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Abstract

Existing video-language models (Video-LLMs)
typically rely on concatenating visual tokens
with textual inputs for joint modeling. How-
ever, this token-level alignment leads to sig-
nificant inefficiency, especially when scaling
to long videos with dense visual inputs. In
this work, we propose a video-to-parameter ef-
ficiency paradigm named ViPE that eliminates
redundant visual tokens by transforming video
content into visual perceptual weights, which
are directly injected into the LLM’s parameters.
ViPE consists of a visual injection module that
compresses video features into a small set of
perceptual queries using a hierarchical merge
strategy, and a visual perception module that
integrates the resulting representations into the
LLM through a lightweight LoRA-like mecha-
nism. ViPE achieves performance comparable
to token-based baselines such as LLaVA, while
reducing FLOPs by 85% and inference time by
up to 65%, demonstrating a highly efficient and
scalable solution for video understanding.

1 Introduction

By integrating image and text inputs, Vision Lan-
guage Models (VLMs) (Dai et al., 2023; Alayrac
et al., 2022; Achiam et al., 2023) have achieved
impressive performance in tasks such as image cap-
tioning and visual question answering. As the de-
mand for richer and more dynamic visual under-
standing grows, the focus of VLM research has
naturally progressed from static images to video
data, giving rise to video-language models (Video-
LLMs) (Jin et al., 2024; Li et al., 2024b; Zhang
et al., 2024a). Most existing approaches (Liu et al.,
2023; Team et al., 2023; Zhang et al., 2023b) fol-
low a vision-language spatial alignment paradigm,
where visual features extracted by an image encoder
are converted into visual tokens and concatenated
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space alignment paradigms.

with text tokens. While effective for short clips or
static images, this strategy suffers from severe effi-
ciency bottlenecks when scaling to long videos, due
to the rapid growth in visual token length, which
leads to high computational cost, memory usage,
and inference latency.

Recently, several approaches(Li et al., 2023b;
Zhang et al., 2023a; Maaz et al., 2023; Luo et al.,
2023) have been proposed to extend VLMs beyond
static images to video understanding. These meth-
ods typically aim to mitigate the token burden by
compressing visual inputs or incorporating mem-
ory mechanisms. However, the challenge of long
video modeling remains largely unresolved. A key
bottleneck lies in the excessive number of tokens re-
quired to represent frame-wise visual content. For
instance, LLaVA(Liu et al., 2023) encodes a single
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image into over 576 visual tokens. A video contain-
ing 10K frames would thus necessitate over 5760K
visual tokens, exceeding the capacity of current
VLMs. Moreover, simple temporal compression
strategies often result in severe degradation of long-
range video representations, limiting the model’s
ability to retain temporal coherence and semantic
richness.

To overcome these limitations, we explore a fun-
damentally different direction: instead of aligning
at the token level, we align video content at the
parameter level by injecting visual information di-
rectly into the LLM’s weights. Building on this idea,
we propose a novel video-to-parameter paradigm
(ViPE) that replaces token-level alignment with a
lightweight perceptual injection mechanism. ViPE
transforms video features into learnable perceptual
weights, which are then modulated into LLM pa-
rameters through a LoRA-like strategy, enabling
efficient video-language understanding without re-
lying on visual tokens during inference. To real-
ize this paradigm, ViPE is designed with two key
components: the Visual Injection Module and the
Visual Perception Module. First, a visual encoder
extracts features from the input video, which are
then injected into a set of n learnable perceptual
queries. To enhance the efficiency of this injec-
tion, we introduce a hierarchical context merge strat-
egy that progressively filters redundant visual infor-
mation, allowing the perceptual queries to capture
more abstract and compact video representations.
Second, the visual perception module generates vi-
sual perceptual weights that are integrated into the
LLM layers using a low-rank adaptation(LoRA)
style lightweight injection mechanism, enabling
the LLM to perceive visual context without incur-
ring additional computational cost. In summary,
our method eliminates redundant visual token in-
puts, significantly enhancing computational effi-
ciency. With 7M publicly available video-text pairs,
ViPE achieves comparable video performance to
the LLaVA paradigm while reducing FLOPs by
85% and inference time by a factor of 65%. Our
contribution can be concluded as:

• We introduce the ViPE, a novel Video-to-
Parameter paradigm that eliminates the need
for redundant visual token inputs and enables
efficient visual-language alignment.

• We design two lightweight modules: the Vi-
sual Injection module and the Visual Percep-
tion module that jointly enable compact yet

expressive visual integration via hierarchical
context merging and LoRA-style injection.

• ViPE achieves comparable performance to
LLaVA while reducing FLOPs by 85% and
inference time by 65%, demonstrating the
paradigm’s practicality and efficiency.

2 Related Works

2.1 Video Large Language Models.

Video-LLMs typically process videos by extract-
ing and encoding frame-level features, which are
then aggregated to form the final video representa-
tion. Several methods(Cheng et al., 2024; Li et al.,
2024a; Ataallah et al., 2024; Luo et al., 2023) con-
catenate frame features directly to construct video
inputs. For instance, Video-LLaMA(Zhang et al.,
2023a) incorporates both visual and auditory sig-
nals via a Q-Former(Li et al., 2023a) to model tem-
poral dependencies, while Video-LLaVA(Lin et al.,
2023) introduces a unified framework that aligns vi-
sual representations before projecting them into the
language space. When processing lengthy videos,
longer visual tokens need to be properly handled on
the LLM side. Video-ChatGPT(Maaz et al., 2023)
and PLLaVA(Xu et al., 2024) adopt pooling strate-
gies to compress visual tokens, but at the cost of
information loss. LLaMA-VID(Li et al., 2024b)in-
troduces a text-guided cross-attention mechanism
to aggregate per-frame features into content tokens.
While effective to some extent, these methods still
follow the input space alignment paradigm, which
constrains scalability and efficiency. In contrast,
ViPE shifts alignment to the parameter space by
injecting visual perception weights directly into the
LLM. This token-free design eliminates the depen-
dency on long visual sequences, enabling efficient
video-LLM.

2.2 Parameter-Efficient Fine-Tuning.

Fine-tuning multi-billion-parameter large language
models (LLMs)(Touvron et al., 2023a,b; Brown
et al., 2020) is computationally expensive, mo-
tivating the development of parameter-efficient
fine-tuning (PEFT) methods that freeze the back-
bone and train lightweight, task-specific mod-
ules. Representative PEFT strategies include
Adapters(Houlsby et al., 2019; Pfeiffer et al., 2020;
Sung et al., 2022), Prefix-tuning(Lester et al., 2021;
Li and Liang, 2021), and Low-Rank Adaptation
(LoRA)(Hu et al., 2022; Dong et al., 2024; Ma
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et al., 2024). Adapters(Houlsby et al., 2019) in-
sert small bottleneck layers between Transformer
blocks, enabling task-specific adaptation with mini-
mal training overhead. Prefix-tuning(Li and Liang,
2021) prepends trainable vectors to key and value
matrices in attention, while LoRA(Hu et al., 2022)
injects low-rank updates into weight matrices, effec-
tively learning additive deltas without modifying
the original weights. Despite their success, these
methods have trade-offs: Adapters introduce ad-
ditional inference latency, and prefix-tuning can
be sensitive to initialization and optimization. In
contrast, ViPE aligns video and language at the
parameter level, inspired by the PEFT philosophy.
It generates visual perception weights from video
features and injects them directly into the LLM’s
parameters using a LoRA-style mechanism. This
design enables efficient video-language modeling
without introducing extra inference overhead, mak-
ing ViPE highly suitable for efficient Video-LLM.

3 Method

3.1 LLaVA Paradigm
LLaVA (Large Language and Vision Assistant)(Liu
et al., 2023) is an advanced multimodal architecture
that combines vision and language processing ca-
pabilities. LLaVA leverages a vision encoder, such
as ViT (Vision Transformer), and a large language
model (LLM) to generate visual featuresFv and tex-
tual features Ft. The main idea is to use a projector
layer to transform the visual features into visual to-
kens, which are then mapped into the LLM’s input
space for joint training with textual tokens. Specifi-
cally, a pre-trained CLIP ViT-L/14 and a projector
layer are employed to encode the input image I into
visual tokens Tv. Then the visual tokens Tv and
text token Tt are fed into an LLM, such as Vicuna
or Qwen to generate the response X . In practice,
visual tokens are often connected with text tokens,
so the inputs of LLM can be formally represented
as:

X = LLM(Tv;Tt) ∈ R(Nv+Nt)×d (1)

When Nv and Nt denote the lengths of the visual
tokens and text tokens, respectively. For instance,
in LLaVA-1.5, Nv is 576, and Nt typically ranges
from 20 to 80. In video processing scenarios, each
frame will be process independently encoded as
visual tokens Tv. When processing F frames, the
total number of visual tokens increases to F × Tv.
This leads to a significant computational overhead

in the LLM, particularly in the self-attention mech-
anism, where the complexity scales quadratically
with the input length:

O
(
(Nt + F ·Nv)

2 · d
)

(2)

When Nv and Nt denote the lengths of the visual
tokens and text tokens, d is the hidden dimension. It
can be observed that the computational complexity
O is positively correlated with the square of the
input token length. The excessively long visual
token inputs have become a major limitation for the
practicality of video large language models.

3.2 ViPE
Inspired by Parameter-Efficient Fine-Tuning
(PEFT), we consider whether the alignment
paradigm can be shifted from the input space to
the parameter space, eliminating the substantial
computational overhead introduced by video tokens
F · Nv. To address this limitation, we propose
ViPE, a novel Video-to-Parameter alignment
paradigm that eliminates the need for additional
visual token inputs. Instead of injecting visual
information through tokens, ViPE converts video
features into perceptual weights, which are then
integrated directly into the LLM’s parameters
for alignment. ViPE has two key components:
1) Visual Injection Module, which injects video
information into a set of visual perceptual queries
Qv, which serve as compact and semantically
rich representations for downstream parameter
generation. 2) Visual Perception Module, which
transformed the visual perceptual queries Qv into
visual perceptual weights and injected them into
the parameters of the LLM, enabling the model to
acquire the ability to understand video information.

Visual Perceptual Query Generation. To en-
able video information to be effectively injected
into the model parameters, we first employ a visual
injection module to transform video features into
a set of learnable perceptual queries. This mod-
ule serves as a bridge between raw video features
and parameter-level adaptation. The Visual Injec-
tion Module is composed of three core components:
self-attention, cross-attention, and a feed-forward.

We begin by initializing a set of N learnable vi-
sual perceptual queries Q ∈ RN×Dv . Let V =
F · Nv and V ∈ RB×N×P×Dv be the video fea-
tures extracted by vision encoder, where B is the
batch size, N is the number of frames sampled, P
is the video patches, and Dv is the visual embed-
ding dimension. The visual perceptual query after
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Figure 2: Overview of the ViPE.ViPE injects video information into perceptual queries via a visual injection module
and generates visual perceptual weights through a perception module. These weights are then integrated into the
LLM using a LoRA-based mechanism. Additionally, a Hierarchical Context Merging strategy is introduced to merge
redundant video information.

self-attention is computed as a weighted sum of the
values:

Q′ = SelfAttn(Q) = softmax
(
QqQ

>
k√

d

)
Qv (3)

This allows visual perceptual queries Q to inter-
act with one another and model intra-query rela-
tionships. Then updated visual perceptual queries
attend to the visual features via cross-attention, in-
tegrating spatial-temporal cues from the video:

Q̃v = Cross Attn(Q′, V, V ) (4)

This enables each visual perceptual query to focus
on relevant visual content across frames. Finally, a
feed-forward network is applied to further enhance
the representation capacity:

Qv = FFN
(
Q̃v

)
(5)

These visual perceptual queries Qv are then pro-
jected and generate visual perceptual weights.

Visual Perceptual Weight Generation. To con-
vert visual perceptual queries to perceptual weight,
we propose the visual perception generator module.
The visual perception queries are first projected
into the LLM’s hidden space via a learnable linear
projector:

∆W ′
v = F(Qv),F ∈ RDv×D (6)

In an LLM, different parameter types at different
layers exhibit varying levels of information sensi-
tivity. For example, lower layers tend to capture

fine-grained visual patterns such as textures and
edges, while higher layers are more responsive to
semantic-level concepts. Additionally, each weight
type plays a distinct role, like query, key, value,
output, and mlp. To effectively inject visual infor-
mation across the model, we assign layer-specific
adaptation weights for each parameter type. How-
ever, directly learning a full-rank matrix for every
layer and weight type would introduce a prohibitive
number of additional parameters, which contradicts
our goal of efficiency. To address this, we adopt
a low-rank decomposition strategy to generate the
visual-aware adaptation weights. Specifically, for
each layer, the visual perception weight is formu-
lated as:

∆Wv = WvWl (7)

Where Wv ∈ RD×r,Wl ∈ Rr×D, r � Dlmm

is the decomposition rank. Only Wv will introduce
visual perceptual. This formulation allows us to
maintain expressive capacity while significantly re-
ducing parameter overhead, enabling scalable and
efficient video-to-parameter alignment across lay-
ers and weight types. Then, we can inject the visual
perception weights ∆Wv into the LLM’s weights
for alignment training. The overall model weights
are as follows:

Wtotal = Wllm +∆Wv (8)

Unlike the alignment approach used by LLaVA,
ViPE inject video information into the LLM by
converting visual features into perceptual weights.
The advantage of this approach is that it eliminates
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the need for long visual token sequences, signifi-
cantly enhancing the model’s efficiency. Addition-
ally, by leveraging weight fusion, we avoid intro-
ducing additional inference burdens during the in-
ference phase, thereby improving the practicality
of video large language models.

3.3 Hierarchical Context Merging

To improve the efficiency of cross-attention oper-
ations between the visual perceptual queries and
high-dimensional video features, we propose a Hi-
erarchical Context Merging (HCM) strategy. This
approach is designed to progressively filter redun-
dant visual tokens across layers, allowing each layer
within the Visual Injection Module to attend only
to the most informative subsets of video features.
Specifically, to identify redundant visual tokens at
each layer `, we compute a pairwise cosine similar-
ity matrix S ∈ RNq×Nv between each query in the
set of visual perceptual queries Q(`) ∈ RNq×D and
each visual token in visual features V :

Si,j =
Q

(`)
i · V (`)

j

|Q(`)i||V (`)j| , ∀i ∈ [1, Nq], j ∈ [1, Nv]

(9)
For each visual token j, we then define its relevance
score as the maximum similarity across all queries:

rj = max
i∈[1,Nq ]

Si,j (10)

A higher rj indicates that the token’s information is
already highly aggregated within at least one query.
Hence, a top-k filtering is applied to discard the k
most relevant visual tokens (i.e., those with highest
rj values), denoted as Ṽ (`) ∈ Rk×D. The remained
tokens are subsequently used in the cross-attention
operation detailed in Equation (4).

This hierarchical merging strategy is applied
across layers, where each layer filters out redun-
dant visual tokens based on their cosine similarity
to the perceptual queries. By progressively discard-
ing already-attended tokens, deeper layers attend
to increasingly abstract and informative visual con-
tent. This not only reduces the computational cost
of cross-attention, but also encourages the queries
to capture complementary semantics at each stage.
The top-k parameter can be layer-adaptive, enabling
efficient and expressive visual integration that fur-
ther enhances the overall effectiveness of our token-
free ViPE paradigm.

3.4 Analysis of Effiency
In this section, we compare the computational cost
of ViPE and LLaVA-v1.5-7B to validate the effi-
ciency of our proposed method. For convenience,
we only consider the computational cost of the
self-attention and feed-forward network in LLM.
When the hidden dimension of the LLM is denoted
as D, Dffn denotes the hidden dimension of the
feed-forward network, and the input visual and tex-
tual tokens are of length LvandLt. The floating-
point operations (FLOPsφ) can be estimated as
follows:φattn = 4D2, φffn = 2 × D × Dffn,
and φllm = φattn +φffn. Specifically, the flops of
LLava can be described as:

φllava = (Lv + Lt)× φllm (11)

Compared to previous token-based approaches,
ViPE eliminates the need for visual token input and
instead introduces visual perception weights ∆Wv,
which are injected into the model’s parameters. The
corresponding computational cost of ViPE is cal-
culated as:

φV iPE = Lt × (φllm + φ∆W ) (12)

Here, φ∆W = n×(16r×D+4r×(D+Dfnn))
and r is the rank used in the low-rank decomposi-
tion of the injected visual perceptual weights, n de-
notes the number of target weight types(e.g query,
key, value, output, and mlp). For inference, the
perceptual weights can be merged into the LLM:

φinference = L× φllm (13)

4 Experiments

Implementation Details. We use Vicuna-7B-
v1.5(Zheng et al., 2023) as the foundational LLM
and CLIP ViT/L-14(Radford et al., 2021) as the
vision encoder. For the visual perceptual weight,
we set the hidden size Dv = 512, and both the
query number, rank, and alpha are set to 64. To
inject the visual perceptual weights into the LLM
layers, we adopt a sparse approach. Specifically, for
Vicuna-7B, which contains 32 transformer layers,
we inject a visual perceptual weight ∆Wv very 4
layers, resulting in a total of 8 instances. For ∆Wl,
we initialize it to zero to ensure the stability of the
training process. For video inputs, we utilize the
full outputs of the vision encoder as vision condi-
tioning. For video inputs, we uniformly sample
32 frames. During the pre-training phase, only the
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Table 1: Performance on zero-shot video-language benchmarks. We evaluate ViPE on 3 short-video benchmarks
and 5 long-video benchmarks. VC denotes Video-ChatGPT. Vision Tokens is the number of vision tokens fed to
LLM per frame.

Model Visual Tokens Short Video Benchmark Long Video Benchmark
MSVD ActivityNet VC EgoSchema MVBench VideoMME MLVU CinePile

VideoLLaMA 256 51.6/2.5 12.4/1.1 1.98 - 34.1 - - -
VideoChat 64 56.3/2.8 26.5/2.2 2.29 - 35.5 - - -
Video-ChatGPT 576 64.9/3.3 35.2/2.7 2.42 - 32.7 - 31.3 14.6
Chat-UniVi 112 65.0/3.6 46.1/3.3 2.99 - - - - -
Video-LLaVA 576 70.7/3.9 45.3/3.3 2.84 38.4 41.0 39.9 47.3 22.5
LLAMA-VID 2 69.7/3.7 47.4/3.3 2.89 38.5 41.9 25.9 33.2 -
LLaVA-NeXT-Video 576 67.8/3.5 53.5/3.2 3.26 43.9 33.7 - 46.5 -
VideoChat2 32 70.0/3.9 49.1/3.3 2.95 54.4 60.4 42.3 47.9 29.3
VideoLLaMA2 576 70.9/3.8 50.2/3.3 3.13 51.7 54.6 46.6 48.5 44.6
LLaVA-Mini 1 70.9/4.0 53.5/3.5 - 51.2 44.5 - 42.8 -

ViPE 0 71.6/4.0 53.6/3.5 3.07 51.2 51.3 47.2 51.3 45.3

visual perceptual weights are trainable. We use
the AdamW optimizer with a learning rate of 2e-
5, employing a linear warm-up followed by cosine
decay. The global batch size is set to 256. During
fine-tuning, the entire LLM is made trainable. The
learning rate is again set to 2e-5, and the learning
rate schedule remains the same as in pre-training.
All experiments are conducted on 8 NVIDIA A800
GPUs, with 48 hours for pre-training and 30 hours
for fine-tuning.

Training Data. For pre-training, we utilized
a dataset including 4M image-text pairs and 3M
video-text pairs. The supervised fine-tuning (SFT)
dataset contains LLaVA665K(Liu et al., 2023)and
LLaVA-Video178K(Zhang et al., 2024b). Specif-
ically, the image data includes 1M original sam-
ples from DenseFusion and 3M re-annotated sam-
ples derived from the CC3M and COCO datasets.
The video data consists of 2M samples from We-
bVid(Bain et al., 2021) and 1M samples from
VALOR(Chen et al., 2023), with all captions re-
annotated for consistency and quality.

Benchmarks for Evaluation. We evaluate
ViPE on a series of comprehensive visual language
benchmarks:1) Video-based benchmarks include
MSVD-QA(Xu et al., 2017), ActivityNet-QA(Yu
et al., 2019), Video generative benchmark(Maaz
et al., 2023) and 2) Long Video Understanding
encompass Egoschema(Mangalam et al., 2023),
CinePile(Rawal et al., 2024), VideoMME(Fu et al.,
2024), MVBench(Li et al., 2024a), MLVU(Zhou
et al., 2024).

4.1 Main Results

We evaluate ViPE’s performance on video-related
tasks across three short video benchmarks and five

long video benchmarks. In Table1, ViPE achieves
competitive or superior results across these bench-
marks. In terms of computational efficiency, ViPE
reduces the overall training and inference cost by
approximately 85%, highlighting the scalability and
practicality of our token-free video-to-parameter
paradigm. In addition, ViPE surpasses existing
video understanding models that rely on visual-
text token alignment, such as Video-LLaVA(Lin
et al., 2023), LLaMA-VID(Li et al., 2024b), and
LLaVA-Mini(Zhang et al., 2025), in both short and
long video tasks. This performance improvement
highlights the efficacy of our visual-to-parameter
alignment paradigm. By replacing the need for
long, cumbersome visual token inputs with per-
ceptual weights, we enable the LLM to process
video content more effectively, extracting essential
visual information while minimizing computational
overhead. The shift from token-level alignment to
parameter-level integration ensures that ViPE re-
tains high performance, offering an efficient solu-
tion for video understanding.

4.2 Efficiency Analysis

To evaluate the efficiency of our method, we report
visual token, max memory allocated, average in-
ference time per sample, and flops. As shown in
Table1, LLaVA-v1.5-Video is our reimplementation
of the LLaVA-1.5 framework using the same pre-
training and fine-tuning datasets as our method. The
results demonstrate that ViPE achieves compara-
ble performance to LLaVA-v1.5-Video on standard
video benchmarks. Notably, LLaVA-v1.5-Video
relies on 4,608 visual tokens per sample, leading to
approximately twice the training time compared to
ViPE. All models are deployed on NVIDIA A100

17781



Table 2: Efficiency analysis under different models. We report the maximum visual token, max memory allocated,
and inference time, respectively.

Model Flops(T) Men(G) Inference Time(ms) EgoSchema MVBench VideoMME MLVU CinePile

Video-LLaVA 7.5 20.4 391 38.4 41.0 39.9 47.3 22.5
LLAMA-VID 4.3 19.8 273 38.5 41.9 25.9 33.2 -
LLaVA-V1.5-Video 8.4 20.7 365 51.4 50.1 46.6 51.3 43.9
ViPE 1.3 16.7 132 51.2 51.3 47.2 51.3 45.3

Table 3: Effect of video frames sample.

Frames EgoSchema MVBench VideoMME MLVU CinePile

4 43.2 43.5 38.6 44.2 41.8
8 46.3 48.3 41.2 46.3 42.3
16 48.7 50.0 43.4 49.3 44.8
32 51.4 51.3 47.2 51.3 45.3

Figure 3: FLOPs comparison across frame counts.

GPUs. For the LLaVA-based baselines, visual to-
kens are directly concatenated with text tokens and
fed into the model without any reduction or opti-
mization, which leads to significantly higher peak
memory usage and FLOPs due to the large num-
ber of visual tokens. In contrast, ViPE eliminates
the need for explicit visual token inputs by directly
injecting visual perceptual weights during infer-
ence. This approach reduces the inference time
by 3× compared to Video-LLaVA, 2× compared to
LLaMA-VID, and 2.8× compared to LLaVA-V1.5-
Video, highlighting ViPE’s superior efficiency in
video-language understanding tasks.

In Fig3, we compare FLOPs ViPE and base-
line models as frame counts grow. ViPE achieves
significant computational overhead reduction, sav-
ing 85.0% in FLOPs, at 128 frames compared to
LLaVA-V1.5-Video, while maintaining superior
performance on video understanding benchmarks.

4.3 Ablation Study

Effect of Video Frames. To evaluate the impact of
temporal granularity, we vary the number of sam-
pled frames from 4 to 32 and report performance

across five long video benchmarks, as shown in Ta-
ble3. To assess the impact of temporal granularity,
we vary the number of sampled frames from 4 to
32 and evaluate performance across five long-video
benchmarks, as summarized in Table 3. The results
reveal a consistent trend: increasing the number of
frames substantially improves model performance,
suggesting that denser temporal sampling enhances
the model’s ability to capture long-range temporal
context. For example, on EgoSchema, performance
improves from 43.2 to 51.4 when the number of
frames increases from 4 to 32. Similar improve-
ments are observed on MVBench and VideoMME.
However, this performance gain comes at a signifi-
cant computational cost in token-based models, as
each additional frame introduces hundreds of visual
tokens. This leads to a rapid increase in memory
usage and inference time, limiting practicability
for long videos. ViPE addresses this challenge by
eliminating redundant visual tokens and directly
injecting video information into the LLM’s param-
eters. As a result, ViPE is able to benefit from
richer temporal input without suffering from the
prohibitive computational overhead associated with
traditional token-based approaches.

Effect of Hierarchical Context Merging. To
evaluate the effectiveness of our proposed hierarchi-
cal context merge, we examine how different merge
method and ratios impact performance across long
video benchmarks. This strategy aims to reduce the
number of visual perceptual queries by hierarchi-
cally merging less informative ones, while preserv-
ing key semantic content.

We conduct ablations by replacing it with two
common strategies: ViPE + Frame Summariza-
tion (FS): Uniformly sample fewer frames to match
HCM’s token budget. ViPE + Token Pooling (TP):
Keep all frames, but apply mean pooling for token
pruning under the same compression ratio. All vari-
ants are configured to output the same number of vi-
sual tokens. HCM consistently outperforms FS and
TP across all five long video benchmarks. As shown
in Tabel4, HCM is a more effective method for pro-
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Table 4: Comparison of Hierarchical Context Merging
and Previous Methods.

Methdo EgoSchema MVBench VideoMME MLVU CinePile

VIPE with HCM 51.2 51.3 47.2 51.3 45.3
VIPE with FS 51.5 50.9 46.8 51.1 45.1
VIPE with TP 49.8 48.5 45.6 49.3 42.4

Table 5: Effect of hierarchical context merging. The
Merge Ratio represents the ratio merged to the total
tokens.

Merge Ratio Flops EgoSchema MVBench VideoMME MLVU CinePile

80 24.3 51.3 51.0 47.5 51.1 45.6
60 20.7 51.2 50.7 47.2 51.3 45.3
40 16.8 49.7 49.6 44.4 49.9 42.4
20 13.5 48.2 47.7 42.7 48.1 39.7

cessing long videos, as it better retains key spatio-
temporal information compared to traditional frame
sampling or token pooling techniques.

As shown in Table5, when the merge ratio is
set to 60% or higher, ViPE maintains strong and
stable performance across all benchmarks. Perfor-
mance degradation only becomes noticeable when
the merge ratio drops below 40%. At 20%, signifi-
cant drops appear across datasets, particularly on vi-
sually complex benchmarks such as CinePile (from
45.6 to 39.7), suggesting that excessive merging
begins to erase critical video information. These
results validate the effectiveness of the Hierarchical
Merge approach in balancing efficiency and repre-
sentation quality. With a merge ratio of 60%, ViPE
achieves a 1.2× speedup in training time and a 30%
reduction in FLOPs, demonstrating the practical
advantages of this strategy for scalable and efficient
video-language modeling.

Effect of Injection Interval. To evaluate the
contribution of visual perceptual weights to enhanc-
ing video-language comprehension, we experiment
with different integration intervals by injecting them
into the LLM every 2, 4, or 8 layers. As shown in
Table 6, the scale of visual perceptual weight injec-
tion has a notable impact on model performance
across all benchmarks. Injecting visual perceptual
weights every 4 transformer layers yields the best
overall results, demonstrating an effective trade-off
between incorporating visual context and preserv-
ing the language modeling capability of the LLM.
When visual information is injected too sparsely,
such as every 8 layers, the performance drops signif-
icantly, particularly on datasets like EgoSchema and
CinePile, which require strong visual grounding in
first-person and long-form video contexts. This sug-
gests that insufficient visual integration limits the

Table 6: Effect of visual perceptual weight injection
interval.

Interval EgoSchema MVBench VideoMME MLVU CinePile

2 51.4 50.7 46.7 50.8 45.5
4 51.2 51.3 47.2 51.3 45.3
8 50.1 49.6 45.3 49.8 43.5

Table 7: Effect of perceptual weights equipped in the
model.q,k,v,o, and m, denote the query, key, output, and
mlp, respectively.

Weights Equipped EgoSchema MVBench VideoMME MLVU CinePile

qkvom 51.2 51.3 47.2 51.3 45.3
qkvm 48.1 49.2 44.9 48.7 43.6
qkv 48.3 49.6 45.8 49.7 43.5
qko 47.9 49.4 44.8 49.0 42.9
qk 40.3 43.2 39.7 43.5 38.6

model’s ability to retain and reason over long-term
visual information. Conversely, injecting visual per-
ceptual weights too frequently (e.g., every 2 layers)
offers no clear advantage and may even introduce
unnecessary visual interference, potentially disrupt-
ing the model’s language reasoning.

Effect of Perceptual Weights Type. To exam-
ine how visual perceptual weights affect video un-
derstanding when integrated into different types
of model parameters, we conduct a series of abla-
tion experiments across five key weight categories:
Query, Key, Value, Output, and Mlp. For each
type, we evaluate the model’s performance by se-
lectively incorporating visual perception through
visual queries. Our results show that integrating
visual perceptual weights into all five parameter
types achieves the best overall performance across
benchmarks. While query and key are vital for com-
puting attention scores, and thus determine whether
visual content is attended to. As such, they are re-
tained across all variants to ensure the integrity
of the attention mechanism. Among these, the
value projection proves to be particularly crucial.
In transformer-based models, the value projection
is directly responsible for carrying content informa-
tion to be aggregated during attention. Injecting
visual perception into V enables the model to effec-
tively ground language tokens in semantically rich
visual content. Conversely, omitting this integra-
tion (as seen in the qk or qko variants) results in a
significant performance drop.

Effect of Perceptual Rank. To better understand
the impact of visual perceptual weights on video-
language modeling, we evaluate different weight
ranks, which control the capacity of the injected
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Table 8: Effect of perceptual weights’ rank. The rank
controls the degree of visual information compression.

Rank EgoSchema MVBench VideoMME MLVU CinePile

16 48.5 48.3 45.6 48.7 43.5
32 50.4 50.6 46.1 50.8 44.1
64 51.2 51.3 47.2 51.3 45.3
128 51.3 50.7 47.6 50.9 45.1

visual perceptual weights. A higher rank corre-
sponds to lower compression and stronger repre-
sentational power for visual features. As shown in
Table 8, increasing the rank from 16 to 64 consis-
tently improves performance across all five bench-
marks, indicating that stronger visual representa-
tion leads to better video understanding. However,
this improvement plateaus at rank 128, with some
tasks (e.g., MVBench and MLVU) even showing
marginal drops. This suggests that overly large
ranks may introduce redundant or noisy visual fea-
tures, which can interfere with the LLM’s language
modeling capabilities. Importantly, rank 64 offers
a favorable trade-off between performance and effi-
ciency, achieving near-peak results with moderate
computational cost.

5 Conclusion

In this paper, we propose ViPE, a parameter-level
alignment paradigm tailored for video-LLMs. In-
stead of relying on a large number of visual tokens,
ViPE efficiently aligns visual and language modal-
ities by generating perceptual weights from com-
pactly merged video features and integrating them
directly into the LLM. Specifically, ViPE first em-
ploys a visual injection module to aggregate and
inject video information into a set of visual queries.
Then, a perceptual modulation module generates
the perceptual weights ∆W , which are sparsely in-
tegrated into the LLM using a LoRA-style approach
for improved efficiency. We evaluate ViPE 8 video
benchmarks. The results show that ViPE achieves
comparable performance to LLaVA-style models,
while reducing FLOPs by 85% and achieving 2.8
× faster inference speed, demonstrating the effec-
tiveness and efficiency of our approach.
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7 Limitations

1) Dependence on Pretrained Visual Encoders:
ViPE relies on pretrained vision encoders to ex-
tract frame-level features. Existing visual encoders
may not be suitable for performing parameter-level
alignment. 2) Different types of weights may re-
quire distinct learning strategies: In ViPE, the same
learning approach is applied to all weight types (K,
Q, V, O, M), which leaves room for further explo-
ration in future work. 3) The video information inte-
gration method: The Hierarchical Context Merging
proposed in ViPE, still operates at the token level.
This approach could be further enhanced by incor-
porating higher-level semantic merging strategies.
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A Appendix

A.1 Details of PiVE
Training Details. Tab 9 summarizes the hyperpa-
rameters used across different training stages. Dur-
ing the spatial pretraining stage, we adopt a low
number of frames, increasing to 32 frames for su-
pervised fine-tuning (SFT) stages.

Table 9: Hyper-parameter Settings for Training Details.

Hyperparameter Pretraining Supervised Fine-tuing

Data Scale 4M 3M
Batch Size 256 256
Video Frame 1 32
Hierarchical Merge 7 X
Learning Rate (lr) 2e-5 2e-5
LR Schedule cosine decay cosine decay decay
LR Warmup Ratio 0.03 0.01
Epoch 1 1
Weight Decay 0
Optimizer AdamW
DeepSpeed stage 2

We utilize a total of 4M image samples, com-
prising 1M from Densefusion and 3M from re-
annotated CC3M and COCO in pretraining. For
SFT, we employ 3M re-annotated samples, includ-
ing 2M from WebVid (Bain et al., 2021) and 1M
from VALOR (Chen et al., 2023). Tab 10 sum-
marizes the hyperparameters of Visual Perceptual
Weight. See Table 11 for a detailed breakdown of
data sources.

Table 10: Hyper-parameter Settings for Visual Percep-
tual Weight.

Hyperparamter

Dimension 512
Skip Layer 4

Rank 64
Alpha 64
Type kqvom

Perceptual Query 64

Table 11: Data used in pre-training and multimodal
supervised fine-tuning stages.

Stage Dataset Scale Source

Pretraining
Image 3M CC-3M, COCO
DenseFusion 1M LAION-2B
Video 3M Webvid-2.5M, VALOR-1M

Supervised Fine-tuing

LLaVA-Video 178K NeXT-QA, ActivityNetQA,
PerceptionTest, LLaVA-Hound

LLaVA-665K 665K COCO, VG, OCR-VQA,
GQA, TextVQA

A.2 Visualization
For the video understanding task, we present the
visualization results of ViPE in the figure4. For
enhanced visualization, different colors are used to
highlight distinct types of information within the
descriptions.

Figure 4: Visualizations of the descriptions for ViPE.
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