
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17147–17160
November 4-9, 2025 ©2025 Association for Computational Linguistics

Stepwise Reasoning Checkpoint Analysis:
A Test Time Scaling Method to Enhance LLMs’ Reasoning

Zezhong Wang1,4*, Xingshan Zeng2†, Weiwen Liu3, Yufei Wang2, Liangyou Li2,
Yasheng Wang2, Lifeng Shang2, Xin Jiang2, Qun Liu2, Kam-Fai Wong1,4

1The Chinese University of Hong Kong
2Huawei Noah’s Ark Lab, 3Shanghai Jiao Tong University

4MoE Key Laboratory of High Confidence Software Technologies, CUHK, China
zzwang@se.cuhk.edu.hk, zeng.xingshan@huawei.com

Abstract

Mathematical reasoning through Chain-of-
Thought (CoT) has emerged as a powerful ca-
pability of Large Language Models (LLMs),
which can be further enhanced through Test-
Time Scaling (TTS) methods like Beam Search
and DVTS. However, these methods, despite
improving accuracy by allocating more com-
putational resources during inference, often
suffer from path homogenization and ineffi-
cient use of intermediate results. To address
these limitations, we propose Stepwise Reason-
ing Checkpoint Analysis (SRCA), a framework
that introduces checkpoints between reasoning
steps. It incorporates two key strategies: (1)
Answer-Clustered Search, which groups rea-
soning paths by their intermediate checkpoint
answers to maintain diversity while ensuring
quality, and (2) Checkpoint Candidate Aug-
mentation, which leverages all intermediate an-
swers for final decision-making. Our approach
effectively reduces path homogenization and
creates a fault-tolerant mechanism by utilizing
high-quality intermediate results. Experimen-
tal results show that SRCA improves reasoning
accuracy compared to existing TTS methods
across various mathematical datasets.

1 Introduction

Large Language Models (LLMs) have demon-
strated mathematical reasoning capabilities through
Chain-of-Thought (CoT) (Wei et al., 2022). Re-
cent studies indicate that Test Time Scaling (TTS),
which expands test-time computing resources to
allocate more reasoning budget through methods
such as Beam Search (Snell et al., 2024) and Di-
verse Verifier Tree Search (DVTS) (Beeching et al.,
2024), can significantly improve accuracy in math-
ematical reasoning tasks (Ji et al., 2025; Zhao et al.,
2024; Chen et al., 2025a). These methods allow

*Work done during internship at Huawei Noah’s Ark Lab.
†Corresponding author

LLMs to sample multiple candidates at each rea-
soning step and score them using a process reward
model (PRM) (Xi et al., 2024; Wu et al., 2024a;
Wang et al., 2024b; Zhang et al., 2025a). Accord-
ing to their strategies, they select high-scoring steps
to continue reasoning, thus overcoming the limita-
tions of single-path reasoning.

However, current methods face two key chal-
lenges in practice. First, maintaining diversity in
the sampled reasoning paths is both crucial and
arduous (Misaki et al., 2025; Li et al., 2023). Even
though the model generates multiple candidate
paths, the chosen ones usually follow similar rea-
soning directions. This happens because the reward
mechanism favors local optimal solutions, caus-
ing the search process to converge too early and
fail to explore diverse reasoning patterns (Hooper
et al., 2025; Zeng et al., 2025). Second, exist-
ing methods underutilize intermediate reasoning
results: many intermediate branches are discarded
during the search, and only a few complete paths
are used in the final decision, leading to a waste
of computational resources (Wang et al., 2024c;
Zhang et al., 2025b).

To address these issues, we propose Stepwise
Reasoning Checkpoint Analysis (SRCA). We in-
troduce reasoning checkpoints as a foundational
technique and propose a searching method and a
decision-enhancement strategy based on it. We
inject "checkpoints" after each reasoning step.
Specifically, once a step is completed, we temporar-
ily interrupt the reasoning process and append the
prompt "So the answer is" to the current reason-
ing steps, compelling the model to generate an
intermediate prediction rather than continuing its
reasoning process, as illustrated in the upper right
corner of Figure 1. Using the intermediate answers
collected at these checkpoints, we further propose
an Answer-Clustered Search strategy. We group
multiple reasoning steps sampled at the current
checkpoint according to their detected answers, and

17147

retain high-quality reasoning steps from each group
for further extension. This approach allows us to
maintain multiple potential reasoning paths leading
to different answers, thus increasing the diversity of
reasoning processes and mitigating the issue of path
homogenization. Additionally, we introduce the
Checkpoint Candidate Augmentation strategy.
By collecting all intermediate answers generated at
checkpoints, we expand the pool of candidate rea-
soning paths, allowing these intermediate results to
participate in the final decision-making process. In
this way, we fully utilize all high-quality interme-
diate results generated during reasoning, creating
a fault-tolerant mechanism. Even if subsequent
reasoning deviates, the retained high-quality inter-
mediate predictions may still lead to the correct
answer.

The contributions of this work can be summa-
rized as follows:

• We introduce the concept of reasoning check-
points, providing a new methodology for an-
alyzing and improving LLM reasoning pro-
cesses during test time.

• Based on this concept, we develop SRCA,
a framework that effectively addresses both
path diversity and computational efficiency
challenges.

• We conduct extensive experiments that
demonstrate the superiority of our approach
and provide valuable insights for future re-
search in Test-Time Scaling.

2 Related Works

As enthusiasm for scaling pre-training computation
wanes, Test-Time Scaling (TTS) has emerged as a
key research focus (Wang et al., 2024a; Wu et al.,
2024b; Chen et al., 2025a). TTS allocates addi-
tional computation during inference to improve per-
formance, significantly enhancing LLMs’ problem-
solving capabilities across specialized and general
tasks. Some TTS approaches use training to en-
courage LLMs to generate more extensive outputs
for deeper reasoning (Guan et al., 2025; Xi et al.,
2024). These methods create synthetic data, includ-
ing long chain-of-thought (Chen et al., 2025b; Xi-
ang et al., 2025) and reflection-based examples (Bi
et al., 2025; Zhang et al., 2024; Yu et al., 2024), to
fine-tune LLMs, shifting their behavior from rapid
responses to more deliberate reasoning.

Another category is training-free tree search,
which forms the primary focus of this work (Luo
et al., 2024; Wan et al., 2024; Guan et al.,
2024). These methods dynamically guide the
LLM’s reasoning process using external verifiers
or PRMs (Jiang et al., 2024; Uesato et al., 2022;
Setlur et al., 2024). Snell et al. (2024) introduced
Beam Search to explore the reasoning space, where
PRM evaluates each reasoning step and maintains
a fixed number of promising paths based on the
beam width. Building upon this foundation, sub-
sequent research (Beeching et al., 2024) proposed
Diverse Verifier Tree Search (DVTS), which offers
a notable improvement (Liu et al., 2025). Instead
of maintaining a single search beam, DVTS oper-
ates multiple search trees simultaneously, selecting
and expanding the most promising reasoning path
within each tree. Tree search algorithms, however,
face two crucial challenges: the diversity problem
and the utilization problem.

The diversity problem arises when PRMs in-
advertently suppress the LLM’s sampling diver-
sity (Chen et al., 2025b; Zheng et al., 2024). This
occurs because only high-scoring paths are re-
tained, and these paths often share similar problem-
solving approaches. This issue is further exacer-
bated by the inherent biases in the imperfect PRMs
or verifier (He et al., 2025; Zheng et al., 2024).
The utilization problem arises because tree search
algorithms explore numerous paths, but typically
only one contributes to the final result. This leads
to many branches and intermediate processes be-
ing discarded, with utilization efficiency decreas-
ing as search scale increases. The challenge is
to efficiently integrate generated reasoning over-
head (Wang et al., 2024c; Zhang et al., 2025b; Sui
et al., 2025). This issue has evolved into the "over-
thinking problem," where LLMs waste resources
on simple problems, potentially leading to perfor-
mance degradation through error accumulation (Li
et al., 2024; Wu et al., 2025; Huang et al., 2025;
Gan et al., 2025; Aggarwal and Welleck, 2025).

To address these dual challenges, we propose
two novel strategies. First, the Answer Cluster
Search algorithm is designed to enhance the diver-
sity of tree search processes. Second, we introduce
the Check Point Augmentation strategy to preserve
high-quality intermediate reasoning processes for
reuse in final answer decision-making, thereby ad-
dressing the low utilization problem inherent in
tree search methodologies.

17148

LLM PRM

Candidates

Pool

1

2

3

4
… …

44466

CoT

step i-1

CoT

step i

0.90.80.70.60.7

CoT

step i+1

Activated Nodes Checkpoint Answers PRM ScoresDiscarded Nodes Select

Checkpoint Candidate Augmentation

Answer-Clustered Search

5

0.6

Checkpoint Injection

Step 2:

Half of the balls

are golf balls.

…

0.6

LLM

PRM

…
Step 3:

…

So, the answer is 5

LLM

Checkpoint

Figure 1: Overview of SRCA. Top-right: The checkpoint operation, which serves as the atomic operation in SRCA.
Left: Illustration of ACS strategy at step i, where N = 6 and M = 2. Retrieved reasoning steps are clustered into
three groups based on their checkpoint answers (indicated by different shades), with the highest-scoring nodes
selected from clusters with answers 6 and 4 for subsequent reasoning. Bottom-right: CCA strategy, where paths 3
and 4 represent high-quality intermediate reasoning steps collected by CCA.

3 Methodology

In this section, we introduce three key techniques,
Checkpoint Injection, which serves as the atomic
operation in SRCA, Answer-Clustered Search
(ACS), and Checkpoint Candidate Augmentation
(CCA), to improve LLM’s reasoning path search-
ing.

3.1 Checkpoint Injection

We introduce a dynamic intervention mechanism
to analyze the model’s reasoning trajectory through
checkpoint injection. As shown in the upper top-
right part of Figure 1, the core procedure begins
by monitoring the model’s output stream for pre-
defined step delimiter tokens (e.g., "### Step"),
which indicate the completion of a logical reason-
ing unit. Upon detecting such tokens, we inject a
checkpoint to temporarily suspend autoregressive
generation. At each checkpoint position, a fixed
prompt template xckpt = "So, the answer is " is
inserted to force the model to generate an interme-
diate prediction based solely on the accumulated
context up to that step. The model’s immediate re-
sponse to xckpt is recorded as a checkpoint answer
at at step t, after which the LLM rolls back the
generation state to the original checkpoint position.
This rollback operation ensures the elimination of
checkpoint influence from the ongoing reasoning
process while preserving the model’s KV cache

for continued generation (Wang et al., 2025). The
checkpoint answers subsequently serve as crucial
criteria for path similarity assessment and grouping
in the ACS strategy, while also being collected by
the CCA method to enrich the final answer candi-
date pool.

3.2 Answer-Clustered Search

Similar to Beam Search (Snell et al., 2024), The
Answer-Clustered Search (ACS) evaluates and re-
tains a select few of the multiple reasoning steps
sampled by the LLM for further reasoning. It
enhances reasoning diversity through stepwise
answer-guided clustering. In the following part,
we will detail the four key steps of ACS using the
running case shown on the left side of Figure 1.

1. Sampling. At each reasoning step t, we first
determine the branching factor: for the initial step
(t = 1), the LLM samples N candidate reasoning
paths; for subsequent steps, each of the M surviv-
ing beams generates N/M sub-paths, maintaining
a total budget of N paths. This set of paths is de-
fined as {p(j)t }Nj=1. Figure 1 illustrates the case
where N = 6 and M = 2.

2. Clustering. All N paths undergo Checkpoint
Injection at step t, yielding checkpoint answers
{a(j)t }Nj=1. These paths are clustered into groups

G = {C1, C2, ..., Ck} where Ci = {j|a(j)t = ac},
forming answer-homogeneous clusters. The group-

17149

Algorithm 1: Answer-Clustered Search
Input: Sampling budget N , beam width M ,

candidate set {p(j)t }Nj=1

Output: Selected paths set P
// Checkpoint Injection & Scoring
for j ← 1 to N do

a
(j)
t ← SRCA(p

(j)
t);

s
(j)
t ← PRM(p

(j)
t);

end
// Clustering& Sorting
G = {C1, ..., Ck} where Ci = {j|a(j)

t = ai};
for Ci ∈ G do

Si ←
∑

j∈Ci
sj ;

end
G← {Ci : Si ≥ Si+1}ki=1;
// Round-robin Selection
P ← ∅;
while |P| < M do

for Ci ∈ G do
j∗ ← argmaxj∈Ci

sj ;
P ← P ∪ {p(j∗)};
Ci ← Ci \ {p(j

∗)};
if |P| = M then

break;
end

end
end

ing results are marked with shading in Figure 1.
3. Scoring. A PRM assigns scores sj to each

path p
(j)
t , with cluster Ci’s aggregate score com-

puted as Si =
∑

j∈Ci
sj . This approach is similar

to a stepwise Weighted Best-of-N implementation.
4. Selection. Clusters are sorted by Si in de-

scending order, while paths within each cluster are
ranked by sj . Then we sequentially select top-
ranked paths across clusters via round-robin sam-
pling: starting from the highest cluster, we pick
the top path from each cluster, cycling back when
reaching the last cluster until M paths are selected.

This resource-aware branching prioritizes high-
quality clusters while maintaining inter-cluster di-
versity. The cyclic selection mechanism prevents
dominance by single-answer clusters and enables
early identification of divergent reasoning trajecto-
ries. We provide a more rigorous process in Algo-
rithm 1.

3.3 Checkpoint Candidate Augmentation

The proposed Checkpoint Candidate Augmenta-
tion (CCA) aims to maximize the use of reasoning
resources and enhance the diversity of candidate an-
swers by integrating the checkpoint answers from
intermediate reasoning steps. Traditional Beam
Search methods retain only a fixed number, i.e., M,
of complete reasoning paths as the final candidate

set, which leads to the discard of many unfinished
intermediate branches. To address this issue, our
method continuously collects intermediate answers
generated at all checkpoints during the ACS and
reconstructs the corresponding truncated reasoning
paths into valid candidate paths. Specifically, for
each intermediate answer a(j)t produced at a check-
point, we concatenate it with the current reasoning
path p

(j)
t to form a candidate path with a complete

logical chain:

p̂
(j)
t = p

(j)
t ⊕ xckpt ⊕ a

(j)
t (1)

where ⊕ represents string concatenation.
All candidate paths, including the original com-

plete paths and the newly added intermediate paths,
are uniformly scored by the PRM, and the path
with the highest score is selected as the model out-
put. This method offers two main advantages: first,
by incorporating prediction results from the inter-
mediate inference process into the candidate set, it
significantly improves the utilization of computa-
tional resources already spent; second, by retaining
intermediate answers at various stages, it estab-
lishes an effective fault tolerance mechanism. Even
if the LLM makes mistakes in subsequent steps, it
may still arrive at the correct answer through the
retained high-quality intermediate predictions. On
the other hand, CCA can effectively mitigate is-
sues such as overthinking, increasingly erroneous
reasoning, and repetitive outputs in LLMs.

4 Experiments

We conducted comparative experiments on four
mathematical reasoning datasets and against four
Test-Time Scaling baselines.

4.1 Settings
In the experiments, we used four datasets: GSM8K,
MATH500, AIME, and OlympiadBench. Two
different-sized LLMs were tested in total, specifi-
cally Llama-3.2-1B-Instruct (MetaAI, 2024) and
Qwen3-0.6B (Yang et al., 2025). For the PRM,
we adopted the model fine-tuned by DeepSeek,
Llama3.1-8B-PRM-Deepseek-Data (Xiong et al.,
2024) and Skywork-o1-Open-PRM-Qwen-2.5-7B re-
leased by Skywork (o1 Team, 2024).

We compared our method against several
TTS algorithms, including Greedy Search, Self-
Consistency (Wang et al., 2023), Best-of-N
(BoN) (Brown et al., 2024), Weighted BoN (Brown
et al., 2024), Beam Search (Snell et al., 2024), and

17150

Models & TTS GSM8K MATH500 AIME OlympiadBench
Independent Sampling

Llama-3.1-70B-Instruct (Grattafiori et al., 2024) 95.10 65.00 36.66 27.70
Llama-3.2-1B-Instruct (MetaAI, 2024) 43.75 24.40 3.22 4.59

w. Self-Consistency (Wang et al., 2023) 57.70 39.80 8.57 11.70
TTS Llama-3.2-1B-Instruct w. Llama3.1-8B-PRM-Deepseek-Data

BoN (Brown et al., 2024) 80.36 46.20 11.04 13.48
Weighted BoN (Brown et al., 2024) 65.50 46.40 10.50 13.63
Beam Search (Snell et al., 2024) 84.84 52.00 19.07 18.07
DVTS (Beeching et al., 2024) 83.47 52.60 20.68 19.40
SRCA (Ours) 85.60 53.40 24.97 20.74

TTS Llama-3.2-1B-Instruct w. Skywork-o1-Open-PRM-Qwen-2.5-7B
BoN (Brown et al., 2024) 80.74 55.20 25.08 18.22
Weighted BoN (Brown et al., 2024) 76.72 52.60 28.08 18.67
Beam Search (Snell et al., 2024) 84.99 63.20 26.82 23.89
DVTS (Beeching et al., 2024) 84.00 64.80 29.03 25.82
SRCA (Ours) 85.97 65.20 39.71 27.75

Table 1: Comparison of TTS results. The upper section shows the greedy search results for 1B and 70B models, and
we additionally report the self-consistency performance of the 1B model with N = 128. The lower section shows
results from the 1B model combined with various TTS methods and two PRMs, also with N = 128. Numbers
indicate accuracy (%). Best overall performance on each dataset is marked in bold, while best performance within
each group is underlined.

Diverse Verifier Tree Search (DVTS) (Beeching
et al., 2024). Among these methods, Beam Search
maintains N paths and selects M highest-scoring
ones for expansion, with each generating N/M
sub-paths. DVTS extends this by initializing M
subtrees and sampling N/M paths per step within
each subtree, enhancing path diversity through sub-
tree isolation. Other baseline methods are standard
approaches in the field; their detailed descriptions
can be found in Appendix A.

For all the sampling-based methods, set temper-
ature = 0.8 and top_p = 0.9. We use N = 16 and
N = 64 for sampling times to assess the effect of
sampling scale on reasoning performance. For the
methods involving path selection, such as Beam
Search, DVTS, and SRCA, the beam width M is
fixedly set to 4, that is, the 4 candidate paths with
the highest scores are retained at each reasoning
step for subsequent expansion.

Since the PRM can collect the step-level scores
of the complete reasoning path to form a score se-
quence, there are various ways to determine the
final score of the path, such as taking the sum, ac-
cumulation, minimum value of the sequence scores,
and the score of the last step. In this experiment, the
score of the last step in the path is used as the path
score. The effects of these configurations on exper-
imental results are discussed in Appendix B.2.

4.2 Results

Table 1 shows the performance of Llama-3.2-1B-
Instruct with various TTS methods on four math-
ematical datasets (N = 128, M = 4). We also

include results from Llama-3.1-70B-Instruct for
comparison.

4.2.1 Scaling with SRCA: Small Models Can
Outperform Larger Ones

SRCA consistently outperforms other TTS meth-
ods across all datasets, regardless of the PRM used.
With DeepSeek PRM, SRCA achieves approxi-
mately 10% absolute improvement over the BoN
baseline. The improvement is particularly notable
on AIME, where SRCA shows a 43% relative per-
formance gain over DVTS. Remarkably, when us-
ing Skywork PRM, our 1B model with SRCA out-
performs the 70B model on MATH500, AIME, and
OlympiadBench, only falling behind on the sim-
pler GSM8K dataset. This demonstrates SRCA’s
effectiveness in enabling smaller models to com-
pete with larger ones. On the other hand, The
choice of PRM also impacts performance, with
Skywork PRM generally yielding better results
than DeepSeek PRM across all TTS methods. This
suggests that future advances in PRM development
could lead to further performance improvements in
TTS methods. More results of SRCA on Qwen3-
0.6B are presented in Appendix B.3.

4.2.2 Expanding Sampling Times: SRCA Has
Higher Efficiency.

We test various TTS methods with sampling times
N = 16, 32, 64, and 128. The results are shown in
Figure 2. SRCA demonstrates superior efficiency
by requiring fewer samples to achieve compara-
ble accuracy. With DeepSeek PRM on MATH500,
SRCA achieves 51.2% accuracy at N = 16, out-

17151

70B 70B
70B

70B

Figure 2: Performance trends of TTS methods with DeepSeek PRM (top row) and Skywork PRM (bottom row) and
as the sampling number N increases from 16 to 128. In the bottom row, we additionally mark the performance of
the 70B model with a green line for comparison.

Figure 3: Pass@K trends of the 1B model with different TTS methods and DeepSeek PRM as the sampling number
increases from 16 to 128. Note that for Pass@K calculation, Self-Consistency, BoN, and Weighted BoN degrade to
Independent Sampling.

performing DVTS’s 49.8% at N = 64. This advan-
tage is more pronounced on AIME, where SRCA’s
accuracy at N = 16 exceeds all TTS methods’
performance at N = 128. Using Skywork PRM
further amplifies this gap: SRCA reaches 32.48%
at N = 16, while the best baseline (DVTS) only
achieves 29.03% at N = 128. Performance im-
provements show diminishing returns as N in-
creases, with N = 16 → 32 gains being larger
than N = 64 → 128. This pattern holds across
different PRMs, suggesting convergence to an up-
per bound. Further analysis regarding the computa-
tional overhead and efficiency of SRCA is provided
in Appendix B.1.

5 Analysis

5.1 Pass Rate Test: SRCA Improves Answer
Discovery

The ability to sample at least one correct reasoning
path is crucial for policy models, as it determines
the effectiveness of PRM guidance. If a policy
model does not sample any correct paths, even a

perfect PRM cannot select the correct one. We
conducted Pass@k tests on 4 datasets comparing
different TTS methods, including SRCA without
CCA to understand each component’s contribution.
Results are shown in Figure 3. SRCA demon-
strates superior pass rates across datasets. Ablation
studies show that CCA contributes approximately
10% improvement through answer pool expansion,
while ACS alone still outperforms DVTS and Beam
Search by 3% on average. Independent sampling
achieves higher Pass@k on simpler datasets due to
its unconstrained randomness generating more di-
verse solutions. However, for challenging datasets
like AIME, this approach performs poorly as ran-
dom exploration is ineffective when precise reason-
ing is required. On the other hand, the TTS method
produces a candidate set of better quality, resulting
in a higher pass rate.

5.2 Early Stopping: Efficient Computing with
No Performance Loss.

Recent research shows that LLMs often suffer from
overthinking, conducting unnecessary analysis that

17152

43%

19%
30%

15%

Figure 4: The average accuracy and search depth of SRCA with early stopping strategies under different values of
tau. The left y-axis represents the search depth, while the right y-axis represents the accuracy (%). The dashed line
in the figure annotates the reduction rate of tree depth, i.e., the number of reasoning steps, when tau = 0.95. The
pentagon represents the best performance.

11.63% 19.35%

20.25% 25.04%

Figure 5: Ablation study results on four datasets, grouped by different values of N . For the bars corresponding to
methods incorporating CCA, the Checkpoint Answer Rate (CAR) is additionally marked with slashes shading. The
average CAR for each dataset is indicated in the top-left corner of each subplot.

wastes computational resources and can even lead
to incorrect answers (Li et al., 2024; Wu et al.,
2025; Sui et al., 2025). We implement early stop-
ping in SRCA by introducing a threshold τ : rea-
soning stops when a checkpoint answer’s score
exceeds τ . We tested various τ values (0.5-1.0),
measuring both accuracy and average reasoning
steps, with τ = 1 (no early stopping) as baseline.
Results are shown in Figure 4. This experiment
uses Skywork PRM with N = 16 samples.

Low thresholds like 0.5 hurt performance, caus-
ing a 14% accuracy drop on MATH500. While this
reduces reasoning steps, the performance trade-off
is unacceptable. Higher thresholds require more
steps but yield better accuracy, as expected. At
τ = 0.95, early stopping reduces reasoning steps
by 27% across datasets while only losing 0.58% ac-
curacy. Notably, it sometimes improves accuracy:
both MATH500 and OlympiadBench show better
results at τ = 0.95 than without early stopping.

This confirms that overthinking can harm perfor-
mance, due to either model reasoning limitations or
PRM imperfections (Zheng et al., 2024; He et al.,
2025). Early stopping is particularly effective for
simpler tasks: GSM8K shows a 43% reduction in
reasoning steps at τ = 0.95, compared to 19% for
the more challenging AIME problems.

5.3 Ablation Study

SRCA combines ACS for diverse path searching
and CCA for expanding the answer candidate pool.
We conducted ablation studies by: (1) testing ACS
alone without CCA, and (2) combining CCA with
baseline methods (Beam Search and DVTS). SRCA
combines ACS for diverse path searching and CCA
for expanding the answer candidate pool. We con-
ducted ablation studies by: (1) testing ACS alone
without CCA, (2) combining CCA with baseline
methods (Beam Search and DVTS), and (3) replac-
ing ACS with a random baseline.

17153

Reasoning
Step
Score

Checkpoint Answer
Final
Score

Question: What is the smallest positive perfect cube that can be written as the
sum of three consecutive integers?

- - -

Answer:
Step 1: Let's denote the first of the three consecutive integers as n. We know
that the next two consecutive integers are n+1 and n+2.

0.8774 $\boxed{9}$
0.0313

Step 2: The sum of these three consecutive integers is n + (n+1) + (n+2). This
simplifies to 3n + 3.

0.8676 $\boxed{3n + 3}$ 0.0459

Step 3: We are looking for the smallest positive perfect cube that can be
expressed in this form. Let's rewrite the expression 3n + 3 as 3(n + 1).

0.8359
$\boxed{{3(1)^3 + 3(2)^3 = 3(1 +
2^3) = 3(1 + 8) = 3(9) = 27}$

0.6762

Step 4: A perfect cube is the cube of an integer. So, we need to find the
smallest value of n for which 3(n + 1) is a perfect cube.

0.7822 $\boxed{27}$ 0.6837

Step 5: To find the smallest perfect cube, we can start by checking small
values of n. Let's start with n = 1: 3(1 + 1) = 3(2) = 6, which is not a perfect cube.

0.6674 $\boxed{27}$ 0.7192

Step 6: Now, let's try n = 2: 3(2 + 1) = 3(3) = 9, which is a perfect cube (3^2). 0.3876 $\boxed{9}$ 0.0054

Step 7: Since we found a perfect cube in the first step, we don't need to check
further values of n.

0.0764 $\boxed{9}$ 0.1356

The final answer is: $\boxed{9}$ - - 0.0212

Table 2: A real running case of SRCA during reasoning. The first column shows the question and the model’s
reasoning process. The Step Score represents PRM’s evaluation of the current step, while the Final Score indicates
the PRM score when using the current step and its checkpoint answer as the reasoning endpoint.

5.3.1 Impact of CCA

Results are shown in Figure 5. We also track the
Checkpoint Answer Rate (CAR) - the percentage
of final answers selected from checkpoint, which
is marked with slashes on the bar chart. After
removing the CCA strategy, SRCA degrades to
ACS strategy, resulting in a notable performance
decline. However, on relatively simple datasets like
GSM8K and MATH500, increasing the sampling
size (e.g., to N = 128) minimizes this performance
gap to less than 1%. Notably, ACS consistently out-
performs both Beam Search and DVTS baselines
across most configurations, demonstrating its ro-
bust effectiveness.

The integration of CCA with baseline methods
yields substantial improvements in accuracy (3-
4%). Analysis shows that 19.07% of final answers
originate from CCA’s expanded candidate pool, un-
derscoring its important contribution to solution
generation. The impact varies by problem diffi-
culty: CAR is 11.63% for GSM8K but rises to
25.04% for OlympiadBench, indicating that CCA’s
influence is more pronounced in solving complex
problems.

5.3.2 Effectiveness of ACS

We define this random baseline as follows: (1) For
each sampling of n paths, first randomly shuffle
them; (2) Then randomly select an integer k from 1
to 16, representing the number of clusters to form;
(3) Randomly select k unique numbers from 0 to

TTS GSM8K MATH500 AIME Olym.
Beam Search 84.99 63.20 26.82 23.89
DVTS 84.00 64.80 29.03 25.82
SRCA 85.97 65.20 39.71 27.75
SRCA Rand. 83.78 65.00 28.62 25.96

Table 3: Results of Replacing ACS with a Random
Baseline.

n as cluster boundaries. This completes the cluster
division, and we continue with Round-robin selec-
tion according to Algorithm 1. For example, if
n = 16 and k = 3, the boundary indices could be:
3, 5, 10. The final clusters would be divided into
[0, 1, 2], [3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15].
We report the results of this baseline in Table 3.

We set the sampling number N=128 and choose
Skywork PRM. The performance of the random
baseline is not significantly different from DVTS,
but lower than SRCA. This indicates that clustering
based on intermediate answers can bring substan-
tial improvements.

5.4 Case Study
Table 2 shows a real running case of SRCA during
reasoning. Since the complete search tree is too
large, we only showcase how SRCA uses Check-
point Answers to backup correct answers from in-
correct branches. The model’s reasoning process
can be explained manually in three phases:

• Early Stage (Steps 1-2): During initial rea-
soning, the model produces either incorrect
answers or incomplete expressions instead of

17154

proper numerical values, indicating insuffi-
cient reasoning depth.

• Answer Formation Stage (Steps 3-5): Starting
from Step 3, the model attempts brief reason-
ing in the answer box and first obtains the
correct answer 27. Although reasoning in the
answer box is not ideal behavior, the model
successfully reaches the correct answer this
way. This correct answer is maintained until
Step 5.

• Error Stage (Step 6): A critical reasoning error
occurs when the model incorrectly identifies
9 as a perfect cube instead of a perfect square.
This error leads to an incorrect checkpoint
answer that affects the reasoning until the end.

When all checkpoint answers are evaluated as
reasoning endpoints by PRM, Step 5 receives the
highest score of 0.7192, exceeding the natural end-
ing’s score of 0.0212. If no other branch has a score
higher than 0.7192, this score will be selected as
the final answer, effectively correcting the wrong
answer from the natural reasoning endpoint to the
correct one.

6 Conclusion

In this paper, we introduced SRCA, a novel frame-
work that enhances LLM reasoning by introduc-
ing checkpoints between reasoning steps. Our
Answer-Clustered Search strategy effectively main-
tains path diversity while ensuring reasoning qual-
ity, and the Checkpoint Candidate Augmentation
approach efficiently utilizes intermediate predic-
tions for final decision-making. Experimental re-
sults demonstrate that SRCA outperforms base-
line methods like Beam Search and DVTS across
various mathematical reasoning datasets. The suc-
cess of SRCA suggests that leveraging intermediate
checkpoints is a promising direction for improving
LLM reasoning capabilities.

Limitations

SRCA faces two main limitations. First, while
it requires checkpoints between reasoning steps,
defining precise step boundaries is challenging. Al-
though Llama-series models exhibit relatively clear
step demarcations with characteristic delimiters,
others, particularly the emerging "slow thinking"
models, often generate outputs without distinct
structural patterns and sometimes in a more con-
versational style. Second, the reasoning steps aug-
mented by the CCA strategy are often incomplete.

While models can still generate correct answers
based on these partial reasoning paths, this incom-
pleteness reduces the interpretability of the reason-
ing process. Compared to naturally completed rea-
soning chains, these occasionally truncated paths
represent a shortcoming in terms of explanation
quality and transparency.

Acknowledgments

This work is supported by Hong Kong RGC GRF
No. 14206324, CUHK Knowledge Transfer Project
Fund No. KPF23GWP20, and National Natural
Science Foundation of China (62502310).

References
Pranjal Aggarwal and Sean Welleck. 2025. L1: Con-

trolling how long a reasoning model thinks with rein-
forcement learning. Preprint, arXiv:2503.04697.

Edward Beeching, Lewis Tunstall, and Sasha Rush.
2024. Scaling test-time compute with open models.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and
Yunhe Wang. 2025. Forest-of-thought: Scaling test-
time compute for enhancing llm reasoning. Preprint,
arXiv:2412.09078.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V. Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling in-
ference compute with repeated sampling. Preprint,
arXiv:2407.21787.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2025a. Simple and provable scaling
laws for the test-time compute of large language mod-
els. Preprint, arXiv:2411.19477.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen,
Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, and 3 others. 2025b.
An empirical study on eliciting and improving r1-like
reasoning models. Preprint, arXiv:2503.04548.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Rei-
ichiro Nakano, and 2 others. 2021. Training ver-
ifiers to solve math word problems. Preprint,
arXiv:2110.14168.

Zeyu Gan, Yun Liao, and Yong Liu. 2025. Re-
thinking external slow-thinking: From snowball er-
rors to probability of correct reasoning. Preprint,
arXiv:2501.15602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 551 others. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

17155

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2503.04697
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2412.09078
https://arxiv.org/abs/2412.09078
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2411.19477
https://arxiv.org/abs/2411.19477
https://arxiv.org/abs/2411.19477
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.15602
https://arxiv.org/abs/2501.15602
https://arxiv.org/abs/2501.15602
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Xinyan Guan, Yanjiang Liu, Xinyu Lu, Boxi Cao, Ben
He, Xianpei Han, Le Sun, Jie Lou, Bowen Yu, Yao-
jie Lu, and Hongyu Lin. 2024. Search, verify and
feedback: Towards next generation post-training
paradigm of foundation models via verifier engineer-
ing. Preprint, arXiv:2411.11504.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding
Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, and 4 others. 2024.
OlympiadBench: A challenging benchmark for pro-
moting AGI with olympiad-level bilingual multi-
modal scientific problems. In Proceedings of the
62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 3828–3850, Bangkok, Thailand. Association
for Computational Linguistics.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang,
Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaox-
iang Zhang, Zhicheng Zheng, Wenbo Su, and
Bo Zheng. 2025. Can large language models detect
errors in long chain-of-thought reasoning? Preprint,
arXiv:2502.19361.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Coleman Hooper, Sehoon Kim, Suhong Moon,
Kerem Dilmen, Monishwaran Maheswaran, Nicholas
Lee, Michael W. Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2025. Ets: Efficient
tree search for inference-time scaling. Preprint,
arXiv:2502.13575.

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-
acheng Liu, and Jiaxin Huang. 2025. Efficient
test-time scaling via self-calibration. Preprint,
arXiv:2503.00031.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu,
Linjian Mo, and Min Zhang. 2025. Test-time com-
pute: from system-1 thinking to system-2 thinking.
Preprint, arXiv:2501.02497.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, and 5 others. 2024.
Enhancing llm reasoning with reward-guided tree
search. Preprint, arXiv:2411.11694.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 5315–5333, Toronto,
Canada. Association for Computational Linguistics.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan
Pan, Xinglin Wang, Bin Sun, Heda Wang, and Kan
Li. 2024. Escape sky-high cost: Early-stopping
self-consistency for multi-step reasoning. Preprint,
arXiv:2401.10480.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu
Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou.
2025. Can 1b llm surpass 405b llm? rethink-
ing compute-optimal test-time scaling. Preprint,
arXiv:2502.06703.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, and 2 others. 2024. Im-
prove mathematical reasoning in language mod-
els by automated process supervision. Preprint,
arXiv:2406.06592.

MetaAI. 2024. Llama 3.2: Revolutionizing edge
ai and vision with open, customizable mod-
els. https://ai.meta.com/blog/llama-3-2-connect-
2024-vision-edge-mobile-devices/. 2025-03-01.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki,
Taishi Nakamura, and Takuya Akiba. 2025. Wider
or deeper? scaling llm inference-time compute
with adaptive branching tree search. Preprint,
arXiv:2503.04412.

Skywork o1 Team. 2024. Skywork-o1 open series.
https://huggingface.co/Skywork.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar. 2024.
Rewarding progress: Scaling automated process veri-
fiers for llm reasoning. Preprint, arXiv:2410.08146.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and Xia
Hu. 2025. Stop overthinking: A survey on effi-
cient reasoning for large language models. Preprint,
arXiv:2503.16419.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solving
math word problems with process- and outcome-
based feedback. Preprint, arXiv:2211.14275.

17156

https://arxiv.org/abs/2411.11504
https://arxiv.org/abs/2411.11504
https://arxiv.org/abs/2411.11504
https://arxiv.org/abs/2411.11504
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://arxiv.org/abs/2502.19361
https://arxiv.org/abs/2502.19361
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2502.13575
https://arxiv.org/abs/2502.13575
https://arxiv.org/abs/2503.00031
https://arxiv.org/abs/2503.00031
https://arxiv.org/abs/2501.02497
https://arxiv.org/abs/2501.02497
https://arxiv.org/abs/2411.11694
https://arxiv.org/abs/2411.11694
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://arxiv.org/abs/2401.10480
https://arxiv.org/abs/2401.10480
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2502.06703
https://arxiv.org/abs/2502.06703
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2503.04412
https://arxiv.org/abs/2503.04412
https://arxiv.org/abs/2503.04412
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. In Proceed-
ings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei Chen,
Lionel M. Ni, and 3 others. 2024a. Openr: An open
source framework for advanced reasoning with large
language models. Preprint, arXiv:2410.09671.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin
Peng, Haitao Mi, Furong Huang, and Dong Yu.
2024c. Towards self-improvement of llms via mcts:
Leveraging stepwise knowledge with curriculum pref-
erence learning. Preprint, arXiv:2410.06508.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zezhong Wang, Xingshan Zeng, Weiwen Liu, Yufei
Wang, Liangyou Li, Yasheng Wang, Lifeng Shang,
Xin Jiang, Qun Liu, and Kam-Fai Wong. 2025.
Chain-of-probe: Examining the necessity and accu-
racy of cot step-by-step. Preprint, arXiv:2406.16144.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu
Che, Zengqi Wen, and Jianhua Tao. 2024a. Be-
yond examples: High-level automated reasoning
paradigm in in-context learning via mcts. Preprint,
arXiv:2411.18478.

Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng,
Minghao Liu, Jialong Wu, Jiachen Ma, Yizhi Li, Jian
Yang, Wangchunshu Zhou, and 7 others. 2024b. A
comparative study on reasoning patterns of openai’s
o1 model. Preprint, arXiv:2410.13639.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Under-
standing chain-of-thought length in llms. Preprint,
arXiv:2502.07266.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong,
Shihan Do, Wenyu Zhan, and 14 others. 2024. En-
hancing llm reasoning via critique models with
test-time and training-time supervision. Preprint,
arXiv:2411.16579.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, and 4
others. 2025. Towards system 2 reasoning in llms:
Learning how to think with meta chain-of-thought.
Preprint, arXiv:2501.04682.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang.
2024. An implementation of generative prm. https:
//github.com/RLHFlow/RLHF-Reward-Modeling.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 50 oth-
ers. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng,
Michel Galley, Jianfeng Gao, and Zhou Yu. 2024.
Improving autonomous ai agents with reflective tree
search and self-learning. In The Thirteenth Interna-
tional Conference on Learning Representations.

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang,
Zifei Shan, and Junxian He. 2025. B-star: Moni-
toring and balancing exploration and exploitation in
self-taught reasoners. Preprint, arXiv:2412.17256.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang
Li, and Wanli Ouyang. 2024. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. Preprint,
arXiv:2406.07394.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2025a.
Generative verifiers: Reward modeling as next-token
prediction. Preprint, arXiv:2408.15240.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin King,
Xue Liu, and Chen Ma. 2025b. What, how, where,
and how well? a survey on test-time scaling in large
language models. Preprint, arXiv:2503.24235.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-o1: Towards open
reasoning models for open-ended solutions. Preprint,
arXiv:2411.14405.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
Preprint, arXiv:2412.06559.

17157

https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://arxiv.org/abs/2410.09671
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2406.16144
https://arxiv.org/abs/2406.16144
https://arxiv.org/abs/2411.18478
https://arxiv.org/abs/2411.18478
https://arxiv.org/abs/2411.18478
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.17256
https://arxiv.org/abs/2412.17256
https://arxiv.org/abs/2412.17256
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559

A Experiment Settings

A.1 Datasets
The following are the four datasets used in the
experiment:

• GSM8K (Cobbe et al., 2021) is an evaluation
set consisting of 8,500 high-quality primary
school mathematics problems. It is mainly
used to assess the language comprehension
and mathematical reasoning abilities of mod-
els in basic mathematical problems.

• MATH500 (Lightman et al., 2024) is a subset
of the MATH dataset (Hendrycks et al., 2021)
containing 500 questions. It covers seven
mathematical domains and five difficulty lev-
els. It is designed to test the performance
of LLMs in solving advanced mathematical
problems.

• AIME1 offers a rich collection of challeng-
ing problems from the American Invitational
Mathematics Examination and contains 933
high-difficulty mathematical problems.

• OlympiadBench is an Olympiad-level bilin-
gual multimodal scientific benchmark (He
et al., 2024). In this experiment, only the sub-
set of English mathematical problems without
images was tested, with a total of 674 ques-
tions.

A.2 Baselines
• Greedy Search: A decoding method based

on the principle of local optimality. It always
selects the token with the highest current prob-
ability as the output.

• Self-Consistency (Wang et al., 2023): LLMs
generates N independent reasoning paths. Fi-
nally, the most frequently occurring output is
counted as the answer.

• Best-of-N (BoN) (Brown et al., 2024): Sim-
ilar to self-consistency, the LLM generates
N independent reasoning paths. According
to the scores given by the reward model, the
path with the highest score is selected as the
answer.

• Weighted BoN (Brown et al., 2024): It is a
combination of Self-Consistency and BoN.
The reward model scores the N independent
reasoning paths generated by the LLM. Then,
the paths are clustered according to the an-
swers, and the sum of the path scores within

1www.kaggle.com/datasets/aime-problem-set-1983-2024

each cluster is taken as the answer’s score.
The answer with the highest score is selected.

• Beam Search (Snell et al., 2024): N reasoning
paths are maintained at each reasoning step.
According to the scores given by the PRM
for the current paths, M paths are selected to
continue the reasoning and expand downward.
Each selected path can expand into N/M sub-
paths.

• Diverse Verifier Tree Search (DVTS) (Beech-
ing et al., 2024): DVTS is an extension of
the beam search. It first initializes M sub-
trees. Each subtree samples N/M paths at
every step. Those paths are then scored by the
PRM. The path with the highest score within
the subtree is selected for further reasoning.
It is similar to Beam Search, as in each step,
M paths are selected from N paths for fur-
ther reasoning. Due to the scope limitation
of the subtrees, it prevents some locally opti-
mal branches from early elimination, thereby
enhancing the path diversity.

A.3 Testing Prompt

Solve the following math problem efficiently and
clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude
with:

Therefore, the final answer is: \boxed{answer}. I
hope it is correct.

Where [answer] is just the final number or
expression that solves the problem.

Table 4: System prompt used in the experiment.

A.4 Details of PRM Score
The calculation of the PRM score strictly follows
the official guidelines provided by the PRM devel-
opers. Specifically:

17158

Model Type N FLOPs
Llama-3.2-1B-Instruct Auto Regressive 128 1.31× 1018

Llama3.1-8B-PRM-Deepseek-Data Reward 128 9.03× 1015

Llama-3.1-70B-Instruc Auto Regressive 1 3.04× 1018

Table 5: Computational Cost Analysis (in FLOPs) for Different Model Configurations during Inference.

• For DeepSeek PRM, following its official us-
age guidelines, we organize the existing rea-
soning process into a dialogue format, input
it into the PRM, and use the probability of
outputting "+" as the PRM score.

• For Skywork PRM, it adds and trains a value
head on top of a conventional LLM. This head
outputs a 0-1 score for each token. We select
the score corresponding to the last token out-
put in a step as the PRM score.

B Supplementary Experimental Results

B.1 Computational Cost Analysis in FLOPs

Table 5 compares the computational cost in FLOPs
for processing a single query across different mod-
els. We assume an input length of 256 tokens (pre-
fill) and an output length of 4096 tokens (decode).
The policy model generates tokens sequentially
in an auto-regressive manner, requiring multiple
forward passes, while the PRM requires only one
forward pass for scoring.

The results demonstrate that SRCA with N =
128, combining a 1B policy model and an 8B
PRM, requires only 43.01% of the computational
cost compared to the 70B model for processing a
single sample. Considering the experimental re-
sults reported in Table 1, the 1B model enhanced
with SRCA achieves higher accuracy than the 70B
model, indicating that our approach not only re-
duces computational overhead but also yields supe-
rior performance.

B.2 Evaluation of Scoring Methods and
Selection Strategies

We analyzed how different scoring methods for
reasoning paths and answer selection strategies af-
fect the accuracy of TTS methods. We employ
Llama3.1-8B-PRM-Deepseek-Data as the PRM in
this experiment. The PRM assigns scores to each
reasoning step, generating a sequence of scores for
each path. We examined two primary methods for
computing the final path score:

• Last: Using the final step’s score as the path

score, where PRM functions similarly to an
Outcome Reward Model (ORM).

• Mean: Taking the average of the score se-
quence to reflect the overall reliability of the
reasoning process.

Furthermore, BoN and Weighted BoN can be
combined with other tree search algorithms as an-
swer selection strategies. Specifically, after the
tree search algorithm generates multiple candidate
paths:

• BoN: Selects the path with the highest score

• Weighted BoN: First clusters answers, then
selects the answer with the highest sum of
path scores within its cluster

The experimental results (Table 6) demonstrate
that the Last scoring method consistently outper-
forms Mean, while BoN generally yields better re-
sults than Weighted BoN. This pattern holds across
all four datasets and three TTS methods.

Notably, the superiority of Last over Mean sug-
gests that some correct reasoning paths have high
final scores but lower average scores. This indi-
cates that even when reaching the correct answer,
the intermediate reasoning steps may not be en-
tirely accurate. Developing TTS methods that en-
sure both process and outcome accuracy remains a
future research direction.

The choice between BoN and Weighted BoN re-
flects a balance between policy model and reward
model decision-making. BoN relies primarily on
PRM’s judgment by selecting the highest-scoring
path, while Weighted BoN considers the sampling
frequency of the policy model through score aggre-
gation. In our experiments, using a 1B parameter
policy model and an 8B parameter PRM, the PRM-
dominated BoN strategy achieved superior results,
likely due to the PRM’s stronger discriminative
ability.

B.3 Experiments on Qwen3-0.6B
To validate the generalizability of SRCA, we
conducted additional experiments on Qwen3-
0.6B (Yang et al., 2025), following the same set-

17159

Selection N Method GSM8k MATH500 AIME Olympiad Avg. GSM8k MATH500 AIME Olympiad Avg.
Last Mean

BoN

16

Beam 0.7505 0.4660 0.1404 0.1422 0.3748 0.7475 0.4600 0.1200 0.1247 0.3631
DVTS 0.7452 0.4700 0.1489 0.1585 0.3807 0.7331 0.4620 0.1307 0.1525 0.3696
SRCA 0.8054 0.5120 0.2133 0.1822 0.4282 0.7869 0.4940 0.1747 0.1718 0.4069
Avg. 0.7670 0.4827 0.1675 0.1610 0.3946 0.7558 0.4720 0.1418 0.1497 0.3798

32

Beam 0.8278 0.4740 0.1425 0.1644 0.4022 0.8043 0.4780 0.1457 0.1377 0.3914
DVTS 0.8210 0.4920 0.1714 0.1659 0.4126 0.8241 0.5020 0.1758 0.1629 0.4162
SRCA 0.8340 0.5140 0.2304 0.1793 0.4394 0.8317 0.5120 0.1908 0.1793 0.4285
Avg. 0.8276 0.4933 0.1814 0.1699 0.4181 0.8200 0.4973 0.1708 0.1600 0.4120

64

Beam 0.8302 0.4800 0.1833 0.1719 0.4164 0.8392 0.4960 0.1758 0.1659 0.4192
DVTS 0.8347 0.4980 0.1951 0.1822 0.4275 0.8484 0.5140 0.1907 0.1733 0.4316
SRCA 0.8514 0.5160 0.2337 0.1881 0.4473 0.8491 0.5160 0.2144 0.1837 0.4408
Avg. 0.8388 0.4980 0.2040 0.1807 0.4304 0.8456 0.5087 0.1936 0.1743 0.4305

128

Beam 0.8484 0.5200 0.1907 0.1807 0.4350 0.8340 0.5160 0.1832 0.1807 0.4285
DVTS 0.8347 0.5260 0.2068 0.1940 0.4404 0.8499 0.5180 0.1843 0.1866 0.4347
SRCA 0.8560 0.5340 0.2497 0.2074 0.4618 0.8514 0.5240 0.2197 0.1896 0.4462
Avg. 0.8464 0.5267 0.2157 0.1940 0.4457 0.8451 0.5193 0.1957 0.1856 0.4365

Weighted
BoN

16

Beam 0.7369 0.4600 0.1200 0.1303 0.3618 0.7194 0.4460 0.1189 0.1229 0.3518
DVTS 0.7422 0.4760 0.1446 0.1526 0.3789 0.7111 0.4620 0.1125 0.1496 0.3588
SRCA 0.7597 0.4800 0.1714 0.1688 0.3950 0.7187 0.4680 0.1393 0.1674 0.3734
Avg. 0.7463 0.4720 0.1453 0.1506 0.3785 0.7164 0.4587 0.1236 0.1466 0.3613

32

Beam 0.7740 0.4760 0.1446 0.1659 0.3901 0.7520 0.4480 0.1404 0.1348 0.3688
DVTS 0.7877 0.4780 0.1661 0.1718 0.4009 0.7491 0.4680 0.1425 0.1644 0.3810
SRCA 0.7937 0.4900 0.1822 0.1778 0.4109 0.7832 0.4700 0.1704 0.1762 0.4000
Avg. 0.7851 0.4813 0.1643 0.1718 0.4007 0.7614 0.4620 0.1511 0.1585 0.3833

64

Beam 0.8036 0.4780 0.1886 0.1733 0.4109 0.7771 0.4860 0.1939 0.1615 0.4046
DVTS 0.7915 0.4860 0.1897 0.1825 0.4124 0.7839 0.4900 0.1961 0.1719 0.4105
SRCA 0.8173 0.5060 0.2068 0.1854 0.4289 0.7945 0.4940 0.2208 0.1778 0.4218
Avg. 0.8041 0.4900 0.1950 0.1804 0.4174 0.7852 0.4900 0.2036 0.1704 0.4123

128

Beam 0.8014 0.5000 0.1907 0.1854 0.4194 0.7574 0.4820 0.1951 0.1911 0.4064
DVTS 0.8195 0.5020 0.2079 0.1899 0.4298 0.7680 0.4920 0.1994 0.1940 0.4134
SRCA 0.8173 0.5100 0.2262 0.1943 0.4370 0.7786 0.5120 0.2444 0.2030 0.4345
Avg. 0.8127 0.5040 0.2083 0.1899 0.4287 0.7680 0.4953 0.2130 0.1960 0.4181

Table 6: Performance comparison of TTS methods with different scoring methods (Last/Mean) and selection
strategies (BoN/Weighted BoN) on four benchmark datasets. Numbers indicate accuracy. Higher scores indicate
better performance. Red cells denote group averages for each N value.

tings as our main experiments. We set the sam-
pling number N to 16 to expedite the experimental
process. The experimental results are presented
in Table 7. Experimental results indicate that

Models & TTS GSM8K MATH500 AIME Olympiad
Greedy Search 42.61% 34.40% 3.54% 13.63%
Self-Consistency 52.62% 47.00% 4.07% 20.59%
BoN 68.69% 51.20% 6.54% 23.56%
Weighted BoN 63.91% 53.60% 7.29% 23.41%
Beam Search 72.10% 54.00% 16.4% 25.07%
DVTS 74.91% 55.80% 17.36% 25.67%
SRCA 79.45% 56.60% 21.33% 27.89%

Table 7: Comparative results of TTS with Qwen3-0.6B.
Numerical values indicate accuracy rates, with bold
figures denoting the best performance. Experimental
parameters: N=16, utilizing DeepSeek PRM.

SRCA maintains superior performance compared
to other TTS approaches. The observed trends
align with the findings from our primary experi-
ments, thereby confirming the general applicability
of SRCA across different LLMs.

17160

