SAFE: Schema-Driven Approximate Distance Join for Efficient Knowledge
Graph Querying

Sangoh Lee

Sungho Park Wook-Shin Han*

Graduate School of Artificial Intelligence (GSAI)
Pohang University of Science and Technology (POSTECH)
Pohang, South Korea

{solee,

Abstract

To reduce hallucinations in large language mod-
els (LLMs), researchers are increasingly inves-
tigating reasoning methods that integrate LLMs
with external knowledge graphs (KGs). Exist-
ing approaches either map an LLM-generated
query graph onto the KG or let the LLM tra-
verse the entire graph; the former is fragile
because noisy query graphs derail retrieval,
whereas the latter is inefficient due to entity-
level reasoning over large graphs. In order
to tackle these problems, we propose SAFE
(Schema-Driven Approximate Distance Join
For Efficient Knowledge Graph Querying), a
framework that leverages schema graphs for
robust query graph generation and efficient
KG retrieval. SAFE introduces two key ideas:
(1) an Approximate Distance Join (ADJ) al-
gorithm that refines LLM-generated pseudo
query graphs by flexibly aligning them with the
KG’s structure; and (2) exploiting a compact
schema graph to perform ADJ efficiently, reduc-
ing overhead and improving retrieval accuracy.
Extensive experiments on WebQSP, CWQ and
GrailQA demonstrate that SAFE outperforms
state-of-the-art methods in both accuracy and
efficiency, providing a robust and scalable so-
lution to overcome the inherent limitations of
LLM-based knowledge retrieval.

1 Introduction
Recent large language models (LLMs) have
achieved state-of-the-art results in a wide range
of NLP and data-science tasks (Wang et al., 2024;
Li et al., 2024a; Zhao et al., 2024; Zhang et al.,
2023). Since they are pre-trained on massive cor-
pora, LLMs can produce fluent and context-aware
responses. Nevertheless, their hallucinations, stale
world knowledge, and opaque decision processes
continue to erode user trust.

Recent efforts mitigate hallucinations, stale
knowledge, and the opaque reasoning of LLMs

*Corresponding author

shpark, wshan}@dblab.postech.ac.kr

Question: Which of T-Swift’s songs have won American Music Awards (AMA)
Answer: Blank Space (Song)

(a) Semantic Parsing Methods

Prompt:
Please generate a SPARQL query
for this question

SELECT ?y
WHERE {

T-swift ns:write ?x .

Which of T-Swift’s songs have
won American Music Awards (AMA)

Requires many LLM calls. Hi ghly Ineffici enu

Blank
1939?
1989 AMA

cnn(amed
Blank Space

(b) LLM Agent Methods

t pro in
realistic settings.

Taylor
Swift . wrnte

Blank Space AMA
(c) Retrieval-augmented Generation Methods J T-Swift /o_o won

Missing!

y@‘ contamea
! —6\ |
. Blank Space ‘ 1989 Blank

wrote T-Swift Space

O Tswift

. AMA

Which of T-Swift’s
songs have won
American Music
Awards (AMA)

Can not find relevant subgraph...
Knowledge Graph

Figure 1: Limitations of Previous Methods

by enriching them with external knowledge graphs
(KGs) (Chen et al., 2024b; Sun et al., 2024; Xu
et al., 2024). Because a KG explicitly encodes enti-
ties and relations, supplying an LLLM with a small,
query-relevant subgraph can ground its answers in
verifiable facts—but uncovering that subgraph is
non-trivial. The pipeline must (i) synthesize a query
graph that precisely captures the user’s intent and
(i) fetch matching subgraphs from a billion-scale
KG quickly enough to keep latency low. We cast
this retrieval step as ranked subgraph search: the en-
gine maintains running top-k subgraphs. It prunes
any (partial or complete) subgraph whose score
cannot beat the current frontier, thus skipping the
enumeration of less-promising subgraphs. Robust
query-graph generation paired with such aggres-
sively pruned top-k search is therefore critical to
unlock the full potential of KG-augmented LLMs,
yet existing solutions attempting to meet this goal
typically fall into three paradigms—semantic pars-
ing, LLM agents, and retrieval-augmented genera-
tion—each with significant limitations.

Semantic Parsing Methods. Figure 1(a) illus-
trates key limitations of semantic parsing meth-

17476

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17476—-17501
November 4-9, 2025 ©2025 Association for Computational Linguistics

ods. These methods convert natural language
queries into structured query languages such as
Cypher (Francis et al., 2018) or SPARQL (Har-
ris and Seaborne, 2013), primarily using LLMs as
translators (Yu et al., 2023; Luo et al., 2024a,b).
However, these methods often require specialized
training on specific workloads, resulting in poor
generalization to unseen query templates (Gu et al.,
2021) and execution failures when the generated
queries are incorrect (Sun et al., 2024).

LLM Agent Methods. Figure 1(b) highlights
key limitations of another line of work, which lever-
age LLMs to traverse KGs based on natural lan-
guage queries. While intuitive, these methods un-
realistically assume that the correct topic entity is
known beforehand—a condition rarely satisfied in
large-scale KGs where many entities may seem rel-
evant (Cai et al., 2024). Moreover, traversal-based
querying requires frequent LLM calls, making it
highly inefficient. For example, the state-of-the-art
PoG (Chen et al., 2024b) method calls 13.3 closed-
source LLLM on average and takes over 34 seconds
per query on the CWQ (Talmor and Berant, 2018).

Retrieval-augmented Generation Methods.
Figure 1(c) illustrates the core limitations of Sim-
GRAG (Cai et al., 2024), a recent method in
retrieval-augmented generation (RAG) (Cai et al.,
2024; He et al., 2024; Baek et al., 2023; Kim
et al., 2023a; Liu et al., 2024). SImGRAG lowers
LLM overhead by first letting the LLM synthesize
a query graph, then semantically mapping each
query node to candidate KG nodes, and finally run-
ning an exact subgraph-isomorphism search over
those candidates. While conceptually efficient, it
relies on the unrealistic assumption that the LLM-
generated query graph will structurally align with
an actual subgraph in the KG. In practice, an LLM
has no explicit, up-to-date knowledge of the KG’s
schema, so the query graphs it invents frequently
include nonexistent relations or miswired node
types; these schema mismatches lead to large re-
trieval errors—particularly in large, heterogeneous
KGs—and sharply reduce end-to-end accuracy.

To address these challenges, we propose SAFE,
a schema-aware pipeline for KGQA that leverages
schema graphs for robust query graph generation
and effective ranked semantic subgraph matching.
SAFE introduces two key ideas.

(1) Approximate Distance Join (ADJ) We in-
troduce an Approximate Distance Join (ADJ) al-
gorithm that relaxes edge matching by allowing
any pair of candidate KG vertices to stand in for

a query edge (u,v) as long as the shortest path
between them is no longer than a user-specified
threshold §. Because an edge in the query graph
can thus be realized by a shortest path in the KG,
ADJ still succeeds even when the query graph is
missing—or has inserted—intermediate nodes, i.e.,
when its topology is partially wrong. After this
distance-aware alignment, ranked subgraph match-
ing based on ADIJ is executed: it scores partial
matches incrementally, maintains a running top-
k list, and prunes any subgraph whose score cannot
enter that list, yielding fast, high-quality evidence
for KG-augmented LLMs.

(2) Exploiting Schema Graph Executing an
ADIJ seemingly demands either (i) storing all-pairs
shortest-path (APSP) distances for the entire KG
or (ii) issuing expensive per-query BFSs to find
vertices within a distance threshold. Both options
are prohibitive in memory and latency. Our key in-
sight is that ADJ only needs distance information
between vertex types, not between every individual
entity. Hence, we precompute APSP only once on
the schema graph—a compact abstraction whose
nodes are types (classes) and whose edges sum-
marise admissible relations. Because the schema
graph is several orders of magnitude smaller than
the KG, its APSP fits easily in memory and can be
consulted at query time with negligible cost. Map-
ping candidate entities to their types and using this
lightweight distance oracle allows ADJ to enforce
the path-length threshold without traversing the full
KG, yielding dramatic savings in both storage and
online latency while tightening type constraints for
subsequent ranked subgraph search. In summary,
our contributions are as follows:

e We propose the ADJ that converts an LLM-
generated (and possibly noisy) query graph into
an efficient, ranked semantic subgraph match-
ing task: each query edge is satisfied by any pair
of candidate KG vertices whose shortest-path
length is no greater than a threshold ¢, and a
ranked subgraph search prunes partial matches
that cannot break into the current top-£ list.

e We are the first to exploit a schema graph—a
compact, type-level summary of the KG—as
the distance oracle for ADJ. Precomputing
APSP on relatively small graph is enough to en-
force all distance constraints, slashing memory
use and online latency while refining entity-
type filters for downstream retrieval.

e Extensive experiments on three KGQA bench-

17477

marks, CWQ, WebQSP, and GrailQA, demon-
strate that our schema-aware ADJ yields
both higher answer accuracy and orders-of-
magnitude speed-ups compared with state-
of-the-art semantic-parsing, agent-based, and
RAG baselines.

2 Related Work

Large Language Models (LLMs). Recent ad-
vances in Large Language Models (LLMs) have
shown notable progress in complex reasoning tasks
through explicit reasoning methods like Chain-of-
Thought (CoT)(Wei et al., 2022; Kojima et al.,
2022; Zhou et al., 2023) and its variants such
as Tree-of-Thought(Yao et al., 2024), Graph-of-
Thought (Besta et al., 2024), and Skeleton-of-
Thought (Ning et al., 2024). Efforts have also
enhanced LLM capabilities in interpreting graph
structures (Tang et al., 2023; Tan et al., 2024; Chen
et al., 2024a, 2022). However, hallucinations, out-
dated knowledge, and opaque reasoning still limit
their reliability, motivating integration with struc-
tured external knowledge such as KGs.
Knowledge Graph-Augmented LLMs. Integrat-
ing KGs with LLMs has been widely explored
to address LLM limitations through approaches
such as semantic parsing, LLM-agent traversal, and
retrieval-augmented generation.

Semantic parsing methods convert natural lan-
guage questions into structured queries executed
on KGs (Yu et al., 2023; Li et al., 2023; Luo et al.,
2024a). Despite simplicity, these methods often
require task-specific training, leading to poor gen-
eralization and query execution failures.

LLM agent methods utilize LLMs to directly nav-
igate KGs based on natural language queries (Sun
et al., 2024; Chen et al., 2024b; Xu et al., 2024).
ToG (Sun et al., 2024) proposed LLM-based beam
search traversal, while PoG (Chen et al., 2024b)
enhanced it with memory modules for effective
traversal. GoG (Xu et al., 2024) integrated LLM
parametric knowledge with KG traversal. However,
these methods assume accurate initial entities and
involve extensive LLM calls, reducing efficiency.

Retrieval-augmented generation methods en-
hance LLM responses by retrieving KG informa-
tion. Embedding-based methods (He et al., 2024;
Baek et al., 2023) struggle with complex reasoning
tasks (Cai et al., 2024). Methods such as KELP (Liu
et al., 2024) and KG-GPT (Kim et al., 2023a) gen-
erate relevant KG paths but face scalability issues
(Cai et al., 2024). SimGRAG (Cai et al., 2024) re-

trieves structurally similar subgraphs but is limited
by its rigid structural alignment assumptions.

SAFE addresses these challenges through
schema graph based query graph generation and
type-level semantic matching, significantly improv-
ing retrieval accuracy and robustness.

3 Preliminary

Knowledge Graph (KG) represents factual knowl-
edge as a structured collection of triples: G =
{(e,r,€') | e,/ € E,r € R}, where E is the
set of entities and R is the set of relations.
Schema Graph (SG) defines the structural schema
of a KG, specifying node types and their relational
connections. Formally, it is represented as: S =
{(e,r,d) | e, € C,r € R}, where C denotes the
set of entity types derived from KG G, and R is the
same set of relations as in G.

Query Graph represents the structural form of
a query using a set of triple patterns: (Q =
{(eg;rgreq) | eqreq € EU VR, g € RU Vg},
where Vg and Vg are sets of variables disjoint from
FE and R. We assume the query graph is connected;
otherwise, we apply our algorithm independently
per connected component.

Knowledge Graph Question Answering ad-
dresses answering natural language questions using
factual information from a KG. Given a question
q and a KG G, the goal is to retrieve the correct
answer set Ag.

Node distance. Let G = (V, E) denote a (directed)
graph. The node distance dg(u,v) is the length
(number of edges) of a shortest path from u to v;
if no path exists, dg(u, v) = oo (Zou et al., 2009).
We use ds for the schema graph and dg for the KG.

All-pairs shortest paths (APSP). For G = (V, E)
with non-negative edge weights, APSP computes a
matrix D € RIVI*XIVl where D[u,v] equals the
length of a shortest v — v path. We precom-
pute APSP once on the compact schema graph via
Floyd—Warshall (Cormen et al., 2022).

4 Design of SAFE

In this section, we introduce the technical details
of the SAFE, a novel schema-aware query graph
generation and semantically enhanced subgraph
matching framework. As shown in Figure 2, SAFE
consists of four distinct modules: pseudo query
graph generation, approximate distance join (ADJ),
ranked semantic subgraph matching and answer
generation with retrieved subgraphs.

17478

2. Approximate Distance Join

Pseudo
Query Graph
AMA (award)

1. Pseudo Query Graph Generation

Anerican Music Awards (award)

win

Value

2 .
P (song) Retrieval

x (song)

write write e 8

T-Swift (singer) Taylor Swift (sing

wrote

Taylor Swift

AMA (award)

3. Ranked Semantic Subgraph Matching 4. Answer Generation

Answer:
Blank Space (song)

won

2y (song) |Taylor swift ?x (album) ?y (song)

(singer)

AMA
(award)
won

T trel
?rel wrote i

2x (album)

(singer)

Schema
Graph

AY
Question: Which of T-Swift’s 1

— f v é HE 4
—J 1989 Blank Space

wrote _contained won

AMA

4
1
! songs have won American \
: Music Awards (AMA) 1

Taylor
Swift
(singer)

(album) BlankSpace Ama

(song) (award)

(song) Taylor Swift 1989

(award) (singer) (album)

Matched Subgraph
Knowledge Graph atched Subgrap

Figure 2: The framework overview of SAFE.

4.1 Pseudo Query Graph Generation

Given a natural-language question ¢, we first
utilize a large language model (LLM)’s reason-
ing ability to generate a pseudo query graph.
Formally, the pseudo query graph is defined
as steudo {(ularl7u,1)a"'7(umarm7u;n)}7
where each node u; either represents a variable
in Vg or an explicitly mentioned entity that may
not exist in the entity set £. For each node u in
the pseudo query graph, the LLM additionally pre-
dicts its expected type (class), denoted by type(u),
which is later used to identify similar schema edges.
Since we do not assume prior knowledge of the cor-
rect topic entity, the LLM might reference entities
that do not exist in the KG. In such cases, we per-
form a value retrieval step to find the most similar
matching entity within the KG based on embedding
similarity. This retrieved entity serves as a known
constant in subsequent steps, while unresolved en-
tities remain as variables.

4.2 Approximate Distance Join (ADJ)

Approximate distance join (ADIJ) refines the pseudo
query graph Qpseudo by aligning it with the schema
of the KG in two steps: (1) Candidate Schema Edge
Selection selects candidate schema edges semanti-
cally similar to the pseudo edges from @) pseudo, and
(2) Distance Edge Join connects these selected can-
didate schema edges under distance constraints to
ensure graph connectivity and structural coherence.
Candidate Schema Edge Selection. The pseudo
query graph Qpseudo represents high-level relation-
ships inferred from the natural language question,
but may not precisely align with the underlying KG
schema. To bridge this gap, we perform a schema-
level alignment as follows. For each pseudo edge
0 = (uj,mi,u;) € Qpseudo, We first construct its
corresponding type-level representation type(¢) =
(type(u;),ri, type(u;)), which has been predicted
during the query graph generation process. We

then embed type(¢) into a high-dimensional vector
space and measure its similarity to pre-embedded
schema edges (¢, 7, ¢') € S using the L2-distance
metric. If ¢ explicitly references a specific entity,
we fix the entity’s actual type and associated rela-
tion, improving the quality of candidate retrieval.
Finally, for each pseudo edge ¢, we select the top-
Eschema schema edges (o, . . ., o,)» ranked by
their respective L2-distances (dy, . .., dg..,)» aS
the candidate set Cands(¢). This procedure is re-
peated for every edge in Qpseudo-

Distance Edge Join. To maintain connectivity
among candidate schema edges, we connect edges
within a specified distance threshold. By allowing
flexible distances when joining edges, we mitigate
disconnections and effectively preserve the logi-
cal structure of the original pseudo query graph
generated by the LLM.

While the original distance join (Zou et al., 2009)
primarily considers node distances, we extend this
notion to measure edge distances. Specifically, for
two schema graph edges o = (¢1,71,¢}) and § =
(c2,72,), we define their distance as follows:

min

Deq e(a 5) =
£ ’ z1€{c1,c) }wae{ca,ch}

where Dpoge (21, x2) denotes the node distance in
the schema graph S. Under this definition, two
edges directly connected through a common node
have distance 0, whereas disconnected edges have
distance of at least 1.

Dhode (21, T2),

Leveraging this edge distance, Algorithm 1 finds
the top-kqy schema-aligned query graphs by as-
signing pseudo edges to candidate schema edges,
ensuring structural coherence under the distance
threshold § and minimizing the cumulative L2-
distance. initialize a priority queue £ for final
assignments and an adjacency mapping A indi-
cating shared nodes among pseudo edges. The
MatchSG recursively assigns each pseudo edge ¢; to
schema-edge candidates. handle termination when

17479

Algorithm 1: Distance Edge Join

Algorithm 2: Semantic Subgraph Retrieval

Input: A pseudo query graph Qpseudo = {1, .-, ¢n},
Cands(¢;) = {«;}, an edge distance
function Degge (-, -), an edge distance threshold
6 > 0, and the parameter kq,q > 0.

Output: Top-kqg best valid query graphs minimizing
total L2 distance.

1 L < @ (priority queue of final schema edge

assignments by L2 distance)

2 A + adjacency among edges, where A(i) collects

indices j such that ¢;, ¢; share a pseudo node

3 Function MatchSG(M, D, i)

4 if ¢ > n then

5 L.push((M, D))

6 return

7 4; < i-th pseudo edge.

8 foreach o € Cands(4;) do

9 feasible < true

10 foreach j € {j' € A(i) | £;; € M} do

11 B + M]j] (chosen edge for £;)

2 if Degge(a,) > 6 then

13 | feasible < false; break

14 if feasible then

15 MT[i] < o d; < L2dist(a, £;)

16 MatchSG(M, D + d;,i + 1)

17 MJi] + @

18 MatchSG({},0,1)

19 return top-kqg elements from £

all edges are assigned, pushing the current assign-
ment and total L2-distance into L. iterate candi-
date edges « € Cands(¥;), verifying feasibility by
ensuring adjacent edges’ distance Dedge (v,) is
within J. Feasible assignments update the partial
match M and total L2-distance D. Finally, the top-
kqq assignments are returned from L, providing
schema-aligned query graphs balancing structural
constraints with semantic relevance.

After aligning edges, we introduce intermedi-
ate variable nodes or relations to bridge schema
edges connected at nonzero distances, and explic-
itly instantiate each node position either as a known
entity or as a typed variable node. This yields fully
connected and semantically precise query graphs.
Overall, ADJ produces structurally coherent, se-
mantically aligned query graphs, suitable for effec-
tive knowledge retrieval.

4.3 Ranked Semantic Subgraph Matching

Following ADJ, we employ a single fixed text-
embedding function for semantic matching. We
encode entity labels, relation names, and type
names with the same emb(-) and represent a
schema edge e = (¢, r, ') by a composite vector
h(e) = emb([text(c); text(r); text(c)]); similarity
is measured by ||h(e) — h(e’)||2. We use precom-
puted nearest-neighbor candidate sets SimEnt(-),
SimRel(-), and SimTyp(-) to bound the search; im-

Input: Query graph @, KG G, and the parameter
retrieval -
Output: Top-krepievar matches from @ in G.
1 L <+ O (priority queue by L2 distance)
2 1) < DFS order of edges in Q (start from entity u™)

3 Function MatchKG(M, D, i)

4 if i > [¢)| then

5 | L.push((M, D)); return

6 (u,r,u’) 1[i] (an edge where u is matched)
7 Cy < AdjRel(Mu]) N SimRel(r)

8 foreach rg € C.. do

9 M(r] « rg;

10 d, < SemDist(r, rg)

1 C\ + GetCandNode (M [u], rg, u')

2 foreach u; € C,/ do

13 if consistent(ug, M) then

14 Mu'] + ug;

15 dy + SemDist(u’, ug)

16 MatchKG(M, D +d, +d,,i+ 1)
17 M)+ @

18 Mlr] + @

19 foreach ug € SimEnt(u*) do

20 d < L2dist(u”, z);

21 MatchKG({u" — ug},d, 1)

22 return top-Krerrieval €lements from £

plementation details are provided in Section 5.
Given generated query graphs, our goal is to
identify relevant subgraphs from the knowledge
graph G for each query graph. We formalize this
task as ranked semantic subgraph matching, allow-
ing for minor semantic discrepancies between the
query graphs and candidate subgraphs from G.

Definition 1 (Ranked Semantic Subgraph Match-
ing). Given a query graph Q, a knowledge graph
G and the threshold T, we say a subgraph H C G
is a semantic match of Q) if there exists a mapping
¢: (EUVE)U(RUVR) — EUR such that
V(eqa Tq €;) € Qa (¢(eq)> (b(rq)) (;5(62)) €H and
the semantic distance over all distinct nodes and
relations in () remains below T:

Z Dsem(€q, 9(eq)) + Z Dsem(rg, ¢(rq)) < T,
eq€nodes(Q) (rg,)EQ
where Dgem (-,) is a semantic distance function,
and nodes(Q) collects the distinct nodes in Q).

To perform ranked semantic subgraph match-
ing, we propose the Semantic Subgraph Retrieval
algorithm (Algorithm 2). It extends conventional
subgraph isomorphism (Han et al., 2013) by in-
corporating semantic similarity as SImGRAG (Cai
etal., 2024), along with explicit type-level dynamic
pruning and scoring.

We leverage precomputed similarity-based can-
didate sets to prune the matching space: SimEnt(u)
for known entities, SimTyp(u’) for variable nodes,
and SimRel(r) for relations. Algorithm 2 maintains

17480

a priority queue £ of partial/final matches and fol-
lows a DFS-based edge ordering 1. The search is
initialized by assigning the anchor node u* to KG
candidates from SimEnt(u*).

Given a partial match M, MatchKG processes
each query edge (u,r, ') in the order 4. It inter-
sects the relations incident to M [u] with SimRel(r)
to obtain feasible relation candidates, adds the
relation-level contribution d, = L2dist(r,rg) to
the running score, and then determines endpoint
candidates through the procedure below. Specifi-
cally, GetCandNode returns only KG nodes that are
reachable from M [u] via the chosen relation rg; for
variable nodes, it also enforces type consistency via
SimTyp(u’), while for known entities it intersects
neighbors with SimEnt(u'):

SemDist(x,xg) =

. . z€VEUV]
terrﬁjlgzzg) L2dist(type(z),t), Ifo,pe(’;) o
cVgUV;
0, If /\ty?)e(a:f)j unk}zown
L2dist(z, zg), Ifze EUR

For each feasible neighbor u’g in Cy, the
check consistent(ug, M) prevents map-
ping a query node to multiple entities. If
consistent, we tentatively extend M with
u' + wug and compute the node-level contri-
bution d,s using SemDist, which incorporates
type-level distance when types are available:

SemDist(x,xg) =
If zeVpUVR

‘e tI;ElpieI(lxg) L2dist(type(x)7 t)’ A type(x) known
eVEUV;

0, If /\tygrﬁne(ag unkll%qown

L2dist(x,xg), Ifze EUR

The procedure then recurses on the next edge
in 7 with the updated score D + d, + d,. After
exploring all neighbors, M[u/] is reset for back-
tracking. The search continues until every edge in
1 is realized; the top-Krewievar Subgraphs, ranked
by total distance, are returned from £, ensuring
that retrieved subgraphs respect both the structural
layout of) and the semantic constraints. Follow-
ing SImGRAG, we also prune any partial match
whose current lower bound already exceeds the
worst score in the top-krerieval list; see Appendix C
for implementation details.

S Experiments
In this section, we describe the experimental setup

and evaluation results. Additional details regarding
hyperparameters, configurations and implementa-

tions are provided in Appendix C.

Preprocessing (offline). We precompute all-pairs
shortest paths (APSP) on the schema graph to en-
able constant-time node-distance lookups used by
ADJ. On our schema with |S| = 12,797 nodes,
Floyd—Warshall takes ~27.4 seconds once offline;
this one-time cost is amortized across queries and
is not included in end-to-end latency.

Embedding model and candidate sets. We use
snowflake-arctic-embed-1 uniformly for enti-
ties, relations, types, and schema-edge compos-
ites across all methods to isolate the effect of
our schema-aware refinement. Nearest neighbors
are retrieved with FAISS-HNSW (L2; M=64,
efConstruction=512), with fixed candidate set
sizes |SimEnt|=3, |SimRel|=10, and |SimTyp|=S8.

Datasets & Evaluation Metrics. We assess the
performance of SAFE on three widely-used multi-
hop KGQA benchmarks: CWQ (Talmor and Be-
rant, 2018), WebQSP (Yih et al.,, 2016), and
GrailQA (Gu et al., 2021), all based on the Free-
base knowledge graph (Bollacker et al., 2008). For
a fair and efficient comparison, we follow prior
works (Sun et al., 2024; Chen et al., 2024b) by
using their GrailQA test subsets. In line with com-
mon practice (Sun et al., 2024; Chen et al., 2024b;
Luo et al., 2024a; Cai et al., 2024), exact match
accuracy (Hits@1) serves as our evaluation metric.
Compared Methods. Considering the distinct char-
acteristics and performance variations across differ-
ent benchmarks, we select state-of-the-art (SOTA)
baselines tailored for each dataset. These include
(1) LLM-only methods—IO prompting (Brown
et al., 2020), Chain-of-Thought (Wei et al., 2022),
and Self-Consistency (Wang et al., 2023)—and (2)
KG-enhanced methods that incorporate knowledge
graphs via prompting or fine-tuning. For CWQ and
WebQSP, we include fine-tuned models RoG (Luo
et al., 2024b) and ChatKBQA (Luo et al., 2024a),
and prompting methods ToG (Sun et al., 2024),
PoG (Chen et al., 2024b), and SInGRAG (Cai et al.,
2024). For GrailQA, we evaluate Pangu (Gu et al.,
2023), FlexKBQA (Li et al., 2024b), GAIN (Shu
and Yu, 2024), ChatKBQA, and the same prompt-
ing methods. We also test ToG, PoG, and ChatK-
BQA without topic entities using GPT-3.5 to assess
performance without topic entity.

5.1 Performance Comparison

We compare SAFE with state-of-the-art KG-
augmented LLM baselines to demonstrate its effec-
tiveness in multi-hop KGQA. Tables 1 and 2 sum-

17481

Method CWQ WebQSP
LLM-Only
10 Prompt (Brown et al., 2020) 37.6 63.3
CoT (Wei et al., 2022) 38.8 62.2
SC (Wang et al., 2023) 45.4 61.1
Fine-Tuned KG-Augmented LLM
RoG (Luo et al., 2024b) 62.6 85.7
ChatKBQA (Luo et al., 2024a) 86.0 86.4
ChatKBQA w/o topic entity 82.7 83.2

Prompting KG-Augmented LLM w/GPT-3.5 or others

ToG (Sun et al., 2024) 57.1 76.2
ToG w/o topic entity 51.2 68.3
PoG (Chen et al., 2024b) 63.2 82.0
PoG w/o topic entity 57.8 732
SimGRAG (Cai et al., 2024) 50.2 69.1
SAFE 66.8 84.7

Prompting KG-Augmented LLM w/GPT-4

InteractiveKBQA (Xiong et al., 2024) 59.2 72.5
ToG (Sun et al., 2024) 67.6 82.6
PoG (Chen et al., 2024b) 75.0 87.3
SimGRAG (Cai et al., 2024) 70.5 86.7
SAFE 794 90.6

Table 1: Performance comparison across different meth-
ods on CWQ and WebQSP. (The best-performing result
is shown in bold)

marize the experimental results on CWQ, WebQSP,
and GrailQA. Overall, SAFE consistently surpasses
prompting-based methods (e.g., PoG, ToG, Sim-
GRAG), achieving competitive or superior perfor-
mance relative to fine-tuned approaches.

Compared to existing prompting-based meth-
ods, SAFE improves accuracy while eliminating
the restrictive assumption of known topic entities.
For instance, on CWQ (GPT-4), SAFE achieves a
Hits@1 of 79.4%, outperforming PoG (75.0%) and
SimGRAG (70.5%) by margins. This performance
advantage is further emphasized by results in Ta-
ble 1, which show significant accuracy drops for
PoG (75.0% to 57.8%) and ToG (67.6% to 51.2%)
when topic entities are not provided. In contrast,
SAFE inherently avoids this reliance, flexibly re-
solving mismatches through schema-guided query
correction and type-based filtering.

Although SAFE relies purely on prompting with-
out any training or provided topic entities, it con-
sistently outperforms fine-tuned methods on most
datasets. For example, on WebQSP (GPT-4), SAFE
achieves 90.6%, surpassing ChatKBQA’s 86.4%.
On CWQ, SAFE attains 79.4%, slightly lower than
ChatKBQA (86.0%), primarily because CWQ’s
questions are derived through a template-based
construction, inherently favoring fine-tuned models
(see Appendix B).

On GrailQA (GPT-4), SAFE achieves an overall
accuracy of 85.5%, significantly improving per-
formance on zero-shot (89.5%) and compositional

queries (77.3%), surpassing PoG by 7.6% on com-
positional cases. Notably, ChatKBQA achieves
the highest I.I.D. accuracy (96.7%), but its accu-
racy drastically drops to only 4.98% on zero-shot
queries (Table 2), illustrating severe generalization
limitations when encountering unseen patterns. In
contrast, SAFE consistently demonstrates strong
generalization across all subsets, effectively ad-
dressing challenging queries through its schema-
aware correction and type-level semantic matching,
thereby significantly reducing errors.

5.2 Ablation Study

We conduct an ablation study to assess the con-
tributions of individual components within SAFE
by independently removing the Approximate Dis-
tance Join (ADJ), ranked semantic subgraph match-
ing, and type-level constraints. Table 3 summa-
rizes the performance on CWQ, WebQSP, and
GrailQA datasets. Specifically, w/o ADJ excludes
the schema-alignment step, directly using the LLM-
generated pseudo query graph for subgraph match-
ing. w/o Ranked semantic subgraph matching
strictly matches query graphs to the KG without
retrieving semantically similar entities, relations, or
types. w/o Type-level constraints omits dynamic
type-based pruning and type-level semantic scoring
based on L2 distance.

As shown in Table 3, removing ADJ significantly
decreases Hits@1 accuracy by 14.6%, 12.6%, and
12.7% on CWQ, WebQSP, and GrailQA, respec-
tively. This demonstrates that aligning pseudo
query graphs with the KG schema is essential
to correct structural mismatches and ensure accu-
rate retrieval. Similarly, removing ranked semantic
subgraph matching reduces accuracy by 7.6% on
CWQ, 6.0% on WebQSP, and 8.2% on GrailQA.
While ADJ alone provides substantial performance
by aligning query graphs structurally, ranked se-
mantic subgraph matching further enhances accu-
racy by considering additional candidate relations
and types beyond the top-kqe schema-aligned query
graphs selected by ADJ. Additionally, eliminating
type-level constraints leads to accuracy reductions
of 4.7% on CWQ, 3.9% on WebQSP, and 3.8%
on GrailQA, confirming the effectiveness of type-
level pruning and scoring in filtering out irrelevant
candidate subgraphs. We also considered perform-
ing ADJ directly on the KG. However, this requires
computing APSP distances over the entire KG, con-
suming over 6 petabytes (4 x 107 entities? x 4
bytes). This computational infeasibility highlights

17482

Method [Overall LLD. Compositional Zero-shot
w.o. Knowledge Graph

10 Prompt (Brown et al., 2020) 294 -

CoT (Wei et al., 2022) 28.1 -

SC (Wang et al., 2023) 29.6 -

w.t. Knowledge Graph / Fine-tuned
Pangu (Gu et al., 2023) 75.4 84.4 74.6 71.6
FlexKBQA (Li et al., 2024b) 62.8 71.3 59.1 60.6
GAIN (Shu and Yu, 2024) 76.3 88.5 73.7 71.8
ChatKBQA (Luo et al., 2024a) 38.7 96.7 64.1 4.98
ChatKBQA w/o topic entity 36.2 91.7 58.1 4.80
w.t. Knowledge Graph / Prompting (GPT-3.5 or others)
ToG (Sun et al., 2024) 68.7 70.1 56.1 7271
ToG w/o topic entity 58.6 59.2 51.5 60.9
PoG (Chen et al., 2024b) 76.5 76.3 62.1 81.7
PoG w/o topic entity 66.3 65.4 57.6 69.8
SimGRAG (Cai et al., 2024) 62.7 58.8 50.5 68.7
SAFE 78.5 74.2 66.7 84.5
w.t. Knowledge Graph / Prompting (GPT-4)

ToG (Sun et al., 2024) 81.4 79.4 67.3 86.5
PoG (Chen et al., 2024b) 84.7 87.9 69.7 88.6
SimGRAG (Cai et al., 2024) 77.2 72.5 68.7 82.2
SAFE 85.5 82.9 77.3 89.5

Table 2: Performance comparison on GrailQA under various generalization types: IID (i-distribution), compositional,

non

and zero-shot.

Method CWQ WebQSP GrailQA
SAFE 66.8 84.7 78.5
w/o ADJ 522 72.1 65.8
w/o Ranked tic subgraph matching 59.2 78.7 70.3
w/o Type-level constraints 62.1 80.8 74.7

Table 3: Impact of each module on Hits@ 1

the efficiency of our schema-based approach.
Overall, these results underline the critical roles
of ADJ, ranked semantic subgraph matching, and
type-level constraints in achieving the superior per-
formance of SAFE on complex multi-hop queries.

5.3 Efficiency Study

To highlight the efficiency of SAFE, we compare its
inference latency, number of LLM calls, and token
usage with the SOTA KG-augmented method PoG.
Additionally, we provide a detailed breakdown of
inference time across individual stages to better
understand their relative contributions.

indicates the result was not reported. (The best-performing result is shown in bold)

Figure 3: Inference time breakdown of SAFE across the
CWQ, WebQSP, and GrailQA datasets.

Stage
3 Pseudo Query Graph Generation
=3 Approximate Distance Join

I Subgraph Retrieval

BN LLM Answering

Time (s)
o = N W B 0 o

cwQ WebQsP

This substantially reduces both the total LLM token
usage and the inference latency.

Specifically, on CWQ, PoG processes an aver-
age of 8,441.3 tokens and requires 34.3 seconds
per query, while SAFE reduces token usage by
56.9% to 3,635.7 tokens and inference time by
60.3% to 13.6 seconds. A similar efficiency im-
provement appears on WebQSP, where SAFE uses
only 2,613.4 tokens (a 52.6% reduction from PoG)
and takes 7.08 seconds (57.9% faster than PoG). On
GrailQA, token usage decreases by 19.9% (2,880.9
vs. 3,595.6 tokens) and runtime decreases by 38.1%

GrailQA

These results clearly illustrate the superior effi-

Metric \ CWQ \ WebQSP \ GrailQA
| PoG | SAFE | PoG | SAFE | PoG | SAFE
L Can s 2 o0 2 e ; (7.18 vs. 11.6 seconds).
Input Token 8,068.6 3,165.6 5,234.8 2,3414 3,392.3 2,553.2
Output Token 372.7 470.1 2829 272.0 203.1 327.7
Total Token 8,441.3 3,635.7 5517.7 2,613.4 3,595.6 2,880.9
Time (s) 343 13.6 16.8 7.08 11.6 7.18

Table 4: Efficiency comparison across three datasets.

Overall Efficiency Comparison. Table 4 com-
pares the inference efficiency of SOTA KG-
augmented method PoG and SAFE on CWQ, We-
bQSP, and GrailQA. PoG requires multiple itera-
tive interactions with the LLM, averaging between
6.5 and 13.8 calls per query. In contrast, SAFE
consistently performs only two LLM calls (one
for pseudo query graph generation and another for
final answer generation) regardless of the dataset.

ciency of SAFE. Rather than relying on repeated
reasoning steps and multiple LLM interactions,
SAFE combines a schema-aligned retrieval step
with minimal LLM interactions, significantly low-
ering token consumption and latency. This efficient
design makes SAFE more scalable and practical
for deployment in real-world scenarios.

Inference Time Breakdown. Figure 3 shows the
inference time breakdown of SAFE across CWQ,
WebQSP, and GrailQA for four pipeline stages:
(i) Pseudo Query Graph Generation, (ii) Approxi-
mate Distance Join (ADJ), (iii) Subgraph Retrieval,
and (iv) LLM Answering. WebQSP (6.91s) and

17483

Dataset Method 1-shot 2-shot 3-shot

SimGRAG 44.9 483 50.2

cwQ SAFE 645 657 668

SimGRAG 642 669 69.1
WebQSP - “'GAFE 835 842 847
Grailga SMORAG 579 597 627

SAFE 76.9 774 78.5

Table 5: Robustness to prompt variations (Hits@1, %).
Lower prompt shot counts reduce context. SAFE ex-
hibits smaller degradation than SImGRAG.

Max Types 0-7 7-16 16-38 38-62 62-156
Hits@1 (%) 66.9 66.6 66.5 66.8 67.2
Latency (s) 13.54 13.39 13.48 13.88 13.83

Table 6: SAFE accuracy and latency across type-
multiplicity bins on CWQ.

GrailQA (7.00s) show similar patterns, with pseudo
query graph generation dominating the runtime.
CWQ (13.63s) takes nearly twice as long due
to longer prompts and increased retrieval time.
Notably, ADJ consistently maintains low latency
(1.28-1.42s), and Subgraph Retrieval is efficiently
conducted within approximately 1.7-3.2s across
datasets. As pseudo query graph generation time
correlates strongly with input prompt length, fur-
ther optimization in prompt design and LLM infer-
ence could substantially enhance SAFE ’s scalabil-
ity and overall inference efficiency.

5.4 Robustness Analysis

Robustness to prompt variations. We vary the
number of in-context examples (1/2/3-shot) when
generating pseudo graphs with GPT-3.5 and eval-
uate Hits@1 on CWQ, WebQSP, and GrailQA.
As shown in Table 5, SAFE shows only a small
average drop when reducing from 3-shot to 1-
shot (about 1.7% absolute) whereas SInGRAG
decreases by about 5.0%, indicating that ADJ miti-
gates pseudo-graph variations.

Effect of type multiplicity. To quantify whether
entities with many types degrade performance, we
bucket CWQ test queries by the maximum num-
ber of types assigned to any entity in the gold
graph (equi-height bins). Table 6 shows that SAFE
maintains stable accuracy and latency across bins:
Hits@1 varies within +1% and latency within
£0.5s, indicating negligible impact on our type-
aware refinement.

6 Conclusion

In this paper, we introduce SAFE, a novel
framework addressing limitations of existing KG-
augmented language model systems. SAFE lever-

ages a compact schema graph to generate seman-
tically coherent query graphs via an Approximate
Distance Join (ADJ) method, effectively managing
misalignment of pseudo query graph and missing
entities. Extensive experiments on CWQ, WebQSP,
and GrailQA benchmarks demonstrated SAFE’s
superior performance over SOTA methods, under-
scoring its effectiveness and scalability for reliable
knowledge retrieval.

7 Limitation

Our approach currently supports basic graph query
operations but does not handle advanced constructs
such as ORDER BY, LIMIT, UNION, or complex
FILTER clauses. Incorporating these may be pos-
sible by enabling the LLM to generate additional
query operators and appropriately applying them
during the retrieval process.

Acknowledgement

This work was partly supported by the National Re-
search Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (RS-2025-00517736,
50%), Institute of Information & communications
Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. RS-
2024-00509258, Global Al Frontier Lab, 30%) (No.
RS-2018-11181398, Development of a Conversa-
tional, Self-tuning DBMS, 10%) (No. RS-2024-
00454666, Developing a Vector DB for Long-Term
Memory Storage of Hyperscale AI Models, 5%),
and Basic Science Research Program through the
National Research Foundation of Korea Ministry
of Education(No. RS-2024-00415602, 5%)

References

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.
Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
arXiv preprint arXiv:2306.04136.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, and 1 others. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pages 17682—17690.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247-1250.

17484

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Yuzheng Cai, Zhenyue Guo, Yiwen Pei, Wanrui Bian,
and Weiguo Zheng. 2024. Simgrag: Leveraging
similar subgraphs for knowledge graphs driven
retrieval-augmented generation. arXiv preprint
arXiv:2412.15272.

Liyi Chen, Zhi Li, Tong Xu, Han Wu, Zhefeng Wang,
Nicholas Jing Yuan, and Enhong Chen. 2022. Multi-
modal siamese network for entity alignment. In Pro-
ceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pages 118—
126.

Liyi Chen, Chuan Qin, Ying Sun, Xin Song, Tong Xu,
Hengshu Zhu, and Hui Xiong. 2024a. Collaboration-
aware hybrid learning for knowledge development
prediction. In Proceedings of the ACM on Web Con-
ference 2024, pages 3976-3985.

Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun,
Jieping Ye, and Hui Xiong. 2024b. Plan-on-
graph: Self-correcting adaptive planning of large lan-
guage model on knowledge graphs. arXiv preprint
arXiv:2410.23875.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2022. Introduction to
Algorithms, 4 edition. MIT Press.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query
language for property graphs. In Proceedings of
the 2018 international conference on management of
data, pages 1433—-1445.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t gener-
ate, discriminate: A proposal for grounding language
models to real-world environments. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928-4949.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477-3488.

Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013.
Turboiso: towards ultrafast and robust subgraph iso-
morphism search in large graph databases. In Pro-
ceedings of the 2013 ACM SIGMOD international
conference on management of data, pages 337-348.

Steve Harris and Andy Seaborne. 2013. Spargl
1.1 query language. https://www.w3.org/TR/
sparql11-query/. W3C Recommendation.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. Advances in Neural Information
Processing Systems, 37:132876-132907.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi.
2023a. Kg-gpt: A general framework for reasoning
on knowledge graphs using large language models.
arXiv preprint arXiv:2310.11220.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023b. Factkg: Fact ver-
ification via reasoning on knowledge graphs. arXiv
preprint arXiv:2305.06590.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966—6980.

Xiaoxi Li, Yujia Zhou, and Zhicheng Dou. 2024a. Uni-
gen: A unified generative framework for retrieval and
question answering with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 8688—8696.

Zhenyu Li, Sunqgi Fan, Yu Gu, Xiuxing Li, Zhichao
Duan, Bowen Dong, Ning Liu, and Jianyong Wang.
2024b. Flexkbqga: A flexible llm-powered framework
for few-shot knowledge base question answering. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18608-18616.

Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong,
and Jundong Li. 2024. Knowledge graph-enhanced
large language models via path selection. arXiv
preprint arXiv:2406.13862.

Haoran Luo, E Haihong, Zichen Tang, Shiyao Peng,
Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting
Dong, Meina Song, Wei Lin, and 1 others. 2024a.
Chatkbqga: A generate-then-retrieve framework for
knowledge base question answering with fine-tuned
large language models. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
2039-2056.

17485

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan.
2024b. Reasoning on graphs: Faithful and inter-
pretable large language model reasoning. In The
Twelfth International Conference on Learning Repre-
sentations.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824-836.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang,
Huazhong Yang, and Yu Wang. 2024. Skeleton-of-
thought: Large language models can do parallel de-
coding. In The Twelfth International Conference on
Learning Representations.

OpenAl. Chatgpt via chat completions api.

Kashif Rabbani, Matteo Lissandrini, and Katja Hose.
2023. Extraction of validating shapes from very large
knowledge graphs. Proceedings of the VLDB Endow-
ment, 16(5):1023-1032.

Yiheng Shu and Zhiwei Yu. 2024. Distribution shifts are
bottlenecks: Extensive evaluation for grounding lan-
guage models to knowledge bases. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 71-88.

Snowflake. 2025. snowflake-arctic-embed-
L. https://huggingface.co/Snowflake/
snowflake-arctic-embed-1.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Interna-
tional Conference on Learning Representations.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641-651.

Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang,
Shiping Wang, and Carl Yang. 2024. Musegraph:
Graph-oriented instruction tuning of large language
models for generic graph mining. arXiv preprint
arXiv:2403.04780.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,
Suqi Cheng, Dawei Yin, and Chao Huang. 2023.
Graphgpt: Graph instruction tuning for large lan-
guage models. arXiv preprint arXiv:2310.13023.

Lei Wang, Yi Hu, Jiabang He, Xing Xu, Ning Liu, Hui
Liu, and Heng Tao Shen. 2024. T-sciq: Teaching
multimodal chain-of-thought reasoning via large lan-
guage model signals for science question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19162—-19170.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers, pages 10561-10582.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu
Song, Hanghang Tong, Guang Liu, Kang Liu, and Jun
Zhao. 2024. Generate-on-graph: Treat 1lm as both
agent and kg in incomplete knowledge graph question
answering. arXiv preprint arXiv:2404.14741.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Informa-
tion Processing Systems, 36.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xi-
ang. 2023. Decaf: Joint decoding of answers and
logical forms for question answering over knowledge
bases. In The International Conference on Learning
Representations.

Yuting Zhang, Ying Sun, Fuzhen Zhuang, Yongchun
Zhu, Zhulin An, and Yongjun Xu. 2023. Triple dual
learning for opinion-based explainable recommen-
dation. ACM Transactions on Information Systems,
42(3):1-27.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der Smola, and Le Song. 2018. Variational reasoning
for question answering with knowledge graph. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Lili Zhao, Qi Liu, Linan Yue, Wei Chen, Liyi Chen, Rui-
jun Sun, and Chao Song. 2024. Comi: Correct and
mitigate shortcut learning behavior in deep neural net-
works. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 218-228.

17486

https://platform.openai.com/docs/models/chatgpt-4o-latest
https://huggingface.co/Snowflake/snowflake-arctic-embed-l
https://huggingface.co/Snowflake/snowflake-arctic-embed-l

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and 1 oth-
ers. 2023. Least-to-most prompting enables complex
reasoning in large language models. The Interna-
tional Conference on Learning Representations.

Lei Zou, Lei Chen, and M Tamer Ozsu. 2009. Distance-
join: Pattern match query in a large graph database.
Proceedings of the VLDB Endowment, 2(1):886-897.

Appendix
A Overview of Comparison Methods

We organize the baseline methods into two main
groups: (1) Methods relying solely on LLM rea-
soning, and (2) Methods integrating external KGs
with LLMs, further subdivided into fine-tuning and
prompt-based approaches.

LLM-Only Approaches

e 1O Prompt (Brown et al., 2020) evaluates
standard LLM capabilities in few-shot, task-
agnostic scenarios, comparing their efficacy to
traditional language models.

e Chain-of-Thought (CoT)(Wei et al., 2022) pro-
vides intermediate reasoning steps explicitly
in the prompt to enhance LLM performance
across various NLP tasks.

e Self-Consistency (SC)(Wang et al., 2023) ex-
tends CoT by generating multiple reasoning
chains through diverse sampling and then se-
lecting the most consistently derived answer.

KG-Enhanced Methods with Fine-Tuning

o RoG (Luo et al., 2024b) integrates LLMs with
KG structural knowledge to enhance the re-
liability and interpretability of reasoning pro-
cesses.

e Pangu (Guetal., 2023) employs a symbolic rea-
soning agent in collaboration with neural LLM
discriminators to effectively leverage knowl-
edge graph information.

o FlexKBQA (Li et al., 2024b) proposes a ver-
satile framework capable of quickly adapting
LLMs for KGQA tasks across different knowl-
edge graphs and query languages with minimal
labeled examples.

e GAIN (Shu and Yu, 2024) focuses on improv-
ing robustness against distributional shifts in
KGQA through data augmentation and compre-
hensive robustness evaluations across various
dimensions.

e ChatKBQA (Luo et al., 2024a) converts natu-
ral language queries into structured SPARQL
queries using fine-tuned LLMs, subsequently
refining the generated logical forms using re-
trieved knowledge to reduce hallucinations.

KG-Enhanced Methods with Prompting

e Interactive KBQA (Xiong et al., 2024) gener-
ates logical queries by direct interactions with
knowledge graphs, facilitated by a set of prede-
fined KG interfaces.

e ToG (Sun et al., 2024) employs iterative KG
retrieval combined with beam-search-based rea-
soning verification through LLMs, dynamically
deciding whether additional retrieval steps are
required.

e PoG (Chen et al., 2024b) extends ToG by in-
troducing memory-enhanced reasoning, back-
tracking capabilities, and adaptive beam search
breadth.

e GoG (Xu et al., 2024) integrates LLM-
generated implicit knowledge with explicit KG
traversal to address question answering in sce-
narios involving incomplete knowledge graphs.

B Datasets
CwWQ WebQSP GrailQA
Answer Format Entity Entity/Number Entity/Number
Train 27,734 3,098 44,337
Test 3,531 1,639 1,000

Table 7: Summary of KGQA Benchmark Datasets.

In our experiments, we evaluate our method
using three challenging multi-hop KGQA bench-
marks: ComplexWebQuestions (CWQ)(Talmor and
Berant, 2018), WebQSP(Yih et al., 2016), and
GrailQA (Gu et al., 2021). Key statistics for each
dataset are summarized in Table 7. WebQSP com-
prises naturally occurring questions derived from
WebQuestions and primarily tests models under the
standard independent and identically distributed
(i.i.d.) assumption, meaning the training and test-
ing distributions are identical. CWQ, also created
under the i.i.d. assumption, is constructed by com-
bining multiple SPARQL queries associated with
WebQSP questions. These combined queries are
initially converted into natural language questions
via rule-based generation, followed by manual re-
finement for readability. Consequently, CWQ ques-
tions often exhibit repetitive or structured patterns,
resulting in a more predictable, template-like style.

17487

Lastly, GrailQA, another Freebase-based bench-
mark, explicitly evaluates model generalization
across three distinct dimensions: i.i.d., composi-
tional, and zero-shot scenarios. For computational
efficiency and consistency in evaluation, we use the
same set of 1,000 test samples from GrailQA as
previously utilized by ToG (Sun et al., 2024) and
PoG (Chen et al., 2024Db).

C Implementation Details

C.1 Hardware and Software Settings

Experiments were conducted on a server equipped
with an Intel Xeon Gold 6230 CPU @ 2.10GHz,
1TB of RAM, and four NVIDIA RTX A6000
GPUs, running Ubuntu 22.04.3 LTS.

C.2 Schema Graph Generation

The goal of a schema graph is to summarize “which
type can be linked to which other type in prac-
tice”, discarding those links that appear only as
rare accidents in the raw knowledge graph (KG). A
tempting baseline is to look at every triple (s, p, o)
in the KG, collect the type.object. type sets of
its subject s and object o, and then output all pairs
(ta,p,ty) with tg € type(s), t, € type(o). Un-
fortunately, on a Freebase dump, such a cartesian
expansion explodes into tens of billions of candi-
date links; most are backed by a single noisy triple
and therefore useless for reasoning while still oc-
cupying prohibitive memory.

Counting phase. We therefore adopt the Qual-
ity Shapes Extraction technique of Rabbani et al.
(2023). While streaming the KG once we (i) as-
sign dense integer IDs to each predicate p and type
string, (ii) count how many distinct entities carry
each individual type—this will be the support of
the type itself—and (iii) for every triple increment

cnty(ta, tr) Vita€type(s), tr € type(o).

Here cnt,,(tg4,t,) is the raw frequency of observing
predicate p between a subject of type t4 and an
object of type t,.

Support and confidence. After the scan we derive
two quality metrics:

supp(td, b, tr) = Cntp(td7 t’/‘)

cnty(ta, tr)

supp(ta) =
The support (supp) is the absolute number of triples
backing a candidate edge; the confidence (conf) is

COnf(td, b, tr) =

the relative fraction of all {;—entities that actually
use predicate p towards some ¢,.. Intuitively, high
support guards against random noise, while high
confidence rules out idiosyncratic links attached to
only a handful of subjects.

Pruning. We keep candidate edges only if their sup-
port (supp) and confidence (conf) satisfy supp >
Osupp and conf > 0,,p. Using conservative thresh-
olds (Osupp = 1, Oconr = 0.0001), our original Free-
base slice containing 1B triples shrinks to a schema
graph with approximately 40M edges. To further
simplify the schema graph, higher confidence and
support thresholds can be applied.

C.3 Embedding Generation

We adopt the snowflake-arctic-embed-1 embedding
model (Snowflake, 2025) to generate semantic em-
beddings of dimension 1024 for values, relations,
and types. To efficiently retrieve similar embed-
dings, we utilize the HNSW algorithm (Malkov
and Yashunin, 2018) as implemented in the Faiss
library (Douze et al., 2024), configured with a max-
imum degree of M = 64 and e fConstruction =
512.

C.4 Retrieval Optimization

Following SimGRAG (Cai et al., 2024), we opti-
mized retrieval using early pruning based on se-
mantic distance. We prune partial mappings whose
semantic lower bounds exceed the largest semantic
distance among current top-Kyegrieval SUbgraphs, and
prioritize expansion of nodes and relations with
smaller semantic distances to enhance pruning ef-
fectiveness. This optimization accelerates retrieval
while preserving the exact quality of top-F£rerieval
results.

C.5 Parameters Setting

We set § = 1, kschema =3, kqg =9, and kretrieval =
10 to effectively balance query-graph diversity,
schema-level relevance, and retrieval comprehen-
siveness. Additionally, we configure |[SimTyp(-)| =
8, |SimEnt(-)|] = 3, and |SimRel(-)] = 10 to
achieve sufficient semantic coverage while limit-
ing irrelevant candidate matches. We configure the
large language models using a temperature of 0.3,
with both frequency and presence penalties set to 0,
and limit the maximum generated tokens to 2000.
Further rationale and detailed analysis of these pa-
rameters are provided in Appendix D.

17488

D Searching Parameters

D.1 Determining Distance Threshold §

The schema graph is highly dense, containing ap-
proximately 13,000 nodes (types) and 40 million
edges. Thus, selecting a large distance threshold &
could unintentionally allow nearly all schema edges
to become interconnected. To carefully choose 9,
we analyze the shortest-path distances between all
node pairs in the schema graph.

Figure 4: Distribution of shortest-path lengths between
schema graph nodes.

1.0 le8
n 0.8
©
o
« 0.6
o
@
Q0.4
€
=]
Z0.2
| —
1 2 3 4 5 6
Shortest-path length (distance)

As shown in Figure 4, the shortest-path lengths
for most node pairs are concentrated at length 2.
Therefore, setting a distance threshold § > 2 would
lead to excessive and noisy schema edge combina-
tions. Hence, we set § = 1 to avoid this issue.

D.2 Determining Other Parameters

Given our choice of § = 1, we set kgchema = 3
to avoid unnecessary computational overhead, as
higher values can exponentially increase the maxi-
mum number of query graphs, potentially up to
kschema‘QP““@‘ in the worst case. In fact, setting
kschema = 3 is already sufficient to generate more
schema-aligned query graphs than required by k.
Additionally, unlike SimGRAG, which utilizes very
large similarity parameters (SimEnt = 16384,
SimRel = 512), we obtain strong performance
with significantly smaller values: SimEnt = 3,
SimRel = 10, and SimTyp = 8. These optimal
parameter settings were determined through grid
search over the ranges |SimEnt(-)| € {1,3,5,7},
|SimRel(:)| € {5,10,15}, and |SimTyp(:)| €
{2,4, 8,16}, using 100 random samples from the
CWAQ dataset, which is the most complex dataset
among the three datasets used in our experiments.

E Parameter Sensitivity

The retrieval and reasoning performance is sig-
nificantly influenced by two parameters: (i) kqg,
the number of query graphs generated by the
LLM, and (i1) Kretrieval, the number of retrieved
subgraphs per query graph. Both parameters di-
rectly affect the quantity and diversity of informa-
tion provided to the LLM during answer genera-
tion. To systematically analyze their impact, we
conducted two controlled experiments: (1) vary-
ing kyy € 1,3,5, 7 while fixing kregieval = 10, and
(2) varying Krerieval € 9, 10,15, 20 while keeping
kqg = 5. We measured Hits@1 accuracy on 100
randomly selected questions from the CWQ dataset
to observe performance trends clearly.

Figure 5 illustrates that as we increase kqy from 1
to 5, Hits@1 accuracy steadily rises, indicating that
multiple query graphs help the model access more
relevant subgraphs. However, accuracy plateaus be-
yond kg, = 5, suggesting that additional query
graphs often lead to redundant retrievals, introduc-
ing noise rather than meaningful information. Thus,
kqq = 5 strikes the best balance between retrieval
comprehensiveness and redundancy.

64

62
$60
158
®
256
T

54

52

50

1 3 5 7
Number of query graphs

Figure 5: Hits@1 according to the number of query
graphs (kqg).

Similarly, Figure 6 shows a pronounced perfor-
mance increase when raising Kreyrieval from 5 to
10. This highlights that retrieving up to 10 sub-
graphs per query graph is essential for capturing
sufficiently diverse evidence to generate accurate
answers. However, further increases in Kpegrieval be-
yond 10 produce marginal returns and can intro-
duce irrelevant or redundant details, hindering the
LLM’s reasoning effectiveness. Consequently, we
select Kregievat = 10 as it provides optimal diver-
sity and accuracy without excessive information
overload.

17489

Hits@1 (%)
o0
=)

5 10 15 20

kretrieval

Figure 6: Hits@1 according to the number of retrieved
subgraphs (Fretrieval)-

F Software and Data Licenses

The software and datasets utilized in this paper
have the following licenses:

» snowflake-arctic-embed-1: Apache 2.0 Li-
cense

¢ CWQ: Creative Commons (CC) License

* WebQSP: Creative Commons (CC) License
* GrailQA: No explicit license provided

¢ Freebase: Creative Commons (CC) License

All resources were strictly employed for research
purposes and not for any non-research or commer-
cial applications. The Freebase knowledge graph
used in this study primarily contains data sourced
from Wikipedia.

G Al Assistants

We utilized ChatGPT-40, 4.5 and o1-pro (OpenAl)
to efficiently debug our code, rapidly pinpoint-
ing and correcting implementation errors. More-
over, we leveraged it to refine sentence struc-
tures, enhancing the clarity and readability of the
manuscript.

H Prompt Templates

For pseudo query graph generation, we selected
three training examples from each dataset and pro-
vided explicit verbalized generation steps. For an-
swer generation, we adapted the prompt from Sim-
GRAG (Cai et al., 2024), which was initially de-
signed for the FactKG (Kim et al., 2023b) and
MetaQA (Zhang et al., 2018) datasets.

17490

Prompt Used to Generate Pseudo Query Graphs on CWQ

You are an expert Freebase question planner. Return a STRICT JSON with these keys in EXACT
order:

generation_plan: step-by-step plan to generate the graph based on the divisions.
nodes: dictionary of {node: expected type of node}.

edges: list of [[source, predicate, target], description of what you have completed].
filters: at most one filter (dict with *node’, op’, and ’value’ if needed), else None.
sort: dict with "key’ and ’direction’ if needed, else None.

limit: integer if needed, else None.

N> B =

RULES (MUST FOLLOW ALL):

1. Single Connected Component:
* All nodes must form one connected graph (no disconnected parts).
* E.g., ["John", "likes", "unk1"], ["'unk2", "likes", "unk3"] is INVALID (disconnected).
* E.g., ["John", "likes", "unk1"], ["unk1", "likes", "unk2"] is VALID (connected).

2. Known Entities Not Directly Connected:

* Two known entities cannot appear together in one edge. Use an 'unk’ node between
them.
3. Node-Edge Consistency:
* Every node in ’edges’ must be defined in "nodes’.

* Every node in 'nodes’ must appear in at least one edge.
* After enumerating edges, ensure all nodes are used.

4. Unknown Nodes:

¢ Must be named ’unk1’, unk2’, etc.
* Known entities stay exactly as in the query (no renaming).
5. Filters and Sort:
* Use filter condition if comparative (e.g., >, <, >=, <=).
» Use sort and limit if superlative (e.g., max, min).
* Only one filter or one sort allowed (not both simultaneously).
* Filter target node type must be ’date’, *gYear’, ’gYearMonth’, ’integer’, *dateTime’, or
“float’.
6. Output only the final JSON (no extra text).

Example Queries:

1. query: “What country trades with Portugal and have an iSO alpha 3 of ARE?"
{“generation_plan": (“Step ©: Identify the known entity ¢‘Portugal’ from the query. Step
1. Find the country that trades with Portugal”, “Step 2. Find the country that has
an iSO alpha 3 of ARE", “Step 3: Introduce an unknown variable ‘unkl’ as the country
trading with ‘Portugal’ to avoid direct connection. Link ‘Portugal’ to ‘unkl’ wusing
‘location.statistical_region.places_exported_to||location.imports_and_exports.exported_to’.
Step 4: Specify that ‘unk1’ has the property ‘location.country.iso_alpha_3’

= ‘ARE’ . All unknown nodes appear in both edges and nodes sections,
and the graph remains connected."”), “nodes”: {“unk1": “location.country”,
“Portugal”: “location.country”, “ARE": “iso_alpha_3"}, “edges”: [CL"Portugal”,

“location.statistical_region.places_exported_to||location.imports_and_exports.exported_to",
“unk1"], “Completed steps @ to 3, not step 4. Node ‘ARE’ unused."], [[“unk1”,
“location.country.iso_alpha_3", “ARE"], “Completed step 4. All nodes wused.”]], “filters”:

[1, “sort”: None, “limit": None}

17491

2. query: “What state is home to the university that is represented in sports by George Washington
Colonials men’s basketball?"

{“generation_plan": (“Step ©@: Identify known entity ‘George Washington Colonials men’s
basketball’. Step 1. Find the sports team. Step 2. Find the wuniversity represented
by this team. Step 3. Find the state of the wuniversity. Step 4: Introduce ‘unkl’
as the university associated with the sports team, ‘unk2’ as the university’s mailing

address, and ‘unk3’ as the state linked via ‘location.mailing_address.state_province_region’.

Ensure connectivity and no direct known entity 1links."), “nodes”: {“George Washington
Colonials men’s basketball”: “sports.sports_team”, “unk1”: “education.educational_institution”,
“unk2": “location.mailing_address”, “unk3": “location.administrative_division”}, “edges":
[L["unk1"”, “education.educational_institution.sports_teams”, “George Washington Colonials
men’s basketball”], “Completed steps ©-3, nodes ‘unk2’, ‘unk3’ unused.”], [[“unkl1”,
“organization.organization.headquarters”, “unk2"], “Completed step 4, node ‘unk3’ unused."],
[[“unk2", “location.mailing_address.state_province_region”, “unk3"], “Completed step 5, all

nodes used."]], “filters”: [1, “sort”: None, “limit"”: None}

3. query: “What year did the team with Baltimore Fight Song win the Super Bowl?"

{“generation_plan": (“Step @: Identify entities ‘The Baltimore Fight Song’ and ‘Super Bowl’
Step 1. Find the sports team with the fight song. Step 2. Find the championship event won.
Step 3. Link event to ‘Super Bowl’ via ‘sports.sports_championship_event.championship’.

Introduce ‘unkl1’ (team) and ‘unk2’ (championship event) ensuring no direct known
entity connection, full node wusage, and connected graph."”), “nodes”: {“The Baltimore
Fight Song": “music.composition”, “Super Bowl”: “sports.sports_championship”, “unk1"”:
“sports.sports_team”, “unk2": “sports.sports_championship_event"}, “edges”: [L["unk1",

“sports.sports_team.fight_song”, “The Baltimore Fight Song"], “Completed steps ©0-3, ‘unk2’,

‘Super Bowl’ unused."], [[“unk1”, “sports.sports_team.championships”, “unk2"], “Completed step
4, ‘Super Bowl’ unused.”"], [[“unk2", “sports.sports_championship_event.championship”, “Super
Bowl"], “Completed step 5, all nodes used.”]], “filters”: [], “sort”: None, “limit": None}
YOUR TASK:

query: {}

Before finalizing the JSON, revise the above rules and examples.

17492

Prompt Used to Answer on CWQ

TASK
Produce every answer that can be supported by at least one evidence graph.

Guidelines

1. Exact quoting — copy entity / literal text exactly as it appears in the triples, if the evidence
is useful.

2. Graph independence — treat each evidence graph separately; if different graphs justify

different answers, list them all.

Brief rationale — begin each answer with a short reason such as "from graph [1]".

4. Fallback knowledge — if a graph is incomplete or off-topic, you may rely on your own
knowledge while still obeying Rule 1.

5. No abstention — even with zero evidence you must think step-by-step and state a concrete
answer (never respond "I don’t know" or "There is no ...").

2

Examples

1. query: *"Which country that trades with Portugal carries the ISO alpha-3 code “ARE”?’
evidences:

graph [1]: [(’Portugal’, ’location.statistical_region.places_exported_to’, ’trade_rel_por_are’),
(’trade_rel_por_are’, ’location.imports_and_exports.exported_to’, ’United Arab Emirates’),
(’United Arab Emirates’, ’location.country.iso_alpha_3’, ’ARE’)]

graph [2]: [(’Portugal’, ’location.country.currency_used’, ’Euro’), (’Portugal’,
’location.country.capital’, ’Lisbon’), (’United Arab Emirates’, ’location.country.capital’,
’Abu Dhabi’)]

graph [3]: [(’Portugal’, ’location.country.official_language’, ’Portuguese’),
(’United Arab Emirates’, ’location.country.official_language’, ’Arabic’), (’Portugal’,

’location.country.iso_alpha_3’, ’PRT’)]
answer: ’According to graph [1], the country is United Arab Emirates. Graphs [2] and [3] are not
useful.’

2. query: ’The universities that have Nobel-Prize-winning physics faculty are located in which
cities?’

evidences:

graph [1]: [(’University of Cambridge’, ’education.educational_institution.notable_faculty’,
’Peter Higgs’), (’Peter Higgs’, ’awards.award_winner.awards_won’, ’Nobel Prize in Physics’),
(’University of Cambridge’, ’location.location.containedby’, ’Cambridge’)]

graph [2]: [(’Massachusetts Institute of Technology’,
’education.educational_institution.notable_faculty’, ’Wolfgang Ketterle’), (’Wolfgang
Ketterle’, ’awards.award_winner.awards_won’, ’Nobel Prize in Physics’), (’Massachusetts

Institute of Technology’, ’location.location.containedby’, ’Cambridge (MA)’)]
graph [3]: [(’University of Oxford’, ’education.educational_institution.notable_faculty’, ’Roger
Penrose’), (’Roger Penrose’, ’awards.award_winner.awards_won’, ’Nobel Prize in Physics’),

(’University of Oxford’, ’location.location.containedby’, ’Oxford’)]

answer: *Graphs [1][2][3] show the cities Cambridge, Cambridge (MA), and Oxford.’

3. query: *Which mountains higher than 8000 m lie in Nepal and also sit on the border with China?’
evidences:

graph [1]: [(’Mount Everest’, ’location.location.country’, ’Nepal’), (’Mount Everest’,
’location.mountain.elevation’, ’8848°), (’Mount Everest’, ’location.location.adjoin_s’,
’China’)]

17493

graph [2]: [(’Lhotse’, ’location.location.country’, ’Nepal’), (’Lhotse’

’

>location.mountain.elevation’, ’8516’), (’Lhotse’, ’location.location.adjoin_s’, ’China’)]
graph [3]: [(’Kangchenjunga’, ’location.location.country’, ’Nepal’), (’Kangchenjunga’,
’location.mountain.elevation’, ’85867), (’Kangchenjunga’, ’location.location.adjoin_s’,
’India’)]

answer: *According to graphs [1][2], the mountains are Mount Everest and Lhotse. Graph [3] is
not useful.’

Your turn
query: *What is the true name of Vito Corleone and also played Deism?’
evidences:

17494

Prompt Used to Generate Pseudo Query Graphs on WebQSP

You are an expert Freebase question planner.
Return a STRICT JSON with these keys in EXACT order:

1. generation_plan (step-by-step plan to generate the graph based on the divisions)
2. nodes (dict of {{node: expected type of node}})
3. edges (list of [[source, predicate, target], description what you have completed])

RULES (MUST FOLLOW ALL):

1. Single Connected Component:
* All nodes must form one connected graph. No disconnected parts.
* E.g., ["John", "likes", "unk1"], ["unk2", "likes", "unk3"] is INVALID since they are
disconnected.
* E.g., ["John", "likes", "unk1"], ["unk1", "likes", "unk2"] is VALID since they are con-
nected.
2. Known Entities Not Directly Connected:
* Two known entities cannot appear together in one edge. Use an 'unk’ node in between.
3. Node-Edge Consistency:

* Every node mentioned in ’edges’ must be defined in "nodes’,
 and every node in 'nodes’ must appear in at least one edge.
* After enumerating all edges, ensure all nodes are used.

4. Unknown Nodes:

* Must be named "unk1’, *unk?2’, etc.
* Known entities stay exactly as in the query (no renaming).

5. Output only the final JSON (no extra text).

1. query: "who played michael myers in halloween 47"

{’generation_plan’: ("Step 0: Identify the known entity ’Halloween 4: The Return of Michael
Myers’ from the query. Step 1. Find the starring actor of ’Halloween 4: The Return of Michael
Myers

n
)

"Step 2. Introduce ’unkl’ as the actor who starred in ’Halloween 4: The Return of
Michael Myers’. Step 3: We link the known entity ’Halloween 4: The Return of Michael Myers’
to ’unkl’ using the edge film.film.starring||film.performance.actor. The graph is connected
and all unknown nodes (unkl) and known entities (Halloween 4: The Return of Michael Myers)
must be appeared in the edges ensuring NO isolated nodes.”), ’nodes’: {’unkl’: ’people.person’,
’Halloween 4: The Return of Michael Myers’: ’film.film’}, ’edges’: [[[’Halloween 4: The Return of
Michael Myers’, ’film.film.starring||film.performance.actor’, ’unk1’], ’I have completed step 0
to 3. Among all nodes (unkl, Halloween 4: The Return of Michael Myers), I have used all nodes
(unk1, Halloween 4: The Return of Michael Myers) in the edges.’]]1}

2. query: "in which country is mount everest found?"

{’generation_plan’: ("Step 0: Identify the known entity ’Mount Everest’ from the query. Step 1.
Find the country where ’Mount Everest’ is located”, "Step 2. Introduce ’unk1’ as the country
where ’Mount Everest’ is located. Step 3: We link the known entity ’Mount Everest’ to ’unk1’ using
the edge location.location.partially_containedby. The graph is connected and all unknown nodes
(unk1) and known entities (Mount Everest) must be appeared in the edges ensuring NO isolated
nodes."”), ’nodes’: {’unkl1’: ’location.country’, ’Mount Everest’: ’location.location’}, ’edges’:
[L[’Mount Everest’, ’location.location.partially_containedby’, ’unk1’], ’I have completed step
@ to 3. Among all nodes (unkl, Mount Everest), I have used all nodes (unkl, Mount Everest) in
the edges.’]1}

3. query: "who is marilyn monroe and why is she famous?"

17495

{’generation_plan’: ("Step 0@: Identify the known entity ’Marilyn Monroe’ from the query. Step
1. To find who she is, find profession of ’Marilyn Monroe’"”, "Step 2. Introduce ’unkl’ as the
profession of ’Marilyn Monroe’. Step 3: We link the known entity ’Marilyn Monroe’ to ’unkl’
using the edge people.person.profession. The graph is connected and all unknown nodes (unkl)
and known entities (Marilyn Monroe) must be appeared in the edges ensuring NO isolated nodes."),
’nodes’: {’unkl’: ’people.profession’, ’Marilyn Monroe’: ’people.person’}, ’edges’: [[[’Marilyn
Monroe’, ’people.person.profession’, ’unk1’], ’I have completed step @ to 3. Among all nodes

(unk1, Marilyn Monroe), I have used all nodes (unkl, Marilyn Monroe) in the edges.’]]}

YOUR TASK:
query: "what are the mountains in northern italy called?"
Before finalizing the JSON, revise above rules and examples.

17496

Prompt Used to Answer on WebQSP

TASK
Produce every answer that can be supported by at least one evidence graph.

Guidelines

1. Exact quoting — copy entity / literal text exactly as it appears in the triples, if the evidence
is useful.

2. Graph independence — treat each evidence graph separately; if different graphs justify

different answers, list them all.

Brief rationale — begin each answer with a short reason such as "from graph [1]".

4. Fallback knowledge — if a graph is incomplete or off-topic, you may rely on your own
knowledge while still obeying Rule 1.

5. No abstention — even with zero evidence you must think step-by-step and state a concrete
answer (never respond "I don’t know" or "There is no ...").

2

Examples

1. query: "Who voiced the character Woody in the film Toy Story?’

evidences: graph [1]1: [(’Toy Story’, ’film.film.starring.film.performance.character’, ’Woody’),
(’Toy Story’, ’film.film.starring.film.performance.actor’, ’Tom Hanks’), (’Toy Story’,
>film.film.initial_release_date’, ’1995’)]

graph [2]: [(’Toy Story’, ’film.film.starring.film.performance.character’, ’Buzz Lightyear’),

(’Toy Story’, ’film.film.starring.film.performance.actor’, ’Tim Allen’), (’Toy Story’,
’film.film.initial_release_date’, ’1995’)]
graph [3]: [(C’Toy Story’, "film.film.subjects’, ’Friendship’), (’Friendship’,

’common.topic.alias’, ’friendship’), (’Toy Story’, ’film.film.initial_release_date’, ’1995’)]
answer: “According to graph [1], the actor is Tom Hanks. Graphs [2] and [3] are not useful.’

2. query: ’'In which country is the city of Kyoto located?’

evidences: graph [1]: [(’Kyoto’, ’location.location.country’, ’Japan’), (’ Japan’,
’location.country.capital’, ’Tokyo’), (’Kyoto’, ’location.location.population’, ’1475000’)]
graph [2]: [(’Kyoto’, ’location.location.containedby’, ’Kyoto Prefecture’), (’Kyoto Prefecture’,
’location.location.country’, ’Japan’), (’Kyoto’, ’location.location.area’, ’827’)]

graph [3]: [(’Kyoto’, ’location.location.time_zone’, ’Asia/Tokyo’), (’Asia/Tokyo’,
’location.time_zone.offset’, ’UTC+@9’), (’Kyoto’, ’location.geocode.latitude’, ’35.0116°)]
answer: *Graphs [1] and [2] confirm the country is Japan. Graph [3] is not useful.’

3. query: *What is the birthplace of Albert Einstein?’
evidences: graph [1]: [(’Albert Einstein’, ’people.person.place_of_birth’, ’Ulm’), (’Ulm’,

’location.location.country’, ’Germany’), (’Albert Einstein’, ’people.person.date_of_birth’,
71879-03-14)]

graph [2]: [(’Albert Einstein’, ’people.person.place_of_death’, ’Princeton’),
(’Princeton’, ’location.location.country’, ’United States’), (’Albert Einstein’,
’people.person.date_of_death’, ’1955-04-18’)]

graph [3]: [’ Albert Einstein’, ’people.person.profession’, ’Physicist’),
(’Physicist’, ’common. topic.notable_types’, ’Profession’), (’Albert Einstein’
’awards.award_winner.awards_won’, ’Nobel Prize in Physics’)]

answer: “According to graph [1], his birthplace is Ulm. Graphs [2] and [3] are not useful.’

Your turn

query: {}
evidences:

17497

Prompt Used to Generate Pseudo Query Graphs on GrailQA

You are an expert Freebase question planner.
Return a STRICT JSON with these keys in EXACT order:

1. generation_plan (step-by-step plan to generate the graph based on the divisions)
2. nodes (dict of {{node: expected type of node}})
3. edges (list of [[source, predicate, target], description what you have completed])

RULES (MUST FOLLOW ALL):

1. Single Connected Component:
* All nodes must form one connected graph. No disconnected parts.
* E.g., ["John", "likes", "unk1"], ["unk2", "likes", "unk3"] is INVALID since they are
disconnected.
* E.g., ["John", "likes", "unk1"], ["unk1", "likes", "unk2"] is VALID since they are con-
nected.
2. Known Entities Not Directly Connected:
* Two known entities cannot appear together in one edge. Use an 'unk’ node in between.
3. Node-Edge Consistency:
» Every node mentioned in edges’ must be defined in 'nodes’,
 and every node in 'nodes’ must appear in at least one edge.
» After enumerating all edges, ensure all nodes are used.
4. Unknown Nodes:

¢ Must be named ’unk1’, *unk2’, etc.
* Known entities stay exactly as in the query (no renaming).

5. Output only the final JSON (no extra text).

1. query: "the character power for knuckles the echidna and lindsey mcdonald is what?"

{’generation_plan’: ("Step ©0: Identify the known entity ’Knuckles the Echidna’ from the
query. Step 1. Find the character power for ’Knuckles the Echidna’"”, "Step 2. Introduce
’unk1’ as the character power for ’Knuckles the Echidna’. Step 3: We link ’Knuckles the
Echidna’ to ’unk1’ using the edge fictional_universe.fictional_character.powers_or_abilities.
The graph is connected and all wunknown nodes (unkl) and known entities (Knuckles

the Echidna) must be appeared in the edges ensuring NO isolated nodes."),

"nodes’: {’unk1’: ’fictional_universe.fictional_character.powers_or_abilities’, ’Knuckles the
Echidna’: ’fictional_universe.fictional_character’}, ’edges’: [[[’Knuckles the Echidna’,
’fictional_universe.fictional_character.powers_or_abilities’, ’unk1’], ’I have completed step

@ to 3. Among all nodes (unkl, Knuckles the Echidna), I have used all nodes (unkl, Knuckles the
Echidna) in the edges.’]1]1}

2. query: "spongebob squarepants: lights, camera, pants! was published by who?"

{’generation_plan’: ("Step 0: Identify the known entity ’SpongeBob SquarePants: Lights, Camera,
Pants!’ from the query. Step 1. Find the publisher of ’SpongeBob SquarePants: Lights, Camera,
Pants!’", "Step 2. Introduce ’unkl1’ as the publisher of ’SpongeBob SquarePants: Lights, Camera,
Pants!’. Step 3: We link ’unkl’ to the known entity ’SpongeBob SquarePants: Lights, Camera,
Pants!’ wusing the edge cvg.cvg_publisher.games_published. The graph is connected and all
unknown nodes (unkl1) and known entities (SpongeBob SquarePants: Lights, Camera, Pants!) must be

appeared in the edges ensuring NO isolated nodes."”), ’nodes’: {’unkl’: ’cvp.cvg_publisher’
’SpongeBob SquarePants: Lights, Camera, Pants!’: ’cvg.cvg_video_game’}, ’edges’: [[[’Mount
Everest’, ’location.location.partially_containedby’, ’unk1’], ’'I have completed step @ to 3.

17498

Among all nodes (unkl, Mount Everest), I have used all nodes (unkl, Mount Everest) in the
edges.’]]1}

3. query: "what unit of mass is associated with the measurement system of picofarad?"

{’generation_plan’: ("Step ©@: Identify the known entity ’Farad’ from the query. Step
1: Find the wunit of mass associated with the measurement system of ’Farad’”, "Step
2: Introduce ’unkl1’ as the wunit of mass associated with the measurement system
of ’Farad’. Step 3: We 1link ’unkl’ to the known entity ’Farad’ using the edge
measurement_unit.capacitance_unit.measurement_system. The graph is connected and all

unknown nodes (unk1) and known entities (Farad) must be appeared in the edges ensuring NO

isolated nodes.”), ’nodes’: {’unkl’: ’measurement_unit.capacitance_unit.measurement_system’,
’Farad’: ’measurement_unit.capacitance_unit’}, ’edges’: [[[’Farad’,
’measurement_unit.capacitance_unit.measurement_system’, ’unk1’], ’I have completed step 0

to 3. Among all nodes (unkl, Farad), I have used all nodes (unkl, Farad) in the edges.’]1]}

YOUR TASK:

query: {}
Before finalizing the JSON, revise above rules and examples.

17499

Prompt Used to Answer on GrailQA

TASK
Produce every answer that can be supported by at least one evidence graph.

Guidelines

1. Exact quoting — copy entity / literal text exactly as it appears in the triples, if the evidence
is useful.

2. Graph independence — treat each evidence graph separately; if different graphs justify

different answers, list them all.

Brief rationale — begin each answer with a short reason such as "from graph [1]".

4. Fallback knowledge — if a graph is incomplete or off-topic, you may rely on your own
knowledge while still obeying Rule 1.

5. No abstention — even with zero evidence you must think step-by-step and state a concrete
answer (never respond "I don’t know" or "There is no ...").

2

Examples

1. query: "Which character power is shared by Spider-Man and Batman?’

evidences:

graph [1]: [(’Spider-Man’, ’fictional_universe.fictional_character.powers_or_abilities’,
’ Superhuman strength’), (’ Superhuman strength’, ’fictional_universe.character_powers.
characters_with_this_ability’, ’Batman’), (’ Superhuman strength’, ’type.object. type’,
’fictional_universe.character_powers’)]

graph [2]: [(’Spider-Man’, ’fictional_universe.fictional_character.powers_or_abilities’,
’Wall-crawling’), (’Wall-crawling’, ’fictional_universe.character_powers.
characters_with_this_ability’, ’Spider-Man’), (’Wall-crawling’, ’type.object. type’,
>fictional_universe.character_powers’)]

graph [3]: [(’Batman’, ’fictional_universe.fictional_character.powers_or_abilities’,
’Martial arts expert’), (’Martial arts expert’, ’fictional_universe.character_powers.
characters_with_this_ability’, ’Batman’), (’Martial arts expert’, ’type.object. type’,

’fictional_universe.character_powers’)]
answer: 'Graph [1] shows the shared power is Superhuman strength. Graphs [2] and [3] are not
useful.’

2. query: "What mass units belong to the same measurement system as the tesla?’

evidences:

graph NN [(’tesla’, "measurement_unit.magnetic_flux_density_unit.measurement_system’,
’S1), (’kilogram’, ’measurement_unit.mass_unit.measurement_system’, ’SI’), (’kilogram’,
’type.object.type’, ’measurement_unit.mass_unit’)]

graph [2]: [(’tesla’, ’measurement_unit.magnetic_flux_density_unit.measurement_system’, ’SI’),
(’gram’, ’measurement_unit.mass_unit.measurement_system’, ’SI’), (’gram’, ’type.object.type’,

’measurement_unit.mass_unit’)]

graph [3]: [(’tesla’, "measurement_unit.magnetic_flux_density_unit.measurement_system’,
’SI), (’metre’, ’measurement_unit.length_unit.measurement_system’, ’S17), (’metre’,
’type.object.type’, ’measurement_unit.length_unit’)]

answer: *Graphs [1] and [2] show the units kilogram and gram. Graph [3] is not useful.’

3. query: *Which video-game publisher released both Halo: Combat Evolved and Forza Motor-

sport?’

evidences:

graph [1]: [(’Microsoft Game Studios’, ’cvg.cvg_publisher.games_published’, ’Halo: Combat
Evolved’), (’Microsoft Game Studios’, ’cvg.cvg_publisher.games_published’, ’Forza Motorsport’),

17500

(’Microsoft Game Studios’, ’type.object.type’, ’cvg.cvg_publisher’)]

graph [2]: [(’Halo: Combat Evolved’, ’cvg.cvg_version.publisher’, ’Microsoft Game Studios’),
(’Forza Motorsport’, ’cvg.cvg_version.publisher’, ’Microsoft Game Studios’), (’Microsoft Game
Studios’, ’type.object.type’, ’cvg.cvg_publisher’)]

graph [3]: [(’Super Mario Bros’, ’cvg.cvg_version.publisher’, ’Nintendo’), (’Forza
Motorsport’, ’cvg.cvg_version.publisher’, ’Microsoft Game Studios’), (’Microsoft Game Studios’,
’type.object.type’, ’cvg.cvg_publisher’)]

answer: *Graphs [1][2][3] agree the publisher is Microsoft Game Studios.’

Your turn
query: “what content type is on the album the garage tape dayz 78—-817’
evidences:

17501

