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Abstract

With the continuous advancement in the per-
formance of large language models (LLMs),
their demand for computational resources and
memory has significantly increased, which
poses major challenges for efficient infer-
ence on consumer-grade devices and legacy
servers. These devices typically feature rela-
tively weaker GPUs and stronger CPUs. Al-
though techniques such as parameter offload-
ing and partial offloading can alleviate GPU
memory pressure to some extent, their effective-
ness is limited due to communication latency
and suboptimal hardware resource utilization.
To address this issue, we propose Dovetail1,
a lossless inference acceleration method that
leverages the complementary characteristics
of heterogeneous devices and the advantages
of speculative decoding. Dovetail deploys a
draft model on the GPU to perform preliminary
predictions, while a target model running on
the CPU validates these outputs. By reducing
the granularity of data transfer, Dovetail sig-
nificantly minimizes communication overhead.
To further improve efficiency, we optimize the
draft model specifically for heterogeneous hard-
ware environments by reducing the number of
draft tokens to lower parallel verification la-
tency, increasing model depth to enhance pre-
dictive capabilities, and introducing a Dynamic
Gating Fusion (DGF) mechanism to improve
the integration of feature and embedding in-
formation. We conduct comprehensive eval-
uations of Dovetail across various consumer-
grade GPUs, covering multiple tasks and main-
stream models. Experimental results on 13B
models demonstrate that Dovetail achieves in-
ference speedups ranging from 1.79x to 10.1x
across different devices, while maintaining con-
sistency and stability in the distribution of gen-
erated texts.

* indicates equal contribution.
† indicates corresponding authors.
1https://github.com/ddInference/Dovetail
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Figure 1: The architecture of Dovetail, highlighting a
collaborative inference mode where the target model is
deployed on the CPU, and the draft model is deployed
on the GPU.

1 Introduction

In recent years, with the continuous growth of
model parameter scales, large language models
(LLMs) (Touvron et al., 2023; Achiam et al., 2023)
have achieved significant performance improve-
ments across multiple domains. However, their
substantial computational and memory demands
impose higher requirements on hardware (Tang
et al., 2024), posing severe challenges for deploy-
ment on personal or consumer-grade devices, in-
cluding outdated servers from the pre-large-model
era.

We observe that these devices and small-scale
servers are typically equipped with GPUs with lim-
ited memory, making it difficult to fully load LLMs.
For instance, a 7B model requires approximately
14GB of memory at 16-bit precision, far exceed-
ing the capacity of consumer-grade GPUs such as
the NVIDIA RTX 2080. Currently, the primary
strategies for conducting inference without com-
promising model performance are offloading and
partial offloading. The former temporarily stores a
portion of parameters in host memory and dynami-
cally loads them into the GPU, while the latter di-
rectly executes part of the computation on the CPU,
thereby alleviating memory pressure. As shown in
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Figure 2: The speedup ratios of different models were tested on consumer-grade devices with temperature = 0.
"Vanilla" refers to the existing lossless inference method, while "SD" stands for speculative decoding, including the
effects when applying the SD algorithm on top of the Vanilla method.

Figure 2, compared to pure CPU inference, offload-
ing(Svirschevski et al., 2024) reduces inference
speed to 0.45x the original due to high communi-
cation latency between the CPU and GPU. Partial
offloading improves this to 1.68x, but the accelera-
tion effect is constrained by GPU memory capacity,
diminishing as available memory decreases.

Speculative Decoding (Leviathan et al., 2023;
Chen et al., 2023) is an emerging method for ac-
celerating LLM inference. It leverages a smaller
model to generate multiple draft tokens, which are
then verified in parallel by the target model, en-
abling the generation of multiple tokens in a sin-
gle forward pass without losing performance. Al-
though SpecExec (Svirschevski et al., 2024) applies
this technique to offloading scenarios to acceler-
ate inference, it still suffers from high communi-
cation latency, inefficient utilization of hardware
resources, and requires at least 5.9 GB of GPU
memory in the current test environment, making
it difficult to deploy effectively on devices with
lower memory. To address these issues, we propose
Dovetail, a heterogeneous CPU-GPU collaborative
speculative decoding mechanism, as illustrated in
Figure 1. In this setup, the draft model is deployed
on a consumer-grade GPU, while the target model
executes on the CPU. By reducing the granularity
of data transfer from Transformer blocks to tokens,
Dovetail significantly reduces communication over-
head. Additionally, thanks to the flexible parameter
scale of the draft model (ranging from 68M to 3B),
Dovetail can operate efficiently on most consumer-
grade GPUs.

As shown in Figure 2, when directly applying
speculative decoding algorithms on heterogeneous
architectures, the acceleration effect is only im-

proved by 1.57 times. To further enhance inference
speed on such architectures, we explore the char-
acteristics of speculative decoding algorithms in
this context and optimize the existing approach as
follows: By reducing the number of candidate draft
tokens, we linearly decrease the latency of paral-
lel verification, effectively mitigating performance
bottlenecks on low-end hardware. Given the sig-
nificant increase in target model latency, adopting
a larger draft model becomes feasible. Based on
EAGLE-2 (Li et al., 2024a), we redesign the draft
model by introducing DGF to dynamically adjust
the fusion weights between hidden states and token
embeddings, avoiding information loss and imbal-
ance in feature representation fusion. Furthermore,
by expanding the draft model’s Transformer blocks
from single to multiple, we significantly narrow
the performance gap between the draft and target
models while improving prediction performance
and increasing the average acceptance length.

Our main contributions include:

1. We propose a novel heterogeneous speculative
decoding paradigm that fully leverages the
characteristics of heterogeneous architectures
and speculative decoding. By deploying the
target model’s verification phase on the CPU,
this paradigm significantly improves hardware
resource utilization efficiency.

2. We optimize the existing draft model for low-
end hardware in heterogeneous architectures,
achieving a better balance between latency
and performance.

3. We develop a system that requires only 3GB
of VRAM to achieve an inference speed of
4.62 to 5.86 tokens per second for models such
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as LLaMA2-Chat 7B, demonstrating a 2.25x
performance improvement on MT-bench com-
pared to existing methods. When the VRAM
is increased to 7GB, the inference speed fur-
ther improves to 6.5 to 8 tokens per second,
resulting in a performance enhancement of
3.08x. On the GeForce RTX 3090, tests on
LLaMA2-Chat 13B indicate that our method
achieves a maximum speedup ratio of 10.14x.

2 Preliminaries

2.1 Effectiveness of Heterogeneous
Speculative Decoding

In resource-constrained environments, computa-
tional resources typically consist of a combina-
tion of CPUs and small-scale GPUs, such as CPUs
paired with discrete GPUs (dGPUs) or integrated
GPUs (iGPUs) in personal devices, as well as CPUs
paired with small-scale GPUs in servers. These
configurations are not specifically designed for AI,
and mainstream methods achieve large language
model (LLM) inference through parameter offload-
ing. Given the characteristics of computational
resource configurations and the properties of specu-
lative decoding, we propose a heterogeneous spec-
ulative decoding method to accelerate LLM infer-
ence. However, this method may not perform well
in all combinations of main processors and acceler-
ators. Therefore, we employ stochastic analysis to
reveal the correlation between hardware and com-
putational configurations. For a detailed analysis,
please refer to Appendix B.

2.2 Factors Affecting Speculative Decoding
Speedup

The time for the target model to decode a single to-
ken is TT , while the time for the speculative decod-
ing algorithm to decode a single token is T SD

Avg . The
performance analysis formula (Sadhukhan et al.,
2025) can be expressed as:

T SD
Avg

TT
=

1

Ω(γ, α)

(
γ · TD

TT
+

TV (γ)

TT

)
(1)

where α is the acceptance rate, γ is the number of
candidate draft tokens, Ω(γ, α) is the number of
accepted tokens in a single parallel verification, TD

is the time for the draft model to decode a single
token, and TV (γ) is the time for the target model
to verify γ tokens in parallel.
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Figure 3: Explore the interrelationship between the aver-
age acceptance length Ω(γ, α), parallel validation time
TV (γ), and speedup ratio of the target model under
different candidate draft tokens γ.

Method Device γ TT TD TV (γ) Ω(γ, α) Speedup

EAGLE-2 GPU 4090 60 0.025 0.001 0.025 5.59 4.01×
EAGLE-2 GPU 2080 60 0.45 0.0016 1.34 5.61 1.90×
EAGLE-2 GPU 2080 16 0.45 0.0016 0.88 4.69 2.32×
Dovetail GPU 2080 16 0.45 0.0072 0.88 5.90 2.77×

Table 1: Performance comparison of different meth-
ods and hardware configurations on the HumanEval
dataset. TT , TD, and TV (γ) denote the time costs of tar-
get model computation, draft model computation, and
verification, respectively. For GPU 2080, the target
model resides on the CPU while the draft model is on
the GPU; for GPU 4090, both models are placed on the
GPU.

The key factors influencing the acceleration ef-
fect include: TD/TT , TV (γ)/TT , and Ω(γ, α). As
shown in Table 1, the results in the first and sec-
ond rows demonstrate that in resource-constrained
heterogeneous architectures, TD/TT approaches
zero while Ω(γ, α) remains constant. However,
due to the limited parallelism of CPUs (Yin et al.,
2021), TV (γ)/TT increases significantly, leading
to a degradation in overall acceleration perfor-
mance.

The increase in TV (γ) shifts the primary bot-
tleneck of heterogeneous speculative decoding to
the parallel verification process of the target model.
Reducing the number of draft tokens can lower
TV (γ), but it also shortens Ω(γ, α). Therefore, a
balance must be struck between the two. As shown
in Figure 3, reducing the number of draft tokens lin-
early decreases verification latency. Although the
average acceptance length is reduced, the overall
inference speed still improves.

As TV (γ) decreases and stabilizes, the primary
bottleneck shifts to Ω(γ, α). Increasing α is typi-
cally accompanied by an increase in TD. Research
by DSD (Yan et al., 2024) indicates that enlarg-
ing the parameter size of the draft model can en-
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Figure 4: The pipeline of heterogeneous collaborative
speculative decoding depicts the computational proce-
dure. In this context, N and M denote the number of
layers in the target model and the draft model, respec-
tively.

hance Ω(γ, α). However, the continuous rise in TD

causes the overall inference speed to first increase
and then decrease. In heterogeneous architectures,
the increase in TT is much greater than that in
TD, resulting in a significant reduction in TD/TT .
This allows for the deployment of draft models
with larger parameter sizes, thereby increasing α,
extending Ω(γ, α), and ultimately improving the
overall inference speed.

Based on this, the key to optimizing the per-
formance of heterogeneous speculative decoding
lies in: linearly reducing TV (γ) by decreasing γ,
while employing draft models with larger parame-
ter sizes to increase α, thereby enhancing Ω(γ, α)
and achieving overall performance optimization.

3 Method

In this section, we provide a detailed description of
the implementation of Dovetail.

3.1 CPU/GPU Heterogeneous Architecture
Dovetail employs a CPU/GPU heterogeneous ar-
chitecture, where the draft model is deployed on
the GPU and the target model on the CPU, lever-
aging the advantages of heterogeneous computing.
As illustrated in Figure 4, the target model first
processes the input prompt to generate the hidden
states required by the draft model. These states,
along with the corresponding tokens, are trans-
ferred to the GPU for draft token generation.The
draft model dynamically constructs a draft tree
through multiple rounds of autoregressive decod-
ing. In each round, it computes the cumulative
product of token generation probabilities along the
path from the root node to each leaf node, which is
treated as the global acceptance probability. Based
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h1 h2

Hidden State Token Embedding
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Figure 5: Schematic diagram of the DGF. Hidden State
represents the second-to-top hidden state in the target
LLM, “||” denotes concatenation, “σ” represents the
sigmoid function, and “x” denotes the multiplication
mechanism.

on these probabilities, the top-k tokens are selected
for further decoding and expansion in the next
round. This process repeats until the tree is fully
constructed.Once constructed, the tree nodes are re-
ordered according to their global acceptance proba-
bilities, and the top-γ tokens with the highest scores
are chosen as candidates. These candidates are then
sent to the target model on the CPU for parallel ver-
ification. The target model computes the logits of
the candidate tokens in a single forward pass and
applies a speculative sampling algorithm to deter-
mine the accepted tokens. The accepted tokens are
returned to the GPU-based draft model to initiate
the next round of draft tree generation.

3.2 Dynamic Gated Fusion

In EAGLE-2, the draft model requires the fusion of
hidden states and token embeddings to address the
uncertainty of hidden states before inference. The
current method simply concatenates the two and
maps them to the hidden state dimension through
a single linear transformation. However, this ap-
proach has limitations: (1) it may cause the model
to overly rely on linear transformations, neglect-
ing the deep interaction between hidden states and
token embeddings; (2) the fixed linear layer lacks
flexibility when processing features from differ-
ent levels, unable to dynamically adjust the fusion
process based on context, which may lead to insuf-
ficient emphasis on critical information and affect
fusion performance. To address these issues, we
propose the Dynamic Gated Fusion (DGF) module,
inspired by multimodal feature fusion (Ovalle et al.,
2017). As shown in Figure 5, the DGF module
first applies linear transformations to the hidden
states and token embeddings, generating feature
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representations h1 and h2, which are then concae-
nated into a joint feature vector. A linear layer
and sigmoid activation function generate gating
values to dynamically adjust the contribution ra-
tios of h1 and h2, and a weighted sum produces
the fused feature representation, effectively captur-
ing their interaction. Compared to the method of
concatenation followed by linear transformation,
DGF adaptively regulates the interaction strength
between hidden states and token embeddings and
dynamically adjusts the fusion ratio based on in-
put scenarios, enhancing the model’s expressive
power in complex contexts while reducing the risk
of information loss or fusion imbalance caused by
global linear transformations.

3.3 Multiple Transformer Blocks
In high-performance hardware environments, the
latency of the draft model is the primary bottleneck
for the speedup ratio of speculative decoding al-
gorithms. Therefore, designing the draft model re-
quires balancing parameter scale and prediction ac-
curacy. Typically, the draft model adopts a smaller
parameter scale, such as a single Transformer block
of the target model, to achieve significant inference
acceleration. However, in resource-constrained het-
erogeneous architectures, this design often leads
to insufficient performance. As discussed in Sec-
tion 2.2, the increased parallel verification time of
the target model provides opportunities for opti-
mizing the draft model. Although the Dynamic
Gated Fusion (DGF) module can effectively inte-
grate information from different layers to improve
performance, its single-Transformer-block architec-
ture limits its ability to learn deep abstract features
of the target model and align feature distributions,
constraining prediction accuracy.

Based on this, we propose extending the draft
model to a multi-block architecture with M Trans-
former blocks, as shown in Figure 4. This extension
significantly increases the parameter scale, enhanc-
ing the nonlinear representation capability of the
draft model, enabling it to more accurately approxi-
mate the complex representation space of the target
model and more effectively capture and align its
feature distributions, thereby improving prediction
accuracy, extending the average acceptance length,
and accelerating overall inference. However, in
heterogeneous architectures, when the number of
Transformer blocks in the draft model exceeds a
certain threshold, computational latency becomes
a bottleneck. Detailed analysis and justification are

Category Details
Server Intel Xeon Silver 4214R @ 2.40GHz (24 cores)

NVIDIA RTX 2080 SUPER (8GB VRAM)
PCIe Gen 3x16

Server Intel Xeon Silver 4310 @ 2.10GHz (24 cores)
NVIDIA RTX 3090 (24GB VRAM)

PCIe Gen 4x16
PC Intel Core i5-9300H @ 2.40GHz (4 cores)

NVIDIA GTX 1050 Mobile (4GB VRAM)
PCIe Gen 3x8

Table 2: Hardware Configurations Employed in the
Experiment.

provided in Section 4.2.2.

4 Experiments

Hardware. To validate the versatility of Dovetail
in low-end hardware environments, tests were con-
ducted in two representative scenarios: a server
from the pre-large-model era and a personal com-
puter. Detailed configurations are presented in Ta-
ble 2.

Models. In the evaluation process, LLaMA2-
Chat 7B, 13B and Vicuna 13B were selected as
target models to cover the performance of models
at different scales.

Tasks. To comprehensively assess the perfor-
mance of the models across various tasks, multiple
datasets were utilized: MT-bench (Zheng et al.,
2023) for dialogue tasks, HumanEval (Chen et al.,
2021) for code generation, GSM8K (Cobbe et al.,
2021) for mathematical reasoning, and the Alpaca
dataset (Taori et al., 2023) for instruction-following
tasks.

Metrics. Given that speculative decoding inher-
ently achieves lossless acceleration, the average
acceptance length τ and the speedup ratio were
chosen as the primary metrics to evaluate the accel-
eration performance of the target LLMs.

Training. We trained the draft model on the
ShareGPT dataset, where the configuration of the
draft model under the Dovetail framework involved
varying the number of blocks M from 1 to 6. The
training process utilized eight NVIDIA A800 80G
GPUs with a batch size of 16 and employed mixed-
precision training (bf16). The AdamW optimizer
was used, with momentum parameters set to β1 =
0.9 and β2 = 0.95. The model was trained for
24 epochs, and the entire training process took
approximately 1 day when M = 6. To ensure a
fair comparison, the EAGLE-2 model was retrained
under the same conditions, providing a consistent
experimental baseline.
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MT-bench HumanEval GSM8K Alpaca Mean

Model Method Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Temperature=0

L2 7B

Vanilla EAGLE-2 1.62x 4.75 1.90x 5.61 1.63x 4.97 1.54x 4.65 1.67x 5.00
ShearedLlama-1.3B 1.80x 4.75 2.10x 5.48 1.69x 4.41 1.68x 4.47 1.82x 4.78

TinyLlama-1.1B 1.89x 4.89 2.17x 5.70 1.69x 4.38 1.69x 4.57 1.86x 4.88
EAGLE-2 1.99x 3.95 2.32x 4.69 1.99x 4.01 1.93x 3.83 2.06x 4.12

Ours 2.25x 4.73 2.77x 5.90 2.20x 4.71 2.17x 4.62 2.35x 4.99

V 13B
EAGLE-2 2.19 4.25 2.60 4.91 2.01x 4.22 1.88x 3.77 2.17x 4.29

Ours 2.50x 5.00 3.19x 6.25 2.57x 5.12 2.35x 4.51 2.65x 5.22

Temperature=1

L2 7B

Vanilla EAGLE-2 1.54x 4.49 1.77x 5.23 1.63x 4.90 1.50x 4.41 1.61x 4.76
ShearedLlama-1.3B 1.69x 4.37 1.87x 4.83 1.71x 4.52 1.61x 4.21 1.72x 4.48

TinyLlama-1.1B 1.78x 4.53 1.94x 5.00 1.66x 4.35 1.67x 4.33 1.76x 4.55
EAGLE-2 1.88x 3.67 2.14x 4.25 1.96x 3.98 1.81x 3.60 1.95x 3.89

Ours 2.12x 4.38 2.49x 5.34 2.16x 4.68 2.02x 4.24 2.20x 4.66

V 13B
EAGLE-2 2.01x 3.62 2.27x 4.18 1.92x 3.73 1.71x 3.43 1.98 3.74

Ours 2.21x 4.17 2.62x 5.02 2.24x 4.43 2.07x 4.04 2.29 4.42

Table 3: A comparison of speedup ratios and average acceptance length τ for different methods on heterogeneous
architectures with GeForce RTX 2080 SUPER, where L2 represents LLaMA2-Chat and V represents Vicuna.

Method MT-bench HumanEval

Speedup τ PM Speedup τ PM

L2 7B (GeForce RTX 2080 SUPER)

CPU-only 1x(2.14t/s) - - 1x(2.12t/s) - -
Offload 0.45x - 7.44 0.45x - 7.44

SpecExec 2.36x 7.43 7.14 2.98x 10.10 7.32
Dovetail 3.08x 4.61 7.40 3.78x 5.90 7.44

L2 7B (GeForce RTX 3090)

CPU-only 1x(2.35t/s) - - 1x(2.34t/s) - -
Offload 0.83x - 7.44 0.83x - 7.44

SpecExec 3.95x 7.38 7.14 4.92x 10.05 7.32
Dovetail 4.05x 4.60 7.40 4.99x 5.91 7.44

L2 13B (GeForce RTX 3090)

CPU-only 1x(1.20t/s) - - 1x(1.22t/s) - -
SpecExec 4.85x 8.23 22.5 7.10x 13.38 22.7
Dovetail 7.66x 4.53 21.9 10.14x 6.26 22.0

Table 4: Speedup ratios of different methods at temper-
ature = 0, with PM (peak memory) in GB and tokens
generated per second denoted as t/s, where L2 repre-
sents LLaMA2-Chat.

Parameter Settings. In the server configuration,
the dynamic tree width and depth were set to 10
and 7, respectively, with 16 candidate draft tokens.
In terms of model precision, the target model on
the CPU employed 32-bit weights, while the draft
model on the GPU used 16-bit weights. For the per-
sonal computer, the dynamic tree width and depth
were adjusted to 10 and 4, respectively, with 7 can-
didate draft tokens. Due to the memory constraints
of the personal computer, the target model on the

CPU utilized 8-bit weights (obtained through Py-
Torch (Paszke et al., 2017) dynamic quantization),
while the draft model on the GPU continued to use
16-bit weights.

4.1 Result

Table 3 presents the average acceptance lengths and
speedup ratios of various methods across different
models and temperatures. Our method achieves the
highest speedup ratio in all tasks presented in the
table. Specifically, the draft model optimized for
heterogeneous architectures outperforms Vanilla
EAGLE-2. Vanilla EAGLE-2 applies the EAGLE-
2 algorithm directly on heterogeneous architectures
with 60 draft tokens, whereas other methods utilize
16 draft tokens. Although reducing the number
of draft tokens decreases the average acceptance
length of EAGLE-2, its average speedup ratio im-
proves from 1.67x to 2.06x.

A straightforward approach to increasing the
parameter size of the draft model is to employ
smaller models from the same series as the draft
model. These smaller models exhibit behavioral
characteristics highly consistent with the target
model, significantly enhancing the average accep-
tance length. However, while TinyLlama-1.1B
(Zhang et al., 2024b) and ShearedLlama-1.3B (Xia
et al., 2024b) achieve average acceptance lengths
of 4.88 and 4.78, respectively, the higher draft la-
tency offsets the speedup gains from increased ac-
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Draft/Target Model Method Tokens/Sec Speedup τ

- / L2 7B gptq-4bit Offload 0.45 0.12x -
- / L2 7B-8bit - / CPU-only 3.65 1x -

EAGLE-2 / L2 7B-8bit GPU/CPU 6.10 1.67x 3.51
Ours / L2 7B-8bit GPU/CPU 6.35 1.74x 3.78

- / V 13B-8bit - / CPU-only 1.88 1x -
EAGLE-2 / V 13B-8bit GPU/CPU 3.19 1.69x 3.61

Ours / V 13B-8bit GPU/CPU 3.36 1.79x 3.85

Table 5: The speedup ratios of different methods
were evaluated on an NVIDIA GTX 1050 using the
HumanEval dataset, with the temperature set to 0.
Here, L2 denotes LLaMA2-Chat, V represents Vicuna.
GPU/CPU represents the heterogeneous deployment
method.

ceptance lengths in heterogeneous architectures,
resulting in overall speedup performance that is
only marginally better than Vanilla EAGLE-2. In
contrast, Dovetail achieves an average acceptance
length of 4.99 across four tasks, surpassing the
smaller models in the same series while maintain-
ing low draft latency, thus delivering the best per-
formance across all tasks.

As shown in Table 3, the peak memory usage of
the Dovetail scheme is 2.95 GB. When the memory
capacity of consumer-grade GPUs exceeds 3 GB,
partial layers of the target model can be offloaded to
the GPU for further acceleration. According to Ta-
ble 4, in a GeForce RTX 3090 environment, 14 lay-
ers of Llama2-13B are deployed on the CPU, while
the GPU hosts 26 layers of the target model and 5
layers of the draft model. Under this configuration,
Dovetail achieves a speedup ratio of 10.14× on the
HumanEval dataset for LLaMA2-Chat 13B, signif-
icantly outperforming SpecExec’s 7.10×. This im-
provement is primarily attributed to the substantial
communication overhead in SpecExec’s offloading-
based design, which partially offsets the benefits
gained from its longer average accepted length. Ad-
ditionally, both SpecExec and Dovetail use their re-
spective optimal number of draft tokens—256 and
16. In the RTX 2080 GPU setting, for Llama2-7B,
22 layers are deployed on the CPU, while the GPU
accommodates 10 layers of the target model and 5
layers of the draft model. Here, Dovetail achieves
a speedup of 3.78× on HumanEval for LLaMA2-
Chat 7B, surpassing SpecExec’s result of 2.98×.
The numbers of draft tokens used in SpecExec and
Dovetail under this configuration are 128 and 16,
respectively. For further details regarding the con-
figuration of SpecExec and the selection of draft
tokens, please refer to Appendix C.3.

In configurations where GPU performance sig-

nificantly exceeds CPU performance, scenarios of
CPU-GPU performance imbalance can be simu-
lated. As illustrated in Table 4, with enhanced
GPU performance and improved PCIe bandwidth,
the performance of offloading methods improves,
with the speedup ratio for LLaMA2-Chat 7B in-
creasing from 0.45x on the GeForce RTX 2080 SU-
PER to 0.83x on the GeForce RTX 3090. However,
this also results in a less pronounced speedup ratio
improvement for Dovetail compared to SpecExec
on the GeForce RTX 3090 than on the GeForce
RTX 2080 SUPER. Nevertheless, Dovetail still
maintains a superior speedup ratio over SpecExec,
demonstrating its robust adaptability.

In personal computing environments, LLM in-
ference is constrained by CPU memory and GPU
VRAM capacity, necessitating the use of quantiza-
tion techniques to reduce computational and stor-
age overhead. It is important to emphasize that
quantization algorithms directly affect model ac-
curacy, and our primary optimization goal is to
enhance the inference speed of quantized models
in resource-constrained environments rather than
their accuracy. As shown in Table 5, applying Py-
Torch dynamic quantization to convert the target
model to 8-bit allows it to be fully loaded into the
CPU memory of most personal computers. When
combined with heterogeneous speculative decoding
algorithms, the inference speeds of LLaMA2-Chat
7B and Vicuna 13B increase to 6.35 and 3.36 to-
kens per second, respectively. However, due to
the limited parallel computing capability of CPUs
in personal computing environments, the number
of candidate tokens during the verification phase
is constrained, leading to reduced average accep-
tance lengths and significantly lower speedup per-
formance compared to server environments. For
more details, please refer to Appendix C.2.

4.2 Ablation Study

In this section, we conducted an ablation study
to explore the impact of DGF and multiple Trans-
former blocks on model performance. For more
details on the tests, please refer to Appendix C.

4.2.1 Dynamic Gating Fusion
To validate the effectiveness of DGF, we conducted
a comparative analysis against a baseline method
from EAGLE-2, in which token embeddings are
linearly combined with hidden states. As shown in
Table 6, the results demonstrate that incorporating
DGF significantly improves both the average ac-
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Method Lparameters MT-bench HumanEval

Speedup τ Speedup τ

w/o both 0.22B 1.99x 3.95 2.32x 4.69
w/ DGF 0.25B 2.05x 4.06 2.42x 4.89

w/ DGF + 1 0.44B 2.13x 4.31 2.62x 5.38
w/ DGF + 2 0.63B 2.21x 4.53 2.72x 5.65
w/ DGF + 3 0.81B 2.23x 4.62 2.74x 5.82
w/ DGF + 4 1.00B 2.25x 4.73 2.77x 5.90
w/ DGF + 5 1.19B 2.26x 4.83 2.75x 5.98

Table 6: Ablation experiment results on a heterogeneous
architecture using GeForce RTX 2080 SUPER, with the
temperature set to 0 for LLaMA2-Chat-7B. Lparameters
denotes the model’s learnable parameters. w/o both
indicates using only one layer, w/ DGF indicates using
one layer with DGF, w/ DGF + m indicates using w/
DGF with an additional m Transformer blocks.

ceptance length and speedup ratio on the MT-bench
and HumanEval datasets. These findings highlight
the ability of DGF to effectively leverage input in-
formation from multiple sources and dynamically
adjust the contribution of each source, enabling
more efficient and adaptive feature fusion.

4.2.2 Multiple Transformer Blocks

To evaluate the impact of the draft model’s pa-
rameter scale on inference speed, we gradually in-
creased the number of Transformer blocks in the
draft model from 1 to 6. As shown in Table 6, in-
creasing the number of Transformer blocks from
1 to 5 led to a gradual improvement in prediction
accuracy, which in turn resulted in a correspond-
ing increase in average acceptance length and a
steady rise in the speedup ratio. This indicates
that increasing the number of Transformer blocks
enables the model to capture more complex fea-
tures, thereby aligning the draft model’s feature
distribution more closely with that of the target
model. However, when the number of Transformer
blocks reached 6, while both the average accep-
tance length and speedup ratio improved signifi-
cantly on the MT-bench dataset, the speedup ratio
on the HumanEval dataset slightly decreased de-
spite a marked improvement in average acceptance
length. This phenomenon can be attributed to the
fact that, at this stage, the inference time during
the draft phase becomes the primary bottleneck.
The additional parameters significantly increase
the draft computation time, which offsets the accel-
eration benefits gained from the improved average
acceptance length.

5 Related work

5.1 Heterogeneous Architecture

Transformer (Vaswani, 2017) and its variants have
emerged as the dominant architecture for LLMs.
However, the increasing scale of these models has
led to inference speed being constrained by the
memory capacity of accelerators. To address this
challenge, researchers have proposed various com-
pression techniques, such as quantization (Hubara
et al., 2018; Xiao et al., 2023; Frantar et al., 2022;
Liu et al., 2024; Yuan et al., 2024), pruning (Gale
et al., 2019; Liu et al., 2023), and knowledge distil-
lation (Sanh et al., 2019; Tu et al., 2020; Wen et al.,
2023). However, these methods often come at the
cost of degraded generation quality. To achieve
lossless inference, offloading stores parameters ex-
ceeding GPU capacity in CPU memory and dy-
namically loads them to the GPU when needed.
However, 99.5% of the time in single-batch infer-
ence is spent on data transfer (Song et al., 2024),
significantly increasing latency. Partial offloading
(Gerganov, 2023) directly computes the excess pa-
rameters on the CPU and transfers intermediate
results to the GPU for further processing, but its
performance remains constrained by the computa-
tional capabilities of the CPU and the memory ca-
pacity of the GPU. Future research aims to combine
the characteristics of models with the specific ad-
vantages of heterogeneous architectures to achieve
more efficient inference acceleration.

In heterogeneous architectures, the presence of
accelerators allows for leveraging the advantages
of multiple computational resources for LLM infer-
ence. Model compression techniques (Zhang et al.,
2025) typically focus on fully utilizing accelerator
performance, often with limited consideration of
output quality. In contrast, offloading and partial
offloading strategies combine the performance of
accelerators with the memory and computational
capabilities of CPUs to achieve lossless output
quality, although their acceleration efficiency is
generally suboptimal. To address this issue, Pow-
erInfer (Song et al., 2024) leverages the locality
characteristics of LLM inference by predicting hot
neurons to be computed on the GPU, while delegat-
ing cold neurons to the CPU. This approach effec-
tively utilizes the advantages of heterogeneous ar-
chitectures to significantly improve inference speed.
Similarly, KTransformers (KVCache.AI, 2024) fo-
cuses on sparse Mixture of Experts (MoE) models,
employing a heterogeneous computing strategy:
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non-shared components (sparse MoE matrices) are
placed on the CPU to conserve GPU memory, while
shared dense components are computed on the
GPU. This method maximizes hardware resource
utilization through heterogeneous computing, en-
abling efficient inference in resource-constrained
environments.

5.2 Speculative Decoding

Speculative decoding is an emerging lossless ac-
celeration method based on the draft-then-verify
paradigm (Xia et al., 2024a), which can be outlined
from the following three aspects.

5.2.1 Obtaining Draft Tokens

For certain target models (Touvron et al., 2023;
Yang et al., 2024), smaller models from the same se-
ries can be directly used as draft models (Leviathan
et al., 2023) without requiring additional training
or modification. When small models from the same
series are unavailable, the draft model must be
trained from scratch, or draft models or draft to-
kens can be derived from the target model. Draft
models can be obtained from target models using
knowledge distillation (Zhou et al., 2023) or quan-
tization (Miao et al., 2023), or by incorporating
early exit mechanisms (Zeng et al., 2024) and layer-
skipping techniques (Zhang et al., 2024a) to con-
clude the inference process earlier, thus generating
draft tokens.Additionally, non-autoregressive or au-
toregressive prediction heads (Cai et al., 2024; Li
et al., 2024b) can be incorporated into the target
model to generate draft tokens. A draft model can
also be composed of multiple smaller models, lever-
aging a staged (Spector and Re, 2023) or cascaded
approach(Chen et al., 2024) to generate draft to-
kens.

5.2.2 Organizing Draft Tokens

In early studies (Leviathan et al., 2023; Chen et al.,
2023), the draft model sampled only one draft to-
ken per step and used a chain structure. To increase
average acceptance length, later studies (Miao et al.,
2023; Cai et al., 2024) proposed sampling multi-
ple draft tokens per step and organizing them in a
predefined tree structure. However, static tree struc-
tures do not consider contextual information. Stud-
ies (Svirschevski et al., 2024; Li et al., 2024a)have
suggested dynamically constructing a draft tree
based on the cumulative confidence of tokens in
their context.

5.2.3 Verifying Draft Tokens

Early studies (Stern et al., 2019; Xia et al., 2023)
strictly required that draft tokens match the greedy
decoding output of the target model exactly. Later,
speculative sampling (Leviathan et al., 2023; Chen
et al., 2023) adopted nucleus sampling and theoret-
ically demonstrated that this criterion preserves the
same output distribution as the target LLM, also
achieving lossless acceleration. To further enhance
acceleration, some studies (Xia et al., 2023; Kim
et al., 2024) have proposed moderately relaxing the
verification criteria. Judge decoding (Bachmann
et al., 2025) can determine whether to accept a
draft token directly based on its token embedding,
without relying on logits.

6 Conclusion

This paper proposes a lossless acceleration method
named Dovetail, which employs speculative decod-
ing to optimize the inference efficiency of target
models under resource-constrained conditions. Tai-
lored for low-end hardware characteristics, Dove-
tail reduces the number of draft tokens, thereby
linearly decreasing the latency of parallel verifica-
tion, and utilizes DGF to efficiently integrate multi-
source information. Additionally, by increasing
the parameter size of the draft model, it enhances
prediction accuracy, achieving a higher speedup ra-
tio. Experimental results demonstrate that Dovetail
outperforms existing lossless acceleration methods
across multiple datasets and achieves the highest
speedup ratio in all benchmark tests.

Limitations

Although the proposed method has achieved rel-
atively superior performance, achieving optimal
inference speed in resource-constrained environ-
ments still needs more effort. Due to the limitations
of CPU parallelism, inference methods face chal-
lenges when dealing with long text scenarios be-
cause the delay in the pre-filling stage is relatively
large. This is a task that needs to be addressed in
the future.
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A Dovetail

Figure 6 is an illustrative description of Dovetail.

Figure 6: A depiction of the Dovetail joint in Chinese
carpentry, which also inspired the name of our method.
It represents that the seamless integration of this hetero-
geneous architecture.

B Analysis of Dovetail Effectiveness

Given the sequence length S, batch size B, a target
model consisting of m Transformer blocks, hidden
dimension H , and the number of candidate draft
tokens γ, the average decoding latency per token
based on the theoretical formula of MagicDec is
defined as:

T SD
Avg =

γ · TD + TV (γ)

Ω(γ, α)
(2)

where α is the acceptance rate, Ω(γ, α) is the num-
ber of accepted tokens in a single parallel verifica-
tion, TD is the time for the draft model to decode
a single token, and TV (γ) is the time for the target
model to verify γ tokens in parallel.

The offloading method employs a strategy of
overlapping computation and data loading to op-
timize efficiency, with the latency per token de-
noted as TOffload . To ensure the advantage of the
heterogeneous speculative decoding method, the
following condition must be satisfied:

T SD
Avg < TOffload (3)

i.e., the average latency per token of heterogeneous
speculative decoding must be lower than that of the
offloading method.

In a heterogeneous architecture, the parallel ver-
ification time TV (γ) of the target model on the
main processor can be decomposed into computa-
tion time Tc and memory access time Tp:

Tc =
F

Pc · Ec
, Tp =

P

Bm · Em
, (4)

where F is the computational cost of a single Trans-
former block, P is the parameter size, Pc is the
peak computational performance of the main pro-
cessor, Ec is the computational efficiency, Bm is
the memory bandwidth, and Em is the memory
utilization efficiency.

Considering the partial overlap between compu-
tation time and memory access time, the total time
is expressed as:

TV (γ) = max(Tc, Tp) + β ·min(Tc, Tp) (5)
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Method Speedup τ

w/o both 2.60x 4.91
w/ DGF 2.69x 4.99

w/ DGF + 1 2.97x 5.71
w/ DGF + 2 3.04x 5.96
w/ DGF + 3 3.08x 6.03
w/ DGF + 4 3.19x 6.25
w/ DGF + 5 3.13x 6.26

Table 7: The ablation experiment results of Vicuna 13B
on a heterogeneous architecture using GeForce RTX
2080 SUPER, with the temperature set to 0 and the test
dataset being HumanEval. “w/o both” denotes using
only a single layer; “w/ DGF” indicates using a single
layer with DGF; and “w/ DGF + m” represents adding
m additional Transformer blocks on the basis of “w/
DGF”.

where β (0 ≤ β ≤ 1) is the overlap coefficient,
with β = 1 indicating no overlap and β = 0 indi-
cating complete overlap.

Equation 3 can be further updated as:

max(Tc, Tp)+β ·min(Tc, Tp) < Ω(γ, α)· P

Bp · Ep
(6)

where Tc and Tp are the computation time and
memory access time of the target model on the
main processor, β (0 ≤ β ≤ 1) is the overlap co-
efficient, Bp is the PCIe bandwidth, and Ep is the
PCIe transmission efficiency.

In summary, heterogeneous speculative decod-
ing achieves higher efficiency when the perfor-
mance of the main processor and the accelerator
is relatively balanced. However, in scenarios with
severe hardware resource imbalance (e.g., signif-
icantly limited computational performance of the
main processor and high PCIe bandwidth), het-
erogeneous speculative decoding may not be the
optimal choice.

C Additional Implementation Details

C.1 Ablation experiments on RTX 2080

When running the Vicuna 13B on a GeForce RTX
2080, the parameter scale of the draft model also
significantly impacts the inference speed, as shown
in Table 7. As the number of Transformer blocks in
the draft model increases from 1 to 5, the prediction
accuracy progressively improves, driving a corre-
sponding increase in the average acceptance length,
while the speedup ratio steadily rises. However,

Method Tokens/Sec Speedup τ

w/o both 3.19 1.69x 3.61
w/DGF 3.36 1.79x 3.85

w/DGF+1 2.85 1.52x 4.09

Table 8: The ablation study results of the Vicuna 13B on
HumanEval, conducted on a heterogeneous architecture
with NVIDIA GTX 1050, where the temperature is set
to 0.

when the number of Transformer blocks increases
to 6, although the average acceptance length shows
a notable improvement, the speedup ratio experi-
ences a slight decline. This phenomenon aligns
with the observations made on the 7B model.

C.2 Ablation experiments on GTX 1050

We conducted ablation experiments on the Vicuna
13B on a platform equipped with an NVIDIA GTX
1050 to investigate the impact of the DGF module
and multiple Transformer blocks on model perfor-
mance. The experimental results are presented in
Table 8. Upon integrating the DGF module into
EAGLE-2, both the speedup ratio and the average
acceptance length of the model exhibited improve-
ments. However, when an additional Transformer
block was introduced beyond this configuration,
while the average acceptance length continued to
increase, the speedup ratio experienced a decline.
The primary reason for this phenomenon, as shown
in Table 9, lies in the precision discrepancy be-
tween the CPU and GPU: the CPU employed int8
quantization, whereas the GPU utilized fp16 preci-
sion for computations. This precision mismatch re-
sulted in an insufficient time difference between the
drafting phase and the parallel verification phase
to accommodate the inclusion of an extra Trans-
former block. As shown in Table 8, further increas-
ing the number of Transformer blocks prolonged
the drafting time, thereby diminishing the overall
acceleration effect. Consequently, to achieve per-
formance akin to that of a RTX 2080 on a device
such as the GTX 1050—specifically, to further en-
hance the speedup ratio by incorporating additional
Transformer blocks—it is advisable to apply int8
quantization to the drafting model on the GPU.
This approach would amplify the time difference
between the drafting phase and the parallel verifi-
cation phase, thereby enabling the integration of
multiple additional blocks.
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Draft Stage Verify Stage

Precision 16-bit 8-bit
Processors GTX 1050 i5-9300H

Time 0.31 Sec 0.57 Sec

Table 9: On a personal laptop, statistics were gathered
for large-model inference using w/DGF, with a focus on
the average time taken for a single drafting phase and
the average time taken for a single parallel verification
phase.

Draft Tokens MT-bench HumanEval

Speedup τ Speedup τ

16 1.86x 4.85 2.25x 6.32
128 2.36x 7.43 2.98x 10.10

Table 10: Performance comparison of SpecExec with
different draft token counts on MT-bench and Hu-
manEval benchmarks.

C.3 Experiments Related to SpecExec
The default configuration of SpecExec uses the tar-
get model Llama2-Chat-7B and the draft model
TinyLlama-1.1B, optimized based on Offload,
where both the target and draft models are exe-
cuted on the GPU and the CPU is only used to
store parameters. In Table 4 of the paper, SpecExec
uses the optimal draft count, for example, in a GPU
2080, the draft count is 128 rather than 16. Us-
ing 16 would significantly reduce performance, as
shown in the table 10, and would not provide a
fair comparison with Dovetail. When the target
model is Llama-2 7B and the GPU memory is
4GB, SpecExec encounters an out-of-memory er-
ror, while Dovetail runs normally.
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