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Abstract

Sparse Autoencoders (SAEs) have recently
emerged as powerful tools for interpreting and
steering the internal representations of large
language models (LLMs). However, conven-
tional approaches to analyzing SAEs typically
rely solely on input-side activations, without
considering the causal influence between each
latent feature and the model’s output. This
work is built on two key hypotheses: (1) ac-
tivated latents do not contribute equally to the
construction of the model’s output, and (2)
only latents with high causal influence are ef-
fective for model steering. To validate these
hypotheses, we propose Gradient Sparse Au-
toencoder (GradSAE), a simple yet effective
method that identifies the most influential la-
tents by incorporating output-side gradient in-
formation. Our code is available at https:
//github.com/Tizzzzy/sae_gradient.

1 Introduction

Sparse Autoencoders (SAEs) have recently
emerged as promising tools for interpreting the
inner workings of large language models (LLMs)
(Cunningham et al., 2023; Bricken et al., 2023; Gao
et al., 2025; Rajamanoharan et al., 2024b). A core
challenge in understanding LLMs is the polyse-
manticity of neurons, where each neuron encodes
multiple features (Arora et al., 2018; Scherlis et al.,
2022). This is largely due to superposition (Elhage
et al., 2022), a phenomenon where the number of
features an LLM needs to represent vastly exceeds
the number of available neurons. SAEs address this
by learning an overcomplete latent space, allow-
ing each latent to represent a single, disentangled
feature. For any given LLM representation, only
a small number of these latents are activated, and
the combination of these sparse active latents can
accurately reconstruct the original LLM represen-
tation. This sparsity makes it easier to interpret the
concepts an LLM is processing.

“These authors contributed equally.

Although interpretability was the original mo-
tivation for developing SAEs, they have proven
useful for other applications as well, particularly
in steering model behaviors (Chalnev et al., 2024;
He et al., 2025; Zhao et al., 2024; Galichin et al.,
2025). Traditionally, researchers associate each
latent with a human-interpretable concept by an-
alyzing which input texts tend to activate it. By
modifying selected latents in the SAE space that
have desired concepts, ideally we can influence the
LLM outputs toward our expectation in a control-
lable way (Templeton et al., 2024; O’Brien et al.,
2024). However, these approaches assume that
the latent’s activation based on input reflects a
causal influence on the model output, which has
never been proven. Recent evidence suggests that
this assumption may not always hold, and steering
can sometimes produce unintended effects on the
output (Durmus et al., 2024; Wu et al., 2025).

In this paper, we argue that identifying latents
solely from input activations is insufficient for re-
liable model steering. Instead, the relationship be-
tween SAE latents and LLM output should also
be considered when determining which latents are
most relevant for intervention. To address this,
we propose Gradient SAE (GradSAE), a simple
yet effective method that can be applied to any
instruction-tuned LLM’s SAE. Our key insight is
that not all latents activated by the input con-
tribute equally to generating the model’s output.
Rather, only those latent variables whose activa-
tions, when set to zero, lead to a significant change
in the model’s outputs are likely to exert substan-
tial influence. In our paper, we prove that this
ablation process can be approximated with a more
efficient gradient-based approach. To validate our
hypothesis, we design two experiments. First, we
demonstrate that activated latents have different
impacts when used to generate model outputs. Sec-
ond, we show that the influential latents, identified
by GradSAE, are more effective for output steering.
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Figure 1: Methodology overview in the perturbation experiment. Subfigure (a) illustrates the GradSAE framework,
where the symbol o denotes the ReLLU function. Subfigure (b) shows the experiment process, which contains two
settings and both share the same architecture with the GradSAE framework but differ in masking strategies.

2 Methodology

2.1 Problem Statement

Let V be the vocabulary, X € VV an input se-
quence, and ) € VM the corresponding LLM-
generated output. The hidden representation at
layer [ is Z() € RN*P| where D is the hidden
dimension. We omit the superscript (V) for simplic-
ity in the rest of the paper. A pre-trained SAE is
inserted at layer [ with parameters Wy € RD*C
and Wyee € RE*P where C is the latent dimen-
sion of SAE and C' > D. Given the representation
Z of the entry X, SAE first decomposes Z as a
sparse latent activation H € RV*C and then re-
stores Z € RV*P with H as:

Z =HWy = U(Zwenc)wdec~ (1)
Here, o is a non-linear activation function, and Z
is subsequently passed to the rest of layers. We
aim to identify which learned latent c in H is most
causally influential in generating ).

2.2 Proposed GradSAE Framework

We illustrate our proposed GradSAE framework
for estimating the influences of sparse latent activa-
tions ¢ = 1, ..., C'in Figure 1a. Following previous
work (Feng et al., 2018; Wu et al., 2024), we define
the influence of a certain latent c at the n-th input
token on the output ) as the change in prediction
with and without sparse latent activation H,, . € R:

8n.c = p(y‘H) - p(y’Hn,/c)a (2)

where H,, /. indicates setting the c-th value of the
n-th row at Z as 0, and probability p()|-) is pre-
dicted logits of LLM on ) with original H or
masked H,, /. sparse latent activations of SAE.

For efficiency, we approximate g, . in Equa-
tion (2) with the gradients of output logit respecting
to the latent activations Z,, . at the n-th input token
(see proof in Appendix A). Let H = {H;, ..., Hy}
represent token-wise latent activations of the input
sequence. Thus, the influence of the c-th latent
activation on the n-th token is:

_ pIh(z))

H,..
oH,, e

nc 3)
where © indicates element-wise multiplication. In
practice, we only focus on the latents that show
positive influences to outputs. Equation (3) reveals
that the magnitude of the raw sparse latent activa-
tion (i.e., H,, ) along cannot effectively estimate
its influence to LLM outputs, while many existing
works (Templeton et al., 2024; O’Brien et al., 2024)
regardless this fact and simply use the latent acti-
vations to interpret SAEs and/or steer LLMs. We
finally define the overall influence on the c-th latent
by average individual influence scores across the

input sequence, i.e., g. = % 27]:[:1 8n.c-
3 Experiments

We empirically investigate the following research
questions (RQs). RQ1: Do all activated latents
contribute equally to construct the model’s output?
RQ2: How effectively does GradSAE identify the
latents that significantly influence the model’s out-
put? RQ3: Can the latents selected by GradSAE
lead to better output steering?

3.1 General Settings

3.1.1 Dataset and Metrics

In this paper, we use the SQuAD dataset (Rajpurkar
et al., 2016), where each example consists of a con-
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text passage, a question, and an answer. We adopt
the standard SQuAD evaluation metrics: Exact
Match (EM) and token-level F1. Detailed dataset
statistics and description are provided in Appendix
B.1, and metric descriptions are in Appendix B.2.

3.1.2 Perturbation Experiment (RQ1 & RQ2)

Experimental Designs. As shown in Figure 1b,
our GradSAE experiments involve two settings. Be-
fore conducting these, we define two sets of latents:

Zhigh = AGMaX z/c z, | 2/|—K E g, 4
ceZ’

Zlow = ArgMinz: -z, 1 z/|— g g, ()
cez’

where Znz = {c | g > 0,c = 1,..,C} are the
indices of positive latent influences. In our experi-
ments, we define K € {1, 10, 20, 30, 50%}, where
“50%” denotes half the number of non-zero latents
count in the SAE activation of the last token.

Let H € RV*C denote the sequence of token-
wise activations. In the first setting, for each token’s
activation vector, we zero out all latents in Zy;gh. In
the second setting, we instead zero out the latents
in Zjw. The modified activation is then passed
through W, to reconstruct 7 and resume the for-
ward pass. If masking Zp;,, leads to degraded per-
formance while masking Zj.y, has no impact, this
supports our hypothesis that not all activated latents
contribute equally to the model’s output. Note that
we focus only on samples where the LLM can cor-
rectly answer with greedy decoding, resulting in
100% accuracy without any perturbation. If mask-
ing Zjow truly has no impact, the performance after
perturbation should remain close to 100%.

Baseline. We repeat the GradSAE framework in
Section 2.2 but without using gradient informa-
tion. Specifically, we compute the mean over the
original token-wise SAE activations, skipping the
gradient calculation: g, = % 27]:[:1 H,, . We then
extract Zpigh and Zjow from this baseline vector and
compare performance when masking these sets.

3.1.3 Local Steering Experiment (RQ3)

This experiment aims to address RQ3 following a
similar design to the perturbation experiment (Sec-
tion 3.1.2). The key difference in the steering ex-
periment is that, when extracting the TopK and
BottomK latents, we also extract the corresponding
value. This allows us to adjust the activations using
these values in the subsequent settings.

Viask Zhigh ()
t :
Inject Zhigh & (_C]

Figure 2: Local steering methodology overview.
Experimental Designs. We consider a particu-
lar steering task, called local steering, leveraging a
unique property of the SQuAD dataset: each con-
text passage is paired with multiple questions. This
allows us to investigate whether the model’s output
for one question can be steered by latent activations
derived from a different question that shares the
same context. As shown in Figure 2 upper part, for
each data point d = (context, ¢, a) € D, we define
a set of examples with the same context but differ-
ent questions as D% = {d' = (context, ¢*, a') |
q' # q}. We randomly select one such example
d' € D™ and denote its TopK set as Zﬁigh.

As shown in the lower part of Figure 2, during
the experiment, the Zy;gp in the original activation
H,, for all tokens [V are zeroed out. The steering la-
tents Z}tﬁgh from d' are then injected. Intuitively, if
these steering latents carry meaningful information,
the model’s output may shift toward answering a’
for question ¢', even though the input is question g.
We repeat the same experiment for BottomK.

Implementation Details. We primarily conduct
experiments using the SAE from the Gemma
Scope series (Lieberum et al., 2024), trained on
the 9th layer of the Gemma 2 9B Instruct model.
For results related to the impact of layer choice,
please refer to Appendix D.2. Additionally, in Ap-
pendix D.3, we extend our experiments to an SAE
trained on the LLaMA 3 model to evaluate the gen-
eralizability of our method. Full implementation
details are provided in Appendix C.

3.2 Perturbation Experiment Analysis

Table 1 upper section presents the Exact Match
(EM) and F1 scores, comparing the performance
of masking TopK and BottomK latent sets un-
der both the Baseline and our proposed GradSAE
method. The results are reported across values of
K € {1,10,20,30,50%}, as defined earlier. As
shown in the “w/o Task” column, the initial LLM
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Table 1: Results of both perturbation and local steering. The upper section shows perturbation results, where for the
TopK rows, lower scores indicate greater influence on the model output, and for the BottomK rows, higher scores
indicate less influence. The best performance in each column is in bold. The lower section shows local steering
results, where for the TopK rows, higher scores indicate stronger steering effects on the model output, and for the
BottomK rows, lower scores indicate weaker steering effects. The highest score in each column is in underlined.

Tasks wlo Task K=1 K=10 K=20 K=30 K=50%
EM Fl EM Fl EM Fl EM Fl EM Fl
Baseline TopK | 100.0 9479 97.04 91.81 9446 8547 8849 7542 79.62 5342 5846
Perturbation BottomK 1 100.0 100.0 98.51 99.93 98.51 99.93 98.51 99.93 9841 99.84
GradSAE TopK | 100.0 80.45 82.67 51.21 6046 39.48 50.51 37.80 49.37 30.58 43.33
BottomK 1 100.0 100.0 98.14 99.68 98.14 99.68 98.14 99.68 98.21 99.66
. TopK T 418 577 459 6.69 219 332 1.00 162 020 055
Baseline 0.00
Local Steering BottomK | 0.00 0.00 0.00 000 0.00 000 0.00 000 0.00 0.00
GradSAE _ ToPK T 0.00 458 643 799 1021 478 6.63 359 483 339 458
BottomK | 0.00 0.00 0.00 000 0.00 000 0.00 000 0.00 0.00

performance without any perturbation is 100%.

Across all K settings, masking the TopK latents
identified by both Baseline and GradSAE leads to
a drop in EM and F1 scores, while masking Bot-
tomK latents maintains near-perfect performance.
For example, both methods yield F1 scores around
99% across K = 10,20, 30,50% when masking
BottomK latents. This confirms our RQ1 hypothe-
sis that not all activated latents equally contribute
to output construction, with TopK latents having
far greater influence.

Comparing GradSAE and the Baseline, mask-
ing GradSAE’s TopK latents results in a more
substantial performance drop. For instance, with
K =1, GradSAE yields 80.45% EM and 82.67%
F1, decreasing to 30.58% EM and 43.33% F1 at
K = 50%. This consistent degradation highlights
that GradSAE more precisely identifies latents crit-
ical to output, while the Baseline shows only mod-
erate degradation. These results support RQ2,
demonstrating GradSAE’s superior effectiveness in
identifying influential latents.

3.3 Local Steering Experiment Analysis

As shown in Table 1 lower section “w/o Task”
column, the initial LLLM performance without lo-
cal steering is 0%. After applying local steering,
both Baseline and GradSAE exhibit steering ef-
fects when the original TopK latents are replaced
with those from a different question sharing the
same context. GradSAE consistently outperforms
the Baseline, especially at K = 10, achieving a
steering F1 score of 10.21%. This supports RQ3,
demonstrating that GradSAE-identified latents can
steer the model toward answering a different ques-
tion even when the input remains unchanged. How-
ever, as K increases, the steering effect diminishes.
This is because replacing more TopK latents de-

grades output coherence as SAE reconstruction be-
comes less accurate. This aligns with findings from
the first experiment, confirming that TopK latents
are crucial for output construction, and excessive
modification leads to output collapse.

Masking and replacing BottomK latents results
in negligible steering across all K values (near
0% EM and F1). Deeper analysis shows that lo-
cal steering BottomK latents leaves the model’s
output unchanged. This is consistent with earlier
results showing that BottomK latents have minimal
influence. These findings confirm that modifying
non-influential latents does not meaningfully steer
or disrupt the output. For detailed statistical analy-
sis, see Appendix D.1.

4 Related Work

SAEs have shown great promise in interpreting
LLMs (Cunningham et al., 2023; Bricken et al.,
2023; Gao et al., 2025). However, most existing
work focuses solely on input activations and as-
sumes that these activations have a causal influ-
ence on the model’s output (Templeton et al., 2024;
O’Brien et al., 2024). In contrast, our work chal-
lenges this assumption. A detailed discussion on
related work is provided in Appendix E.

5 Conclusions

In this work, we revisited the problem of identify-
ing and local steering activated latents in SAEs for
LLMs. We proposed two key hypotheses: (1) not
all activated latents equally affect output, and (2)
only highly influential latents are effective for steer-
ing. Through a series of experiments, we demon-
strated that GradSAE more accurately identifies in-
fluential latents and enables more reliable steering,
with results generalizing across different SAEs.

1677



Limitations

In this paper, we focus on SAEs trained on
instruction-tuned LLMs. While GradSAE is theo-
retically applicable to any SAEs, LLMs, and tasks,
this study focuses on one of the most fundamental
capabilities of modern LLMs with GradSAE, i.e.,
instruction following for question answering. Ex-
tending GradSAE to a broader range of scenarios,
including but not limited to pre-trained LLMs, is
an exciting direction for future work.
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Table 2: Datasets Statistics (Avg. = Average, #Ex. =
Number of Examples)

DATASET SQuAD
Train Valid
Context Avg. Length 119.76  123.95
Question Avg. Length 10.06  10.22
Answer Avg. Length 3.16 3.02
Avg. Questions / Context  4.64 5.11
#EX. 87.6k  10.6k

A Proof of Gradiant Approximation

We aim to prove that the influence of latent acti-
vation g, . = p(Y|H) — p(Y|H,, /.) defined in
Equation (2) can be approximated by the gradient-
based approach described in Equation (3). To start
with, we consider that p(-|-) implemented by an
LLM is continued over its input domain (Wu et al.,
2024). Thus, we could extend p()Y|H) around the
H,, . with the First-order Taylor expansion:

p(YH) = p(YH, ;) +
op(Y|H)

oH

6
®|-H,,). ©

n,/c

H

Note that, since the only difference between H
and H,, /. is the latent activation at the c-th latent
on the n-th word, i.e., H,, ., Equation (6) can be
simplified as:

pOE) ~ pH, ) + PO g, )

n,c

Bringing this simplified form to the definition of
influence g, . in Equation (2), we have g, . ~
ag(HLJLI;I)HmC. To this end, the influence of latent
activations can be approximated with this gradient-
based approach.

B General Settings

B.1 Dataset

In this paper, we use the SQuAD dataset (Rajpurkar
et al., 2016), where each example consists of a con-
text passage, a question, and an answer. Detailed
dataset statistics are provided in Table 2. Each
context is associated with multiple questions, on
average around five per context. The answer to
each question is a span extracted directly from the
corresponding context. We choose this dataset for
several reasons. First, the answers are short, aver-
aging around three words, which makes evaluation

Context:

In meteorology, precipitation is any
product of the condensation of atmospheric
water vapor that falls under gravity... Short,
intense periods of rain in scattered locations
are called “showers”.

Question 1:
What causes precipitation to fall?

Answer 1:
gravity

Question 2:
What is another main form of precipitation

besides drizzle, rain, snow, sleet and hail?

Answer 2:
graupel

More Questions:

Figure 3: SQuAD dataset example.

more straightforward. Second, the context passages
are sufficiently long, averaging about 120 words,
which helps activate a diverse set of latent variables
in the SAEs. This allows our GradSAE method to
better identify the most critical latents from among
multiple activated ones. Since our GradSAE is a
training-free approach, we use only the validation
set to evaluate its performance. We have shown an
example of the data in Figure 3.

B.2 Metrics

We adopt the standard SQuAD evaluation metrics:
Exact Match (EM) and token-level F1. EM mea-
sures the percentage of predictions that exactly
match a ground-truth answer, while F1 captures the
overlap at the token level between predictions and
references. To ensure fair and consistent evaluation,
we normalize text by lowercasing, removing punc-
tuation, trimming extra whitespace, and excluding
uninformative words such as “a”, “an”, and “the”.
These two metrics together offer a balanced and
comprehensive assessment of span-level prediction
quality.

C Implementation Details

Since our experimental design involves instruction-
based question answering, in theory, our GradSAE
method can be applied to any SAE model supported
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by the SAE-Lens (Bloom et al., 2024). However, in
practice, we find that only instruction-tuned LLMs
are capable of successfully answering questions
during our experiments. Consequently, in the main
paper, we primarily conduct experiments using the
SAE from the Gemma Scope series (Lieberum
etal., 2024). Specifically, we use the gemma-scope-
9b-it-res-canonical SAE, which is trained on activa-
tions from the 9th layer of the Gemma 2 9B Instruct
model. This SAE features an overcomplete latent
space with 131,000 dimensions. Additionally, in
Appendix D.3, we extend our experiments to an
SAE trained on the LLaMA 3 8B Instruct model to
evaluate the generalizability of our method across
different instruction-tuned LLMs. All experiments
are performed on an A100 SXM4 GPU with 80 GB
of memory. For experiments involving randomness,
we fix the random seed at 42 to ensure reproducibil-
ity. Additionally, we evaluate our approach on the
same SAEs trained on activations from the 20th
and 31st layers of the Gemma 2 9B Instruct model.

Table 3: Empirical analysis of SAE activations. “Avg.”
denotes the average number of non-zero latent activa-
tions per input.

Baseline GradSAE
Activation Avg. 103.41
50% Avg. 51.46
Cross TopK Overlap 18.06%
Cross BottomK Overlap 0.33%
Inner TopK Overlap 89.91%  50.46%
Inner BottomK Overlap  92.17% 0.15%

D More Experiment Results

D.1 Statistic Analysis

In this section, we empirically analyze and com-
pare the activated latents identified by the Base-
line and GradSAE. As shown in Table 3, both
approaches yield, on average, approximately 103
non-zero latent activations per example in the SAE
activation. The average value of 50% (defined in
Section 3.1.2) is approximately 51. To measure the
overlap between the two methods, we compute the
cross overlap between the TopK (K = 50%) sets
selected by Baseline and GradSAE. We observe
that, on average, only 18.06% of the latents in the
Baseline’s TopK set are also present in GradSAE’s
TopK set. This suggests that many latents with
high input-side activation may not correspond to
high output-side gradients. This highlights input

Table 4: Results of the perturbation experiment using
SAEs trained on different layers of the LLM. This table
evaluates how the choice of layer affects the effective-
ness of GradSAE and Baseline.

Layer 20 Layer 31

EM Fl___EM  Fl

Basell TopK  73.83 8253 69.52 77.69
SN pottomK  96.14 9939 9673 99.68
TopK  9.06 3835 653 17.38

GradSAE - b omK 9681 9974 9673 99.80

activation alone does not reliably indicate causal
influence on the output.

Interestingly, the cross overlap between the Bot-
tomK sets of Baseline and GradSAE is even lower,
around 0.33%. This suggests that only a few low-
activation latents in the Baseline may still carry
some gradient signal, whereas other majority la-
tents might have zero gradient. Despite this mini-
mal overlap, Table 1 upper section shows that mask-
ing either method’s BottomK latents has almost no
negative impact on performance. This implies that
the vast majority of latents are non-influential to
the model’s output, and the number of truly uninflu-
ential latents is significantly greater than the value
of “50%”.

Other than the cross overlap, we also measure
the inner TopK and BottomK latent overlap (with K
= 50%) across different prompts sharing the same
context. Specifically, since each context in our
dataset corresponds to multiple questions, we calcu-
late the overlap of activated latents across these dif-
ferent questions within the same context. As shown
in Table 3, the baseline approach exhibits a high
degree of overlap: 89.91% for TopK latents and
92.17% for BottomK latents. In contrast, GradSAE
shows much lower overlaps: 50.46% for TopK and
only 0.15% for BottomK. This discrepancy is ex-
pected, as the baseline activations are purely input-
driven and reflect prompt-level similarity. Since
prompts with the same context are textually simi-
lar except for minor changes in the question, their
activations tend to be similar as well. However,
GradSAE’s activations are guided by both the in-
put and the output gradient. This gradient signal
selectively filters out latents that do not influence
the final prediction, leading to more diverse and
dynamic activation patterns. These findings fur-
ther reinforce our earlier results, demonstrating
that GradSAE is more effective in identifying truly
influential latents that contribute to model output.
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Table 5: Results from the perturbation experiment using SAE trained on the LLaMA 3 8B Instruct model. This

table evaluates the generalization ability of GradSAE.

K=1 K=10 K = 50%
EM EM Fl __EM  FI

Baseline _TOPK 8857 0597 8002 8873 6571 7894
BottomK 100.0 100.0 97.14 9978 97.14 99.78

TopK  65.71 7924 58.14 72.98 4857 60.99

GradSAE - p tomK 1000 1000 97.14 9978 97.14 9978

D.2 Different Layer

While the main experiment focused on an SAE
trained on layer 9 of Gemma 2 9B Instruct model,
Lieberum et al. (2024) also developed SAEs for
layers 20 and 31. To investigate the impact of the
choice of layer on GradSAE, we repeated our first
experiment using SAEs from these different layers.
Specifically, we compared the effects of masking
the TopK versus BottomK latents for both Baseline
and GradSAE, using K = 50%. The results, pre-
sented in Table 4, reveal two key findings. First,
consistent with our previous results (Table 1 upper
section), masking the TopK latents harms model
performance more than masking BottomK latents
for both methods across all layers (9, 20, 31). This
reinforces our previous idea that not all activated
latents have the same influence on the model out-
put.

Second, we observe differing trends between the
methods across layers. For the Baseline method,
the performance gap between TopK and BottomK
masking decreasing at deeper layers (comparing
layer 9 vs. 20 vs. 31). This suggests that latents
activated solely on input becomes less effective at
influencing outputs in later layers. However, for
GradSAE, the significant performance gap between
TopK and BottomK masking is maintained across
all layers. This highlights GradSAE’s robustness
to layer choice, likely because it selects latents
based on both input activation and output gradients.
These results further validate GradSAE’s ability
to identify latents truly influential to the model’s
output.

D.3 Different SAE

In addition to experiments on the Gemma 2 9B
Instruct model, we also evaluated our first experi-
ment setup using an SAE trained on the LLaMA 3
8B Instruct model. Specifically, we use the llama-
3-8b-it-res-jh SAE, which was trained on activa-
tions from the 25th layer and features a latent space

with 65,536 dimensions. In this setting, we set
K € {1,10,50%}, where K = 50% corresponds
to approximately 26 latents, given that the llama-
3-8b-it-res-jh SAE activates around 52 latents per
token on average. As shown in Table 5, the perfor-
mance trends are consistent with our main exper-
iment that masking the TopK latents identified by
GradSAE results in a substantial drop in model per-
formance, whereas masking the BottomK latents
has negligible impact. While the Baseline method
also exhibits this general trend, the performance
gap between TopK and BottomK masking is no-
tably smaller compared to GradSAE. These results
further support RQ2, demonstrating that GradSAE
can effectively identify the most influential latents
even when applied to different SAEs trained on
different instruction-tuned LLMs.

E Related Works

E.1 Sparse AutoEncoder

SAEs have emerged as a widely used and highly
promising tool for interpreting the internal mecha-
nisms of LLMs (Cunningham et al., 2023; Bricken
et al., 2023; Gao et al., 2025; Rajamanoharan et al.,
2024b). An SAE is a neural network framework
designed to learn an overcomplete and sparse rep-
resentation of model activations, which helps dis-
entangle the superimposed features within LLMs
(Elhage et al., 2022). This directly addresses the
polysemanticity problem, where a single neuron
responds to multiple unrelated concepts. Tradi-
tionally, training a SAE involves balancing recon-
struction fidelity with strong sparsity constraints,
ensuring that only a small subset of latents activate
for any given input. As a result, SAEs can extract
more interpretable, monosemantic features, offer-
ing a clearer and more human-understandable view
of LLM internal behaviors.

Beyond the traditional SAE, a variety of SAE
variants have been proposed to further enhance in-
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terpretability, improve reconstruction quality, or
optimize training efficiency. These advancements
can be broadly categorized into two areas: architec-
tural improvements and training strategy improve-
ments (Shu et al., 2025). In terms of architectural
improvements, models such as Gated SAE (Raja-
manoharan et al., 2024a), TopK SAE (Gao et al.,
2025), Batch TopK SAE (Bussmann et al., 2024),
ProLLU SAE (Taggart, 2024), JumpReLU SAE (Ra-
jamanoharan et al., 2024b), and Switch SAE (Mu-
dide et al., 2024) introduce modifications to the ac-
tivation mechanisms (e.g., TopK selection or gated
activations) to better enforce sparsity and refine
feature selection. On the other hand, improvements
in training strategies include approaches like Layer
Group SAE (Ghilardi et al., 2024), Feature Choice
SAE (Ayonrinde, 2024), Mutual Choice SAE (Ay-
onrinde, 2024), Feature Aligned SAE (Marks et al.,
2024), and End-to-end SAE (Braun et al., 2025).
These methods enhance feature selection, align-
ment, and training efficiency while preserving the
core architecture of traditional SAEs. In this paper,
GradSAE introduces a training-free approach that
leverages output gradients falling under architec-
tural improvements.

E.2 Model Steering

SAEs have emerged as a powerful tool not only
for interpreting the internal mechanisms of LLMs
but also for steering their behavior, since SAEs
can identify distinct, human-interpretable features
within LLMs. Once these features are identified,
interventions can be performed by activating or
suppressing the corresponding latents during in-
ference. Several recent studies have explored and
enhanced the use of SAEs for steering LLMs. SAIF
(He et al., 2025) proposes a framework for inter-
preting instruction-following capabilities in LLMs
by identifying instruction-relevant SAE features
and demonstrates how manipulating these features
can effectively steer instruction-following behav-
ior. SAE-TS (Chalnev et al., 2024) introduces a
method to construct steering vectors that precisely
target specific SAE features while minimizing unin-
tended side effects, leading to more controlled and
coherent model outputs. SpARE (Zhao et al., 2024)
leverages SAE representations to detect and resolve
context-memory knowledge conflicts at inference
time, enabling LLMs to selectively use contextual
or parametric knowledge. Mutual Information-
Based Explanations (MIE) (Wu et al., 2025) ad-
dresses frequency bias in SAE feature interpreta-

tions and proposes runtime steering strategies that
adjust feature activations based on more meaning-
ful, discourse-level explanations. FGAA (Soo et al.,
2025) further refines activation steering by optimiz-
ing over SAE latents, creating highly targeted and
interpretable steering vectors that improve steer-
ing effectiveness while maintaining output quality.
SSAEs (Joshi et al., 2025) propose a new unsuper-
vised method that learns sparse, identifiable latent
representations of multi-concept shifts, enabling
accurate concept-level steering without requiring
curated supervision. However, these approaches
implicitly assume a direct correspondence between
latents activated solely by the input and the aspects
of the output they aim to steer. In contrast, Grad-
SAE challenges this assumption by arguing that
the model’s output must also be considered when
identifying influential latents for steering. By in-
corporating output-side gradient information, Grad-
SAE provides a more accurate attribution of which
latents truly drive model outputs, leading to more
effective and reliable steering interventions.
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