
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17378–17393
November 4-9, 2025 ©2025 Association for Computational Linguistics

Why Stop at One Error? Benchmarking LLMs as Data Science Code
Debuggers for Multi-Hop and Multi-Bug Errors

Zhiyu Yang1 Shuo Wang2 Yukun Yan2 Yang Deng1

1Singapore Management University 2Tsinghua University
kelvin.yangzhiyu@outlook.com, ydeng@smu.edu.sg

Abstract

LLMs are transforming software development,
yet most code benchmarks still emphasize
syntactic or functional correctness in simple,
single-error cases. These settings miss the
core difficulty of real-world data science de-
bugging, where runtime errors propagate across
multiple lines (multi-hop) and often appear in
sets (multi-bug). We introduce DSDBench:
Data Science Debugging Benchmark, the first
benchmark to systematically evaluate LLMs
on this challenge. Unlike general debugging
benchmark suites such as SWE-bench, DSD-
Bench targets non-expert, data-centric script-
ing, where practitioners rely heavily on black-
box libraries and write exploratory code that is
error-prone and difficult to debug. Evaluations
of state-of-the-art LLMs reveal large perfor-
mance gaps: even frontier models that excel
at code generation fail to reliably trace and re-
solve these errors, exposing a critical “gener-
ation versus understanding” gap. DSDBench
provides a resource to drive progress toward
more robust and trustworthy AI-assisted data
science. 1

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) have significantly reshaped software
development practices, particularly in automat-
ing code generation and debugging. Benchmarks
like DebugBench (Tian et al., 2024), CodeEditor-
Bench (Guo et al., 2024a), and DebugEval (Yang
et al., 2025) have played a pivotal role in eval-
uating LLMs’ capabilities in code repair. How-
ever, these benchmarks largely rely on simplified
programming exercises from platforms like Leet-
Code, which prioritize syntactic correctness and
functional accuracy in isolated and single-error
scenarios, far removed from real-world software
complexity.

1DSDBench is publicly available at https://github.
com/KevinCL16/DSDBench.

Meanwhile, growing research efforts are explor-
ing LLMs’ potential in data science coding (Yang
et al., 2024; Hu et al., 2024; Zhang et al., 2024b;
Hong et al., 2024), where practitioners routinely
tackle challenges involving black-box library func-
tions, intricate data transformations, and statisti-
cal modeling. Yet, a critical gap persists: despite
this emerging focus, there remains a striking lack
of investigation into LLMs’ ability to debug dy-
namic logical errors in data science code. Such
errors, manifesting only at runtime, are endemic
to this domain due to hidden dependencies in data
pipelines, implicit assumptions in mathematical
operations, and unpredictable interactions with ex-
ternal resources.

As illustrated in Figure 1, unlike constrained
programming exercises, debugging data science
codebases presents unique challenges: 1) Its heavy
reliance on external libraries (e.g., pandas, NumPy,
scikit-learn, matplotlib) means subtle misuses or
incorrect data processing steps can easily trigger
downstream runtime exceptions. 2) Data scien-
tists often work in interactive environments like
Jupyter Notebooks, which lack robust debugging
tools. This makes it harder to identify and fix
runtime bugs, especially when multiple subtle
errors, such as incorrect data transformations or
misaligned indices, coexist and interact within the
code, complicating the debugging process. 3) Stan-
dard debugging tools offer limited assistance in
diagnosing multi-hop logical errors within com-
plex workflows. The root cause of these errors
can be distantly located from the point of error
manifestation. Standard debuggers typically report
the symptom (the line of error manifestation in the
stack trace) rather than the root cause responsible
for the program’s termination. Linking these two is
essential not only for reasoning, but also for trust-
worthy assistance grounded in what users actually
see.

Overall, a dedicated benchmark for rigorously

17378

https://github.com/KevinCL16/DSDBench
https://github.com/KevinCL16/DSDBench

cause_error_line:
y_pred = model.predict(X_train)
effect_error_line (different from cause):
mse = mean_squared_error(y_test, y_pred)
error_message:
ValueError: Found input variables with
inconsistent numbers of samples

cause_error_line:
X = imputer.fit_transform(y)
effect_error_line (different from cause):
model.fit(X_train, y_train)
error_message:
ValueError: Input y contains NaN.

Error Annotation ×N

import …

[code unmodified]
Logical error 1 injected here
X = imputer.fit_transform(y)
[code unmodified]
Logical error 2 injected here
y_pred = model.predict(X_train)
[code unmodified]

cause_error_line:
y_pred = model.predict(X_train)
effect_error_line (different from cause):
mse = mean_squared_error(y_test, y_pred)
error_message:
ValueError: Found input variables with
inconsistent numbers of samples

cause_error_line:
X = imputer.fit_transform(y)
effect_error_line (different from cause):
model.fit(X_train, y_train)
error_message:
ValueError: Input y contains NaN.

import …

[code unmodified]
Logical error 1 injected here
X = imputer.fit_transform(y)
[code unmodified]
Logical error 2 injected here
y_pred = model.predict(X_train)
[code unmodified]

import …

[code unmodified]
Logical error 1
X = imputer.fit_transform(y)
[code unmodified]
Logical error 2
y_pred = model.predict(X_train)
[code unmodified]

Manual

Verification

Error

Annotation

with snoop

Correct code

annotation

Data source

DABench

MatPlotBench

DSEval

Data

Science

Q & Code

Strong LLM

error injection

Weak LLM

Direct Generation

Buggy

Code

Bug

Sample
DSDBench

Buggy Code ×N

cause_error_line:
y_pred = model.predict(X_train)
effect_error_line (different from cause):
mse = mean_squared_error(y_test, y_pred)
error_message:
ValueError: Found input variables with
inconsistent numbers of samples

import ……
df = pd.read_csv('unemployement_industry.csv’)
…
y = imputer.fit_transform(y)
…
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)

Apply machine learning techniques to predict the

employment level in March 2020. Split the dataset,

train a simple linear regression model, evaluate its

performance using Mean Squared Error.

Question

Correct Code

cause_error_line:
X = imputer.fit_transform(y)
effect_error_line (different from cause):
model.fit(X_train, y_train)
error_message:
ValueError: Input y contains NaN.

Figure 1: Dataset construction pipeline of DSDBench.

assessing LLMs’ dynamic debugging of multi-hop
logical errors in complex multi-bug data science
code is still lacking. Unlike general debugging
suites such as SWE-bench that evaluate patch-
level fixes in professional OSS repositories via unit
tests, our setting targets non-expert, data-centric
scripting where failures are often data-dependent
and surface as interpreter-visible runtime errors.
Crucially, we evaluate whether models can con-
nect root causes to these interpreter-visible failure
points (effect lines), a prerequisite for trustworthy
explanations.

Motivated by this evident gap in evaluating
LLMs’ dynamic debugging skills for data sci-
ence, we introduce DSDBench: the Data Science
Debugging Benchmark. Distinct from prior works
that primarily focus on repairing single, syntactic
and static errors, DSDBench is the first benchmark
to systematically evaluate LLMs on: (1) Multi-
Hop Error Tracing: requiring models to trace
runtime errors back through multiple lines of data
science code to identify the root cause; and (2)
Multi-Bug Error Detection: assessing their abil-
ity to concurrently detect and reason about multi-
ple logical errors within a single data science code
snippet. We focus on interpreter-visible (crashing)
bugs to enable scalable, deterministic annotation
of cause/effect lines and messages. For clarity,
we define a “hop” whenever the cause and effect
lines differ, and for multi-bug items a prediction
is counted correct only if all constituent bugs are

Benchmark Domain Error Multi-Hop Error
Complexity Error Type

DebugBench General Multi-Bug ✗ Static
DebugEval General Multi-Bug ✗ Static
CodeEditorBench General Single-Bug ✗ Static

DSDBench Data Science Multi-Bug ✓ Runtime

Table 1: Comparison with existing benchmarks.

identified. Table 1 summarizes the comparisons
between DSDBench and existing code debugging
benchmarks.

DSDBench leverages datasets and tasks from
established data science coding benchmarks like
DABench (Hu et al., 2024), MatPlotBench (Yang
et al., 2024), and DSEval (Zhang et al., 2024b). We
systematically inject errors into data science code,
synthesizing multi-error scenarios by combining in-
dividual bugs. Our dataset comprises 1,117 metic-
ulously annotated samples, complete with ground-
truth cause-effect error line pairs and captured run-
time error messages.

In summary, our contributions are threefold:

• DSDBench Benchmark: We release the first
dedicated benchmark and dataset for evaluating
LLMs in runtime, multi-bug debugging of data
science code. DSDBench features realistic logi-
cal errors, multi-hop error scenarios, and detailed
annotations, addressing a critical gap in current
debugging benchmarks.

• Automated Error Injection and Annotation

17379

Framework: We develop a robust pipeline for
automated error injection, runtime execution trac-
ing, and alignment of interpreter outputs with
error-originating code lines, facilitating scalable
benchmark creation and future expansion.

• Empirical Analysis and Insights: We present a
comprehensive empirical evaluation of state-of-
the-art closed-source and open-source LLMs on
DSDBench. Our findings reveal significant per-
formance gaps and highlight critical challenges
in dynamic debugging for complex, real-world
data science code.

2 DSDBench Construction

The creation of a high-quality dataset is paramount
for a robust benchmark. As illustrated in Figure 1,
DSDBench is meticulously constructed through a
multi-stage process encompassing data sourcing,
correct code preparation, error injection, error an-
notation, and quality assurance.

2.1 Data Collection

We build the DSDBench upon three widely-
adopted data science coding benchmarks for their
realistic data science tasks and diverse scenarios, in-
cluding DABench (Hu et al., 2024), MatPlotBench
(Yang et al., 2024), and DSEval (Zhang et al.,
2024b). We focus on the hard subset of DABench
because error injection in its easy and medium sub-
sets rarely produces runtime exceptions. MatPlot-
Bench and DSEval supplement DABench, expand-
ing task diversity and library coverage (pandas,
sklearn, scipy, matplotlib, numpy) to represent
typical data science workflows. These benchmarks
cover data manipulation, statistical analysis, ma-
chine learning, and visualization.

However, some of these datasets mainly contain
the natural language instructions and the final re-
sults after running the data science code, while the
ground-truth correct codes are not provided. As
the first step, we prepare the correct and error-free
codes for each benchmark as follows:

DABench We design an agent-based annotation
framework, which includes a self-debugging code
agent and an error verifier agent. Annotation be-
gins by feeding benchmark questions and metadata
to the self-debugging code agent, which generates
initial code and debugs it based on error messages.
Subsequently, the error verifier agent analyzes this
code to correct logical errors, meanwhile ensures

the code produces correct answers according to
DABench’s ground truths. The details of the agent-
based annotation framework are presented in Ap-
pendix A.

MatPlotBench Similar agent-based code genera-
tion is adopted, but automated verification is chal-
lenging due to the visual nature of plot outputs.
Therefore, manual expert verification is employed,
comparing plots to ground truth images and cor-
recting code for accurate visualizations.

DSEval We extract and concatenate code blocks
from ground truth Jupyter notebooks provided by
DSEval, using concatenated code as our bench-
mark’s correct code.

2.2 Error Injection

To systematically introduce errors, we employ two
complementary methods. This dual design ensures
both realism and diversity of bug types. The details
of prompts are provided in Appendix B.

Strong LLM-based Error Injection We instruct
GPT-4o to inject runtime-interrupting bugs into
otherwise correct solutions. Step 1: identify lines
invoking core data science libraries (numpy, scipy,
matplotlib, sklearn, pandas). Step 2: modify
them to introduce plausible faults such as API mis-
use, incorrect parameter settings, or data-shape
mismatches (e.g., NaNs, inconsistent dimensions).
These produce realistic logic/runtime bugs. Impor-
tantly, injection often yields multi-hop errors: the
causal bug occurs earlier in the program, but the
crash manifests later (e.g., a faulty imputation call
causing a failure during model training).

Weak LLM-based Direct Error Generation
We also instruct Llama-3.1-8B to write entire so-
lutions from scratch. Due to its weaker capability,
the generated code frequently contains beginner-
style mistakes (e.g., missing imports, wrong API
signatures, incomplete function definitions). These
naturally introduce multi-hop errors, for example
when a sub-function mistake surfaces as an excep-
tion in the main function.

Rationale Using both approaches diversifies er-
ror characteristics: strong LLM injection yields
semantically rich runtime bugs, while weak LLM
generation reflects novice-style mistakes. This mit-
igates bias from relying on a single method.

17380

Dataset Size Example Type Multi-Error Examples Code Complexity Question Complexity

Total # Examples # Single-Error # Multi-Error # Single-hop # Multi-hop Avg Errors/Example Avg Code Length Avg Question Length
1,117 741 376 385 356 2.87 ± 1.14 65.31 ± 21.31 92.42 ± 55.86

Table 2: Dataset statistics of DSDBench.

2.3 Error Annotation
For each buggy snippet, we annotate three ground
truths: cause_error_line, effect_error_line,
and runtime error message. We then construct
both single-error and multi-error cases, requiring
models to reason across causal and manifested lo-
cations.

Single-Error Annotation We commence dy-
namic error capture with snoop2, a Python debug-
ging library that logs execution details, for single-
error ground truth. snoop monitors the execution
of both injected and direct generated error code.
We first filter out successfully executed ones. For
error-triggering snippets, we analyze snoop’s exe-
cution traces to extract: cause_error_line (error
origin), effect_error_line (error manifestation),
and runtime error messages, providing ground
truths for single-error annotation.

Multi-Error Annotation We create multi-error
cases by systematically combining validated sin-
gle errors into candidate pools per question, from
which random subsets are sampled. An instance
is marked correct only if all constituent bugs are
identified. Although each bug is logically inde-
pendent, runtime interactions (e.g., early crashes
masking later ones) can increase difficulty, which
we preserve to reflect realistic debugging.

Multi-Hop Definition We define a “hop” as the
spatial separation between the cause line (where the
bug originates) and the effect line (where execution
fails). The hop distance may be a few lines within
the same function (no change in call stack) or span
across functions (involving call stack depth). The
essential characteristic is that the interpreter reports
a crash at a different line than where the bug was
introduced, forcing models to trace execution flow.

2.4 Human Verification and Quality Control
To ensure the quality and correctness of the con-
structed dataset, we perform a two-stage verifi-
cation process: code-based checks and LLM-
assisted verification. 1) Code checks involve print-
ing and manually inspecting annotated cause and

2https://pypi.org/project/snoop/

effect lines to correct nonsensical annotations by
human annotators. We also print error messages,
identifying and resolving a common plt.show()
backend issue by adding backend settings to the
MatPlotBench correct code examples. 2) LLM-
assisted verification is used to review all annota-
tions, flagging remaining inconsistencies that re-
quire human intervention to correct the annotations.
Overall, the pass rates of the human verification for
the two stages are 83% and 87%, respectively. The
high pass rates also validate the effectiveness of the
automated annotation process.

Bug Distribution, Realism, and Scope We ap-
proximate non-expert data-science scripting, where
code is exploratory and loosely structured. To mit-
igate LLM-specific biases, our injection is con-
strained and modular: a strong LLM first identifies
API-invoking lines and then performs atomic, plau-
sible edits (e.g., argument name/value mistakes,
missing axis, shape mismatches), limiting unre-
alistic global rewrites and better mimicking small
mistakes that propagate during execution. Weak-
LLM generation complements this by introducing
novice-style patterns at the program level. We
presently focus on interpreter-visible (crashing)
bugs to support reliable, scalable labeling; func-
tional bugs without hard crashes are deferred to fu-
ture work. Empirically, models with stronger cod-
ing/reasoning (e.g., Claude-3.5-Sonnet, DeepSeek-
V3, LRMs) often outperform GPT-4o (used for
injection), suggesting DSDBench rewards genuine
reasoning rather than model-specific shortcuts.

2.5 Dataset Characteristics

This section presents a statistical overview of the
DSDBench dataset, characterizing its composition,
diversity, and complexity. Table 2 provides a sta-
tistical overview of the DSDBench dataset. The
dataset size and splits are as follows: the total
number of examples is 1,117, of which 741 are
single-error examples and 376 are multi-error ex-
amples. For single-error examples, the number
of examples with multi-hop cause and effect error
lines is 356, the rest 385 examples contain identical
cause and effect error lines i.e., single-hop errors).

17381

https://pypi.org/project/snoop/

ValueError, 224

KeyError, 140
AttributeError,

95

TypeError, 94

NameError, 68

FileNotFoundError,

63

IndexError, 20 Other, 37

Figure 2: Distribution of different error types. Details
of error types are described in Appendix C.

pandas, 357

matplotlib, 204

sklearn, 90

numpy, 68

scipy, 19 Other, 3

Figure 3: Distribution of different data science libraries.

For multi-error examples, the number of errors per
example ranges from 2 to 9, with an average of
2.87 errors per example. Regarding complexity,
the average code length is 65.31 lines, and the av-
erage question length is 92.42 words. For a more
detailed breakdown of these statistics, please refer
to Table 2.

Figure 2 summarizes the error type distribu-
tion, and Figure 3 shows the library coverage.
Together they indicate broad coverage across com-
mon runtime/data-driven failures and core APIs,
lending distributional realism despite synthetic in-
jection.

3 Problem Formulation

3.1 Task Definition
This section formally defines the task of Data Sci-
ence Code Debugging for the DSDBench bench-
mark, outlining the input, desired output, and evalu-
ation settings. The primary objective of DSDBench
is to evaluate the capability of LLM-based debug-
gers to identify and explain logical errors in data
science Python code during simulated runtime
execution.

The benchmark targets two critical dimensions:
multi-hop error detection and multi-bug er-
ror detection. Multi-hop evaluates whether

models can trace errors to their root cause
(cause_error_line) when it differs from the in-
terpreter’s error point (effect_error_line).
We define a “hop” whenever these two lines are
not identical; the distance may be within the same
function (no call-stack change) or across function
calls (with call-stack depth). This spatial separation
forces reasoning over execution flow. Multi-bug
requires identifying and explaining all concurrent
logical errors in a snippet, not merely the first en-
countered, mirroring real debugging where miss-
ing one error leaves the program incorrect. We
also evaluate error message reproduction, i.e.,
whether models can semantically reproduce the
interpreter-thrown messages for each identified
error.

Formally, for each task instance i, the input is
a pair (Qi, Ci), where Qi is a natural language
question describing a data science task, and Ci is
a Python code snippet intended to perform task
Qi, but containing logical errors. The task of
the LLM is to predict a structured output Oi =
(Lcause,i, Leffect,i,Mi), where Lcause,i is the ex-
act line of code for the cause error, Leffect,i is the
exact line of code for the effect error, and Mi is
the error message that would be produced by a
Python interpreter when executing Ci. The DS-
DBench benchmark dataset can be represented
as D = {(Qi, Ci, L

GT
cause,i, L

GT
effect,i,M

GT
i)}Ni=1,

where GT denotes the ground truth annotation.
The objective is to evaluate LLMs’ capabilities
to perform the task of f : (Qi, Ci) 7→ Oi which
localizes and interprets the error.

3.2 Evaluation Metrics
This section details evaluation metrics for LLM
debugger performance on DSDBench, focusing on
error localization accuracy and description qual-
ity. Model performance is evaluated across four
dimensions, including Cause Line Matching, Ef-
fect Line Matching, Error Type Matching, and
Error Message Matching.

We compute cause_line_score,
effect_line_score, and error_type_score
as binary exact matches (1 for exact match with
ground truth, 0 otherwise). For error messages,
exact string matching is too brittle: LLMs may
produce semantically equivalent messages with
different surface forms. We therefore adopt a
semantic rubric scored by GPT-4o on a five-point
Likert scale {0.0, 0.25, 0.5, 0.75, 1.0}. Example:
GT: “ValueError: Input contains NaN” vs. Pre-

17382

diction: “ValueError: The model cannot handle
NaN values in the input”—lexically different but
semantically equivalent (scored ≥ 0.75). The full
rubric and additional examples are provided in
Appendix D.

Dimension-Level Definitions: For each evalu-
ated dimension:
• TP (True Positives): Number of instances

with correct LLM predictions (exact match for
lines/types, error_message_score ≥ 0.75 for
error messages).

• FP (False Positives): Number of instances with
specific incorrect LLM predictions (commission
errors).

• FN (False Negatives): Number of instances
where LLM failed to provide a relevant predic-
tion, (omission errors) e.g., incorrect output for-
mat ; FN = GT_Instances − (TP + FP).

• GT_Instances: Total Ground Truth Instances for
the dimension.

Evaluation Metrics (per dimension): We em-
ploy Precision, Recall, F1-score, and Accuracy to
evaluate performance across dimensions. Because
DSDBench only contains test cases with errors,
meaning there is no True Negatives in model pre-
dictions. Therefore, we calculate Recall by (True
Positive Rate - TPR) to measure the completeness
of error detection as:

Recall (TPR) =
TP

GT_Instances

making Recall (TPR) numerically equivalent to
Accuracy. All metrics are calculated dimension-
wise to provide a detailed performance profile.

4 Experiments

4.1 Setup

Models We benchmarked a diverse set of state-
of-the-art models on the DSDBench dataset, in-
cluding both closed-source models and open-
source models. Specifically, the closed-source
models we employed were GPT-4o, GPT-4o-
mini, o1-mini (OpenAI, 2024), Gemini 2.0 Flash
Thinking (Google, 2024), and Claude 3.5 sonnet-
20240620. Open-source model consisted of Llama-
3.1-8B-instruct, Llama-3.1-70B-instruct, Llama-
3.1-405B-instruct (Meta, 2024), Qwen2.5-7B-
Instruct, Qwen2.5-32B-Instruct, Qwen2.5-72B-
Instruct (Qwen, 2025), DeepSeek-V3, DeepSeek-
R1 (DeepSeek-AI, 2025). Notably, we categorize

Gemini 2.0 Flash Thinking, DeepSeek-R1 and o1-
mini as Large Reasoning Models (LRMs). All
models were used with their default decoding pa-
rameters apart from setting temperature to 0. Zero-
shot setting were used. We used OpenRouter’s API
services for all models.

Evaluation Protocol The evaluation prompt is
identical across models and includes the task de-
scription, the buggy DSDBench Python snippet,
and instructions to output a structured JSON di-
agnosis. We disallow external tools and execu-
tion to isolate in-context reasoning. For multi-bug
items, a prediction is counted correct only if all
constituent bugs are identified (no partial credit),
consistent with Section 2.3. The template appears
in Appendix D. Metrics follow Section 3.2.

A pilot study with agentic systems is reported
in Appendix G; here we focus the main results on
in-context localization without execution.

4.2 Main Results

Table 3 and Table 4 present the primary results of
our experiments, showing the accuracy of various
models in detecting single and multi-bug scenarios
across the full and subset DSDBench datasets.

Single-Bug Debugging Performance As shown
in Tables 3, top-performing LLMs like Deepseek-
V3 and Claude 3.5 sonnet achieve reasonable ac-
curacy across all tasks, indicating a degree of er-
ror tracing capability. Conversely, smaller models
such as Llama-3.1-8B-instruct and Qwen2.5-7B-
Instruct exhibit significantly lower accuracy. No-
tably, Qwen2.5-72B-instruct demonstrated strong
performance, on par with state-of-the-art closed-
source LLMs such as GPT-4o and Claude 3.5 son-
net. In general, effect line accuracy is consis-
tently lower than cause line accuracy across models,
showing LLMs’ deficiency to reason about code
execution traces and find the exact location where
the program would trigger an error. Error type and
error message accuracy vary across different mod-
els, suggesting varying levels of understanding and
interpretation of runtime errors.

Challenges in Multi-Bug Debugging The re-
sults reveal a dramatic decrease in accuracy when
models are challenged with multi-bug scenarios,
models fails to identify an correct set of errors
within a code snippet with multiple bugs. Even for
the best-performing models, cause line accuracy
drops to around 20% on the full dataset and 30%

17383

Model Cause Line Effect Line Error Type Error Message
Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug

GPT-4o 39.0 20.3 34.3 10.4 30.6 3.6 31.4 4.7
GPT-4o-mini 40.2 11.2 23.9 2.7 21.7 2.2 21.3 0.8
Claude 3.5 sonnet 43.7 12.3 35.2 4.1 36.3 1.9 34.0 2.5
Deepseek-V3 48.3 15.1 34.5 6.6 35.9 3.3 34.7 4.7
Llama-3.1-8B-instruct 25.2 3.0 14.2 0.0 7.7 0.0 7.2 0.0
Llama-3.1-70B-instruct 42.5 0.0 29.3 0.0 20.4 0.0 20.9 0.0
Llama-3.1-405B-instruct 41.7 18.6 31.3 8.5 29.3 1.1 29.3 2.5
Qwen2.5-7B-Instruct 29.3 4.7 19.3 1.1 10.7 0.3 10.9 0.0
Qwen2.5-32B-Instruct 40.9 17.5 30.5 6.3 24.7 2.2 24.7 2.2
Qwen2.5-72B-Instruct 41.6 21.4 36.2 11.2 27.5 3.0 27.4 3.6

Table 3: Overall evaluation results of LLMs on DSDBench. The reported score is the Accuracy (%), while full
metrics are presented in Appendix E.

Model Cause Line Effect Line Error Type Error Message
Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug

LLMs
GPT-4o 35.4 12.5 31.2 5.0 33.3 2.5 33.3 2.5
GPT-4o-mini 39.6 7.5 29.2 5.0 25.0 2.5 22.9 0.0
Deepseek-V3 44.8 12.5 28.1 7.5 34.4 5.0 34.4 7.5

LRMs
Gemini 2.0 Flash Thinking 42.7 20.0 32.3 12.5 33.3 0.0 35.4 2.5
Deepseek-R1 49.0 32.5 49.0 25.0 53.1 15.0 54.2 17.5
o1-mini 43.8 35.0 36.5 22.5 43.8 17.5 46.9 17.5

Table 4: Comparison with large reasoning models (LRMs). The reported score is the Accuracy (%), while full
metrics are presented in Appendix E. Due to the unstableness of certain LRM APIs, we randomly sample a subset
of DSDBench for this evaluation, which comprises of 96 Single-Error and 40 Multi-Error instances.

GPT-4o Claude Qwen2.510

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
) 29.6

32.1

20.4

37.0
38.7

28.6

32.5
35.3

21.6

34.9

31.0

15.5

34.9 35.3

20.7

Direct Solution
Self-Refined
No Cause
No Effect
No Message

Figure 4: Impact of Self-Refinement.

on the subset. This substantial performance degra-
dation underscores the increased complexity of de-
bugging multiple bugs concurrently. Furthermore,
the low accuracy in error type and error message
prediction in multi-bug cases suggests that mod-
els struggle to correctly interpret error messages
within these more complex contexts.

LRMs Show Promise in Multi-Bug Debugging
Comparing LLMs and LRMs on the subset dataset
(Table 4) reveals that LRMs generally outperform
standard LLMs, particularly in the more demand-
ing multi-bug scenarios, indicating superior reason-
ing capabilities in LRMs are crucial for tackling
complex debugging tasks. A more detailed analysis
and case study can be found in Figure 7.

Error Type Cause Line Effect Line

GPT-4o Qwen DeepSeek GPT-4o Qwen DeepSeek

ValueError 57.9 61.6 66.1 50.5 59.6 54.0
TypeError 30.8 39.5 50.0 31.9 34.6 37.8
NameError 68.2 64.0 85.4 56.1 60.0 52.1
KeyError 22.7 28.4 37.8 22.7 17.6 27.9
AttributeError 35.1 40.5 40.0 22.3 14.9 15.0
IndexError 36.8 41.2 38.9 36.8 58.8 55.6
FileNotFoundError 0.0 9.6 13.0 1.6 9.6 11.1
Other 38.5 53.3 66.7 23.1 46.7 33.3

Table 5: Precision w.r.t. different error types. The bold
scores represent the best model performance across error
types and prediction tasks.

4.3 Impact of Self-Debugging

To study how DSDBench-style diagnosis helps
downstream coding, we use models’ own debug-
ging outputs as guidance to solve DABench-Hard,
comparing direct solutions vs. self-refined solu-
tions that consume (cause line, effect line, mes-
sage).

Figure 4 shows that self-refinement improves
accuracy across GPT-4o, Claude 3.5 Sonnet, and
Qwen2.5-72B. Ablations confirm that lines carry
most of the value—removing Cause/Effect hurts
more than removing Message.

4.4 Detailed Analysis

This section analyzes model performance across
error types, libraries, error counts, and multi-

17384

Library Cause Line Effect Line

GPT-4o Qwen DeepSeek GPT-4o Qwen DeepSeek

matplotlib 46.6 48.4 55.6 45.6 52.2 55.6
numpy 41.4 40.4 44.0 37.9 36.8 32.0
pandas 28.1 37.0 41.0 21.6 22.0 24.3
sklearn 65.1 72.5 87.7 58.1 63.8 53.8
scipy 36.4 54.5 72.7 18.2 36.4 45.5

Table 6: Precision w.r.t. different libraries.

2 3 4 5
Number of Bugs

0

10

20

30

Pr
ec

isi
on

 (%
)

Precision for Cause Line Detection
GPT-4o
Qwen-72B
DeepSeek-V3

2 3 4 5
Number of Bugs

0

5

10

15

Pr
ec

isi
on

 (%
)

Precision for Effect Line Detection
GPT-4o
Qwen-72B
DeepSeek-V3

Figure 5: Precision for multi-Bug detection with differ-
ent number of errors.

hop/single-hop to identify strengths and weak-
nesses. We adopt GPT-4o, Qwen-72B-Instruct, and
DeepSeek-V3 for analysis.

Performance by error types Table 5 shows er-
ror type precision. Models exhibit varying perfor-
mance on different error types. Generally, mod-
els perform better on more common error types
and less on more obscure error types. Low perfor-
mance on FileNotFoundError is possibly attributed
to models not having access to the coding envi-
ronment and file system. DeepSeek-V3 performs
best on identifying Cause Lines, scoring the high-
est on every error type except AttributeError and
IndexError. Qwen-72B-Instruct performs best on
identifying Effect Lines.

Performance by data science libraries Table
6 shows library-specific precision. Pandas is the
most difficult library to debug, due to its intricate
and black-box data manipulation. Models demon-
strated best performance on scikit-learn and reason-
able performance on matplotlib, numpy and scipy,
with significant room for improvement. DeepSeek-
V3 demonstrated consistently better performance
than other models across all libraries, showing ro-
bustness on all kinds of data science coding tasks.

Performance by number of errors Figure 5
shows precision by error count. Precision decreases
significantly with more errors for all models. Preci-
sion drops sharply when there exists more than 3
errors, highlighting difficulty in multi-error scenar-

GPT-4o Qwen-72B DeepSeek-V30

10

20

30

40

50

Pr
ec

isi
on

 (%
)

Precision for Cause Line Detection
Single Hop
Multi Hop

GPT-4o Qwen-72B DeepSeek-V30

10

20

30

40

Pr
ec

isi
on

 (%
)

Precision for Effect Line Detection

Figure 6: Precision for single-bug detection comparing
multi-hop and single-hop errors.

ios. GPT-4o performs best on retaining precision
on more than 2 bugs, showing potential in concur-
rent debugging.

Performance on single-hop vs. multi-hop errors
Figure 6 compares single-hop vs. multi-hop er-
ror precision. Cause Line precision is similar for
both types of errors across models. Effect Line
precision is significantly lower for multi-hop er-
rors, indicating increased difficulty when locating
the point where the program triggers an exception.
DeepSeek-V3 demonstrated best performance on
Cause Line detection on both single-hop and multi-
hop errors, while Qwen2.5-72B-Instruct performs
slightly better on Effect Line detection.

Prompting Strategies We additionally bench-
mark several test-time prompting strategies (Zero-
shot/One-shot CoT, Self-Refine, Self-Consistency)
on a single-bug subset. Self-Consistency yields the
largest gains for some models, but overall perfor-
mance remains far from saturation. Full setup and
results appear in Appendix F.

Agentic Systems We also ran a pilot with agen-
tic coding systems (Cursor Agent with Claude 3.5
Sonnet, and OpenHands). Single-attempt repair
boosts performance over standalone localization,
while unconstrained workflows can approach 100%
pass rate by broadly rewriting code. Full setup,
tables, and analysis are provided in Appendix G.

4.5 Case Study

According to Figure 7, LRMs have demonstrated
intriguing capabilities on reasoning multi-hop er-
roneous code. Both Gemini 2.0 Flash Thinking
and DeepSeek-R1 can promptly identify the cause
error line, then mentally simulate code execu-
tion trace and explore multiple possible scenarios
that could lead to runtime exception. However,
Gemini 2.0 Flash Thinking was distracted by one

17385

Buggy Code

import …

df = pd.read_csv('unemployement_industry.csv’)

X = df['Mar.2019'].values.reshape(-1, 1)
y = df['Mar.2020'].values.reshape(-1, 1)
imputer = SimpleImputer(strategy='mean')

Logical error injected here
X = imputer.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
mse_rounded = round(mse, 2)

The error is likely in the data preprocessing or
model training part.... X=imputer.fit_transform(y).
This line is suspicious.
…
However, the prompt asks for the interpreter
error. … This seems contradictory. If it's a logic
error, it won't throw an interpreter error.
…
If y contains non-numeric values, then
imputer.fit(y) might fail. …But the data is likely
numeric. Let's assume data is numeric... If y
contains strings that cannot be converted to float,
then imputer.fit(y) will fail.
…
Assuming 'Mar.2020' column has a string like
'N/A', then imputer.fit(y) will fail with ValueError:

could not convert string to float.

Gemini 2.0 Flash Thinking

The line says X = imputer.fit_transform(y). Wait,
that's odd.
…
However, the problem states that there's an error
that the Python interpreter would throw. So
perhaps there's another error...
…
Ah! Wait, the code uses X and y after imputing.
But after imputing, X is based on y (Mar.2020),
and y is the original Mar.2020... If the original y
(Mar.2020) has missing values, then y would
contain NaNs... When the model is trained on
y_train (which has NaNs), the LinearRegression's
fit method would throw an error because it
cannot handle NaN values in y. In this case, the
error would occur at the line model.fit(X_train,

y_train) with a ValueError: Input contains NaN.✓

DeepSeek-R1

Both Models:
• Quickly Identifying the Cause Error Line
• Systematic Code Execution Tracing
• Exploration of Potential Error Scenarios
• Iterative Refinement of Hypotheses

Analysis

Gemini Flash Thinking:
• Sidetracked by an early theory

DeepSeek-R1:
• More Persistent Pursuit of

Runtime Error.
• "Aha!" Moment leading to the

Intended Error.
• Demonstrated stronger

reasoning ability to find
the subtle runtime error.

Overall:
• Both models are highly capable and effectively used simulated code

execution tracing and scenario exploration.

• The "interpreter error" constraint was a crucial driver for both models'
reasoning, pushing them beyond simply identifying the cause error
line and towards finding a runtime manifestation.

Figure 7: Case study of LRMs.

of its early theories and produced an incorrect an-
swer. On the other hand, DeepSeek-R1 ruled out
all implausible possibilities after relentlessly pur-
suing an explanation for triggering a runtime error,
eventually came up with the correct answer.

5 Related Work

LLMs for Coding and Debugging LLM
progress in code tasks led to benchmarks like Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) for code synthesis, assessing syntactic
correctness and functional accuracy. Runtime in-
formation is increasingly used in LLM debuggers
(Zhong et al., 2024). Multiple benchmarks (Yang
et al., 2025; Tian et al., 2024; Jimenez et al., 2024;
Ni et al., 2024; Gu et al., 2024; Jain et al., 2024;
Liu et al., 2024a) have focused on LLM debugging
and code reasoning.

In data science coding, the landscape is evolving
with general tools like the Data Interpreter (Hong
et al., 2024) and specialized agents such as Mat-
PlotAgent (Yang et al., 2024) and DSAgent (Guo
et al., 2024b). Benchmarks such as DSBench (Jing
et al., 2024), InfiAgent-DABench (Hu et al., 2024),
DSEval (Zhang et al., 2024b), and PyBench (Zhang
et al., 2024a) are emerging to evaluate the perfor-
mance of LLMs in data science coding. However,
they do not capture the complexities of real-world
data science debugging.

DSDBench shifts focus to dynamic debugging

of logical errors, especially in complex data sci-
ence workflows where runtime behavior and data
dependencies are key.

LLM Self-Verification Self-correction enhance
LLM reliability (Liang et al., 2024). But, LLMs
struggle to identify their own errors, especially
in complex reasoning (Stechly et al., 2024; Tyen
et al., 2024). While some intrinsic self-correction
exists (Liu et al., 2024b), its effectiveness for
subtle logical errors is debated (Stechly et al.,
2024). Approaches to improve self-correction in-
clude confidence-guided methods (Li et al., 2024),
critique-focused training (Lin et al., 2024).

However, self-verification research mainly tar-
gets general language tasks or simplified reasoning.
DSDBench uniquely targets dynamic debugging of
runtime errors in data science code.

6 Conclusion

We introduced DSDBench, a novel benchmark fill-
ing a critical gap in LLM evaluation by focusing
on dynamic debugging of logical runtime errors
in data science code, specifically multi-hop error
tracing and multi-bug detection, built with a rigor-
ous dataset construction process, reveals significant
performance limitations of current state-of-the-art
LLMs in these complex debugging scenarios.

17386

Acknowledgments

This research was supported by the Singapore
Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 1 grant (No. MSS24C004).

Limitations

Our proposed DSDBench benchmark primarily fo-
cuses on the data science coding domain. While
data science is a complex real-world task, our
benchmark can be further expanded to encom-
pass a wider range of practical coding scenar-
ios, enabling a more comprehensive evaluation
of LLMs’ debugging performance in real-world
coding pipelines. Additionally, future work could
prioritize investigating LLMs’ performance in de-
bugging repository-level code with multi-file de-
pendencies.

Ethical Considerations

To construct the DSDBench benchmark, we em-
ployed human annotators for data labeling and ver-
ification tasks. We recruited annotators from our
research institution holding at least a master degree
in Computer Science. All annotators participated
voluntarily and were provided with comprehensive
information regarding the task’s purpose, content,
workload, and compensation prior to annotating.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya

Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Gemini Team Google. 2024. Gemini: A family
of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.
2024. Cruxeval: A benchmark for code rea-
soning, understanding and execution. Preprint,
arXiv:2401.03065.

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi LI,
Ruibo Liu, Yue Wang, Shuyue Guo, Xingwei Qu,
Xiang Yue, Ge Zhang, Wenhu Chen, and Jie Fu.
2024a. Codeeditorbench: Evaluating code edit-
ing capability of large language models. Preprint,
arXiv:2404.03543.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024b. Ds-agent: Au-
tomated data science by empowering large lan-
guage models with case-based reasoning. Preprint,
arXiv:2402.17453.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu,
Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang
Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang,
Lingyao Zhang, Min Yang, Mingchen Zhuge,
Taicheng Guo, Tuo Zhou, Wei Tao, Xiangru Tang,
Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying
Fei, Yuheng Cheng, Zhibin Gou, Zongze Xu, and
Chenglin Wu. 2024. Data interpreter: An llm agent
for data science. Preprint, arXiv:2402.18679.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li,
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
2024. Infiagent-dabench: Evaluating agents on data
analysis tasks. Preprint, arXiv:2401.05507.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. Preprint,
arXiv:2403.07974.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts? Preprint, arXiv:2409.07703.

17387

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2402.17453
https://arxiv.org/abs/2402.17453
https://arxiv.org/abs/2402.17453
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2401.05507
https://arxiv.org/abs/2401.05507
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2409.07703
https://arxiv.org/abs/2409.07703
https://arxiv.org/abs/2409.07703

Loka Li, Zhenhao Chen, Guangyi Chen, Yixuan Zhang,
Yusheng Su, Eric Xing, and Kun Zhang. 2024. Confi-
dence matters: Revisiting intrinsic self-correction
capabilities of large language models. Preprint,
arXiv:2402.12563.

Xun Liang, Shichao Song, Zifan Zheng, Hanyu
Wang, Qingchen Yu, Xunkai Li, Rong-Hua Li,
Yi Wang, Zhonghao Wang, Feiyu Xiong, and Zhiyu
Li. 2024. Internal consistency and self-feedback
in large language models: A survey. Preprint,
arXiv:2407.14507.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
Preprint, arXiv:2402.14809.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza
Ibrahimzada, and Reyhaneh Jabbarvand. 2024a.
Codemind: A framework to challenge large lan-
guage models for code reasoning. Preprint,
arXiv:2402.09664.

Dancheng Liu, Amir Nassereldine, Ziming Yang, Chen-
hui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar, Chang-
jae Lee, Ruiyang Qin, Yiyu Shi, and Jinjun Xiong.
2024b. Large language models have intrinsic self-
correction ability. Preprint, arXiv:2406.15673.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin
Deng, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2024. Next: Teaching large language mod-
els to reason about code execution. Preprint,
arXiv:2404.14662.

OpenAI. 2024. Openai o1 system card. Preprint,
arXiv:2412.16720.

Qwen. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2024. On the self-verification limitations
of large language models on reasoning and planning
tasks. Preprint, arXiv:2402.08115.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Yinxu Pan, Yesai Wu, Hui Haotian, Liu We-
ichuan, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugBench: Evaluating debugging capability of large
language models. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 4173–
4198, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter
Chen, and Tony Mak. 2024. Llms cannot find rea-
soning errors, but can correct them given the error
location. Preprint, arXiv:2311.08516.

Weiqing Yang, Hanbin Wang, Zhenghao Liu, Xinze Li,
Yukun Yan, Shuo Wang, Yu Gu, Minghe Yu, Zhiyuan
Liu, and Ge Yu. 2025. Coast: Enhancing the code de-
bugging ability of llms through communicative agent
based data synthesis. Preprint, arXiv:2408.05006.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi,
and Maosong Sun. 2024. MatPlotAgent: Method and
evaluation for LLM-based agentic scientific data visu-
alization. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 11789–11804,
Bangkok, Thailand. Association for Computational
Linguistics.

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai.
2024a. Pybench: Evaluating llm agent on various
real-world coding tasks. Preprint, arXiv:2407.16732.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen,
Yuqing Yang, and Kan Ren. 2024b. Benchmarking
data science agents. Preprint, arXiv:2402.17168.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 851–870, Bangkok, Thailand.
Association for Computational Linguistics.

Appendix

A Data Annotation Agent

Our automatic data annotation agent is comprised
of two components, a self-debugging code agent
and an error verifier agent. The prompts used for
these agents are in Figure 8, 9, 10.

the code agent receives benchmark questions
as input, generate a draft code according to the
requirements in the questions. Then, the system en-
vironment in which the agent framework operates

SYSTEM PROMPT: You are a cutting-edge
super capable code generation LLM. You will
be given a natural language query, generate
a runnable python code to satisfy all the
requirements in the query. You can use any
python library you want. When you complete
a plot, remember to save it to a png file.

USER PROMPT: Here is the query: """
{{query}} """ If the query requires data
manipulation from a csv file, process the
data from the csv file and draw the plot in
one piece of code. When you complete a plot,
remember to save it to a png file. The file
name should be """{{file_name}}""".

Figure 8: The code generation prompt for code agent in
Data Annotation.

17388

https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2407.14507
https://arxiv.org/abs/2407.14507
https://arxiv.org/abs/2402.14809
https://arxiv.org/abs/2402.14809
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2406.15673
https://arxiv.org/abs/2406.15673
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2404.14662
https://arxiv.org/abs/2404.14662
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://doi.org/10.18653/v1/2024.findings-acl.247
https://doi.org/10.18653/v1/2024.findings-acl.247
https://doi.org/10.18653/v1/2024.findings-acl.247
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2408.05006
https://arxiv.org/abs/2408.05006
https://arxiv.org/abs/2408.05006
https://doi.org/10.18653/v1/2024.findings-acl.701
https://doi.org/10.18653/v1/2024.findings-acl.701
https://doi.org/10.18653/v1/2024.findings-acl.701
https://arxiv.org/abs/2407.16732
https://arxiv.org/abs/2407.16732
https://arxiv.org/abs/2402.17168
https://arxiv.org/abs/2402.17168
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49

USER PROMPT: There are some errors in
the code you gave: {{error_message}} please
correct the errors. Then give the complete
code and don’t omit anything even though
you have given it in the above code.

Figure 9: The self-debugging prompt for code agent in
Data Annotation.

executes the draft code. If not successfully exe-
cuted, the interpreter error message will be passed
to the self-debugging code agent, prompting the
agent to generate another draft code according to
the error message and original benchmark question.
The agent will be given a set amount of chances
to refine its code according to the error message,
if the code is still not executable after 5 rounds,
the agent stops. If the code successfully executed
within 5 retry times, then the error verifier agent
will step in and check the code for further logical
errors that may not elicit an interpreter error. If the
error verifier agent deems the code correct, the sys-
tem environment will execute the code and extract
the answers from the code. Then we will compare
the model generated answers with ground truth an-
swers in each benchmark, if the answers match, we
will collect the code that produces these answers
as the correct code for our subsequent annotation
process.

B Prompts for Error Injection

Figure 11 demonstrates the prompt for error injec-
tion, the LLM injector is required to inject plausi-
ble runtime logical error into existing correct code
with meta information such as benchmark question,
data file information. The output format should be
a well-formatted JSON dict.

C Error Types

The error types collected in our benchmark are
all Python Built-in Exceptions, more information
can be accessed at: https://docs.python.org/
3/library/exceptions.html

D Prompts for Evaluation

Figure 12 and 13 demonstrates the prompts used
for evaluating LLMs and LRMs on single bug and
multi bug detection. The models are provided with
a benchmark question and a snippet of buggy code.
The models should identify the error and locate

cause and effect error line of code and reproduce
error message thrown by the Python Interpreter.
The output for single bug detection should be a
well-formatted JSON dict, the output for multi bug
detection should a list of aforementioned JSON
dict.

E Full Evaluation Results

We provide the full results of Single-Bug and Multi-
Bug evaluation with all four metrics in Table 7, 8,
9 and 10.

F Prompting Strategies and Test-Time
Compute

We evaluate four test-time reasoning strategies be-
yond direct zero-shot prompting on the single-bug
subset used for LRMs: Zero-shot CoT, One-shot
CoT, Self-Refine, and Self-Consistency. All runs
disallow external tools and execution to isolate in-
context reasoning. See results in Table 11.

Observations. Self-Consistency is most helpful
for GPT-4o; DeepSeek-V3 benefits more on effect-
line localization; Qwen2.5-72B experiences large
gains, reflecting stronger utility from added scaf-
folds. Despite improvements, the absolute accu-
racies remain modest, underscoring DSDBench’s
difficulty.

G Agentic Systems: Pilot Evaluation

We evaluate whether agentic workflows miti-
gate DSDBench’s challenges using Cursor Agent
(Claude 3.5 Sonnet backend) and OpenHands on
the single-bug subset. We consider two settings:
• Single-Attempt Repair (pass@1): Canonical-

ize each item into a one-line repair task; the agent
may change exactly one line once. Success re-
quires a clean reference run.

• Unconstrained Agentic Workflow: The agent
may iteratively invoke tools and execute code
until success (no edit budget).

See results in Table 12
Takeaways. (i) Single-attempt agentic repair

outperforms standalone localization, indicating that
reframing from diagnosis to generation aligns bet-
ter with autoregressive training. (ii) Unconstrained
agents can brute-force success by extensive regen-
eration, masking the reasoning gap DSDBench is
designed to expose. This justifies our focus on
line-level localization and semantic message repro-
duction as complementary to patch-level pass rates.

17389

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

You will be provided with an original query
and a data analysis code. Your task is to:
1. Read the Question carefully, determine
whether the code has followed the query
requirements, if so, further identify any
errors in its data analysis process. If the
code faithfully followed seemingly wrong
data analysis practices explicitly stated
in the Question. Deem it as correct.
2. Explain any errors found, including:
Explanation: Explain why this is an error
and what issues it may cause. Expected
Outcome: Explain how this error will
affect the data analysis results, such as
misleading outcomes, degraded performance,
or incorrect interpretations.
Output Format:
json
"is_error": "true/false",
"error_explanation":
"error_type": "Describe the type of error",
"explanation": "Detailed explanation of
why this is an error and its impact",
"expected_outcome": "How this error will
affect model performance or results",
"suggestions": "Specific suggestions for
fixing the error",
"error_type": "Another error type if
multiple errors exist",
"explanation": "Explanation for the second
error", "expected_outcome": "Expected
outcome for the second error",
"suggestions": "Suggestions for fixing the
second error"
Important Notes:
1. Always provide the output in the exact
JSON format specified above
2. Set "is_error" to "false" if no errors
are found
3. If "is_error" is "false", provide an
empty array for error_explanation
4. If "is_error" is "true", include all
identified errors in the error_explanation
array
5. Consider the original query requirements
carefully, if the code follows the query’s
explicit requirements, even if they seem
incorrect, consider it correct

Figure 10: The error verifying prompt in Data Annota-
tion.

You will receive three components:
1. Original Query: A user query that
contains specific requirements related to
data analysis.
2. Correct Data Analysis Code: A working
code snippet designed to analyze the data
according to the original query.
3. CSV Information: Details about the
structure content and sample data from the
CSV file being analyzed.
Your task is to:
1. Identify sklearn and pandas code:
Analyze the provided code and extract all
lines where sklearn or pandas libraries are
used. Organize these lines in a structured
format.
2. Inject errors that will cause
runtime interruptions: For EACH AND EVERY
identified sklearn and pandas lines inject
errors with the following guidelines:
Error Type: Inject errors that lead to
runtime interruptions such as syntax errors
attribute errors type errors or value
errors.
Plausibility: The modified lines should
still appear logical and plausible at first
glance but contain mistakes that will cause
the code to fail during execution.
Contextual alignment: Ensure the errors
take into account the structure and content
of the CSV file to create mistakes that are
realistic and aligned with potential data
issues.
Impact downstream processes: Errors should
trigger runtime interruptions effectively
halting the program before it completes
execution.
3. Explain each error: For every injected
error:
Describe why this is an error and the
conditions under which it would fail.
Provide details on the likely runtime error
e.g. KeyError ValueError AttributeError
etc..
4. Output the structured results:
Provide the original sklearn and pandas
code in a structured list.
Include the complete modified code with
runtimeinterrupting errors injected.
Clearly explain each injected error in a
concise and structured format.
Return your output in the following JSON
format:
original_sklearn_pandas_code:
Original sklearn or pandas code line
...
errors:
code: Modified whole code file with the
injected error
error_type: Specify the type of
runtimeinterrupting error e.g. KeyError
ValueError etc.
explanation: Describe why this is an error
and the conditions under which it will cause
a runtime interruption

Figure 11: The error injection prompt in Data Annota-
tion.

17390

SYSTEM PROMPT: You will be provided
with an original query and a data analysis
code. Your task is to:
1. Read the question carefully and identify
if there are any logic error injected into
the code.
2. For each logic error:
- Locate the Cause: Specify the exact line
of code that causes the issue.
- Locate the Effect: Identify the line of
code where the error will be triggered and
the interpreter will throw an error.
- Error Description: Provide a concise
description of the error message thrown
by the Python Interpreter (not the full
traceback).
Output Format:
json
cause_line: Specify the exact line of code
causing the issue
effect_line: Specify the exact line of
code where the error will be triggered
error_message: Provide a concise
description of the error message thrown
by the Python Interpreter not the full
traceback
There will be only one error in the code.
Output only ONE json dict in your response.

Figure 12: The single error evaluation prompt for tested
models.

SYSTEM PROMPT: You will be provided with
a data analysis code. Your task is to:
1. Read the code carefully and identify all
logic errors injected into the code. There
will be two or more logic errors in the
code.
2. For each logic error you identify:
- Locate the Cause: Specify the exact line
of code that causes the issue.
- Locate the Effect: Identify the line of
code where the error will be triggered and
the interpreter will throw an error or where
the incorrect behavior is observed.
- Error Description: Provide a concise
description of the error message thrown
by the Python Interpreter not the full
traceback. Focus on the type of error and
the reason if possible from the output.
Output Format:
json
cause_line: Specify the exact line of code
causing error 1
effect_line: Specify the exact line of code
where error 1 is triggered
error_message: Concise error message for
error 1 cause_line: Specify the exact line
of code causing error 2
effect_line: Specify the exact line of code
where error 2 is triggered
error_message: Concise error message for
error 2 ... and so on for all identified
errors There will be more than one error in
the code. BUT output only ONE json block
in your response.

Figure 13: The multi error evaluation prompt for tested
models.

17391

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 39.5 39.0 39.2 39.0 34.7 34.3 34.5 34.3 31.0 30.6 30.8 30.6 31.8 31.4 31.6 31.4
gpt-4o-mini 43.3 40.2 41.7 40.2 25.7 23.9 24.8 23.9 23.4 21.7 22.5 21.7 23.0 21.3 22.1 21.3
claude-3-5-sonnet 45.4 43.7 44.6 43.7 36.6 35.2 35.9 35.2 37.7 36.3 37.0 36.3 35.3 34.0 34.7 34.0
llama-3.1-8b-instant 32.4 25.2 28.4 25.2 18.2 14.2 15.9 14.2 9.9 7.7 8.6 7.7 9.2 7.2 8.0 7.2
llama-3.1-70b-versatile 45.7 42.5 44.0 42.5 31.4 29.3 30.3 29.3 21.9 20.4 21.1 20.4 22.5 20.9 21.7 20.9
llama-3.1-405b-instruct 46.9 41.7 44.1 41.7 35.2 31.3 33.1 31.3 32.9 29.3 31.0 29.3 32.9 29.3 31.0 29.3
Qwen2.5-7B-Instruct 31.0 29.3 30.1 29.3 20.4 19.3 19.8 19.3 11.3 10.7 11.0 10.7 11.6 10.9 11.2 10.9
Qwen2.5-32B-Instruct 43.5 40.9 42.1 40.9 32.4 30.5 31.4 30.5 26.3 24.7 25.5 24.7 26.3 24.7 25.5 24.7
Qwen2.5-72B-Instruct 43.8 41.6 42.6 41.6 38.1 36.2 37.1 36.2 29.0 27.5 28.2 27.5 28.8 27.4 28.1 27.4
deepseek-chat 50.6 48.3 49.4 48.3 36.2 34.5 35.4 34.5 37.6 35.9 36.7 35.9 36.4 34.7 35.5 34.7

Table 7: Overall evaluation results of Single-Bug Detection on DSDBench. P=Precision, R=Recall, F1=F1-Score,
Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 20.5 20.3 20.4 20.3 10.5 10.4 10.5 10.4 3.6 3.6 3.6 3.6 4.7 4.7 4.7 4.7
gpt-4o-mini 11.3 11.2 11.2 11.2 2.7 2.7 2.7 2.7 2.2 2.2 2.2 2.2 0.8 0.8 0.8 0.8
claude-3-5-sonnet 12.5 12.3 12.4 12.3 4.2 4.1 4.1 4.1 1.9 1.9 1.9 1.9 2.5 2.5 2.5 2.5
llama-3.1-8b-instant 5.1 3.0 3.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-70b-versatile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-405b-instruct 24.2 18.6 21.1 18.6 11.0 8.5 9.6 8.5 1.4 1.1 1.2 1.1 3.2 2.5 2.8 2.5
Qwen2.5-7B-Instruct 5.9 4.7 5.2 4.7 1.4 1.1 1.2 1.1 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0
Qwen2.5-32B-Instruct 17.6 17.5 17.6 17.5 6.3 6.3 6.3 6.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
Qwen2.5-72B-Instruct 21.4 21.4 21.4 21.4 11.2 11.2 11.2 11.2 3.0 3.0 3.0 3.0 3.6 3.6 3.6 3.6
deepseek-chat 15.2 15.1 15.1 15.1 6.6 6.6 6.6 6.6 3.3 3.3 3.3 3.3 4.7 4.7 4.7 4.7

Table 8: Overall evaluation results of Multi-Bug Detection on DSDBench. P=Precision, R=Recall, F1=F1-Score,
Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 35.8 35.4 35.6 35.4 31.6 31.2 31.4 31.2 33.7 33.3 33.5 33.3 33.7 33.3 33.5 33.3
gpt-4o-mini 42.7 39.6 41.1 39.6 31.5 29.2 30.3 29.2 27.0 25.0 25.9 25.0 24.7 22.9 23.8 22.9
claude-3-5-sonnet 37.0 35.4 36.2 35.4 27.2 26.0 26.6 26.0 34.8 33.3 34.0 33.3 32.6 31.2 31.9 31.2
llama-3.1-8b-instant 24.1 13.5 17.3 13.5 20.4 11.5 14.7 11.5 11.1 6.2 8.0 6.2 9.3 5.2 6.7 5.2
llama-3.1-70b-versatile 36.7 34.4 35.5 34.4 23.3 21.9 22.6 21.9 20.0 18.8 19.4 18.8 20.0 18.8 19.4 18.8
llama-3.1-405b-instruct 51.2 43.8 47.2 43.8 37.8 32.3 34.8 32.3 36.6 31.2 33.7 31.2 40.2 34.4 37.1 34.4
Qwen2.5-7B-Instruct 30.8 29.2 29.9 29.2 24.2 22.9 23.5 22.9 12.1 11.5 11.8 11.5 13.2 12.5 12.8 12.5
Qwen2.5-32B-Instruct 35.2 32.3 33.7 32.3 28.4 26.0 27.2 26.0 33.0 30.2 31.5 30.2 26.1 24.0 25.0 24.0
Qwen2.5-72B-Instruct 26.7 25.0 25.8 25.0 32.2 30.2 31.2 30.2 30.0 28.1 29.0 28.1 27.8 26.0 26.9 26.0
deepseek-chat 49.4 44.8 47.0 44.8 31.0 28.1 29.5 28.1 37.9 34.4 36.1 34.4 37.9 34.4 36.1 34.4
gemini-2.0-flash 49.4 42.7 45.8 42.7 37.3 32.3 34.6 32.3 38.6 33.3 35.8 33.3 41.0 35.4 38.0 35.4
deepseek-r1 51.6 49.0 50.3 49.0 51.6 49.0 50.3 49.0 56.0 53.1 54.5 53.1 57.1 54.2 55.6 54.2
o1-mini 46.2 43.8 44.9 43.8 38.5 36.5 37.4 36.5 46.2 43.8 44.9 43.8 49.5 46.9 48.1 46.9

Table 9: Comparison with large reasoning models (LRMs) on Single-Bug Detection. P=Precision, R=Recall,
F1=F1-Score, Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 12.8 12.5 12.7 12.5 5.1 5.0 5.1 5.0 2.6 2.5 2.5 2.5 2.6 2.5 2.5 2.5
gpt-4o-mini 7.5 7.5 7.5 7.5 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0
claude-3-5-sonnet 10.3 10.0 10.1 10.0 7.7 7.5 7.6 7.5 5.1 5.0 5.1 5.0 7.7 7.5 7.6 7.5
llama-3.1-8b-instant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-70b-versatile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-405b-instruct 23.3 17.5 20.0 17.5 16.7 12.5 14.3 12.5 6.7 5.0 5.7 5.0 6.7 5.0 5.7 5.0
Qwen2.5-7B-Instruct 3.3 2.5 2.9 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-32B-Instruct 17.5 17.5 17.5 17.5 0.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5
Qwen2.5-72B-Instruct 22.5 22.5 22.5 22.5 17.5 17.5 17.5 17.5 2.5 2.5 2.5 2.5 5.0 5.0 5.0 5.0
deepseek-chat 12.8 12.5 12.7 12.5 7.7 7.5 7.6 7.5 5.1 5.0 5.1 5.0 7.7 7.5 7.6 7.5
o1-mini 37.8 35.0 36.4 35.0 24.3 22.5 23.4 22.5 18.9 17.5 18.2 17.5 18.9 17.5 18.2 17.5
gemini-2.0-flash 21.1 20.0 20.5 20.0 13.2 12.5 12.8 12.5 0.0 0.0 0.0 0.0 2.6 2.5 2.6 2.5
deepseek-r1 32.5 32.5 32.5 32.5 25.0 25.0 25.0 25.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Table 10: Comparison with large reasoning models (LRMs) on Multi-Bug Detection. P=Precision, R=Recall,
F1=F1-Score, Acc=Accuracy.

17392

Model Prompting Cause Acc. Effect Acc. ∆ Cause vs. Direct ∆ Effect vs. Direct

GPT-4o Direct (Baseline) 35.4 31.2 – –
GPT-4o Zero-shot CoT 33.3 30.2 -2.1 -1.0
GPT-4o One-shot CoT 33.3 31.3 -2.1 +0.1
GPT-4o Self-Refine 33.3 30.2 -2.1 -1.0
GPT-4o Self-Consistency 37.5 34.4 +2.1 +3.2

DeepSeek-V3 Direct (Baseline) 44.8 28.1 – –
DeepSeek-V3 Zero-shot CoT 44.8 33.3 +0.0 +5.2
DeepSeek-V3 One-shot CoT 46.9 33.3 +2.1 +5.2
DeepSeek-V3 Self-Refine 47.9 31.3 +3.1 +3.2
DeepSeek-V3 Self-Consistency 42.7 37.5 -2.1 +9.4

Qwen2.5-72B Direct (Baseline) 26.0 26.0 – –
Qwen2.5-72B Zero-shot CoT 37.5 31.3 +11.5 +5.3
Qwen2.5-72B One-shot CoT 37.5 25.0 +11.5 -1.0
Qwen2.5-72B Self-Refine 37.5 31.3 +11.5 +5.3
Qwen2.5-72B Self-Consistency 40.6 36.5 +14.6 +10.5

Table 11: Prompting strategies on the single-bug subset. Gains show sensitivity to test-time compute and scaffolding;
however, all models remain far from saturation.

Model / Approach Task Metric Performance (%) Key Insight

Claude-3.5-Sonnet (Standalone) Cause Line Localization Accuracy 34.0 Baseline “understanding” is low.
Cursor Agent (Claude-3.5-Sonnet) Single-Attempt Repair pass@1 48.9 Recasting to generation yields +14.9 points.
Cursor Agent (Claude-3.5-Sonnet) Unconstrained Repair Pass Rate ∼100 Often succeeds via broad, non-minimal rewrites.
OpenHands (Cloud GUI)† Single-Attempt Repair pass@1 18.6 Large variance across agents/backbones.
OpenHands (Cloud GUI)† Unconstrained Repair Pass Rate 41.7 Iterative repair remains non-trivial.

Table 12: Agentic pilot on the single-bug subset. †Backbone LLM unknown for the cloud GUI; results are indicative
only.

17393

