds
across five datasets, even on GPQA, a challenging
dataset, many examples converge early.

Motivated by this finding, we propose inference-
time strategies to dynamically truncate explicit rea-
soning based on the observation that models often
reach converged answers early: (1) Early stopping
via Answer Consistency, which halts generation
when consecutive reasoning chunks yield identical
answers; (2) Think Token Adjustment, which en-
courages models to signal early termination explic-
itly; and (3) a supervised approach, Learn-to-Stop,
which utilizes internal activations to predict optimal
stopping points. Our methods are model-agnostic,
require no additional training or LM modification,
and significantly reduce inference cost without sac-
rificing accuracy. Importantly, this method does not
require ground-truth answer labels, relying only
on self-consistency signals during inference.

We evaluate our methods on five reasoning
benchmarks using five open-weights LLMs. Re-
sults show that early stopping strategies substan-
tially reduce token usage. The supervised approach
(Learn-to-Stop) consistently maintains accuracy
across both simple and complex tasks, while the
two unsupervised methods offer strong efficiency
gains particularly on simpler datasets. Specifi-
cally, (1) Performance vs. token length: Learn-
to-Stop cuts up to 48% of tokens on NQ with
QwQ-32B, sometimes even improving accuracy,
suggesting that excessive reasoning may introduce
unnecessary noise. (2) Supervised vs. unsuper-
vised: Unsupervised methods work well on NQ
and GSM8K, while the supervised approach gen-
eralizes better to harder tasks like MATH-500 and
GPQA.

2 Related Work

Prior work on improving CoT reasoning efficiency
generally falls into four categories. Reinforcement
learning-based approaches encourage brevity by in-
troducing length-aware reward functions or adapt-
ing reasoning length to problem difficulty (Luo
et al., 2025; Hou et al., 2025; Shen et al., 2025).
Supervised fine-tuning methods compress reason-
ing traces by skipping unimportant tokens (Xia

et al., 2025), enforcing token budgets (Han et al.,
2024), or self-training models on shorter ratio-
nales through best-of-N sampling and few-shot
prompts (Munkhbat et al., 2025). Meanwhile,
prompt-based techniques guide models to gener-
ate minimal intermediate steps (Xu et al., 2025;
Aytes et al., 2025), or use routing mechanisms to
dynamically choose efficient reasoning paths or
backbones (Cheng et al., 2025; Ong et al., 2024).

In contrast to these methods, which rely on
training-time optimization on carefully designed
datasets or application-specific prompt design, our
work provides lightweight inference-time methods.
By identifying internal answer convergence, it en-
ables dynamic early stopping without requiring ad-
ditional training, model modifications, large-scale
labeled data, or task-specific prompts.

3 Preliminary

We investigate whether all steps of a reasoning
chain are necessary for the model to converge on
its predicted answer, and whether later steps can be
omitted without affecting the decision. To this end,
we first split the CoT into sentence-level chunks,
treating each sentence as a distinct reasoning step,
using the NLTK tokenizer (Bird et al., 2009). These
chunks are then incrementally concatenated (e.g.,
chunk1, chunk1+chunk2, etc.), each followed by
an end-of-reasoning token </think>. The model
is prompted to generate an answer from each par-
tial chain via greedy decoding. By tracking when
the model’s prediction remains unchanged across
successive reasoning steps, we identify the earliest
point of answer convergence, approximating the
minimum explicit CoT reasoning required for the
model to reach a stable decision.>

We apply this protocol to five tasks with
varying levels of reasoning: NaturalQuestions
(NQ) (Kwiatkowski et al., 2019), GSM8K (Cobbe
et al, 2021), MATH-500 (Lightman et al.,
2024), GPQA-Diamond (Rein et al., 2023), and
AIME’24%. NQ involves minimal reasoning as an
information-seeking task, while the others are math
and logic benchmarks of increasing difficulty, with
AIME’24 containing the most advanced problems.
Experiments are conducted using the R1-distilled

*We use “reasoning” in this paper primarily to refer to
explicit chain-of-thought (CoT) reasoning. While models may
also perform latent reasoning internally (Geiping et al., 2025;
Hao et al., 2024), our focus is on improving the efficiency of
the explicit reasoning process.

3https: //huggingface.co/datasets/
HuggingFaceH4/aime_2024
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Figure 2: Distribution of Answer Convergence Ratios
(ACRs) across tasks. Models often converge on their
answers early, suggesting that many generated steps
might be redundant from the model’s perspective.

Qwen-32B model (DeepSeek-Al, 2025)*. To quan-
tify when the model converges, we define the An-
swer Convergence Ratio (ACR) as the proportion
of the explicit reasoning chain required before the
predicted answer remains unchanged. Specifically,
we first split each CoT trace into sentence-level
chunks using the NLTK tokenizer, treating each
sentence as one reasoning step. The total number
of chunks for a given example defines the original
number of steps in the full reasoning chain. For
each instance, we incrementally reveal the reason-
ing steps and monitor the model’s output. We then
identify the earliest chunk at which the predicted
answer remains consistent through to the end. For
example, if the answer stabilizes at the 7th step out
of 10 total chunks, the ACR is 0.7.

Figure 2 displays the distribution of ACRs across
the five tasks. We observe that the model often
converges early, suggesting that many steps are un-
necessary. The ACR distribution peaks near 0.0 for
NQ, which means nearly no reasoning is needed for
the model to come up with its final answer, around
0.8 for GSM8K and MATH-500, and near 0.9 for
GPQA and AIME’24, mirroring the increasing rea-
soning loads. These results suggest that early stop-
ping is feasible and can reduce inference-time costs
without affecting answer quality.

4 Early Stopping at Inference Time

We propose three methods to improve reasoning
efficiency: two unsupervised approaches based on
answer consistency (§4.1) and decoding signals
(§4.2) and one supervised method (§4.3) that pre-
dicts when to stop reasoning without retraining the
LLM or modifying its parameters.

*Results for various models are provided in Appendix A.1.

4.1 Detecting Answer Consistency

Since LLMs often reach converged answers before
completing the full reasoning chain, we introduce
an unsupervised stopping criterion based on out-
put consistency. During decoding, we monitor the
model’s outputs and append the </think> token at
predicted natural sentence boundaries, prompting
it to produce an answer via greedy decoding. If
the same answer is produced for a fixed number k
of consecutive chunks, we consider the reasoning
converged and terminate further generation.

4.2 Think Token Adjustment

During decoding, the model uses the </think>
token to indicate the end of reasoning. Ideally, if
the model has reached the final answer, it should
generate this token early. However, we observe
that while </think> often ranks among the top 10
candidates after sentence boundaries, the model
tends to prefer tokens like wait, or, or but, which
unnecessarily prolong reasoning.

To address this, we boost the probability of
</think> during decoding by applying a linear
logit transformation®:

1
Y < Y + o (max(y) > v, (M)

lyl

where y;+ is the logit of the </think> token, o
controls the boost strength, y denotes all vocab-
ulary logits, y; denotes the logit of i-th token in
the vocabulary. This encourages the model to ter-
minate reasoning earlier when appropriate. The
added term increases the logit of </think> rela-
tive to the average logit, making it more competi-
tive when the model’s output distribution is peaked.
The term max(y) — mean(y) reflects how peaked
the model’s output distribution is. This adaptive
boost encourages early stopping only when the
model is confident, reducing the risk of premature
termination.

4.3 Learning When to Stop Reasoning

Recent work shows that LLLM activations encode
useful signals such as knowledge and confidence
(Kapoor et al., 2024; Liu et al., 2024). We hy-
pothesize that they also capture reasoning progress,
including when to stop. Specifically, the final-layer
activation h; may reflect both the model’s certainty
and the need for further computation.

SImplementation details are provided in Appendix A.3.
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NQ GSMSK MATH-500 GPQA AIME’24
Model Method
Acc.(%) T Tokens # | Acc.(%) T Tokens # | Acc.(%) T Tokens # | Acc.(%) T Tokens # | Acc.(%) T Tokens # |
Original 11.6 5223 81.0 180.7 91.0 1873.9 222 3131.2 56.7 10768.4
R1-Qwen-7B CCoT 124 349.5 (-33.1%) 80.0 179.4 (-0.7%) 88.7 1345.0 (-28.2%) 21.2 2230.7 (-28.8%) 533 8109.4 (-24.7%)
Answer Consistency 124 371.1 (-28.9%) 81.0 169.4 (-6.3%) 67.0  [N6201E669%  11.1 133 [ 13552 (-87.4%) |
Think Token Adjustment 11.8 406.7 (-22.1%) 75.8 158.2 (-12.5%) 65.0 1317.7 (-29.7%) 19.2 1894.0 (-39.5%) 36.7 6225.0 (-42.2%)
Learn to Stop 12.6 280.9 (-46.2%) 80.4 158.0 (-12.6%) 89.0 1356.1 (-27.6%) 22.2 2786.6 (-11.0%) - -
Original 35.0 5227 89.4 236.3 91.0 1958.8 333 3278.5 733 8471.5
R1-Qwen-32B  CCoT 372 305.4 (-41.6%) 934 239.2 (+1.2%) 88.0 1298.7 (-33.7%) 273 1928.6 (-41.2%) 60.0 4869.4 (-42.5%)
Answer Consistency 384 331.1 (-36.7%) 87.6 193.1 (-18.3%) 550 |EAOCECIIAN 141 13.3
Think Token Adjustment 382 426.8 (-18.3%) 87.6 221.2 (-6.4%) 68.0 954.0 (-51.3%) 24.2 1544.5 (-52.9%) 433
Learn to Stop 38.0 273.2 (-47.7%) 86.8 157.7 (-33.3%) 90.0 1621.1 (-17.2%) 303 2684.9 (-18.1%) - -
Original 20.6 426.8 78.6 401.3 79.0 2011.8 14.1 2546.0 40.0 7914.4
Rl-Llama-8B  CCoT 248 308.7 (-27.7%) 72.0 266.1 (-33.7%) 71.0 1683.3 (-16.3%) 122 1705.0 (-33.0%) 30.0 4060.8 (-48.7%)
Answer Consistency 224 336.3 (-21.2%) 69.2 319.8 (-20.3%) 560 [NSAIG(582%) 121 1138.6 (-55.3%) 167 | 1522.2(-80.8%) |
Think Token Adjustment 252 407.5 (-4.5%) 66.8 329.4 (-17.9%) 71.0 981.5 (-51.2%) 9.1 1558.1 (-38.8%) 233 3571.2 (-54.9%)
Learn to Stop 21.8 281.2 (-34.1%) 774 350.1 (-12.8%) 74.0 1801.8 (-10.4%) 13.1 2468.4 (-3.0%) - -
Original 504 417.2 90.6 291.2 91.0 1577.4 29.3 2419.8 56.7 49723
Rl-Llama-70B  CCoT 52.0 294.4 (-29.4%) 90.0 227.6 (-21.8%) 87.0 1101.5 (-30.2%) 293 1935.1 (-20.0%) 56.7 4235.9 (-14.8%)
Answer Consistency 54.4 273.5 (-34.4%) 86.2 235.4 (-19.2%) 65.0  [IS782F633%) 202 167 [ 1295.6 (-73.9%) |
Think Token Adjustment 52.0 378.5 (-9.3%) 88.6 279.5 (-4.0%) 85.0 1322.2 (-16.2%) 28.3 2164.6 (-10.5%) 533 4057.5 (-18.4%)
Learn-to-Stop 522 223.5 (-46.4%) 91.2 252.8 (-13.2%) 86.0 1204.1 (-23.7%) 303 2268.9 (-6.2%) - -
Original 41.6 646.0 96.8 755.1 98.0 2996.8 253 6557.9 76.7 12160.3
QwQ-32B CCoT 424 392.2 (-39.3%) 95.2 419.3 (-44.5%) 95.0 2266.7 (-24.4%) 22.3 4663.5 (-28.9%) 73.0 8890.2 (-26.9%)
Answer Consistency 43.0 355.3 (-45.0%) 89.0 342.6 (-54.6%) 590 |ICSEBICTRAN 152 200 | 2334.6 (-80.8%)
Think Token Adjustment 42.8 686.6 (+6.3%) 96.6 745.2 (-1.3%) 96.0 3055.7 (+2.0%) 313 6131.1 (-6.5%) 70.0 11489.6 (-5.5%)
Learn to Stop 43.0 335.9 (-48.0%) 96.6 418.9 (-44.5%) 93.0 2050.0 (-31.6%) 242 3988.3 (-39.2%) - -

Figure 3: Evaluation results on five reasoning tasks and five model families. For each task, the best and second-
best accuracies are shown in bold and underline, respectively. In the Tokens # columns, darker green indicates
lower inference cost. The percentage in parentheses denotes the relative reduction in generated tokens compared
to the original model. Our early stopping methods notably reduce tokens, with Learn-to-Stop offering the best
efficiency—performance tradeoff. For example, on the NQ task, using R1-Qwen-7B and QwQ-32B, the Learn-to-Stop
method achieves both the highest accuracy and the largest token reduction among all baselines, illustrating its strong

efficiency—performance tradeoff.

To leverage this, we train a supervised model to
predict optimal stopping points using the model’s
internal activations. Given the sequential nature of
reasoning, we use an LSTM to encode the activa-
tion sequence {hy, ..., hp}. Ateach chunk ¢, the
LSTM output z; is passed to a sigmoid classifier:
pr = 0(Wz, +b), where p; € [0, 1] represents the
probability of stopping at step .

Training labels are constructed by identifying the
earliest chunk where the predicted answer matches
the final answer and remains unchanged. Note that
our method does not rely on gold-standard answers,
enabling unsupervised training based solely on the
model’s self-predicted outputs. Chunks from that
point onward are labeled 1, and all earlier chunks
are labeled 0. We optimize a binary cross-entropy
loss:

T
1 . R
T Z [plog pr + (1 — p¢) log(1 — pi)]

t=1
2)
where p; € {0, 1} is the ground truth label, and
T is the number of chunks. At inference time,
reasoning stops when p; > 7, with threshold 7
tuned on validation data. This approach enables us
to utilize the model’s internal dynamics to improve
reasoning efficiency without training or modifying
the base LLM.

L

5 Experimental Setup

We evaluate our methods on the five tasks intro-
duced in §3, with dataset splits and statistics de-
tailed in Appendix A.2. Experiments are con-
ducted on five LLMs across three families: R1-
distilled Qwen and Llama (DeepSeek-Al, 2025),
and QwQ (Team, 2025). We report Accuracy
(Acc.), average generated tokens (Tokens #), and
token reduction (%) relative to the original model.
As baselines, we include the original model without
length control and Concise CoT (CCoT) (Nayab
et al., 2024), which constrains reasoning length us-
ing prompt token budgets. We follow their setup
by setting a fixed token budget.®

6 Results and Analysis

From the results in Table 3, we make the following
key findings:

Early stopping further improves performance
on tasks with low reasoning demand. On NQ,
which involves minimal reasoning, all early stop-
ping methods match or surpass the original model’s
accuracy while greatly reducing token usage. This
suggests that the original model may overthink and
generate unnecessary reasoning steps, which even

The implementation details and prompts are provided in
Appendix A.4.
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Question: Carlos is planting a lemon tree. The tree will
cost $90 to plant. Each year it will grow 7 lemons, which
he can sell for $1.5 each. It costs $3 a year to water and
feed the tree. How many years will it take before he starts
earning money on the lemon tree?

Original: To determine how many years ...... Solving for
n: n=$90/$7.5, n={12

Wait, let me double-check my calculations to make sure I
didn’t make a mistake ... That seems correct.
</think>\boxed{12}

Token #: 439

Learn to Stop: Okay, so Carlos is planting ...... Calculat-

ing that, 90 divided by 7.5 equals [ 12
</think>\boxed{12}

Token #:338

Model: R1-Qwen-32B

Table 1: Example from GSM8K comparing the original
model and Learn-to-Stop. The original generates redun-
dant reasoning after reaching |12, while Learn-to-Stop
terminates reasoning for a more concise response.

harms the performance. Manual inspection reveals
that the original model often overthinks, such as
adding unnecessary self-reflection or even revising
correct answers, whereas early stopping prevents
such degradation.” The early stopping methods
effectively mitigate this issue by terminating rea-
soning earlier, leading to improved performance.

Unsupervised methods are effective for sim-
pler tasks. On NQ and GSM8K, Answer Con-
sistency and Think Token Adjustment reduce to-
kens without harming accuracy, despite requiring
no additional training. However, on harder tasks
like MATH-500 and GPQA, their performance be-
comes less stable, indicating that shallow signals
like output consistency may be insufficient under
high reasoning complexity.®

Learn-to-Stop offers robust efficiency gains.
This supervised method consistently balances ac-
curacy and token savings across models and tasks.
For example, on GSM8K with QwQ-32B, it re-
duces tokens by 44% (755.1 to 418.9) with only a
0.2% drop in accuracy; on the harder task GPQA,
it cuts 39.2% tokens with comparable performance
(24.2% vs. 25.3%). Compared to CCoT, which ex-
plicitly enforces a token budget at the prompt level,
Learn-to-Stop achieves greater reductions while
maintaining or improving accuracy. This advan-
tage stems from its ability to leverage rich internal
model signals (e.g., hidden activations) to deter-
mine optimal stopping points. Unlike methods that

"Examples in Appendix A.7.
8The ablation study of answer consistency and think token
adjustment is provided in Appendix A.5.

rely on annotated answers or external supervision,
Learn-to-Stop infers training labels by detecting
when the model’s predicted answer stabilizes, en-
abling fully unsupervised training. As a result, it
generalizes well across tasks with varying reason-
ing complexity.

Since Learn-to-Stop operates purely at inference
time and keeps the prompt unchanged, it is compati-
ble with prompt-level strategies like CCoT, offering
opportunities for further gains through combina-
tion. Table 1 exemplify how Learn-to-Stop avoids
redundant reasoning while preserving output qual-
ity.?

7 Effect of Model Size

Our study covers five LLMs of varying sizes across
three families (Qwen, Llama, QwQ). As shown in
Table 3 and Appendix Figure 4, we observe two
consistent trends.

Convergence Dynamics. Larger models stabi-
lize on answers earlier, with ACR distributions
shifting leftward. For example, R1-Llama-70B re-
quires fewer reasoning steps to converge compared
to its 8B variant on NQ and GSMS8K. This is likely
because their enhanced capacity enables them to
synthesize information and resolve problem com-
ponents more efficiently internally, reducing their
reliance on generating an extended, explicit chain
of thought to reach a stable conclusion.

Efficiency Gains. Token savings also improve
with scale. Learn-to-Stop reduces tokens by 46.2%
on NQ for R1-Qwen-7B, versus 47.7% for R1-
Qwen-32B. Similarly, R1-Llama-70B achieves a
46.4% reduction compared to 34.1% for 8B. This
suggests that stronger models converge more confi-
dently and thus benefit more from early stopping.

8 Conclusion

We study how to reduce redundancy in chain-
of-thought (CoT) reasoning to improve LLM in-
ference efficiency. Across five benchmarks and
five open-weight LLMs, we find that answer con-
vergence often occurs early, revealing substantial
redundancy. Based on this, we propose three
inference-time methods that stop generation once
reasoning is sufficient. These methods cut token
usage by up to 40% without accuracy loss, offer-
ing a practical alternative to full-chain reasoning
without retraining or model changes.

9Examples of other datasets in Appendix A.7.1.
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Limitations

While our proposed early stopping strategies sig-
nificantly reduce inference cost with minimal or
no loss in accuracy, several limitations remain.
First, our methods rely on the assumption that the
model’s answer convergence correlates with the
correctness of the final output. However, conver-
gence does not guarantee correctness, especially
in tasks with higher reasoning complexity (e.g.,
GPQA and AIME). Second, by enabling models
to make predictions without observing the full rea-
soning trace, our approach may compromise the
faithfulness of reasoning. A manual analysis sug-
gests that most truncated traces remain aligned with
the final answer, though occasional unfaithful stops
do occur (see Appendix A.6 for details). Future
work should aim to jointly optimize for both faith-
fulness and conciseness, ensuring that reasoning
remains both efficient and trustworthy.
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A Appendix

A.1 ACR Distribution on Various Models

We present the ACR distributions for several mod-
els: Rl1-distilled Llama-8B, R1-distilled Llama-
70B, R1-distilled Qwen-7B, and QwQ-32B. The re-
sults are shown in Figure 4. All models exhibit sim-
ilar trends to the R1-distilled Qwen-32B baseline,
confirming their ability to produce stable answers
before completing the full reasoning chain. More-
over, tasks with higher reasoning demands tend
to correspond to higher ACRs. When comparing
distributions across models, we observe that larger
models generally achieve lower ACRs, suggesting
that they require fewer reasoning steps to converge
on an answer. This implies that larger models may
possess a more efficient internal reasoning process,
enabling them to reach final answers more quickly.

A.2 Dataset Splits and Statistics

For tasks with available training data (NQ and
GSMSK), we sample 1,000 examples for training
the supervised method and 100 for validation. For
tasks without predefined training data (MATH-500
and GPQA-Diamond), we reserve 100 examples as
the test set and split the remaining data into 80%
for training and 20% for validation. Due to the
limited size of AIME’24, which includes only 30
test examples, we evaluate only the unsupervised
methods on this task. The statistics for each task
are shown in Table 2.

A.3 Implementation of Early Stopping via
Boosting End of Think Token

To implement boosting of the </think> token, we
design a logit processor that adjusts the model’s
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Tasks Train Validation Test
NQ 800 200 3610
GSMSK 800 200 1319
MATH-500 320 80 100
GPQA-Diamond 78 20 100
AIME’24 - - 30

Table 2: Dataset statistics of each task.

output logits before sampling. Specifically, it in-
creases the logit of the </think> token accord-
ing to §4.2. Once the </think> is generated, the
processor is disabled to prevent further modifica-
tions. This mechanism allows the model to emit
the </think> token earlier if it has already reached
a confident answer. We integrate the logit proces-
sor into the VLLM framework (Kwon et al., 2023),
enabling efficient logit manipulation during decod-
ing without compromising throughput. We run
all experiments three times and report the average
results.

A.4 Implementation Details

When applying early stopping via answer consis-
tency, we empirically set the number of consecutive
chunks £ to 10. For early stopping via boosting, we
set the hyperparameter a to 0.6. Regarding the su-
pervised method, we use a single-layer LSTM with
128 hidden units and a dropout rate of 0.1. The
model is trained for 200 epochs with a batch size
of 32, using the Adam optimizer with a learning
rate of 5e~*. The confidence threshold 7 is tuned
on the validation set, and we set it to 0.50, 0.99,
0.99, and 0.50 for NQ, GSM8K, MATH-500, and
GPQA-Diamond, respectively. For the CCoT base-
line, we set the token budget to 100 for all tasks.
We run all experiments three times and report the
averaged results.

We use the VLLM framework (Kwon et al.,
2023) to sample the model outputs for all experi-
ments to ensure efficient inference. All the prompts
we used are provided in Appendix A.8.

A.5 Ablation Study

Setup. We ablate two key hyperparameters used by
our unsupervised methods: (i) a for Think Token
Adjustment, which up-weights the probability of
the end-of-reasoning marker; and (ii) k£ for Answer
Consistency, the consecutive-consistency thresh-
old. Unless otherwise noted, we report results with
R1-distilled-Llama3.1-8B across five benchmarks

(NQ, GSMSK, MATH-500, GPQA, AIME’24).

A.5.1 Effect of o (Think Token Adjustment)

Accuracy. Moderate boosting (o« < 0.4) main-
tains accuracy on easier tasks while larger o can
cause premature termination and degrade perfor-
mance on harder reasoning tasks.

e NQ GSM8K MATH-500 GPQA AIME’24
0.0 20.6 78.6 79.0 14.1 40.0
02 232 74.6 79.0 14.1 40.0
04 246 732 73.0 14.1 40.0
06 252 66.8 71.0 9.1 233
0.8 204 31.2 50.0 8.1 30.0
1.0 158 432 67.0 8.1 30.0

Table 3: Effect of o on accuracy (%).

Token Usage. As « increases, tokens drop
sharply; however, overly large o harms accuracy
despite aggressive savings.

e NQ GSMSK MATH-500 GPQA AIME’24
0.0 4268 4013 2011.8 2546.0 79144
02 4268 3664 2011.8 2546.0 79144
04 4189 3492 1712.5 23939  5060.0
0.6 4185 3l6.1 1017.9 1557.0 24298
0.8 913 49.1 68.5 79.1 81.4
1.0 176 10.3 11.2 27.8 9.3

Table 4: Effect of o on #tokens.

Takeaway. « € [0.2,0.4] offers a good accu-
racy—efficiency trade-off; aggressive boosting (o >
0.6) risks early truncation on hard tasks.

A.5.2 Effect of &k (Answer Consistency)

Accuracy. Small & stops too early and hurts accu-
racy; performance improves and saturates around
k€20, 30].

k NQ GSMS8K MATH-500 GPQA AIME’24
2 224 15.6 14.0 3.0 0.0
5 228 46.4 35.0 5.1 0.0
10 222 69.0 56.0 12.1 16.7
15 222 76.6 63.0 10.1 233
20 21.8 71.8 69.0 11.1 26.7
25 220 78.0 72.0 10.1 26.7

30 214 78.4 74.0 11.1 26.7

Table 5: Effect of k£ on accuracy (%).

Token Usage. Larger k delays stopping and in-
creases tokens; the curve flattens beyond k ~
25-30.

Takeaway. k € [20,30] yields near-saturated ac-
curacy but lower efficiency; practical settings can
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k NQ GSM8SK MATH-500 GPQA AIME’24

2 712 65.6 86.1 105.8 84.4

5 2223 204.1 418.6 464.2 414.9
10 3363  319.8 841.6 1138.6 1522.2
15 381.8  364.7 1177.1 14632 2507.7
20 4020 379.1 1585.3 1754.0 35585
25 41277 3852 1676.5 1949.6 42472
30 420.1 396.1 1750.3 2098.8 44459

Table 6: Effect of k on #tokens.

0 20 40 60 80 100

B Unfaithful but Correct Stop (3.0%)
Incorrect Stop (15.2%)

B Perfect Stop (18.2%)
= Late Stop (63.6%)

Figure 5: Faithfulness analysis of the Learn-to-Stop
method on GPQA.

choose k around 10—20 to balance accuracy and
token savings.

A.6 Effect of Early Stopping on Faithfulness

Early stopping enables models to generate predic-
tions without completing the full reasoning trace,
which raises concerns about the faithfulness of the
generated rationale. Faithfulness, i.e., whether the
reasoning chain logically supports the final answer,
has been a key focus in recent studies (Lanham
et al., 2023; Chen et al., 2025). To assess this as-
pect, we conduct a manual evaluation of reasoning
chains generated by R1-Qwen-32B on GPQA un-
der the Learn-to-Stop setting. We restrict our analy-
sis to instances where the original model produced
a correct answer and categorize the early-stopped
generations into the following four classes:

* Perfect Stop: The model halts reasoning im-
mediately after predicting the correct answer
for the first time, and the preceding steps form
a faithful chain of reasoning.

» Late Stop: The model already reaches the
correct answer but continues with unnecessary
reasoning, suggesting it could have stopped
earlier.

* Incorrect Stop: The model halts reasoning
too soon, leading to an incorrect answer.

 Unfaithful but Correct Stop: The model out-
puts the correct answer, but the truncated rea-
soning trace does not support the answer logi-
cally. This is often caused by stopping before
completing a faithful CoT.

We present the results in Figure 5. The majority
of cases fall into the Stop Late category (63.6%),
indicating that while the model reaches the cor-
rect answer, it continues with unnecessary reason-
ing, suggesting a suboptimal stopping point. This
highlights the opportunity to further refine stop-
ping criteria by incorporating finer-grained signals,
e.g. hidden states from more layers that more pre-
cisely detect convergence and faithfulness in real
time. The Stop Perfectly cases account for 18.2%,
demonstrating the model’s ability to identify the
correct point to stop. Only 3% of cases are la-
beled as Unfaithful, where the correct answer is
produced without supporting reasoning. This sug-
gests that although our method may occasionally
lead to unfaithful outputs, such instances are rela-
tively rare in GPQA. Overall, these results indicate
that our approach can reduce reasoning steps with-
out significantly compromising the faithfulness of
the generated reasoning. Future work could ex-
plore hybrid strategies that combine answer stabil-
ity with faithfulness-aware signals, enabling mod-
els to adaptively balance efficiency and reasoning
integrity across diverse tasks.

A.7 Test Cases from NQ

We list two examples from NQ in Table 7. In the
first example, the original model initially generates
the correct answer (Moira Kelly), but then adds un-
necessary reasoning steps, including self-reflection,
and revises the answer to an incorrect one (Julie
Kavner). Similarly, in the second example, the
model starts with the correct answer (Ashoka), but
again adds unnecessary reasoning, ultimately revis-
ing it to an incorrect answer (Kalinga Nanda).

A.7.1 Case Study

We provide a case study of the original model and
the Learn-to-Stop method in Table 8.

A.8 Prompts
A8.1 NQ

Answer the following question.
Directly output your final answer within \\boxed{}. DO
NOT say anything else.

Question: {question}

A.8.2 Math Reasoning Tasks

Solve the following math problem.
Directly output your final answer within \\boxed{}. DO
NOT say anything else.

Question: {question}
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Question: who does the voice of nala in the lion king

Original: Okay, so I need to figure out who voices Nala in The Lion King. I remember watching the movie when I was a kid,
but I can’t recall the voice actress. Let me think. I know that in the original 1994 version, some of the main voices were
well-known actors. Simba was voiced by Jonathan Taylor Thomas, Mufasa by James Earl Jones, and Scar by Jeremy Irons.
But Nala... I'm not sure. Maybe it was someone like Jennifer Hudson? Wait, no, she was in the 2019 remake, I think. In the
original, I think it was a different actress. Maybe someone like, I don’t know, Moira Kelly? No, that doesn’t sound right.
Maybe it’s someone else. Let me think of other voice actors from that era. Maybe it’s someone like Eliza Dushku? Or maybe
it’s someone less famous. I think it’s a British actress. Oh, maybe it’s someone like, I don’t know, Julie Kavner? Wait, no, she
did Mufasa’s sister in the original...

Correct Answer #: Moira Kelly

Question: the king of kalinga in the mauryan period was

Original: Okay, so I need to figure out who the king of Kalinga was during the Mauryan period. Hmm, I remember that the
Mauryan Empire was a significant empire in ancient India, and it was around the 3rd century BCE. The most famous king
from that period is Ashoka the Great, known for his role in the Kalinga war.\n \n Wait, but the question is about the king of
Kalinga, not the Mauryan king. So Ashoka was the Mauryan emperor, and he conquered Kalinga. I think the king of Kalinga
at that time might have been a local ruler who resisted Ashoka’s expansion. There’s a specific name that comes to mind,
something like Kalinga Nanda. I'm not entirely sure, but I recall that Nanda was a common name for kings in that region, and
Kalinga Nanda was the ruler who opposed Ashoka.\n \n I should check if there are any other possible names. Some sources
mention that the king of Kalinga was indeed Kalinga Nanda, and that Ashoka’s conquest of Kalinga was a major event in his
reign, leading to his conversion to Buddhism. So yeah, Kalinga Nanda is the name I’'m looking for...

Correct Answer #: Ashoka

Model: R1-Qwen-32B

Table 7: Examples from NQ with responses from the original model.

A.8.3 CCoT Prompt

Answer the following question.

You should think step by step, and limit the thinking
process length to {LENGHT_BUGGED} words.

Directly output your final answer within \\boxed{}. DO
NOT say anything else.

Question: {question}

Solve the following math problem.

You should think step by step, and limit the thinking
process length to {LENGHT_BUGGED} words.

Directly output your final answer within \\boxed{}. DO
NOT say anything else.

Question: {question}
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Question: Each week, between 30 and 50 students show up for an archery class run by Betty and Wilma. Usually the students
break up into groups of equal size for target practice. However, this week, Betty noticed that she could not break the students
up into multiple groups of equal size. Wilma noticed that if she and Betty both joined the students in practicing, they still
could not break the archers up into groups of equal size. How many students showed up to the archery class this week?

Original: Okay, so I have this math problem here about Betty and Wilma’s archery class. Let me try to understand what it’s
asking......47:\n 47 + 2 = 49. 49 is not prime because 7*7=49. So 47 is out.\n \nSo the only number that fits both conditions is

-. When you add 2, it becomes 43, which is also prime. Therefore, there must have been 41 students at the archery class
this week.

</think>\boxed{41}

Token #: 741

Learn-to-Stop: Okay, so I need to figure out how many students showed up to the archery class this week. The problem says

that each week, between 30 and ...... - fits both conditions.

</think>\boxed{41}

Token #:673

Dataset: MATH-500

Question: In a specific region of the sky, astronomers have observed that the number of stars varies with parallax as 1/plx"5.
How does the number of stars in that region of the sky change with distance (per unit range of distance, r)?

Original: Okay, so I've got this problem here where astronomers observed that the number of stars varies with parallax as 1
over plx to the fifth power. Hmm, I need to figure out how the number of stars changes with distance, specifically per unit
range of distance r...... Therefore, Sk / (1/r°6 * r) = 5k r"6 / r = 5k r"4. Yes, that’s correct. So, the number of stars per unit

distance is proportional to - Wait, but that would mean that as you go further out, the number of stars per unit distance
increases rapidly. That seems odd because usually, the number of stars in a volume element increases with the square of the
radius (since volume is 4dr), but here it’s increasing faster than that. Maybe because the number density itself is increasing
with distance? Wait, no. The problem states that the number of stars varies with parallax as 1/plx"5. So, if parallax decreases
(distance increases), the number increases as 1/plx"5, which is equivalent to d”5. So, the total number up to distance d is
proportional to d*5. But the number per unit distance would require considering the derivative. Wait, maybe I’'m confusing
cumulative counts with differential counts. Let me clarify. If N(pl) is the total number of stars with parallax less than pl,
then N(pl) = k / pI"5. But parallax less than pl corresponds to distances greater than d = 1/pl. So, N(d) = k d"5. But then
the number of stars beyond distance d would be N_total - N(d) = k d"5. Hmm, that doesn’t make much sense because as
d increases, N(d) increases, meaning more stars are at larger distances, which is expected. But to find the number per unit
distance, we take the derivative of N(d) with respect to d. So, dN/dd = 5k d"4. So, the number of stars per unit distance at
distance d is proportional to d*4. Wait, but that would imply that the number density is increasing with distance, which might
not align with standard stellar distributions unless there’s an actual increase in star density with distance, which isn’t typically
the case. Normally, the number density of stars in the galaxy decreases with distance from the galactic center, but in this
problem, we’re probably considering a region where the distribution follows this specific law. So, putting it all together, the
number of stars per unit distance (r) is proportional to r°4.

</think>\boxed{r"4}

Token #: 1952

Learn to Stop: Okay, so I have this problem where the number of stars varies with parallax as 1 over plx to the fifth power.
Hmm, I remember that parallax is related to distance. Let me think about how they’re connected.\n \n Wait, parallax (pl) is

inversely proportional to distance (d) ...... Therefore, the number of stars per unit distance (N(r)) is proportional to -
</think>\boxed{r"4}

Token #:1431

Dataset: GPQA-Diamond

Table 8: Examples from MATH-500 and GPQA-Diamond with responses from the original model and the Learn-to-
Stop method. The original model generates redundant reasoning steps after producing the correct answer (41 and
1"4), while the Learn-to-Stop method terminates reasoning earlier, resulting in a more concise response.
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