Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Xiwen Liang, Min Lin, Weiqi Ruan, Rongtao Xu, Yuecheng Liu, Jiaqi Chen, Bingqian Lin, Yuzheng Zhuang, Xiaodan Liang
Abstract
Existing vision-language planning methods perform well on short-horizon tasks but struggle with long-horizon reasoning in dynamic environments due to the difficulty of training models to generate high-quality reasoning processes. To address this, we propose Structured Preference Optimization (SPO), a framework that enhances reasoning and action selection for long-horizon task planning through structured evaluation and optimized training. SPO introduces: 1) Structured Preference Evaluation and Optimization, which evaluates reasoning chains across task relevance, historical consistency (as part of textual coherence), and image awareness (alignment with visual observations) to construct high-quality preference pairs; and 2) Curriculum-Guided Progressive Learning, enabling the model to adapt from simple to complex tasks, thereby improving generalization and robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.- Anthology ID:
- 2025.emnlp-main.884
- Volume:
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 17501–17526
- Language:
- URL:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.884/
- DOI:
- Cite (ACL):
- Xiwen Liang, Min Lin, Weiqi Ruan, Rongtao Xu, Yuecheng Liu, Jiaqi Chen, Bingqian Lin, Yuzheng Zhuang, and Xiaodan Liang. 2025. Structured Preference Optimization for Vision-Language Long-Horizon Task Planning. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17501–17526, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- Structured Preference Optimization for Vision-Language Long-Horizon Task Planning (Liang et al., EMNLP 2025)
- PDF:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.884.pdf