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Abstract

Knowledge graph question answering (KGQA)
aims to answer natural language questions us-
ing knowledge graphs. Recent research lever-
ages large language models (LLMs) to en-
hance KGQA reasoning, but faces limitations:
retrieval-based methods are constrained by the
quality of retrieved information, while agent-
based methods rely heavily on proprietary
LLMs. To address these limitations, we pro-
pose Retrieval-Judgment-Exploration (RJE),
a framework that retrieves refined reasoning
paths, evaluates their sufficiency, and condi-
tionally explores additional evidence. More-
over, RJE introduces specialized auxiliary mod-
ules enabling small-sized LLMs to perform ef-
fectively: Reasoning Path Ranking, Question
Decomposition, and Retriever-assisted Explo-
ration. Experiments show that our approach
with proprietary LLMs (such as GPT-4o-mini)
outperforms existing baselines while enabling
small open-source LLMs (such as 3B and 8B
parameters) to achieve competitive results with-
out fine-tuning LLMs. Additionally, RJE sub-
stantially reduces the number of LLM calls and
token usage compared to agent-based methods,
yielding significant efficiency improvements.1

1 Introduction

Knowledge graph question answering (KGQA)
aims to find answer entities from knowledge
graphs (KGs) in response to natural language ques-
tions (Jiang et al., 2023c). With the development
of open domain knowledge graphs, such as Free-
base (Bollacker et al., 2008) and Wikidata (Pel-
lissier Tanon et al., 2016), KGQA has become
an important research topic. Although multi-hop
KGQA has been studied (Zhang et al., 2022; Ji
et al., 2024; Mavromatis and Karypis, 2024), find-
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Figure 1: A comparison of three types of methods:
retrieval-based methods, agent-based methods, and our
proposed RJE that combines precise retrieval with con-
ditional exploration.

ing complex multi-hop reasoning edges to infer
correct answers remains a challenge.

Concurrently, large language models (LLMs)
have demonstrated remarkable performance across
various natural language processing (NLP) tasks
(Huang and Chang, 2023; Grattafiori et al., 2024).
This convergence has stimulated growing research
into methodologies that leverage LLMs to enhance
KGQA systems (Gao et al., 2023; Zhang et al.,
2025). One straightforward approach is to fine-
tune LLMs (Luo et al., 2024b; Jiang et al., 2024),
which incurs significant costs and risks catastrophic
forgetting (Luo et al., 2023). As illustrated in Fig-
ure 1, an alternative class of methods does not re-
quire parameter modification of LLMs. They can
be categorized as two types:

1) Retrieval-based methods incorporate exter-
nal retrieval mechanisms to extract relevant KG
evidence, which is then integrated into textual
prompts for LLMs to generate answers grounded
in the retrieved knowledge (He et al., 2024; Huang
and Zeng, 2024; Li et al., 2025). However, Con-
straints of retrieval information limit the effec-
tiveness of these methods. Retrieved information
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often struggles to simultaneously accommodate
sufficiency and relevance. Insufficient evidence
prevents correct inference, while excessive infor-
mation introduces noise that can derail the reason-
ing process (Huang and Zeng, 2024).

2) Agent-based methods employ LLMs as
agents that deliberately navigate the KG. Starting
with question topic entities, LLMs systematically
select candidate relations and entities, and then
evaluate them in an iterative process until they
reach an appropriate answer (Jiang et al., 2023a;
Sun et al., 2024; Chen et al., 2024). These methods
depend heavily on proprietary LLMs. They typ-
ically operate without initially provided external
information, forcing LLMs to handle multi-step ex-
ploration independently. Additionally, exploration
complexity increases substantially when reasoning
over multiple topic entities and navigating exten-
sive entities and relations in KGs. As a result, prac-
tical success has predominantly relied on propri-
etary LLMs like GPT-4, while smaller open-source
alternatives demonstrate significantly lower perfor-
mance (Li et al., 2024).

Above limitations led to a natural question: can
we achieve more accurate reasoning with lower
cost? We answer this question by proposing a
three-stage Retrieval-Judgment-Exploration (RJE)
framework. As shown in Figure 1, the RJE frame-
work strategically synergizes KG retrieval with rea-
soning capabilities of LLMs by first retrieving re-
fined reasoning paths from the KG, then employing
LLMs to judge information sufficiency and finally
executing targeted exploration as needed.

Retrieval: the retrieval stage of RJE prioritizes
relevance over sufficiency of retrieved informa-
tion. The retriever first extracts numerous reason-
ing paths from the KG based on relevance between
the question and relations, where each reasoning
path starts from a topic entity and consists of alter-
nating relations and entities. To reduce noise and
preserve the relevance, we introduce a lightweight
Reasoning Path Ranking module to further sort rea-
soning paths based on relevance scores, and only
the top-K reasoning paths are retained.

Judgment: an LLM serves as a judge to evaluate
whether the retained reasoning paths provide suf-
ficient evidence to answer the question. If indeed
sufficient, the LLM directly formulates a response;
otherwise, an exploration phase will be executed to
fetch the required information.

Exploration: unlike prior agent-based methods
(Sun et al., 2024; Chen et al., 2024), the exploration

stage of RJE is dedicated to completing missing evi-
dence and simplifying exploration. When evidence
is insufficient, the LLM acts as an exploration agent
that first executes Question Decomposition which
breaks down a complex question into simpler sub-
questions based on topic entities to focus on spe-
cific reasoning paths. RJE then utilizes retrieved
reasoning paths as prior knowledge, allowing the
LLM to initiate exploration from entities at knowl-
edge gaps rather than topic entities, thereby reduc-
ing exploration steps. Subsequently, it iteratively
conducts Retriever-assisted Exploration, where the
retriever pre-filters candidate relations to constrain
the search space before the LLM conducts targeted
relation and entity exploration to complete the miss-
ing evidence chain.

Our contributions can be summarized as follows:

• We introduce a novel framework called RJE
that integrates precise retrieval, sufficiency
judgment, and conditional exploration for
KGQA. This framework simultaneously en-
hances reasoning capabilities and reduces
computational demands.

• We introduce three key auxiliary modules:
Reasoning Path Ranking, Question Decom-
position, and Retriever-assisted Exploration.
These modules reduce the reasoning bur-
den on LLMs, enabling small-sized LLMs
to achieve performance comparable to prior
work using proprietary models.

• We conduct comprehensive experiments
across standard KGQA benchmarks, demon-
strating that RJE surpasses existing ap-
proaches in both accuracy and efficiency when
using proprietary LLMs. Notably, with small
open-source LLMs (3B and 8B parameters),
RJE outperforms the previous state-of-the-art
method PoG by 41.5% and 27.9% on the
CWQ dataset under the same model sizes.

2 Related Work

The task of KGQA focuses on answering questions
by leveraging information from KGs. We catego-
rize existing approaches as follows.

Semantic parsing methods convert natural
language questions into structured queries (e.g.,
SPARQL) or equivalent forms for execution (Cao
et al., 2022; Hu et al., 2022; Zhang et al., 2023;
Luo et al., 2024a). Despite their precision, these
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approaches often require costly logical form anno-
tations and remain vulnerable to execution failures
stemming from syntactic or semantic errors.

Retrieval-based methods typically comprise a
retrieval module and a reasoning module. Early
approaches (Zhang et al., 2022; Jiang et al., 2023c;
Baek et al., 2023a; Li et al., 2023; Jiang et al.,
2023b; Ding et al., 2024) employed pre-trained
models for retrieval paired with lightweight rea-
soning components. More recent work applies
retrieval-augmented generation (RAG) with LLMs,
utilizing retrieved subgraphs as contextual prompts
(Baek et al., 2023b; He et al., 2024; Zhao et al.,
2024; Mavromatis and Karypis, 2024; Huang and
Zeng, 2024; Li et al., 2025). However, these meth-
ods struggle to balance knowledge sufficiency and
relevance, leading to either incomplete evidence
for inference or noise that disrupts reasoning.

Agent-based methods extend beyond standard
RAG implementations. Some studies explore fine-
tuning LLMs to enhance their KG reasoning ca-
pabilities, such as RoG (Luo et al., 2024b) and
KG-Agent (Jiang et al., 2024), though this strat-
egy incurs significant computational costs and in-
creases the risk of catastrophic forgetting (Luo
et al., 2023). Alternatively, iterative prompting
methods (Jiang et al., 2023a; Cheng et al., 2024;
Markowitz et al., 2024; Sun et al., 2024; Chen
et al., 2024; Wang et al., 2025) leverage LLMs as
agents to progressively retrieve relevant knowledge,
with frameworks like ToG (Sun et al., 2024) and
PoG (Chen et al., 2024) incorporating advanced
strategies such as beam search, memory mecha-
nisms, and reflection capabilities. However, these
approaches often introduce additional system com-
plexity, and small-sized LLMs continue to exhibit
significant performance limitations.

3 Preliminary

Knowledge Graph (KG) is a structured semantic
knowledge base, denoted as G = (E,R), where
E and R represent the set of entities and relations
respectively. A triple τ = (e, r, e′) describes a fact
with e, e′ ∈ E and r ∈ R.

Knowledge Graph Question Answering
(KGQA) aims to answer natural language ques-
tions using KGs. Formally, given a natural lan-
guage question q and a knowledge graph G, the task
of KGQA is to identify the corresponding answer
entity subset Aq ⊆ E that satisfies the question by
leveraging the structural information in G.

Topic Entities are the main entities mentioned
in a question q that serve as starting points for
answer retrieval. Following prior work (Sun et al.,
2024; Chen et al., 2024; Huang and Zeng, 2024),
we assume that the set of topic entities T has been
identified from the question and successfully linked
to nodes in KGs.

Relation Path is defined as a sequence of rela-
tions starting from a topic entity et. It is denoted
as pr = (et, r1, r2, . . . , rh), where h represents the
length of the relation path.

Reasoning Path refers to a complete path of
alternating entities and relations, derived from a
given relation path. It is formally represented as
pe = (et, r1, e1, r2, . . . , rh, eh), where each entity
ei−1 is connected to the next entity ei via rela-
tion ri. Note that a single relation path may de-
rive multiple reasoning paths based on the entity
connections within the KG. For instance, p′e =
(et, r1, e

′
1, r2, . . . , rh, e

′
h) constitutes an alternative

reasoning path from the same relation path.

4 Methodology

This section provides a detailed description of each
stage in the RJE framework and its auxiliary mod-
ules. As illustrated in Figure 2, RJE consists of
three stages: Retrieval, Judgment, and Exploration.
Retrieval stage: the relation path retriever first iden-
tifies relevant relation paths from the KG, which
are then refined by the reasoning path ranking mod-
ule to obtain the top-K reasoning paths. Judgment
stage: the top-K reasoning paths are prompted
to LLM, which evaluates whether the available
evidence is sufficient to answer the question. If
deemed sufficient, the LLM proceeds to gener-
ate an answer. Exploration stage: when the cur-
rent paths information is insufficient, further explo-
ration is required. Firstly, the LLM performs ques-
tion decomposition to guide further exploration.
Then through an iterative process of exploration,
the LLM gathers additional evidence until it deter-
mines sufficient information has been accumulated
to generate the final answer.

4.1 Retrieval Stage

4.1.1 Relation Path Retrieval
In order to preliminarily extract information rele-
vant to the question from the KG, we implement the
relation path retrieval as the first step of retrieval
stage. Following the approach proposed by Zhang
et al. (2022) and Huang and Zeng (2024), we fine-
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Q1: What major trading partner of China is the home of Monteith's Lager beer?

Paths:
[Monteith's Lager] → (from_region) → [New Zealand]
[China] → (exported_to) → [New Zealand] 
[China] → (imported_from) → [United States of America]
[China] → (exported_to) → [Angola]
[China] → (imported_from) → [Angola]

The paths confirm that Monteith's Lager is 
from New Zealand and that New Zealand is a 
major trading partner of China. 

Q2: What team did Payton Manning's father play for that has a mascot named Viktor the Viking?

Paths:
[Peyton Manning] → (nfl_team) → [Indianapolis Colts]
[Peyton Manning] → (parents) → [Archie Manning]
[Peyton Manning] → (nationality) → [United States of 
America] → (teams) → [National Basketball Team]
[Viktor the Viking] → (team) → [Minnesota Vikings]

The paths do not provide information about which 
team Payton Manning's father played for, nor do 
they connect Archie Manning to a team with the 
mascot Viktor the Viking.

Answer: New Zealand
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Figure 2: The framework overview of RJE, which flexibly adjusts its strategy based on the sufficiency of path
evidence to minimize resource consumption while ensuring answer correctness.

tune a pre-trained language model as relation path
retriever based on the question q, topic entities T ,
and answers A. This enables the model to cap-
ture the semantic similarity between the question
and relevant relations. During retrieval, the model
concatenates the question with the topic entity, em-
ploys beam search iteratively to assess semantic
similarity between the question and neighboring
candidate relations, and produces a set of relation
paths Pr = {pr0 , pr1 , ..., pr|Pr |−1

}, each with a cor-
responding relevance score, where |Pr| is the num-
ber of selected relation paths.

4.1.2 Reasoning Path Ranking

Depending on entity connections in the KG, a set
of reasoning paths Pe = {pe0 , pe1 , ..., pe|Pe|−1

} is
derived from Pr. To prevent overwhelming down-
stream LLMs with excessive reasoning paths, we
introduce a reasoning path ranking module that
employs a relatively small reasoning path ranker
based on a pre-trained language model (PLM) to
prioritize relevant reasoning paths.

For a specific reasoning path represented as
pei = (et, r1, e1, r2, e2, ..., rh, eh), the ranker con-
structs an input sequence by concatenating the ques-

tion and the path:

qi = {q [SEP] et → r1 → e1 → · · · → eh}. (1)

Here, [SEP] is the separator token used by the
PLM, and the symbol “→” indicates transition
within the path. The sequence qi is fed into the
PLM to obtain a relevance score:

s = MLP(E(qi)), (2)

where E(·) denotes the embedding obtained from
the PLM by extracting the [CLS] token representa-
tion, and MLP is a multi-layer perceptron applied
on top of the embedding. To ensure the relevance
of extracted information and suppress irrelevant
noise, we only select the top-K reasoning paths
based on relevance scores. As shown in Figure 2,
for the question Q2 “What team did Payton Man-
ning’s father play for that has a mascot named
Viktor the Viking?”, only a few paths most relevant
to the topic entities “Peyton Manning” and “Viktor
the Viking” are selected.

The ranker is trained with weak supervision, re-
quiring only the question q and the corresponding
answer set A. For a reasoning path pei , if there ex-
ists an answer a ∈ A along that path, it is labeled
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as a positive sample. Otherwise, it is treated as a
negative sample. The training objective adopts the
margin ranking loss, defined as:

L = max(0, sneg − spos + margin), (3)

where sneg and spos denote the scores for negative
and positive samples, respectively, and margin is a
hyperparameter enforcing a minimum separation
between them.

4.2 Judgment Stage

After extracting the top-K reasoning paths, we em-
ploy an LLM-based judgment stage to assess in-
formation sufficiency. RJE feeds the paths into the
LLM, which then evaluates whether these paths
contain sufficient information to answer the ques-
tion. If deemed sufficient, the LLM proceeds to
generate answer. Otherwise, RJE identifies the
need for further exploration. As shown in Figure 2,
for the question Q1 “What major trading partner of
China is the home of Monteith’s Lager beer?”, RJE
successfully infers the correct answer by judging
that the paths information is sufficient. In contrast,
for the question Q2 “What team did Payton Man-
ning’s father play for that has a mascot named Vik-
tor the Viking?”, RJE identifies the insufficiency of
the available information and proceeds with further
exploration. These two examples demonstrate the
flexibility and adaptability of the RJE framework.
The prompt is provided in Appendix J.1.

4.3 Exploration Stage

4.3.1 Question Decomposition

Given a question q and its corresponding set of
topic entities T = {et1 , et2 , . . . , etn}, the reason-
ing paths associated with different topic entities
need to be jointly considered to infer the final an-
swer. However, during the exploration phase, these
paths are relatively independent of each other. To
this end, RJE prompts the LLM to perform ques-
tion decomposition, leveraging both the original
question and each topic entity to generate a set of
focused sub-questions. Specifically, for each topic
entity eti , a corresponding sub-question qti is gen-
erated, which we define as a topic question. This
strategy encourages the LLM to concentrate on rea-
soning paths specific to each topic entity, thereby
enhancing both the efficiency and accuracy of rea-
soning. The prompt is provided in Appendix J.2.

4.3.2 Path Exploration
To fetch the required information, RJE conducts
further exploration over the KG. Initially, based
on the question decomposition, we obtain a set of
topic questions Q = {qt1 , qt2 , . . . , qtn}, where n
is the number of topic entities. The reasoning path
ranker extracts the top-K reasoning paths, which
are categorized as P0 = {P 0

t1 , P
0
t2 , . . . , P

0
tn}. Here,

P 0
ti = {p0ti,1, p0ti,2, . . . } represents the set of paths

originating from the topic entity eti . We initialize
the entity set E0 as the collection of all entities
that appear in the paths of P0. In the D-th round
of exploration, assuming that the entity set ED−1

and the paths PD−1 have already been obtained
from the previous round, we perform further path
exploration based on ED−1 and PD−1 to acquire
additional useful information from the KG.

Exploration Entities Selection. For different
topic entities, the number of hops required to reach
the answer entity can vary significantly. As shown
in Figure 2, theoretically, for question Q2, the an-
swer entity “Minnesota Vikings” can be reached in
one hop from the topic entity “Viktor the Viking”,
whereas it takes three hops from “Peyton Man-
ning”. To ensure more efficient exploration, we
prompt the LLM using the paths of the previous
round PD−1, the original question q, the set of
topic questions Q, and the set of topic entities T
to select a subset of entities ED

f . For Q2, RJE se-
lects the entity “Archie Manning” in the first round
and the entities “m.0hpq5r4” and “m.0hpq5rc” in
the second round. This approach, combined with
the path information, identifies which paths require
further exploration to answer their corresponding
topic questions, thereby avoiding redundant explo-
ration on information-sufficient paths. The prompt
is provided in Appendix J.3.

Retriever-assisted Relation Exploration. Re-
lation exploration aims to identify all relations
relevant to answering the question. Let ED

f =

{eDf,1, eDf,2, . . . , eDf,m} denote the set of exploration
entities selected in the D-th round. Each entity
eDf,i corresponds to a topic question qtc . We use
pre-defined SPARQL queries to retrieve all rela-
tions connected to eDf,i, obtaining a candidate re-
lation set RD

f,i. For more reliable LLM reason-
ing, we employ the relation path retriever to filter
the top-N most relevant relations from RD

f,i, re-
sulting in a refined set RD

s,i. We then prompt the
LLM with the topic question qtc , the entity eDf,i,
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and the relation set RD
s,i to select a subset of the

most useful relations, denoted as RD
i . By perform-

ing this procedure for all entities in ED
f , we de-

rive the final set of explored relations in the D-th
round RD = {RD

1 , R
D
2 , . . . , R

D
m}. The prompt

and SPARQL queries are provided in Appendix J.4
and Appendix K.1, respectively.

Entity Exploration. Entity exploration aims to
further infer useful entities to help answer the ques-
tion. Given the entity set ED

f and the correspond-
ing relation set RD obtained in the D-th round, we
execute pre-defined SPARQL queries to retrieve
the tail entities connected to each entity-relation
pair. Following the approach of Chen et al. (2024),
we apply a lightweight, train-free BERT to re-
move semantically irrelevant entities, resulting in
a filtered entity set ED

s = {ED
s,1, E

D
s,2, . . . , E

D
s,k}.

Each ED
s,i is a set of tail entities derived from a spe-

cific pair ⟨eDf,j , r⟩, where eDf,j ∈ ED
f and r ∈ RD

j .
Let qtc denote the topic question associated with
eDf,j . The LLM then performs entity selection
based on the topic question qtc , the entity eDf,j , the
relation r, and the candidate tail entity set ED

s,i

to select a minimal subset of entities most valu-
able for answering the question, denoted as ED

i .
After performing entity selection for all relevant
entities and relations, we obtain the final entity
set ED = {ED

1 , ED
2 , . . . , ED

k }. The prompt and
SPARQL queries are provided in Appendix J.5 and
Appendix K.2, respectively.

4.3.3 Answer Generation
After performing relation and entity exploration in
the D-th round, we use the relation set RD and
the entity set ED to update and extend the paths
from the previous round PD−1 to obtain PD =
{PD

t1 , P
D
t2 , . . . , P

D
tn}. Given the original question q,

the set of topic questions Q = {qt1 , qt2 , . . . , qtn},
and the updated paths PD, we prompt the LLM
to reason over each path PD

ti to answer the corre-
sponding topic question qti . Then, the LLM inte-
grates the answers to the topic questions to infer
the answer to the original question q. During this
process, if the LLM determines that the current
paths provide sufficient information to answer the
question, the iteration terminates and the final an-
swer is generated. Otherwise, the LLM proceeds to
perform a new round of path exploration. To avoid
endless exploration, we define a maximum number
of exploration rounds Dmax. If the LLM is still
unable to generate an answer after reaching Dmax,

it will produce an answer based on the accumulated
paths and its internal knowledge. The prompt is
provided in Appendix J.6.

5 Experiments

In this section, we present our experimental design,
empirical results, and comprehensive analyses. Our
experiments address the following research ques-
tions (RQs): RQ1: Does RJE achieve superior per-
formance compared to state-of-the-art approaches
on KGQA tasks? RQ2: Can small-sized, open-
source LLMs deliver competitive results within the
RJE framework? RQ3: Are the core stages and
auxiliary modules of RJE effective in contributing
to overall system performance? RQ4: Can RJE
reduce computational overhead and improve effi-
ciency during reasoning?

5.1 Datasets & Evaluation Metrics
To evaluate our proposed KGQA approach, we
conduct extensive experiments on two widely used
benchmark datasets that rely on the external knowl-
edge graph Freebase (Bollacker et al., 2008): We-
bQuestionsSP (WebQSP) (Yih et al., 2016) and
Complex WebQuestions (CWQ) (Talmor and Be-
rant, 2018). Detailed statistics of the datasets are
provided in Appendix A. Following prior research
(Sun et al., 2024; Chen et al., 2024; Li et al., 2025),
we adopt Hits@1 (exact match accuracy) as our
primary evaluation metric.

5.2 Selected Baselines
For a comprehensive comparison with various
methods, we selected five categories of baselines as
follows: (1) LLM-only methods: standard prompt-
ing (IO prompt) (Brown et al., 2020), Chain-of-
Thought prompting (CoT) (Wei et al., 2022), and
Self-Consistency (SC) (Wang et al., 2023). (2)
Retrieval-Reasoning Methods: SR (Zhang et al.,
2022), UniKGQA (Jiang et al., 2023c), Reason-
ingLM (Jiang et al., 2023b) and EPR (Ding et al.,
2024). (3) Retrieval-Augmented Generation Meth-
ods: RD-P (Huang and Zeng, 2024), KG-CoT
(Zhao et al., 2024) and SubgraphRAG (Li et al.,
2025). (4) Fine-tuned Agent-based Methods: RoG
(Luo et al., 2024b), KG-Agent (Jiang et al., 2024)
and GCR (Luo et al., 2024c). (5) Prompting Agent-
based Methods: StructGPT (Jiang et al., 2023a),
ToG (Sun et al., 2024), Interactive-KBQA (Xiong
et al., 2024), ReKnoS (Wang et al., 2025) and PoG
(Chen et al., 2024). The description of the baselines
can be found in Appendix B.
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Method CWQ WebQSP
LLM-Only methods

IO Prompt (Brown et al., 2020) 37.6 63.3
CoT (Wei et al., 2022) 38.8 62.2
SC (Wang et al., 2023) 45.4 61.1

Retrieval-Reasoning Methods
SR (Zhang et al., 2022) 50.2 68.9
UniKGQA (Jiang et al., 2023c) 51.2 77.2
ReasoningLM (Jiang et al., 2023b) 69.0 78.5
EPR (Ding et al., 2024) 60.6 71.2

Retrieval-Augmented Generation Methods
KG-CoT w/GPT-4 (Zhao et al., 2024) 62.3 84.9
RD-P w/ChatGPT (Huang and Zeng, 2024) 63.5 85.3
SubgraphRAG w/GPT4o (Li et al., 2025) 67.5 90.9

Fine-tuned Agent-based Methods
RoG (Luo et al., 2024b) 62.6 85.7
KG-Agent (Jiang et al., 2024) 72.2 83.3
GCR (Luo et al., 2024c) 75.8 92.2

Prompting Agent-based Methods
StructGPT w/ChatGPT (Jiang et al., 2023a) 54.3 72.6
Interactive-KBQA w/GPT-4 (Xiong et al., 2024) 59.2 72.5
ToG w/ChatGPT (Sun et al., 2024) 58.9 76.2
ToG w/GPT-4 (Sun et al., 2024) 69.5 82.6
ReKnoS w/GPT-4o-mini (Wang et al., 2025) 66.8 83.8
PoG w/ChatGPT (Chen et al., 2024) 63.2 82.0
PoG w/GPT-4 (Chen et al., 2024) 75.0 87.3

Ours
RJE w/Llama3.2-3B 62.9 82.6
RJE w/Llama3.1-8B 71.5 89.2
RJE w/Qwen2.5-14B 71.2 90.3
RJE w/ChatGPT 72.6 91.2
RJE w/GPT-4o-mini 77.1 92.5
RJE w/DeepSeek-V3 78.2 92.4

Table 1: Results of different methods and models on
two datasets. The best results are highlighted in bold.

5.3 Implementation Details
We employ RoBERTa-base (Liu et al., 2019) as
our backbone PLM, consistent with prior work.
For the reasoning path ranker training, we use a
learning rate of 2e-5 with a margin of 1.0 for We-
bQSP, and 1e-5 with a margin of 0.8 for CWQ.
Our framework supports integration with various
LLMs, we evaluate with both proprietary mod-
els (ChatGPT, GPT-4o-mini, DeepSeek-V3) and
open-source models (Llama3.2-3B, Llama3.1-8B,
Qwen2.5-14B). Across all experiments, we set
the number of reasoning paths to 10 (K = 10),
the number of filtered relations to 30 (N = 30),
LLM temperature to 0.3, and maximum exploration
rounds Dmax to 2 for WebQSP and 4 for CWQ. Pro-
prietary LLMs were accessed through their official
APIs23, while open-source models were deployed
on 4 NVIDIA A800-80G GPUs.

5.4 Main Results (RQ1 & RQ2)
We compare RJE with various state-of-the-art base-
line methods to evaluate its effectiveness in KGQA.
As shown in Table 1, RJE consistently delivers per-

2https://platform.openai.com/docs/overview
3https://api-docs.deepseek.com

Model Method CWQ WebQSP

Llama3.2-3B
ToG 17.6 40.2
PoG 21.4 49.3
RJE 62.9 82.6

Llama3.1-8B
ToG 35.5 66.8
PoG 43.6 75.7
RJE 71.5 89.2

Qwen2.5-14B
ToG 39.0 75.3
PoG 54.3 79.6
RJE 71.2 90.3

GPT-4o-mini
ToG 65.4 80.7
PoG 67.2 82.4
RJE 77.1 92.5

Table 2: Results of ToG, PoG and RJE on various back-
bone models on two datasets.

formance gains across different LLMs and datasets.
When GPT-4o-mini and DeepSeek-V3 are used
as backbone LLMs, RJE outperforms all baseline
methods, including LLM-Only methods, Retrieval-
Reasoning Methods, Retrieval-Augmented Gener-
ation Methods, Fine-tuned Agent-based Methods,
and Prompting Agent-based Methods. This high-
lights the superiority of our framework. It is note-
worthy that small-sized LLMs also demonstrate
competitive performance within our framework.
For instance, Llama3.2-3B within RJE achieves
performance comparable to ChatGPT used in PoG,
the performance gap between the two is merely
0.3% on CWQ. Meanwhile, RJE with Llama3.1-
8B performs slightly below PoG with GPT-4 on
CWQ but slightly surpasses it on WebQSP. Ad-
ditionally, we present comprehensive Macro-F1
results in Appendix C.

As shown in Table 2, RJE provides significant
performance enhancement for small-sized LLMs.
Specifically, the smaller the LLM, the greater the
performance boost from RJE. With Llama3.1-8B,
RJE achieves a 27.9% improvement over PoG on
CWQ and 13.5% on WebQSP. Even more notably,
using Llama3.2-3B, RJE achieves a remarkable im-
provement of 41.5% over PoG on CWQ (62.9%
vs. 21.4%) and 33.3% on WebQSP (82.6% vs.
49.3%). Although the improvements are less dra-
matic with larger and more advanced LLMs, such
as Qwen2.5-14B and GPT-4o-mini, RJE still con-
sistently outperforms PoG by at least 9.9% on both
datasets. These results suggest that RJE is partic-
ularly valuable for enhancing the capabilities of
smaller LLMs, effectively narrowing the perfor-
mance gap between smaller and larger models in
KGQA tasks. Additionally, Results Analysis and
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Method CWQ WebQSP

RJE 71.5 89.2
w/o Exploration 41.1 73.7
w/o Retrieval 60.7 83.9
w/o Ranking 66.9 88.0
w/o Decomposition 68.8 86.0
w/o Assistance 70.2 87.3

Table 3: Ablation experiment results using Llama3.1-8B
of removing each stage and each module, respectively.

Case Study can be found in Appendix F and Ap-
pendix G, respectively.

5.5 Ablation Study (RQ3)
We conduct comprehensive ablation experiments
to evaluate each component of our RJE framework,
using Llama3.1-8B as the backbone LLM across
both CWQ and WebQSP datasets. Table 3 presents
the results of systematically removing key stages
and modules: w/o Exploration (removing the ex-
ploration stage, using only the retrieval and judg-
ment stages), w/o Retrieval (removing the retrieval
stage, using only the exploration stage), w/o Rank-
ing (removing the reasoning path ranking module),
w/o Decomposition (removing the question decom-
position module), and w/o Assistance (removing
the retriever-assisted exploration module).

As shown in Table 3, the results demonstrate
that each component contributes positively to the
overall performance. Specifically, on CWQ, w/o
Retrieval results in a 10.8% drop in performance,
while w/o Exploration leads to a more substantial
30.4% drop. On WebQSP, performance decreases
by 5.3% and 15.5% when w/o Retrieval and w/o
Exploration, respectively. These findings highlight
the critical importance of the synergistic collabora-
tion between retriever and LLMs within our RJE
framework. The auxiliary modules in our frame-
work contribute measurable performance improve-
ments as well. Specifically, on WebQSP, the rea-
soning path ranking, question decomposition, and
retriever-assisted exploration modules improve per-
formance by 1.2%, 3.2%, and 1.5%, respectively.
On the more challenging CWQ dataset, the corre-
sponding improvements are 4.6%, 2.7%, and 1.9%.
These results demonstrate that the auxiliary mod-
ules effectively alleviate the reasoning burden on
small-sized LLMs in KGQA tasks, contributing to
enhanced overall system performance.

Additional ablation studies on reasoning path
ranking and the impact of the number of reasoning
paths, filtered relations, and exploration rounds are

Dataset Method LLM Call Input Token Output Token Time (s)

CWQ
ToG 22.6 8,182.9 1,486.4 96.5
PoG 13.3 7,803.0 353.2 23.3
RJE 7.9 5,769.1 247.2 16.3

WebQSP
ToG 15.9 6,031.2 987.7 63.1
PoG 9.0 5,234.8 282.9 16.8
RJE 4.1 2763.3 148.7 10.5

Table 4: Efficiency comparison between our proposed
RJE and baseline methods ToG and PoG.

provided in Appendix D and Appendix E.

5.6 Efficiency Study (RQ4)

We evaluate the computational efficiency of RJE
against two leading Prompting LLM approaches:
ToG and PoG. Table 4 summarizes the efficiency
metrics across the CWQ and WebQSP datasets,
including the average number of LLM calls, to-
ken usage, and time consumption per question. As
shown in Table 4, RJE demonstrates superior ef-
ficiency in LLM calls, token utilization, and time
consumption. On CWQ, RJE reduces LLM calls by
65.0% compared to ToG and 40.6% compared to
PoG. This efficiency gain is even more pronounced
on WebQSP, where RJE achieves reductions of
74.2% and 54.4% in LLM calls compared to ToG
and PoG, respectively. As for token consumption,
RJE reduces token usage by approximately 30%
compared to PoG on CWQ, and by about 50%
on WebQSP. Additionally, RJE exhibits significant
time efficiency improvements, performing at least
5.9 times faster than ToG and at least 1.4 times
faster than PoG across both datasets.

The efficiency gains of RJE stem from two key
design aspects: first, its judgment stage directly
answers the question when the paths provide suf-
ficient evidence, without requiring additional ex-
ploration; second, RJE retrieves key paths from
the KG and begins exploration from strategically
selected entities along these paths, rather than start-
ing from topic entities as in ToG and PoG. This
early resolution capability and targeted exploration
approach significantly reduce computational de-
mands while maintaining high accuracy. Exper-
imental results in Appendix H demonstrate that
initiating exploration from selected entities along
retrieval paths reduces exploration rounds, thereby
alleviating computational burden.

6 Conclusion

In this paper, we introduce the RJE framework,
which addresses core limitations in existing KGQA
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methods by integrating precise retrieval, sufficiency
judgment, and conditional exploration. Our special-
ized auxiliary modules, including Reasoning Path
Ranking, Question Decomposition, and Retriever-
assisted Exploration, significantly enhance the rea-
soning efficacy of smaller open-source LLMs in
knowledge-intensive tasks. Empirical evaluations
across standard KGQA benchmarks demonstrate
that RJE not only outperforms existing approaches
in both accuracy and efficiency, but also enables
small-sized open-source LLMs to achieve compa-
rable performance, advancing the development of
more efficient and accessible KGQA systems.

Limitations

While our approach demonstrates significant im-
provements in KGQA, there are several limitations
that suggest directions for future work. First, ex-
isting KGs, which are primarily constructed from
internet corpora, often contain noisy triples and out-
dated information. Such noisy knowledge can mis-
lead LLMs into making incorrect responses, even
when using our proposed framework. In future
work, we plan to investigate methods for detect-
ing and filtering unreliable knowledge in KGs to
reduce noise and enhance KGQA system reliabil-
ity. Second, our experimental evaluation is limited
to English language datasets. To assess the cross-
lingual capabilities of our approach, we intend to
extend our evaluation to multiple languages.
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Schaffert, Thomas Steiner, and Lydia Pintscher. 2016.
From freebase to wikidata: The great migration. In
Proceedings of the 25th international conference on
world wide web, pages 1419–1428.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Interna-
tional Conference on Learning Representations.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

17298



Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun,
Jundong Li, and Yada Zhu. 2025. Reasoning of large
language models over knowledge graphs with super-
relations. In The Thirteenth International Conference
on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 10561–10582.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773–
5784.

Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao,
Xinmei Huang, Cuiping Li, Hong Chen, and Juanzi
Li. 2023. Fc-kbqa: A fine-to-coarse composition
framework for knowledge base question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1002–1017.

Qinggang Zhang, Shengyuan Chen, Yuanchen Bei,
Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan Dong,
Hao Chen, Yi Chang, and Xiao Huang. 2025. A
survey of graph retrieval-augmented generation for
customized large language models. arXiv preprint
arXiv:2501.13958.

Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang,
and Guandong Xu. 2024. Kg-cot: Chain-of-thought
prompting of large language models over knowl-
edge graphs for knowledge-aware question answer-
ing. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence (IJCAI-
24), pages 6642–6650. International Joint Confer-
ences on Artificial Intelligence.

Dataset KG Train Dev Test Max hop

WebQSP Freebase 2,848 250 1,639 2
CWQ Freebase 27,639 3,519 3,531 4

Table 5: Statistics of different KGQA datasets used in
the experiments.

A Datasets

We evaluate the proposed method on the WebQues-
tionsSP and ComplexWebQuestions datasets. For
fair comparison with prior research (Sun et al.,
2024; Chen et al., 2024), we maintain identical
training and testing splits. Table 5 presents a com-
prehensive summary of the dataset statistics.

B Baselines

(1) LLM-only methods, these approaches rely
solely on large language models without explicit
knowledge graph integration:

Standard prompting (IO prompt) (Brown et al.,
2020) demonstrated that LLMs outperform tradi-
tional language models on task-agnostic and few-
shot problems.

Chain-of-Thought prompting (CoT) (Wei et al.,
2022) incorporates “think step by step” prompts to
enhance LLM performance across various natural
language processing tasks.

Self-Consistency (SC) (Wang et al., 2023) im-
proves performance by sampling multiple diverse
reasoning paths through few-shot CoT prompts and
selecting the most consistent answer among the
generated outputs.

(2) Retrieval-Reasoning Methods, these meth-
ods focus on effective subgraph retrieval tech-
niques:

SR (Zhang et al., 2022) proposes a trainable sub-
graph retriever decoupled from the downstream
reasoner, incorporating a PLM to expand paths for
subgraph induction with automatic termination cri-
teria.

UniKGQA (Jiang et al., 2023c) integrates graph
retrieval and reasoning into a single model that
incorporates a PLM.

ReasoningLM (Jiang et al., 2023b) enables ef-
fective question understanding and structured rea-
soning over knowledge graphs by incorporating
subgraph-aware self-attention and an adaptation
tuning strategy.

EPR (Ding et al., 2024) enhances subgraph ex-
traction for KGQA by modeling and retrieving
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structural evidence patterns that connect necessary
entities and relations.

(3) Retrieval-Augmented Generation Meth-
ods, these approaches combine retrieval mecha-
nisms with LLM capabilities:

KG-CoT (Zhao et al., 2024) enhances LLMs
reasoning by integrating step-by-step graph rea-
soning over KGs to generate explicit reasoning
paths, enabling knowledge-aware, plug-and-play
CoT prompting.

RD-P (Huang and Zeng, 2024) integrates KGs
with LLMs by retrieving and verifying trustworthy
reasoning paths to construct reliable prompts, en-
hancing reasoning accuracy and efficiency without
modifying LLM parameters.

SubgraphRAG (Li et al., 2025) enhances KG-
based RAG by efficiently retrieving high-quality
subgraphs using a lightweight MLP with structural
features, enabling effective and adaptable LLM
reasoning without fine-tuning.

(4) Fine-tuned Agent-based Methods, these
methods involve fine-tuning LLMs with knowledge
graph information:

RoG (Luo et al., 2024b) enables faithful and
interpretable KG reasoning by fine-tuning LLMs
within a planning-retrieval-reasoning framework
that distills knowledge into relation path planning
and optimized reasoning over retrieved KG paths.

KG-Agent (Jiang et al., 2024) empowers small-
sized LLMs to autonomously perform complex KG
reasoning by fine-tuning them with code-based in-
struction data and integrating a multifunctional
toolbox for structured operations and iterative
decision-making.

GCR (Luo et al., 2024c) ensures faithful KG rea-
soning by fine-tuning a lightweight KG-specialized
LLM to generate constrained decoding paths via a
KG-Trie index, then leveraging a general inductive
power of LLM to produce accurate final answers.

(5) Prompting Agent-based Methods, these
approaches utilize sophisticated prompting tech-
niques with KG integration:

StructGPT (Jiang et al., 2023a) defines an inter-
face for accessing and filtering knowledge from
KGs data under limited constraints, and lever-
ages LLMs to iteratively infer answers or generate
follow-up plans.

Interactive-KBQA (Xiong et al., 2024) Interac-
tive KBQA directly leverages LLMs to interact
with KGs, subsequently generating logical forms.

ReKnoS (Wang et al., 2025) enhances knowledge
graph reasoning by introducing super-relations,

Method CWQ WebQSP
Hit@1 Macro-F1 Hit@1 Macro-F1

Baselines
SR (Zhang et al., 2022) 50.2 47.1 68.9 64.1
UniKGQA (Jiang et al., 2023c) 51.2 49.0 77.2 72.2
ReasoningLM (Jiang et al., 2023b) 69.0 64.0 78.5 71.0
EPR (Ding et al., 2024) 60.6 61.2 71.2 70.2
RD-P w/ChatGPT (Huang and Zeng, 2024) 63.5 56.6 85.3 69.7
SubgraphRAG w/GPT4o (Li et al., 2025) 67.5 59.5 90.9 78.2
RoG (Luo et al., 2024b) 62.6 56.2 85.7 70.8
KG-Agent (Jiang et al., 2024) 72.2 69.8 83.3 81.0
GCR (Luo et al., 2024c) 75.8 61.7 92.2 74.1

Ours
RJE w/Llama3.2-3B 62.9 53.7 82.6 65.9
RJE w/Llama3.1-8B 71.5 60.5 89.2 73.8
RJE w/Qwen2.5-14B 71.2 62.8 90.3 76.0
RJE w/ChatGPT 72.6 62.1 91.2 74.8
RJE w/GPT-4o-mini 77.1 65.9 92.5 77.6
RJE w/DeepSeek-V3 78.2 70.2 92.4 78.9

Table 6: Results on CWQ and WebQSP under Hits@1
and Macro-F1; the best results are highlighted in bold.

which group domain-specific relations to expand
the reasoning space and improve retrieval perfor-
mance.

ToG (Sun et al., 2024) iteratively retrieves rele-
vant triples from the knowledge graph and uses
LLMs to evaluate whether the reasoning paths
within beam search are sufficient to answer the
question or if additional next-hop information is
needed.

PoG (Chen et al., 2024) builds upon ToG by in-
corporating mechanisms such as Adaptive Breadth,
Guidance, Memory, and Reflection.

C Analysis of Macro-F1 Metric

To provide a more comprehensive assessment of
RJE’s performance, we conduct additional evalua-
tions using Macro-F1 across various LLMs. Since
Macro F1 is not consistently reported in prior work
(e.g., PoG (Chen et al., 2024) and ToG (Sun et al.,
2024)), we compare against only those baselines
that include this metric.

As shown in Table 6 , RJE achieves superior
performance compared to most baselines on both
Hits@1 and Macro-F1. The only exception oc-
curs on the WebQSP dataset, where KG-agent (a
fine-tuned LLM-based method) marginally out-
performs RJE with DeepSeek-V3 on Macro-F1.
However, RJE with DeepSeek-V3 significantly sur-
passes KG-agent in Hits@1 performance. The ex-
cellent Macro-F1 performance of RJE indicates
that it simultaneously achieves high precision and
recall in knowledge-graph reasoning tasks.

D The Performance of Reasoning Path
Ranking

We conduct a systematic evaluation of the impact
of the reasoning path ranking on retrieval perfor-
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mance, using answer coverage at various retrieval
scales as the metric. Figure 3 presents a compar-
ative analysis between the standalone relation re-
triever and its integration with the reasoning path
ranker across two datasets. The results demonstrate
that our combined approach consistently achieves
higher coverage across all candidate reasoning path
sizes. Notably, on the more challenging CWQ
dataset, the contribution of the ranker yields par-
ticularly substantial improvements. Furthermore,
as the candidate path count decreases, the perfor-
mance enhancement provided by the ranker be-
comes increasingly significant.
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Figure 3: Comparison of Answer Coverage Across Dif-
ferent Numbers of Candidate Reasoning Paths.

E Addition Ablation Study

The RJE framework contains three manually con-
figurable hyperparameters: the number of reason-
ing paths to be refined by the reasoning path ranker,
the number of relations to be considered by the
relation path retriever during retriever-assisted ex-
ploration and the maximum number of exploration
rounds. To investigate how these parameters influ-
ence the performance of RJE, we conduct a series
of experiments and derive practical insights.
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Figure 4: The impact of the number of Reasoning Paths
on performance on the CWQ dataset.
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Figure 5: The impact of the number of Relations on
performance on the CWQ dataset.

E.1 Impact of the Number of Paths

In the RJE framework, the reasoning path ranker
outputs top-K candidate paths for judgment eval-
uation. The number of paths represents a critical
trade-off: too few paths limit available evidence,
while too many introduce noise that degrades LLM
performance. To examine this balance, we conduct
experiments on CWQ with varying path counts.

As shown in Figure 4, performance increases
substantially from 1 to 10 paths, confirming the
ranker effectively identifies relevant information
for accurate judgment. However, performance
declines beyond 20 paths, indicating that exces-
sive candidates introduce irrelevant information
that misleads the LLM. The relationship between
path count and time cost exhibits a U-shaped pat-
tern. Initially, increasing path count reduces over-
all time as sufficient evidence from multiple paths
decreases the need for extensive reasoning explo-
ration. However, when the path count becomes too
large, the additional tokens and noise both mislead
the LLM and increase processing time.

These results demonstrate that the choice of path
count significantly affects performance. An appro-
priate setting balances the provision of sufficient
evidence with noise reduction, improving both rea-
soning accuracy and computational efficiency.
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Figure 6: The impact of exploration rounds on perfor-
mance on the CWQ dataset.

E.2 Impact of the Number of Relations

Previous agent-based approaches typically feed all
relations into LLMs during relation exploration. Al-
though effective with powerful proprietary LLMs,
this strategy often degrades performance in smaller
open-source models due to excessive input length.
To address this limitation, we employ the relation
path retriever to pre-filter the N most relevant re-
lations, which are then fed to the LLMs for final
selection. Notably, N is smaller than the total num-
ber of relations. We conduct experiments on CWQ
with varying N values to assess the performance
impact.

As shown in Figure 5, varying the relation count
does not cause large performance fluctuations be-
cause the retriever consistently ranks relevant rela-
tions at the top. Even a small number of relations
can yield strong performance. On closer inspec-
tion, increasing the number of relations from 3 to
10 yields gradual gains. However, beyond N = 10,
performance begins to decline, suggesting that ex-
cessive relations introduce noise that impairs the
LLM’s focus on the most informative candidates.
Processing time increases with relation count due
to additional tokens and LLM exploration.

These results demonstrate that the relation
path retriever effectively narrows the exploration
space while enhancing LLM reasoning capabilities
through focused candidate provision.

E.3 Impact of Exploration Rounds

To prevent LLMs from engaging in endless explo-
ration, we set an upper limit on the number of explo-
ration rounds. We conduct experiments on CWQ
with varying numbers of rounds. As shown in Fig-
ure 6, performance consistently improves with ad-
ditional rounds, suggesting that further exploration
enables RJE to discover more relevant informa-
tion for answering complex questions. However,

after four rounds, the performance gain becomes
marginal, since the maximum hop count on CWQ
is 4.

Processing time increases with the maximum
round due to additional exploration cycles. How-
ever, the time overhead exhibits diminishing gains
at higher values, as fewer questions actually require
extensive exploration rounds. To balance computa-
tional cost and effectiveness, we set the maximum
exploration rounds to 4.

F Results Analysis

In the RJE framework, the final answer can be
produced either during the judgment stage or the
exploration stage. Figure 7 illustrates the answer
accuracy at each stage using DeepSeek-V3 on two
datasets. The label First denotes answers generated
during the judgment stage, while Second indicates
those generated during the exploration stage.

For WebQSP, 77.7% of the questions are cor-
rectly answered during the judgment stage, indicat-
ing that only a single LLM call is required. This
demonstrates the efficiency of RJE in producing
accurate answers with minimal computational cost
when the path information is sufficient. Among the
remaining 19.7% of cases where the initial paths
are insufficient, 14.7% of the questions are still an-
swered correctly during the subsequent exploration
stage. These findings demonstrate the capacity of
RJE to recognize insufficient information and re-
trieve additional knowledge through exploration,
eventually leading to the correct answer.

For CWQ, which is generally more complex than
WebQSP, approximately half of the questions are
answered during the judgment stage. This outcome
reflects the ability of RJE to adapt its strategy ac-
cording to the complexity of the question. Notably,
35.6% of the questions are correctly answered dur-
ing the exploration stage, demonstrating the poten-
tial of RJE in handling more challenging questions
by exploring beyond the initially retrieved paths.

G Case Study

G.1 Case 1

Figure 8 illustrates a case from CWQ that high-
lights the advantages of the RJE framework. For
the question “What David Slade film starred Tay-
lor Lautner?”, RJE first retrieves and refines five
highly relevant paths. After performing judgment
on these paths, RJE identifies that while some of
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Figure 7: Answer accuracy at different stages in the RJE
framework on WebQSP and CWQ.

the paths indicate movies involving “Taylor Laut-
ner” and one indicates a movie directed by “David
Slade”, there is no overlapping entity between them
that can support valid reasoning. Therefore, RJE
judges that the path information is insufficient and
triggers further exploration.

Upon entering the exploration stage, RJE first
performs question decomposition based on the
topic entities to better facilitate path exploration
and reasoning. In the first round of exploration,
RJE successfully selects the entities “The Twilight
Saga”, “The Twilight Saga: New Moon”, and

“David Slade”, aiming to retrieve detailed informa-
tion about the movie series and its director. After
conducting relation and entity exploration, RJE ac-
quires key knowledge: “Eclipse” is part of “The
Twilight Saga”, and “David Slade” is its direc-
tor. By synthesizing this information, RJE is able
to accurately infer that the answer to the original
question is “Eclipse”.

In summary, while three hops would be needed
to reach the correct answer theoretically, RJE ob-
tains highly relevant information during the re-
trieval stage, eliminating the need to start explo-
ration from the topic entity and significantly re-
ducing the number of exploration rounds. This
substantially reduces computational cost and infer-
ence time. Furthermore, the integration of ques-
tion decomposition and the retriever-assisted explo-
ration during the exploration process enables RJE
to perform path exploration and reasoning more

effectively, making it easier to arrive at the correct
answer. These strengths contribute to the strong
performance of RJE even when using LLMs with
relatively small parameter sizes.

G.2 Case 2

Figure 9 presents another case from CWQ that
demonstrates the importance of the reasoning path
ranker. For the question “What office position was
held from March 19, 1790 and was Abraham Lin-
coln’s political experience?”, without the reason-
ing path ranker, RJE retrieves the top five paths
with the highest relevance scores. However, none
of these paths cover the correct answer. As a result,
when the LLM analyzes these paths, it is misled by
the weakly relevant and noisy information, leading
to an incorrect answer during the judgment stage.

In contrast, with the reasoning path ranker re-
ordering the paths obtained by the relation path
retriever, the paths containing the correct answer
are successfully selected and ranked at the top.
Upon analyzing the reordered paths, the LLM ob-
serves the entity “United States Representative”,
and, based on its internal knowledge that the United
States Representative office was held from March
19, 1790, it aligns this information with the ques-
tion and infers the correct answer.

In summary, the reasoning path ranker effec-
tively filters and prioritizes the most relevant paths,
helping LLMs reduce hallucinations and enhancing
the probability of answering correctly during the
judgment stage without needing further exploration.
This substantially reduces computational cost and
inference time. Overall, RJE dynamically adjusts
its strategy based on question complexity and path
relevance, aiming to find the correct answer while
reducing resource consumption.

H Analysis of Exploration Round
Reduction

To validate that RJE improves exploration effi-
ciency by starting from entities identified in re-
trieval paths, we conducted experiments on a sub-
set of CWQ questions that explicitly require ex-
ploration. This subset excludes questions that RJE
can directly answer during the judgment stage, en-
suring all questions necessitate exploration. We
compared methods using their default maximum
number of rounds: RJE (4 rounds), PoG (4 rounds)
and ToG (3 rounds). RJE w/o Retrieval is a vari-
ant without retrieval paths that initiates exploration

17303



Question: What David Slade film starred Taylor Lautner?

Retrieval

[Taylor Lautner] → (won) → [m.0nf3bp2] → (honored_for) → [The Twilight Saga] 
[Taylor Lautner] → (nominations) → [m.0c02330] → (nominated_for) → [The Twilight Saga: New Moon] 
[Taylor Lautner] → (nominations) → [m.0b3tz45] → (nominated_for) → [Twilight] 
[Taylor Lautner] → (award_nominations) → [m.09tz609] → (nominated_for) → [The Twilight Saga: New Moon] 
[David Slade] → (film.writer.film) → [Meat Dog: What's fer Dinner] 

Judgment
The paths provided only mention Taylor Lautner's involvement in 'The Twilight Saga' series and related films, but do 
not confirm any film directed by David Slade. Need to explore

Exploration

Question Decomposition:
"Taylor Lautner": "Which film starring Taylor Lautner?"       "David Slade": "Which film directed by David Slade?"

Reasoning Path:
[Taylor Lautner] → (won) → [m.0nf3bp2] → (honored_for) → [The Twilight Saga] → (films_in_series) → [The 
Twilight Saga: New Moon]
[Taylor Lautner] → (won) → [m.0nf3bp2] → (honored_for) → [The Twilight Saga] → (films_in_series) → [Eclipse]
[Taylor Lautner] → (award_nominations) → [m.09tz609] → (nominated_for) → [The Twilight Saga: New Moon] →
(film.director.film) → [Chris Weitz]
[David Slade] → (film.director.film) → [Eclipse]
[David Slade] → (film.film.directed_by) → [Eclipse]

Evaluation:
Topic 1 lists various films starring Taylor Lautner, Topic 2 specifically identifies 'Eclipse' as a film directed by David 
Slade. Since 'Eclipse' is part of the Twilight Saga, which stars Taylor Lautner, we can infer that 'Eclipse' is final 
answer.

Figure 8: A typical case demonstrates the advantages of the RJE framework. The topic entities, exploration entities,
incorrect answers, and correct answers are highlighted in yellow, blue, red, and green, respectively.

Judgment:
The provided paths confirm both Abraham Lincoln's office position and title, which sufficiently answer the question. 
The Answer is President of the United States and President.

Judgment:
From the triplets, we know that Abraham Lincoln held the positions of United States Representative, Member of 
Illinois House of Representatives, and President of the United States. The position of United States Representative 
was held from March 19, 1790, which aligns with the original question. Therefore, The Answer is United States 
Representative.

Question: What office position was held from March 19, 1790 and was Abraham Lincoln's political experience?

w/o ranker

Retrieval:
[Abraham Lincoln] → (presidency_number) → [16]
[Abraham Lincoln] → (military_commands) → [m.04h_gx9]
[Abraham Lincoln] → (government_positions_held) → [m.0446bdb] → (office_position_or_title) → [President of the 
United States]
[Abraham Lincoln] → (government_positions_held) → [m.0bqspr2] → (office_position_or_title) → [Member of Illinois 
House of Representatives]
[Abraham Lincoln] → (government_positions_held) → [m.0446bdb] → (basic_title) → [President]

w ranker

Retrieval:
[Abraham Lincoln] → (government_positions_held) → [m.04j60k7] → (office_position_or_title) → [United States 
Representative]
[Abraham Lincoln] → (appointees) → [m.05kq8nh] → (office_position_or_title) → [United States Secretary of State]
[Abraham Lincoln] → (government_positions_held) → [m.0446bdb] → (basic_title) → [President]
[Abraham Lincoln] → (government_positions_held) → [m.0446bdb] → (office_position_or_title) → [President of the 
United States]
[Abraham Lincoln] → (government_positions_held) → [m.0bqspr2] → (office_position_or_title) → [Member of Illinois 
House of Representatives]

Figure 9: A typical case illustrates the importance of the reasoning path ranker. With and without the ranker, the
LLM infers different answers. The incorrect and correct answers are highlighted in red and green, respectively.
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Method RJE RJE w/o Retrieval PoG ToG

Average Rounds 1.57 2.41 2.36 2.58

Table 7: Average number of exploration rounds required
by different methods on CWQ subset.

CWQ 1 hop 2 hop 3 hop 4 hop

Hits@1 73.7 80.0 81.5 69.9

Table 8: RJE performance on questions with different
numbers of hops using DeepSeek-V3.

from topic entities rather than retrieval path enti-
ties.

As shown in Table 7, RJE achieves the lowest
average number of rounds (1.57), substantially out-
performing RJE w/o Retrieval (2.41 rounds) by
35%. This indicates that starting exploration from
retrieval path entities effectively reduces explo-
ration rounds. RJE also outperforms PoG (2.36
rounds) and ToG (2.58 rounds), highlighting the
computational efficiency of the RJE framework.

I Performance on Different Hops

To evaluate RJE’s performance across questions
of varying complexity, we analyze results by hop
count on the CWQ dataset. For each question, the
hop count is defined as the longest of the shortest
paths from topic entities to the answer entity in the
provided SPARQL queries.

As shown in Table 8, RJE maintains consis-
tent performance across different hop requirements,
achieving Hits@1 scores of 69.9%-81.5%. This
consistency highlights RJE’s effectiveness on multi-
hop reasoning, attributed to its systematic three-
stage architecture that mitigates the difficulty of
multi-hop questions.

J Prompts

J.1 Judgment

Your task is to infer the answer based on the
given question and given triple paths.
{In-Context Few-shot}
Task Requirements:
1. Do not provide explanations or extra text.
2. The output must be in strict JSON format.
Now, based on the following input, deter-
mine whether the question can be answered.
Question:

Paths:

J.2 Question Decomposition

You are an expert in question decomposition
and knowledge-based reasoning.
Given:
- A complex natural language question.
- A list of topic entities mentioned in the
question.
Your tasks are: Generate a sub-question for
each entity. The sub-question should reflect
the original question’s intent, but be scoped
only to that specific entity.
{In-Context Few-shot}
Original Question:
Topic Entities:

J.3 Exploration Entities Selection

Your task is to determine which entities
should be explored next, based on the Orig-
inal Question, Topic Question and given
triple paths.
{In-Context Few-shot}
Now you need to output the entities from
the Entity List, without additional expla-
nations or formatting. Strictly follow the
entity names as they appear in the Entity
List.
Note: Only include entities that are neces-
sary for answering the Original Question,
and ensure the list has no more than 10 enti-
ties.
Original Question:
Topic 1:
Topic Question:
Topic Entity:
Triplets:
Topic 2:
. . .

J.4 Relation Exploration

Your task is to select useful relations from a
given list based on the current question and
connected entity.
{In-Context Few-shot}
Task Requirements:
1. Strictly output only the selected relations
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from the provided list.
2. Do not include any additional relations,
explanations, reasoning, or extra format-
ting.
Now, based on the following input, select
the useful relations.
Question:
Connected entity:
Relations List:

J.5 Entity Exploration

Your task is to select the minimal set of
relevant entities from the given triplets.
{In-Context Few-shot}
Task Requirements:
1. Entities must come strictly from the given
list; do not introduce new entities.
2. Strictly output only the selected entities,
without explanations or additional format-
ting.
Now, based on the following input, select
the minimal relevant entities.
Question:
Triplets:

J.6 Answer Generation

Your task is to infer the answer to the orig-
inal question by first reasoning over each
Topic Question using the provided triplets
and your knowledge, then combining the
insights from all Topic Questions to derive
the final answer.
Instructions:
1. For each topic entity:
- Read its corresponding topic question.
- Use the associated triplets and your knowl-
edge to infer an answer.
2. After processing all topic entities:
- Analyze how the individual answers relate
to the original question.
- If possible, synthesize them to derive the
final answer.
{In-Context Few-shot}
Task Requirements:
1. Do not provide explanations or extra text.
2. The output must be in strict JSON format.
Now, based on the following input, deter-
mine whether the question can be answered.

Original Question:
Topic 1:
Topic Question:
Topic Entity:
Triplets:
Topic 2:
. . .

K SPARQL

K.1 Relation Search

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {

ns:%s ?relation ?x .
FILTER (?x != ns:%s)

}

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?relation
WHERE {

?x ?relation ns:%s .
FILTER (?x != ns:%s)

}

K.2 Entity Search

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

ns:%s ns:%s ?tailEntity .
}

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

?tailEntity ns:%s ns:%s .
}
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