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Abstract

Thanks to their linguistic capabilities, LLMs
offer an opportunity to bridge the gap between
informal mathematics and formal languages
through autoformalization. However, it is still
unclear how well LLMs generalize to sophis-
ticated and naturally occurring mathematical
statements. To address this gap, we investigate
the task of autoformalizing real-world math-
ematical definitions: a critical component of
mathematical discourse. Specifically, we in-
troduce two novel resources for autoformal-
ization, collecting definitions from Wikipedia
(Def_Wiki) and arXiv papers (Def_ArXiv). We
then systematically evaluate a range of LLMs,
analyzing their ability to formalize definitions
into Isabelle/HOL. Furthermore, we investigate
strategies to enhance LLMs’ performance in-
cluding refinement through external feedback
from Proof Assistants, and formal definition
grounding, where we augment LLMs’ formal-
izations through relevant contextual elements
from formal mathematical libraries. Our find-
ings reveal that definitions present a greater
challenge compared to existing benchmarks,
such as miniF2F. In particular, we found that
LLMs still struggle with self-correction, and
aligning with relevant mathematical libraries.
At the same time, structured refinement meth-
ods and definition grounding strategies yield
notable improvements of up to 16% on self-
correction capabilities and 43% on the reduc-
tion of undefined errors, highlighting promising
directions for enhancing LLM-based autofor-
malization in real-world scenarios. '

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable potential in assisting with math-
ematical reasoning on different downstream tasks
(Wei et al., 2022; Meadows et al., 2023, 2024,
Valentino et al., 2022; Lu et al., 2023; Meadows and

!Code and datasets are available at https: //github.com/
lanzhang128/definition_autoformalization

andre.freitas@idiap.ch
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Figure 1: Can LLMs formalize complex mathematical
statements? This paper investigates the task of translat-
ing real-world mathematical definitions into a formal
language. We introduce a new resource collecting def-
initions from Wikipedia and ArXiv papers, exploring
different strategies for autoformalization through the
interaction between LLMs and Proof Assistants.

Freitas, 2023; Mishra et al., 2022a; Ferreira et al.,
2022; Ferreira and Freitas, 2020; Welleck et al.,
2021; Mishra et al., 2022b; Petersen et al., 2023).
In the context of mathematics, formal languages
play a crucial role by providing a precise, logic-
based framework for verifying the correctness and
logical validity of mathematical statements and
proofs (Kaliszyk and Rabe, 2020). Consequently,
one promising application of LLMs is autoformal-
ization, the task of translating informal statements
into formal languages (Wu et al., 2022). Given
their advanced linguistic and inferential capabili-
ties, LLMs offer an opportunity to bridge the gap
between informal mathematics, natural language,
and machine-verifiable logic, potentially streamlin-
ing and scaling the process of formal mathematical
reasoning (Jiang et al., 2023; Tarrach et al., 2024).
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The task of autoformalization has collected in-
creasing attention in recent years, leading to the de-
velopment of benchmarks and evaluation method-
ologies (Azerbayev et al., 2023; Zhang et al., 2024;
Li et al., 2024). Despite this progress, however,
existing benchmarks for autoformalization often
focus on relatively simple mathematical problems,
limiting our understanding of how well LLMs gen-
eralize to more sophisticated and naturally occur-
ring mathematical statements.

To address this gap, this paper investigates
the task of autoformalizing mathematical defini-
tions, a critical component of mathematical dis-
course (Moschkovich, 2003). Definitions serve
as foundational building blocks in mathematical
reasoning, yet they are often intricate, context-
dependent, and thus difficult to formalize. Eval-
uating LL.Ms on this subset of mathematical state-
ments, therefore, allows for assessing their ability
to formally represent fine-grained mathematical
concepts, highlighting persisting challenges and
limitations for real-world applications.

Specifically, this paper introduces two new
benchmarks for autoformalization by collecting
real-world mathematical definitions into two dis-
tinct resources: (1) Def_Wiki, including defini-
tions extracted from Wikipedia articles, and (2)
Def ArXiv, including definitions collected from
machine learning research papers. Using these re-
sources, we first evaluate LLMs in a zero-shot set-
ting, analyzing their ability to translate definitions
into Isabelle/HOL (Nipkow et al., 2002).

Furthermore, to address observed limitations, we
investigate two key strategies to enhance perfor-
mance: (1) Refinement via external feedback, in-
vestigating the self-correction capabilities of LLMs
by incorporating errors found by the supporting
Proof Assistant. In particular, we show that while
LLMs exhibit limited ability to refine outputs based
on binary feedback (error vs. non-error), a more
structured categorical refinement implemented via
additional instructional constraints can improve per-
formance. (2) Formal definition grounding. Many
mathematical definitions require references to for-
mal objects in external mathematical libraries. To
augment autoformalization from LLMs, we inves-
tigate the impact of introducing additional contex-
tual control mechanisms, which add contextual ele-
ments from formal mathematical libraries as auxil-
iary premises.

Overall, our findings reveal that the proposed
benchmarks present a greater challenge compared

to existing autoformalization datasets, such as
miniF2F (Zheng et al., 2022). In particular, LLMs
struggle with self-correction and particularly with
incorporating relevant mathematical libraries as
preambles. Proposed structured refinement meth-
ods and definition grounding strategies both deliver
notable improvements, highlighting promising di-
rections for enhancing LLLM-based autoformaliza-
tion in real-world scenarios.

Our contributions can be summarized as follows:

1. We introduce and release two novel datasets
for autoformalization: Def_Wiki (definitions
from Wikipedia) and Def_ArXiv (definitions
from research papers on arXiv), designed to
assess LLMs performance on complex, real-
world mathematical definitions.

2. We perform a comprehensive error analy-
sis on Isabelle/HOL, identifying key failures
in formalizations generated by LLMs span-
ning across different families, including GPT-
40 (OpenAl, 2024b), Llama3 (Llama Team,
2024) and DeepSeekMath (Shao et al., 2024).

3. We investigate refinement-based strategies, in-
cluding structured feedback mechanisms from
Proof Assistants and instruction-based cate-
gorical refinements.

4. We explore the role of formal definition
grounding, investigating how the inclusion
of relevant mathematical libraries impacts the
ability of LLMs to connect the formalized
statements with contextual mathematical ele-
ments and relevant premises.

2 Autoformalization with LLMs

The task of autoformalization can be defined as
a transformation function from natural language
and LaTeX symbols S to a formal language F,
f S — F, such that for every informal mathemat-
ical statement s € S, there exists a formal mathe-
matical statement ¢ € F where f(s) = ¢ (Zhang
et al., 2024). Autoformalization via LLMs reifies
the transformation function as:

f(8> = LLM(pautm {(3i> d)z)}y 3)7

where pyyio 18 @ prompt for autoformalization and
{(si, ¢:)} is an optional set of exemplars.
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miniF2F

Def_Wiki

Def_ArXiv

1. Suppose that secx +

tanx = % and that
cscx + cotx = T,
where 7 is in lowest

terms. Find m 4 n. Show
that it is 044.

2. What is the sum of the
two values of = for which
(z + 3)* = 1217 Show
that it is -6.

3. The product of two
positive whole numbers is
2005. If neither number is
1, what is the sum of the
two numbers? Show that
it is 406.

4. The expression 10z2 —
x — 24 can be written
as (Az — 8)(Bz + 3),
where A and B are inte-
gers. What is AB + B?
Show that it is 12.

1. Definition of Rademacher Complexity:
Given a set A C R™, the Rademacher
complexity of A is defined as follows:

m
sup E g;Q;
aeA D

where o01,02,...,0, are indepen-
dent random variables drawn from
the Rademacher distribution (i.e.
PI‘(O}; = +1) = PI‘(O}; = 71) = 1/2
for ¢ = 1,2,...,m), and
a=(ai,...,am).

2. Definition of Polynomial Ker-
nel: For degree-d polynomials, the
polynomial kernel is defined as
K(x,y) = (x"y + ¢)* where x and y
are vectors of size n in the input space,
i.e. vectors of features computed from
training or test samples and ¢ > 0O is a
free parameter trading off the influence
of higher-order versus lower-order terms
in the polynomial.

Rad(A) = %Eg

1. Definition of Covering Number: Given a metric
space (S, p), and a subset S C S, we say that a
subset S of S is a e-cover ofg, if Vs € S, kcs
such that p(8, §) < e. The e-covering number of
Sis

N.(S,p) = min{|S| : & is an e-covering of S}.

2. Definition of Trimmed Mean: Consider n
copies X1, ..., X, of a heavy-tailed random vari-
able X such that E[X] = p, E[X'*¢] < u for
some € € (0,1]. The online trimmed mean, for
some § € (0,1) is defined as

n 1
1 ul Ite
0o = — X;1 X;| < .
Ho n ;:1 {' | = (log 5—1) }

Table 1: Examples of instances from Def_Wiki and Def_ArXiv and comparison with miniF2F.

2.1 Limitations of Existing Benchmarks

Naturally occurring mathematical statements typ-
ically involve complex and abstract mathemati-
cal concepts. However, the statements in existing
datasets, such as miniF2F (Zheng et al., 2022), pri-
marily consist of basic arithmetic operations and
elementary mathematical objects, such as integers,
fractions, and real numbers (as shown in Table 1).
Such mathematical objects are relatively simple
compared to the complex and abstract concepts
found in naturally occurring mathematical state-
ments and scientific papers, which may involve
higher-level structures like vectors, matrices, and
probability. The operations are also limited to sim-
ple arithmetic, such as addition, subtraction, multi-
plication, division, and exponentiation. Studying
autoformalization on such datasets, therefore, does
not necessarily reflect the challenges of autofor-
malization in realistic scenarios. However, few
benchmarks focus on how to construct complex
mathematical statements. Our work aims to ad-
dress this gap.

2.2 Real-World Mathematical Definitions

Since extracting high-quality definition statements
from general mathematical corpora requires care-
ful curation, we propose a systematic data cre-
ation process that balances complexity and diver-
sity. We begin by classifying real-world defini-

tions into two categories: (i) common definitions,
which are presented in a global context where the
necessary preliminaries are implicit and relatively
general, and (i1) specialized definitions, which are
typically situated in a local context and rely on ex-
plicit and specific preliminaries. Both types present
distinct challenges for autoformalization. In the
former, the model must infer implicit preliminaries
and connect them with existing formal constructs.
In the latter, the model must not only formalize
the definition but also the associated preliminar-
ies. We ground these two types of definitions in
two sources: Wikipedia for common definitions
(Def_Wiki) and Arxiv Papers for specialized defi-
nitions (Def_ArXiv), as definitions from these two
sources are human-written, naturally occurring and
likely to have already been validated.

To construct a representative instance for
Def Wiki and Def Arxiv, we focus on definitions
from the field of machine learning, as this domain
offers a sufficient number of novel, diverse, and rel-
atively unformalized definitions. Moreover, the
task of formalizing such definitions holds prac-
tical value for the Al community. The detailed
operational steps are provided in Appendix A. A
quality check was performed to ensure that the se-
lected definitions exhibit high diversity and present
complementary challenges. This process yielded
56 definitions for Def Wiki and 30 definitions for
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Def_Arxiv. This number is expected, as novel defi-
nitions in the real world are relatively scarce com-
pared to example questions in mathematics (such
as those in miniF2F), which are often closer in na-
ture to synthetically generated content. Although
the resulting datasets are relatively small in scale,
they are sufficient to expose the core challenges of
autoformalization in real-world scenarios. The size
of the datasets is not the primary factor determining
the significance, transferability, or robustness of the
findings. Exploring additional scientific domains
and expanding the dataset further are promising
directions for future work.

We compare the quality of miniF2F with the tar-
get definition datasets. MiniF2F is significantly
less abstract, complex and diverse, as intuitively
shown in the randomly chosen examples in Table 1.
The data properties are summarized in Table 5 in
Appendix. Definition datasets exhibit higher means
for the number of tokens, mathematical objects,
and formulae per example, indicating that they are
significantly more complex. Additionally, defini-
tion datasets have higher standard deviations, sug-
gesting greater diversity among samples.

The proposed benchmarks contain only defini-
tions in LaTeX format. We did not include ground-
truth formal code for the following reasons: 1. In-
cluding such code could increase the risk of data
leakage, as ground-truth formalizations from pub-
licly available datasets may have been seen by
LLMs, whose training data is not fully disclosed,
making it difficult to determine whether future im-
provements genuinely address the challenges posed
by our benchmark or simply reflect prior exposure.
2. A single mathematical statement can have multi-
ple correct formalizations. An autoformalized out-
put that differs from the reference does not neces-
sarily indicate incorrect formalization. 3. The main
purpose of ground-truth formal code is to evaluate
autoformalization. However, the syntactic correct-
ness of formalized code can be rigorously and au-
tomatically verified using theorem provers (Zhang
et al., 2024), while semantic consistency can po-
tentially be assessed in a reference-free manner via
LLM-as-Judges (Zhang et al., 2025). Moreover,
manual inspection of autoformalized code does not
require ground-truth formalizations.

3 Empirical Evaluation

Empirical Setup. Isabelle/HOL was chosen as
the representative formal language due to its

widespread adoption within the formal mathemat-
ics community and its ability to provide specific
information about the types of errors encountered.
Moreover, Isabelle employs a declarative proof lan-
guage that is closer to structured natural language,
making it well-suited for exploring autoformaliza-
tion of complex natural language statements. We
prioritize an in-depth analysis of a single formal
language over a broad comparison across multi-
ple languages. We believe this approach lays the
foundation for future work aimed at exploring the
behavior of LLMs in alternative formal systems.
We evaluate three LLMs with different features:
DeepSeekMath-7B (Shao et al., 2024), Llama3-
8B (Llama Team, 2024) and GPT-40 (OpenAl,
2024b). DeepSeekMath-7B is an open-sourced
LLM trained specifically for mathematics. As a
smaller model, it has demonstrated comparable
mathematical reasoning performance as in GPT-
4 (OpenAl, 2024a), and strong few-shot autofor-
malization performance on miniF2F with Isabelle.
This superiority makes it a good representative of
smaller but specialized LLMs. LLama3-8B is a
smaller open-sourced foundation LLM with no spe-
cific emphasis on math. GPT-4o is widely acknowl-
edged as one of the state-of-the-art LL.Ms. For
reproducibility, greedy decoding is used for gener-
ation in all settings.

Evaluation Metrics. The success rate of passing
the check by the Isabelle Proof Assistant across the
tested dataset is used as the first metric. We assume
that a formalized code instance with the first error
occurring later in the code reflects, as a proxy, the
level of autoformalization. Thus, we evaluate such
by calculating the proportion of correct lines (up
to the first error) within the main body of the code.
For syntactically correct instances, this value is
equal to 1. To better monitor the occurrence of
errors, we group them into three categories: Syntax
Errors (SYN), Undefined Item Errors (UDF), and
Type Unification Failed Errors (TUF). For each
category, we calculate the percentage of incorrect
formalized codes caused by errors in that category.

3.1 Zero-Shot Prompting & Binary
Refinement

In order to understand the challenges in autofor-
malizing mathematical definitions with LLMs, we
perform a preliminary analysis on miniF2F (Zheng
et al., 2022), Def_Wiki and Def_ArXiv using zero-
shot prompting (ZS) and binary refinement. With

1724



Prompt Strategy ~ Model Passt FEO?T \ TROJ IVI] SYN] UDF| TUE]
miniF2F-Test

ZS DeepSeckMath-7B  3.28 12.79 | 18.44  0.00 50.00 14.34 9.43

ZS + Binary 2.05 6.73 2.46 0.00 79.91 5.33 2.05

7S Llama3-8B 492  20.70 4.51 0.41 29.51 38.52 18.85
ZS + Binary 3.69  20.52 3.28 0.41 33.20  39.75 2049
ZS GPT-40 2541 4890 1.23 1.23 6.15 23.77 7.38

ZS + Binary 29.10 53.90 2.05 1.23 6.15 21.72 8.20

Def_Wiki-Test

ZS DeepSeekMath-7B 10.87  17.75 | 34.78 2.17 3043  26.09 2.17

ZS + Binary 6.52 7.73 8.70 0.00 69.57 21.74 2.17

ZS Llama3-8B 0.00 2.80 0.00 2391 56.52 3261 4.35

ZS + Binary 2.17 3.71 0.00 26.09 52.17 30.43 2.17

ZS GPT-40 10.87 16.12 8.70 8.70 19.57 50.00 13.04
ZS + Binary 13.04 18.30 8.70 6.52 17.39  50.00 13.04
Def_ArXiv

ZS DeepSeekMath-7B  13.33  14.69 | 16.67 0.00 40.00 36.67 13.33
ZS + Binary 3.33 3.33 6.67 0.00 66.67 33.33 3.33

ZS Llama3-8B 0.00 2.67 0.00 13.33  70.00 40.00 6.67

ZS + Binary 3.33 5.83 0.00 20.00 60.00 33.33 6.67

7S GPT-40 13.33  19.30 0.00 0.00 40.00 56.66 6.67

ZS + Binary GPT-40 16.67 24.30 0.00 0.00 3333 5333 6.67

Table 2: Autoformalization results. Prompt strategies include: (ZS): zero-shot prompting; (ZS + Binary): refinement
given (ZS) formalized code and binary syntactic correctness state. Pass rate (Pass), the place of first error occurrence
in the main body of the code (FEQ), and percentage of occurrence of each error category are recorded here.
Errors in each error category are: (TRO): Time Run-Out for checking; (IVI): Fake Non-Existent Theory, Invalid
structural format; (SYN): Inner syntax error, Outer syntax error, Inner lexical error, Malformed command syntax,
Bad name, Bad number of arguments for type constructor, Extra free type variable(s); (UDF): Undefined type
names, Undeclared class, Undefined locale, No type arity list, Extra variables on rhs; (TUF) Type unification failed.

binary refinement, we aim to assess the capabil-
ities of LLMs for error correction by providing
them with the formal code generated via ZS, along
with the syntactic correctness evaluated using the
proof assistant (i.e., “correct”, “incorrect”). From
the results reported in Table 2, we can derive the

following observations:

Def_ Wiki and Def_ArXiv are significantly more
challenging than miniF2F. When performing
autoformalization on Def Wiki and Def ArXiv,
GPT-40 achieves a significantly lower success rates
(-13.78% on average) and FEO (-31.90% on aver-
age) compared to results on miniF2F-Test.

LLMs can provide false preambles when per-
forming autoformalization. In Table 2, the per-
centage of Invalid Inputs errors (IVI) can be non-
zero. Errors in this category are caused by either
non-existent preambles or invalid file formats in
structure. For Llama3-8B the latter is more com-
mon whereas for GPT-40, we observe that the dom-
inant cause is the generation of non-existent pream-
bles, showing that GPT-40 do not perfectly gener-
alize in recognizing the names of preambles.

Specialized smaller models can reach the same
level of success rate as larger LLMs. As
a model designed specifically for mathematics,
DeepSeekMath-7B can achieve a similar success
rate as GPT-40. Although Llama3-8B has a larger
model size, its generalization ability on definitions
is limited. Additionally, DeepSeekMath-7B ex-
hibits a lower percentage of undefined type names
errors (UDF). However, one disadvantage of the
specialized model is that its formalizations have
a higher percentage of time run-out issues (TRO).
This is likely caused by the bias introduced during
the fine-tuning phase on theorem proving which
can lead the model to generate unsolicited proofs.

Small LLMs possess limited binary self-
correction capabilities. With binary refinement,
GPT-40 produces formal codes with a higher
success rate on all three datasets, whereas for
DeepSeekMath-7B this mechanism leads to a per-
formance decrease. LLama3-8B also fails to self-
correct its autoformalization results on miniF2F.
This behavior suggests that self-refinement exceeds
the capabilities of smaller LLMs.
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Category

Reasons

SYN

1. Invalid Symbol Format. Isabelle uses symbols like “\<Rightarrow>" to represent ‘“\Rightarrow (=)” in
LaTeX. GPT-40 does not strictly follow this behaviour. A symbol in its formalized code starting with “\<”
can miss “>" at the end so that the relevant symbol is not valid.

2. Confusion of Mapping between LaTeX Mathematical Symbols and Isabelle Symbols. Not all natural
language symbols in LaTeX have a similar corresponding version in Isabelle symbols. In natural language
mathematics we use different mathematical fonts such as “\mathcal (A)” to distinguish items. Isabelle uses
“\<A>” to represent this LaTeX symbol. However, GPT-40 would pretend the existence of a symbol named
\<mathcal> and use it for autoformalization.

3. Unaware of Name Conflict. Some keywords such as “instance” are reserved by Isabelle/HOL and they
cannot be used as the name of a new item.

4. Incorrect Stylistic Usage of Symbols or Operators. Some symbols or operators require specific usage
which is not in the same style as in natural language. The incorrect usage of them in formalized code generated
by GPT-40 can lead to syntax errors.

UDF

1. Items not defined. Formalization requires every mentioned item to be clearly defined in the local context
or preambles. During autoformalization, GPT-40 could refer to items that are not defined in both sources.

TUF

1. Mismatch between Types in Definition and Types in Actual Usage. There are some operators or
functions which have been clearly defined about the types of their operands or parameters. When using these
operators or functions, the types of actual operands or parameters need to match the types in the definitions

exactly. GPT-40 would produce mismatched types in the formalized codes and introduce TUF errors.

Table 3: Reasons of failure in each error category during autoformalization with GPT-4o.

3.1.1 Error Analysis & Interventions

To understand potential interventions for improving
autoformalization, we qualitatively analyze error
patterns on the development set of Def_Wiki. Our
analysis is based on the results obtained via GPT-
4o, given its better performances on ZS and binary
refinement. The main reasons for failure identified
through our analysis are summarized in Table 3,
with additional examples reported in Appendix.
We observe that syntactic errors (SYN) exhibit
the most variety, suggesting that GPT-40 may strug-
gle to follow syntactic rules in Isabelle/HOL if not
explicitly instructed. Type unification errors (TUF)
suggest that GPT-40 may struggle with the exact
usage of defined Isabelle items. To improve these
issues, we investigate a Categorical Refinement
(CR) method. CR involves designing specific addi-
tive instructions that constraint the behaviors lead-
ing to errors identified in the qualitative analysis.
Similarly, for syntactic errors (SYN), causes 1,
2, and 3 in Table 3 can be addressed with rule-
based algorithms that refine formal codes at the
symbolic level (Symbolic Refinement, SR). Un-
defined errors (UDF), on the other hand, indicate
that although GPT-40 can refer to external formal
mathematical items, it remains unaware of the loca-
tion or existence of relevant libraries. To alleviate
UDF errors, we propose the process of Formal Def-
inition Grounding (FDG): linking mathematical
objects mentioned in natural language statements
to their formal definitions in formal libraries, and
incorporating this information as contextual ele-

ments for formalizations.

3.2 Categorical Refinement

In order to better understand the refinement capa-
bilities of GPT-40, we investigate a set of error
correction strategies: (i) Plain: provide LLMs with
previously generated formal codes; (ii) Binary: ad-
ditionally, provide LLMs with the correctness sta-
tus of the formal code; (iii) Detailed: instead of
just the binary correctness status, provide LLMs
with the details of type, message, and line location
of individual errors in the code.

In addition, to evaluate categorical refinement,
we design specific instructions for each category of
errors based on our qualitative analysis (Table 3).
We report the error rate results of different refine-
ment methods on GPT-40 in bar charts in Figure 2.
All prompts used for categorical refinement and ad-
ditional empirical results are provided in Appendix.

Providing LLMs with more information about
individual errors is more effective than simply
indicating binary correctness. As shown in Fig-
ure 2a, both binary and detailed refinements can
reduce the overall error rate across all the datasets,
with detailed refinement fixing more errors on
miniF2F-Test and Def Wiki-Test. For SYN errors,
although there is no clear trend indicating that one
refinement outperforms the other, both refinements
lead to a lower error rate compared to zero-shot
autoformalization. Detailed refinement also de-
creases the percentage of UDF errors as shown in
Figure 2c. These performance gains suggest that
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Figure 2: Error rates of different refinement methods on GPT-40. Variants include: (ZS): zero-shot autoformalization;
((ZS)+Binary): binary refinement on (zero-shot) formal codes; ((ZS)+Detailed): detailed refinement on (zero-shot)
formal codes; ((ZS)+CR-SYN/UDF/TUF): plain refinement on (zero-shot) formal codes with SYN/UDF/TUF
categorical refinement instructions; ((ZS)+Detailed+CR-SYN/UDF/TUF): detailed refinement on (zero-shot)
formal codes with SYN/UDF/TUF categorical refinement instructions.

detailed refinement improves the quality of auto-
formalized codes. For TUF errors, applying both
refinements does not consistently result in a lower
error rate, indicating that errors in this category are
more difficult for LLMs to fix.

Categorical refinement reduces error rates. As
shown in Figure 2a, across all datasets, the refine-
ment method that achieves the lowest overall error
rate incorporates one of the instructions for cate-
gorical refinement, highlighting the efficacy of this
mechanism. However, when categorical refinement
is applied without error details, such improvements
do not occur. We hypothesize that this is because
categorical instructions serve as constraints, mak-
ing it more difficult for the target LLM to follow
them without more detailed error information for
individual instances. Once such information is pro-
vided, the LLM receives sufficient information to
adhere to the categorical refinement instructions.

Categorical refinement can effectively reduce
errors for specific categories. As shown in Fig-
ure 2b, the method with the lowest SYN error rate
on miniF2F-Test is plain refinement with SYN cat-
egorical refinement instructions, whereas on the
other two datasets the best performing method is
SYN categorical refinement with error details. In
Figure 2¢, UDF categorical refinement with error

details also leads to the lowest UDF error rate on
all three datasets. Similarly in Figure 2d, TUF
categorical refinement with error details achieves
the lowest TUF error rate on two out of the three
datasets. These results collectively demonstrate
the effectiveness of the categorical refinement as
a control mechanism for autoformalization. The
only exception is TUF errors within the Def ArXiv
dataset, which again highlights the difficulty of
fixing TUF errors.

3.3 Symbolic Refinement

Based on reasons 1 and 2 of SYN errors in Table 3,
we defined two rules for implementing Symbolic
Refinement: (1) if a symbol in the formal code is
likely to be an Isabelle symbol (i.e., it starts with
“\<” but misses “>"), we add “>” at its end to ensure
that the symbol follows Isabelle’s format; (2) for
non-existent symbols of mathematical fonts, we
replace them with relevant symbols in Isabelle.

The differences in error rates between our meth-
ods and direct testing of unmodified autoformalized
code are illustrated as bar charts in Figure 3.

Symbolic Refinement can effectively reduce
SYN errors in the generated formal codes on
definition datasets. In Figures 3b and 3e, both
applying symbolic refinement (SR) alone and in
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Figure 3: Gain of error rates when testing autoformalization with different methods compared to direct test. We
evaluate results on zero-shot autoformalized codes and (zero-shot) formal codes with detailed refinement. Testing
variants include: (SR): Symbolic Refinement; (Post-FDG): Postprocessing with Formal Definition Grounding.

combination with Post-FDG lead to a lower SYN
error rate on Def_Wiki-Test. On Def_ArXiv, Fig-
ures 3c and 3f similarly shows that applying SR
alone results in a reduction of SYN errors. These
results suggest that SR is an effective approach for
addressing SYN errors. On miniF2F-Test, however,
SR does not impact the error rates because SR is
closely tied to specific error patterns in the dataset.

3.4 Post-FDG

For implementing FDG, we first extracted exter-
nal formal definitions of mathematical items and
their sources from the Isabelle/HOL library. Then
we filtered the extracted definitions to retain only
those likely relevant to the autoformalization task
on the datasets. Finally, for each individual in-
stance in Def_Wiki and Def_ArXiv, we manually
determined which formal definitions should be pro-
vided as contextual elements. For miniF2F, we
simply selected the definitions of real and com-
plex numbers as the relevant definitions. Post-FDG
(FDG via postprocessing) explicitly augments the
preambles generated by LLMs with the sources of
relevant formal definitions in formal libraries.

Autoformalization performance can be underes-
timated without including contextual informa-
tion. In Figure 3, without modifying the main
body of the formalization, replacing the pream-
bles with possible preambles via Post-FDG directly
leads to higher overall syntactic correctness. On
miniF2F-Test, this setting only considers sources

containing formal definitions of real and complex
numbers, yet it increases overall syntactic correct-
ness by more than 40%.

FDG can reduce the occurrence of errors caused
by referring to undefined mathematical objects.
In Figure 3, the UDF error category has the most
significant improvement from Post-FDG. Even
when LLMs do not include the exact library that
contains relevant mathematical items, they tend to
use conventional names for the autoformalization
task. By importing the appropriate theory files,
these previously undefined items can be linked to
the formalization, thereby reducing UDF errors.

Errors in autoformalized codes for definition
datasets are more likely to be entangled than
those in the miniF2F dataset. In Figure 3a and
Figure 3d, Post-FDG leads to positive performance
gains across all error categories. However, in Fig-
ures 3b, 3c, 3e and 3f, while UDF error rates de-
crease, error rates in other categories can increase.
A similar trend is observed when applying SR,
where a reduction in SYN errors can coincide with
increases in errors from the other two categories.
This phenomenon suggests that because definition
datasets are more complex, LLMs are more prone
to generating errors from different categories in one
code block during the autoformalization process.

3.5 Generalizability to Leand

We further explore the generalizability of our meth-
ods to formal languages beyond Isabelle/HOL. We
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Prompt Strategy \ miniF2F  Def_Wiki  Def_Arxiv
ZS | 13.93 5.36 0.00
(ZS)+D | 1598 7.14 6.67
(ZS)+D+CR-SYN | 16.80 8.93 6.67
(ZS)+D+CR-UDF | 13.52 10.71 6.67
(ZS)+D+CR-TUF | 15.57 10.71 6.67

Table 4: GPT-40 pass rates with Leand. ((ZS)+D):
detailed refinement on (zero-shot) formal codes.

select Lean4 (de Moura et al., 2015) as a represen-
tative target due to its increasing popularity and
widespread use. The Categorical Refinement (CR)
method can be applied to Lean4 with only minor
prompt modifications. In contrast, exploring the
generalizability of Symbolic Refinement and For-
mal Definition Grounding requires system-specific
designs, which fall outside the scope of this paper.
We investigate the generalizability of CR on Lean4
and report the pass rates across three datasets using
various strategies in Table 4.

Definitions present greater complexity for auto-
formalization in Leand4. The pass rates of GPT-
40 on definitions are consistently lower than those
on miniF2F. For example, on Def Arxiv, GPT-40
fails to correctly formalize any of the 30 definitions.
Moreover, we observe that providing error details
to revise the output improves pass rates, aligning
with our observations in Isabelle/HOL.

Categorical Refinement generalizes to Lean4.
On the miniF2F dataset, CR-SYN achieves the
highest pass rate. Similarly, on the Def Wiki
dataset, CR-UDF and CR-TUF yield the best re-
sults. These findings demonstrate the effectiveness
of the proposed CR in other formal languages. No-
tably, since the Lean4 assistant does not provide
explicit categories as Isabelle/HOL, performance
differences across CR categories may indirectly
reflect distinct types of errors encountered during
autoformalization.

4 Related Work

Autoformalization allows for a systematic connec-
tion between material and formal inferences (Quan
et al., 2024a,b), also enabling the universalization
of formal mathematical reasoning. For instance,
proof autoformalization has been used as an inter-
mediate step in automated theorem proving (Jiang
et al., 2023; Tarrach et al., 2024). Deep learning

models, such as transformers, have been applied
to autoformalization in Coq (Cunningham et al.,
2022). In recent years, with the increasing capabil-
ities of LLMs, prompting-based methods have also
demonstrated the ability to autoformalize mathe-
matical statements in Isabelle (Wu et al., 2022;
Zhang et al., 2024; Li et al., 2024) and Lean (Yang
et al., 2023; Lu et al., 2024; Liu et al., 2025a).
Despite recent progress in autoformalization with
LLMs, few studies have analyzed this task from
an error perspective. Our work takes a step in this
direction.

There are a few benchmarks that provide
informal-formal mathematical statement pairs.
MiniF2F (Zheng et al., 2022) and ProofNet bench-
mark (Azerbayev et al., 2023) include samples
paired with ground-truth formal statements ranging
from high-school and undergraduate problems to
Olympiad-level problems. However, such infor-
mal—formal pairs remain scarce. A growing trend
is the development of data generation pipelines for
constructing large-scale parallel corpora to finetune
LLMs for autoformalization (Jiang et al., 2024; Liu
et al., 2025b). While useful, these benchmarks
still focus on exercise-style mathematical problems,
which do not fully reflect real-world scenarios. In
contrast, our definition datasets emphasize real-
world statements.

5 Conclusion

This paper explored the challenges and advance-
ments in autoformalization of complex mathemati-
cal statements. To this end, two datasets collecting
real-world definitions in machine learning were in-
troduced for systematic evaluation. By assessing
autoformalization performance across three mod-
ern LLMs on newly introduced datasets, we iden-
tify key failure patterns including syntactic incon-
sistency, undefined references, and type mismatch.
To address these, we proposed interventions such
as Categorical Refinement and Formal Definition
Grounding to enhance performance. Our results
suggest that while modern LLMs exhibit potential
in converting natural mathematical definitions into
formal representations, they still require improved
guidance mechanisms and structured refinement
techniques to enhance accuracy. Future research
could focus on improving self-correction capabili-
ties and integrating more robust contextual under-
standing into LLM-based formalization systems.
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6 Limitations

Despite its contributions, this study has several lim-
itations. First, the error analysis was conducted in
Isabelle/HOL, and some results may not directly
generalize to other formal proof assistants such as
Lean. Second, the definition datasets proposed,
though diverse, are relatively small scale. Addition-
ally, while the proposed refinements improve for-
malization performance, they do not fully eliminate
semantic inconsistencies between natural language
definitions and their formalized counterparts. More
advanced methods are still needed to be developed.
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Property miniF2F-Test Def_Wiki Def_ArXiv
No. Samples 244 56 30
No. Tokens 70.25 (47.70)  200.18 (112.98) 164.40 (71.47)
No. Objects 4.76 (1.68) 7.63 (2.71) 7.10 (2.64)
No. Formulae 2.71(1.74) 2.84 (2.05) 3.17 (1.97)

Table 5: Dataset properties. The number of tokens
per sample is calculated using the GPT-2 tokenizer.
The number of directly mentioned mathematical ob-
jects—excluding explicit numbers and variables—and
the number of mathematical formulae per sample are
estimated through prompting with GPT-40. The mean
(standard deviation) is reported for each dataset.

A Detailed Information about the Dataset
Creation

We obtain mathematical definitions in the machine
learning domain from two sources: Wikipedia
(Def_Wiki) and Arxiv Papers (Def_ArXiv). For
Def_Wiki, definitions are collected from pages un-
der the Machine Learning category? and its sub-
categories. We manually browsed each page, iden-
tified well-defined definitions (i.e., formal descrip-
tions with mathematical symbols), and converted
the chosen definitions into LaTeX format. In total,
we obtained 56 qualified natural language defini-
tions in LaTeX and divided them into development
and test sets, containing 10 and 46 samples, re-
spectively. For Def_ArXiv, we used the advanced
search tool on ArXiv’s website, filtering for papers
in the subcategories cs.L.G and stat. ML, with com-
ments including "ICML." We restricted the search
to papers published in 2019, 2020, and 2021 and
manually reviewed the first 25 papers from each
year. We shortlisted papers that were accepted to
the ICML conference and contained formally de-
scribed definitions with mathematical symbols to
ensure reliability. We then filtered out definitions
that were less straightforward or formal in their
expressions, extracted the LaTeX versions, and ul-
timately obtained 30 definitions from 7 papers. We
provide dataset statistics in Table 5.

B Case Study for Formal Definition
Grounding

The following example shows an example of us-
ing GPT-40 in a zero-shot setting to formalize the
definition of Bradley—Terry model?.

2https ://en.wikipedia.org/wiki/Category:
Machine_learning

3https ://en.wikipedia.org/wiki/Bradley%E2%80%
93Terry_model

Definition of Bradley—-Terry model: Given a
pair of items ¢ and j drawn from some population,
the Bradley—Terry model estimates the probability
that the pairwise comparison turns out true, as

Dbi
Pi +pj

Pr(i > j) =

where p; is a positive real-valued score assigned to

individual ¢.

theory test

imports Main

begin

definition bradley_terry :: "real = real
= real” where "bradley_terry p_i p_j =

p_i/ (p_i + p_J)"
end

The preamble in the generated formal code is
“Main”. However, “Main” does not contain the
formalization of “real”, making the formal code
invalid. After applying Post-FDG, the preamble is
updated to “HOL.Real”, and the formal code be-
comes valid. One might suggest creating a univer-
sal preamble that imports all source files from the
library, applying this common preamble to solve
such issues. However, this approach would not
align with how a human expert would perform
formalization. This failure to identify the correct
preambles exposes limitations in the autoformal-
ization capabilities of LLMs. Another issue, which
is outside the scope of this paper but an important
future direction, is that while Post-FDG can correct
the formal code, the semantics of the generated
code still do not fully match the original natural
language version. For instance, the term “proba-
bility” does not appear in the formal code, and the
phrase “p;” is a positive real number” is omitted.

We acknowledge the importance of quantita-
tively evaluating semantic consistency in autofor-
malization. In this paper we mainly quantitatively
evaluate the syntactic aspects of formalizations be-
cause syntactic correctness can be systematically
and fully validated through the theorem prover.
However, the full evaluation of semantic consis-
tency still presents technical challenges and re-
mains an open research question. Additionally,
it is important to notice that semantic validity is
not completely disentangled from syntactic checks.
Some important semantic aspects, in fact, are ex-
plicitly or implicitly covered within our evaluation.
It can be noted, for example, that some of the errors
in Table 5 also cover semantic aspects. For instance,
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a model that is unaware of undefined items will
also likely lack a complete semantic understanding
of the crucial elements required for correct auto-
formalization. We believe that coming up with a
reliable quantitative method to systematically as-
sess semantic alignment is an important research
question to explore in future work, which is out of
scope for the current paper.

C Examples of Incorrect Formal Codes

We provide some examples of incorrect formal
codes generated by GPT-4o to support our sum-
marized reasons in Table 3. All examples of defini-
tions are from Def_Wiki development set.

Example 1 is about autoformalization on the def-
inition of Rademacher Complexity*. In this ex-
ample, the missing of “>” in “\<sigma”leads to a
SYN error, which contributes to reason 1 of SYN
category. In addition, this piece of formal code
uses “real” but “real” is not imported by “imports
Main”. This problem contributes to reason 1 of
UDF category.

Example 1:

Definition of Rademacher Complexity: Given
aset A C R™, the Rademacher complexity of A is
defined as follows:

Rad(4) = ~E,
m

m
sup Z aiaii

acA i—1

where 01, 09, ..., 0y, are independent random vari-

ables drawn from the Rademacher distribution

(i.e. PI‘(JZ' = —|—1) = PI‘(O’Z' = —1) = 1/2 for

i=1,2,...,m),anda = (ay,...,ap).

theory test

imports Main

begin

definition rademacher_distribution ::

"nat = real pmf"” where

"rademacher_distribution m =
pmf_of_set {x. x =1V x = -1}"

definition rademacher_complexity ::
"(real vector set) = nat = real”
where "rademacher_complexity A m =
(1 / real m) * (expectation
(pmf_of_set {x. x =1V x =-1})
(Ao. Sup {sum (Ai. \<sigma i * a i)

4https://en.wikipedia.org/wiki/Rademacher_
complexity

{1..m} | a. a € A}))"

end

Example 2 is about autoformalization on the def-
inition of Algorithm Selection®. In this example,
the problem of missing “>" and using “real” also
occurs. Even if missing “>” is solved, “\<mathcal>
is not a valid symbol in Isabelle. This problem
contributes to reason 2 of SYN category. In addi-
tion, “instance” is a reserved keyword in Isabelle
so it cannot be used in “type_synonym”. This con-
tributes to reason 3 of SYN category.

Example 2:

Definition of Algorithm Selection: Given a port-
folio P of algorithms A € P, a set of instances
i € 7 and a cost metric m : P x Z — R, the
algorithm selection problem consists of finding a
mapping s : Z — P from instances Z to algo-
rithms 7P such that the cost ) ;7 m(s(i), i) across
all instances is optimized.

theory test
imports Main

begin

type_synonym ’‘a instance = ’a
type_synonym ’‘a algorithm = ‘a
type_synonym cost_metric = "’a algorithm

= 'a instance = real”

definition algorithm_selection ::
"’a algorithm set = 'a instance set
= cost_metric = (’a instance
= 'a algorithm) = real” where
"algorithm_selection \<mathcal{P}
\<mathcal{I} ms = (i €
\<mathcal{I}. m (s i) i)"
end

Example 3 is about autoformalization on the def-
inition of Set-Family Growth Function®. In this
example, there is no SYN or UDF errors. The er-
ror occurs in the definition of “growth_function”,
where “card ()” is used on the right side of operator
“—”. However, the left and right sides of operator
“—” are explicitly defined as type “bool” and the
type of “card ()” is explicitly defined as “nat” in the
Isabelle/HOL library. This incorrect usage of them
causes a type mismatch and leads to TUF error.

5https://en.wikipedia.org/wiki/Algorithm_
selection
®https://en.wikipedia.org/wiki/Growth_function
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Example 3:

Definition of Set-Family Growth Function: Let
H be a set family (a set of sets) and C a set. Their
intersection is defined as the following set-family:
HnNC :={hNnC | h € H}. The intersection-
size (also called the index) of H with respect to
C'is |[H N C|. The growth function measures the
size of H N C' as a function of |C|. Formally:
Growth(H,m) := maxc:|cj=m |[H N C|.

theory test

imports Main

begin

definition intersection_set_family ::
"’a set set = 'a set = ’a set set”
(infix1l "M\<*sub>H" 70) where
"H M\<*sub>H C = {hNC | h. heH}"

definition intersection_size ::
"’'a set set = 'a set = nat"” where
"intersection_size H C = card (
H N\<*sub>H C)"

definition growth_function ::
nat = nat” where
"growth_function H m = (SUP C. card C =
m A finite C A (Vh € H. finite h)
A finite H—card (H M\<*sub>H C))"
end

D Formal Definition Grounding via
Prompting

We further explore formal definition grounding
with prompting (Prompt-FDG): provide LLMs
with grounded formal items and preambles in con-
text to guide autoformalization. We designed two
prompts to include external formal definitions for
FDG: 1. Soft: allow the LLM some flexibility in
whether to use in-context formal definitions for
autoformalization; 2. Hard: explicitly instruct the
LLM to use the in-context formal definitions if they
are related. We tested these prompts on GPT-40
and Def Wiki-Test to evaluate whether it can cor-
rectly refer to formalised items in context. The
results are reported in Table 6.

Including relevant formal definitions in the
prompt does not boost the performance of auto-
formalization. Intuitively, LLMs should perform
better when more relevant information is provided
within the prompt. However, directly including

u
"3 set set =

Prompt Strategy ~ Passt | SYN| UDF| TUF]
ZS 34.78 ‘ 30.43 1739 23091
Soft-IFDC 19.57 ‘ 3478 3043  26.09
Hard-IFDC 19.57 ‘ 3696 21.74 39.13

Table 6: GPT-40 Error results of Prompt-FDG on
Def_Wiki-Test with Post-FDG applied. IFDC: provide
LLM with formal definition codes from FDG and force
(Hard) or not force (Soft) LLM to use them.

grounded formal definitions does not positively im-
pact the formalization. This behaviour indicates
that current state-of-the-art LLMs cannot effec-
tively link to relevant in-context formal items for
autoformalization. How to successfully leverage
in-context formal definitions for autoformalization
with LLMs remains an important open research
question.

E Prompts and Additional Results

The prompts used for the estimation of dataset
statistics are provided in Table 7. The instructions
sed in the prompts of experiments are provided
in Table 8. Detailed numbers of autoformaliza-
tion results on miniF2F test set, Def Wiki test set
and Def_ArXiv are provided in Table 9, 10, 11,
respectively. Symbolic refinement results and Post-
FDG results on Def_Wiki test set are provided in
Table 12 and Table 13, respectively.
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Purpose

Content

Mathematical Objects Given the following statement written in LaTeX: {{latex}} How many mathematical objects

excluding explicit numbers and variables are mentioned directly in this statement? You can
think it step by step. Give me the final number as NUMBER={the number}

Mathematical Formulae Given the following statement written in LaTeX: {{latex } } How many mathematical formulae

are mentioned directly in this statement? You can think it step by step. Give me the final
number as NUMBER={the number}

Table 7: Prompts for the estimation of dataset statistics.

Instruction

Content

General

You are an expert in machine learning and formal language Isabelle/HOL. Given the following definition
in LaTeX: {{latex}}, your task is to provide the formal code of this definition in Isabelle/HOL. The
following text might contain some preliminaries to explain the given definition: {{preliminary}}. In
case that you need to import any necessary dependent theory files, you should not import any fake
theory files.

Stylistic

To represent the math symbols, you must use the textual full name of symbols in Isabelle instead of
direct symbols. For example you should use \<Rightarrow> instead of =, \<lambda> instead of \.

Output

Give the results directly without any additional explanations.

Refinement

Plain: For your reference, there are some previous formal codes generated by you: {{previous}}. You
can choose to refine this piece of code for your task.

Binary: For your reference, there are some previous formal codes generated by you: {{previous}}.
The syntactic correctness for this piece of code is: {{correctness}}. You can choose to refine this piece
of code for your task.

Detailed: For your reference, there are some previous formal codes generated by you: {{previous}}.
The provided code might have some errors according to the Isabelle prover. The error details and where
the error code is located in the code are: {{error_details}}. You should refine this piece of code for
your task.

SYN

You should make sure that every symbol you use is a valid Isabelle symbol. If an Isabelle symbol starts
with \<, then it must end with >. Isabelle reserves some words as keywords. You should be careful with
this and avoid to use them to define new names. You should make sure that the usage of symbols and
operators is correct in your final output as the incorrect usage will lead to syntax errors.

UDF

You should make sure that every item you mentioned in your code has a clear reference either in the
local context or the theory files that you decide to import.

TUF

You should make sure that in your code, the types of operands of operators or the types of parameters
of functions match the types in their definitions exactly. Failure to maintain such compatibility will
lead to type mismatch errors.

Include Formal
Definition
Codes

Soft: You can use the following Isabelle/HOL codes to support your task: {{formal_defs}} but you
should not restate these codes in your final output. You need to formalize everything that is not provided
in the given code. In this case, you should assume that you can only use things from HOL.Main. You
only need to provide the main body of formal codes for the given definition. You may not import any
theory files.

Hard: The following Isabelle/HOL codes define some mathematical concepts which might be related
to your task: {{formal_defs}}. If a mathematical concept in your task has been defined in the above
codes, you are required to use this version of formal codes but you should not restate these codes in
your final output. You need to formalize everything that is not provided in the given code. In this case,
you should assume that you can only use things from HOL.Main. You only need to provide the main
body of formal codes for the given definition. You may not import any theory files.

Table 8: Instructions used in prompts.
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Prompt Strategy Preamble  Passt FEO?T \ TROJ IVI}] SYN|] UDF| TUF]|
DeepSeekMath-7B
s Direct 328 1279 | 1844 000 5000 1434 943
PostFDG 1230 23.60 | 1598 000 47.13 123  9.02
75) + Binar Direct 205 673 | 246 000 7991 533 205
y PostFDG 410 939 | 246 000 8033 041 123
. Direct 328 1003 | 574 000 7049 1066 4.10
(Z8) + Detailed PostFDG 574 1557 | 574 000 69.67 082 041
. Direct 328 911 | 615 000 7377 615 328
(Z8) + Detailed + CR-All - p 0 EnG 533 1308 | 615 000 7295 041 328
Llama3-8B
/s Direct 492 2070 | 451 041 2951 3852 1885
Post-FDG 1066 3117 | 492 000 2869 2008 2131
7S) + Bina Direct 369 2052 | 328 041 3320 3975 2049
ry Post-FDG 943  30.57 | 3.69 000 3197 2295 2213
. Direct 410 2433 | 369 082 2951 3525 1844
(ZS) + Detailed PostFDG 902 3336 | 410 000 2746 1844 2213
. Direct 492 2416 | 697 082 2746 3525 2008
(Z8) + Detailed + CR-All 5 0 EnG 043 3241 | 779 000 2746 1885 22.54
GPT-4o
/s Direct 2541 4890 | 123 123 615 2377 738
PostFDG 6721 81.88 | 0.00 000 328 287 533
Direct 2418 4531 | 246 000 902 2746 7.9
Z8 + CR-SYN Post-FDG 5246 7396 | 041 000 779  3.69  3.69
Direct 2582 5075 | 205 246 656 2254 697
Z5 + CR-UDE PostFDG 6148 8041 | 041 000 533 287 287
Direct 2787 5062 | 205 164 533 2664 574
Z$ + CR-TUF PostFDG  54.10 7879 | 0.00 000 328 410  2.87
7s) Direct 2541 5315 | 164 123 656 2213 779
PostFDG 6721 8405 | 0.00 000 328 246 492
75) + Bina Direct 2010 5390 | 205 123 615 2172 820
ry PostFDG 6721 83.60 | 0.00 000 410 205 492
. Direct 3730 6328 | 205 123 574 902 86l
(Z8) + Detailed Post-FDG 83.61 9147 | 000 000 205 082 328
Direct 2541 5272 | 205 123 574 2213 86l
(28) + CR-SYN PostFDG 6721 8373 | 000 000 287 246 574
Direct 2664 5406 | 164 123 615 2172 697
(Z8) + CR-UDF PostFDG 6721 8378 | 0.00 000 3.69 205 492
Direct 2541 5118 | 246 123 656 2418 738
(Z8) + CR-TUF PostFDG 6721 8394 | 000 000 328 287 410
. Direct 3852 6442 | 205 123 779 820 779
(Z8) + Detailed + CR-SYN 5 0 EnG 8279 9032 | 0.00 000 328 082  2.05
. Direct 3811 6395 | 205 246 574 656 697
(Z8) + Detailed + CR-UDF  p  EnG 8238 9048 | 000 000 246 123 287
. Direct 4139 6476 | 328 123 615 1107 615
(Z8) + Detailed + CR-TUF 5 0 bnG 8320 9071 | 000 000 287 164  2.05
. Direct 3852 6573 | 205 123 615 574 779
(Z8) + Detailed + CR-All - 5 0 ERG 8197 9065 | 0.00 000 246 041 246

Table 9: Error results on miniF2F test set.
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Prompt Strategy Preamble  Passt FEO? ‘ TROJ IVIl SYN| UDF| TUF]}
DeepSeekMath-7B
s Direct 1087 1775 | 3478 217 3043 2609 2.17
Post-FDG 2609 3098 | 3478 000 2174 1087 13.04
ZS)+ Bin Direct 652 773 | 870 000 6957 2174 217
ary Post-FDG 10.87 1256 | 870 000 6522 1522 6.2
7) + Detailed Direct 1087 1327 | 1522 217 4348 3478 652
Post-FDG 2609 2921 | 13.04 000 3696 1739 1957
. Direct 435 766 | 13.04 217 4783 3261 870
(Z8) + Detailed + CR-All - 5 0BG 1739 2143 | 1304 000 4130 1522 2174
Llama3-8B
s Direct 000 280 | 000 2391 5652 3261 435
Pos-FDG 000 280 | 2174 000 5870 2391 1522
75) + Binar Direct 217 371 | 000 2609 5217 3043 217
y Pos-FDG 000 153 | 2391 000 5652 2826 13.04
. Direct 217 380 | 000 2609 5000 3043 652
(Z8) + Detailed PostFDG 435 598 | 2391 000 5217 2609 1522
. Direct 217 371 | 000 2609 5217 3261 435
(Z8) + Detailed + CR-All - po EnG 217 371 | 2391 000 5435 2391 1522
GPT-40
/s Direct 1087 1612 | 870 870 1957 5000 13.04
Post-FDG 3478 4256 | 652 000 3043 1739 2391
Direct 1087 1518 | 870 217 1522 5870 13.04
Z8 + CR-SYN Post-FDG 3478 4027 | 870 000 2826 13.04 26.09
Direct 217 1159 | 652 652 1957 6087 19.57
Z5 + CR-UDF PostFDG 3043 42.66 | 217 000 3478 2391 23091
Direct 870 1455 | 870 652 2174 5652 1522
Z8 + CR-TUF Pos-FDG 3043  40.51 | 652 000 3478 1739 2826
zs) Direct 1087 1621 | 870 870 1957 5000 13.04
Post-FDG 3913 4723 | 652 000 2826 1522 2391
7) + Binar Direct 1304 1830 | 870 652 1739 5000 13.04
y Post-FDG  39.13 4800 | 652 000 2609 870 2826
75) + Detailed Direct 1957 2346 | 870 870 1087 4783 1087
clarle Post-FDG 4348 50.13 | 652 000 21.74 1087 2391
Direct 1087 1612 | 870 870 1739 5217 13.04
(Z8) + CR-SYN Pos-FDG 3696 4497 | 652 000 3043 1522 2391
Direct 1087 1612 | 870 870 1957 5000 13.04
(Z8) + CR-UDF PostFDG 3696 4497 | 652 000 3043 1522 2391
Direct 1087 1621 | 870 870 2174 4783 13.04
(Z8) + CR-TUF Post-FDG 3696 4506 | 652 000 3261 1522 2174
. . Direct 1957 2409 | 870 870 13.04 4348 1087
(ZS + Detailed) + Detailed 5 0 bnG 4348 5032 | 652 000 1957 870 2609
. Direct 2174 2563 | 870 1087 1087 4130 870
(Z8) + Detailed + CR-SYN 5 0 EDG 4565 5231 | 652 00 2174 870 2174
. Direct 1739 2183 | 870 1304 1739 3913 870
(Z8) + Detailed + CR-UDF 5 ENG 4348 5024 | 652 00 2174 1087 2174
. Direct 1957 2346 | 870 870 1739 4348 870
(Z8) + Detailed + CR-TUF  p  EnG 4565 5231 | 652 00 2391 1087 1957
. Direct 2174 2563 | 870 870 1087 4348 13.04
(Z8) + Detailed + CR-All - 5 EnG 4348 5013 | 652 000 2174 1087 2391

Table 10: Error results on Def Wik test set.
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Prompt Strategy Preamble  Passt FEO? \ TROJ IVI] SYN| UDF| TUF]}
DeepSeekMath-7B
s Direct 1333 1469 | 1667 000 4000 3667 1333
Post-FDG 16,67 18.02 | 1333 000 4333 3000 16.67
75) + Binar Direct 333 333 | 667 000 6667 3333 333
inary Pos-FDG 667 741 | 333 000 7000 2333  10.00
(75) + Detailed Direct 667 736 | 1333 000 4667 4333 1333
PostFDG 1333 1402 | 1000 000 4667 3333  20.00
. Direct 667 759 | 1333 000 4667 4333 1333
(Z8) + Detailed + CR-All - po EnG 1333 1426 | 1000 000 4667 3333 20,00
Llama3-8B
/s Direct 000 267 | 000 1333 7000 4000 667
PostFDG 000  2.67 | 1333 000 6667 2667 20.00
) + Binar Direct 333 583 | 000 2000 60.00 3333 667
y Post-FDG 333 583 | 2000 000 6000 2667 1667
75) + Detailed Direct 000 141 | 000 2000 6333 3333 667
i Pos-FDG 000 422 | 2000 000 5667 2667 20.00
. Direct 000 233 | 000 1667 6667 3667 667
(Z8) + Detailed + CR-All - 5 0 ENG 333 700 | 1667 000 6333 2667 2333
GPT-4o
s Direct 1333 1930 | 000 000 4000 5666 667
Post-FDG 2333 3602 | 000 000 6000 1333 1333
Direct 1000 17.14 | 000 000 2667 6667 667
Z8 + CR-SYN Post-FDG 26,67 39.11 | 000 000 5000 2000 16.67
Direct 1000 1854 | 000 1000 3333 4667 1667
ZS + CR-UDF Post-FDG 2333 3652 | 000 000 4667 2333 16,67
Direct 667 1405 | 000 333 2333 6333 1000
28 + CR-TUF PostFDG 2333 3503 | 000 000 5667 1333  10.00
7s) Direct 1667 2328 | 000 000 3667 5333 667
Post-FDG 3000 40.83 | 000 000 5667 1000 10.00
7S) + Binar Direct 1667 2430 | 000 000 3333 5333 667
y Post-FDG 2667 41.02 | 000 000 6000 1000 667
(75)+ Detailed Direct 1667 2891 | 000 000 3667 4333 1667
clarle Post-FDG  30.00 44.15 | 0.00 000 56.67 1333 3.33
Direct 2000 2412 | 000 000 3667 5333 333
(Z8) + CR-SYN Post-FDG 3000 40.83 | 0.00 000 6000 1000 667
Direct 2000 2412 | 000 000 3000 5667 667
(Z8) + CR-UDF Post-FDG 3000 40.83 | 0.00 000 5667 1000 10.00
Direct 1667 2307 | 000 000 3333 5333 1000
(Z8) + CR-TUF Post-FDG 2667 3747 | 000 000 6000 1333 667
. Direct 2333 2974 | 000 000 3000 5000 10.00
(Z8) + Detailed + CR-SYN 0 EnG 3000 4312 | 000 000 5333 1667 333
. Direct 2667 3418 | 000 000 3333 4333  10.00
(Z8) + Detailed + CR-UDF 0 EnG 3000 4423 | 000 000 5333 1333 667
. Direct 1333 2541 | 000 000 3333 4667 1667
(Z8) + Detailed + CR-TUF 5 0 ENG 3000 4398 | 000 000 5667 1333 333
. Direct 1333 2454 | 000 000 3333 5000 1667
(Z8) + Detailed + CR-All - 5 00 ENG 3333 4645 | 000 000 5000 1333 6.67

Table 11: Error results on Def ArXiv set.
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Prompt Strategy  Preamble  Passt FEO? \ TROJ IVI}, SYN| UDE| TUF|
miniF2F-Test

75 Direct 2541 4890 | 123 123 615 2377 738
PostFDG 6721 81.88 | 000 000 328 287 533
. Direct 3730 6328 | 205 123 574 902 86l
(Z8) + Detailed 5 EDG 8361 9147 | 000 000 205 082 328
Def_ Wiki-Test
75 Direct 1087 1643 | 870 870 1522 5217 13.04
PostFDG 3478 43.19 | 652 000 2391 1957 2826
(ZS) + Detailed  Direct 1957 2377 | 870 870 870 4783 10.87
AT PostFDG 4348 5076 | 652 000 1739 1087 2826
Def ArXiv
75 Direct 1333 1930 | 0.00 000 2333 6667 6.67
PostFDG 2333 3602 | 0.00 000 6000 1333 13.33
(ZS) + Detailed Diect 1667 2891 | 000 000 2333 4667 20.00
Al postFDG  30.00 44.15 | 0.00 0.00 56.67 1333  3.33
Table 12: Symbolic refinement of GPT-4o results on three dataset.
Prompt Strategy Preamble  Passt FEOf \ TROJ IVI} SYN| UDF| TUF|
GPT-40
SoftIFDC Direct 6.52 1145 | 870 000 1739 7174  2.17
ott- Post-FDG  19.57 29.65 | 0.00 0.00 3478 3043  26.09
Hard IFDC Direct 435 1186 | 10.87 000 1087 69.57 652
ard- Post:FDG 19.57 2695 | 0.00 0.0 3696 21.74 39.13
. Direct 1522 2047 | 870 217 1522 5870 10.87
(Z8) + Soft-IFDC + Binary 0 bnG 4130 5109 | 652 000 2609 1087  26.09
. Direct 1522 2020 | 870 2.17 13.04 5652 13.04
(Z8) + Soft-IFDC + Detailed  p  EnG 4130 5126 | 652 00 2391 1087 2609

Table 13: Prompt-FDG results on Def_Wiki test set.
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