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Abstract
Recent studies have shown that Large Lan-
guage Models (LLMs) augmented with chain-
of-thought (CoT) reasoning demonstrate im-
pressive problem-solving abilities. However, in
this work, we identify a recurring issue where
these models occasionally generate overly short
reasoning, leading to degraded performance on
even simple mathematical problems. Specif-
ically, we investigate how reasoning length
is embedded in the hidden representations of
reasoning models and its impact on accuracy.
Our analysis reveals that reasoning length is
governed by a linear direction in the repre-
sentation space, allowing us to induce overly
short reasoning by steering the model along
this direction. Building on this insight, we
introduce ThinkEdit, a simple yet effective
weight-editing approach to mitigate the issue
of overly short reasoning. We first identify a
small subset of attention heads (approximately
4%) that predominantly drive short reasoning
behavior. We then edit the output projection
weights of these heads to remove the short
reasoning direction. With changes to only
0.2% of the model’s parameters, ThinkEdit ef-
fectively reduces overly short reasoning and
yields notable accuracy gains for short rea-
soning outputs (+6.39%), along with an over-
all improvement across multiple math bench-
marks (+3.34%). Our findings provide new
mechanistic insights into how reasoning length
is controlled within LLMs and highlight the
potential of fine-grained model interventions
to improve reasoning quality. Our code is
available at: https://github.com/Trustworthy-ML-
Lab/ThinkEdit

1 Introduction

Recently, Reinforcement Learning (RL) has been
applied to enhance Large Language Models
(LLMs), equipping them with strong chain-of-
thought (CoT) reasoning abilities (Guo et al., 2025).
These models, often referred to as reasoning mod-
els, first generate an intermediate reasoning process

– a "thinking step" – where they reason step-by-step
and then self-correct before producing a final re-
sponse. As a result, they achieve remarkable im-
provement on mathematical reasoning tasks and
demonstrate a strong ability to generate detailed
CoT reasoning (Jaech et al., 2024; Guo et al., 2025;
Muennighoff et al., 2025).

However, despite these improvements, reason-
ing models still exhibit a non-negligible gap from
perfect accuracy on relatively simple benchmarks
such as GSM8K (Cobbe et al., 2021). As shown
in Section 2, we found that Deepseek-distilled rea-
soning models occasionally generate overly short
reasoning chains, which correlate with lower ac-
curacy (about 20% drop on MATH-level5 bench-
mark (Hendrycks et al., 2021b)). This issue ap-
pears consistently across models of different sizes,
suggesting that reasoning length plays a crucial
role in problem-solving effectiveness. Yet, the
mechanisms governing reasoning length within
the model’s internal representation remain under-
explored, despite being crucial for understanding
reasoning models.

To bridge this gap, in this work, we first inves-
tigate how reasoning length is encoded within the
hidden representations of reasoning models. By
performing a novel analysis of the residual stream,
we extract a reasoning length direction—a latent
linear representation in the residual stream that en-
ables direct control over reasoning length as shown
in Figure 2 (left). Our analysis reveals that overly
short, abstract, or high-level reasoning significantly
degrades model performance, and this character-
istic is primarily embedded in the middle layers
of the model. Furthermore, we identify a small
subset (approximately 4%) of attention heads in
the middle layers that disproportionately contribute
to short reasoning. Building on this insight, we
propose ThinkEdit, a simple and effective weight-
editing technique to remove the short-reasoning
component from these attention heads’ output pro-
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Figure 1: Cumulative accuracy as a function of the reasoning length threshold. The x-axis represents the cutoff
threshold on reasoning length, and the y-axis shows the average accuracy of all responses with reasoning length
below that threshold. Models consistently exhibit lower accuracy for overly short reasoning (e.g. length <1000).

jection layers, as shown in Figure 2 (right). Our
findings demonstrate that disabling these compo-
nents leads to a non-trivial improvement in accu-
racy when the model generates short reasoning
while also enhancing overall performance. Our
contributions are summarized as follows:

• We identify the prevalence of overly short
reasoning across Deepseek-distilled reasoning
models of different scales and highlight its im-
pact on the performance of math benchmarks.

• We extract a reasoning length direction in the
model’s hidden representations, revealing that
middle layers play a crucial role in controlling
reasoning length. To the best of our knowledge,
this is the first work to systematically study the
internal representations of reasoning models.

• We discover a small set of "short reasoning"
heads that strongly contribute to the gener-
ation of brief reasoning chains and propose
ThinkEdit. By editing the output projection
weights of just 4% heads (0.2% of the model’s
total parameters), ThinkEdit effectively miti-
gates short reasoning, leading to improved per-
formance both when short reasoning occurs
(+6.39%) and in overall accuracy (+3.34%).

2 Unexpectedly Low Accuracy in Short
Reasoning Cases

We begin our study by highlighting a consistent is-
sue observed in Deepseek-distilled reasoning mod-
els across a variety of sizes: significantly lower ac-

curacy when the reasoning length is short. This pat-
tern holds across datasets such as GSM8K (Cobbe
et al., 2021) and MATH-Level5 (Hendrycks et al.,
2021b). Figure 1 illustrates this trend, with the
x-axis indicating a cutoff threshold on reasoning
length. For example, a threshold of 2000 denotes
that we calculate the average accuracy over all re-
sponses whose reasoning length is at most 2000
tokens. The y-axis shows the corresponding cu-
mulative accuracy. The details of the experimental
setup are provided in Section 4.4.

Contrary to intuition, one might expect shorter
reasoning to correspond to easier questions, as such
problems should require fewer steps to solve. This
expectation is partially supported by the trend in
Figure 1 (right), where accuracy tends to decrease
as reasoning length exceeds 2000. However, the re-
gion with reasoning length below 2000 (highlighted
in red boxes) exhibits a different pattern: models
consistently underperform on these short-reasoning
cases, with accuracy dropping significantly below
the overall average. This suggests that, rather than
efficiently solving simple problems with brief rea-
soning, models often fail when producing overly
short chains of thought.

Motivated by this observation, we focus on inves-
tigating how a model’s internal representations gov-
ern reasoning length and influence accuracy. In Sec-
tion 3, we analyze the relationship between hidden
representations, reasoning length, and model per-
formance. Building on these insights, we propose
ThinkEdit, a simple yet effective weight-editing
method, in Section 4, which modifies the output
layer of a few key attention heads to mitigate the
problem of overly short reasoning.
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Figure 2: The overview of ThinkEdit framework. We first identify that there exist linear directions for controlling
reasoning length in the hidden space, and then perform weight editing on the key attention heads.

3 Understanding How Representations
Affect Reasoning Length

In this section, we explore how reasoning length is
encoded in the hidden representation of a reasoning
model. In Section 3.1, we provide an overview of
the transformer structure, highlighting the specific
points in the residual stream where the representa-
tion of interest resides. Then, in Section 3.2, we
present our method for extracting linear directions
that allow control over reasoning length. Finally,
in Section 3.3, we analyze the performance of rea-
soning models when guided by these extracted rea-
soning length directions.

3.1 Background of Transformer Structure
and Notations

A transformer model consists of multiple stacked
layers, each containing a multi-headed self-
attention (Attn) module followed by a feed-forward
Multi-Layer Perceptron (MLP). The model main-
tains an evolving Residual Stream, where repre-
sentations are progressively refined as they pass
through layers. The update at each layer ℓ can be
expressed as:

rattn
ℓ = r

mlp
ℓ−1 + Attn(LayerNorm(r

mlp
ℓ−1))

r
mlp
ℓ = rattn

ℓ + MLP(LayerNorm(rattn
ℓ ))

where r
mlp
ℓ−1 is the hidden state entering layer ℓ,

which is also the output of the MLP from the pre-
vious layer ℓ− 1, rattn

ℓ represents the intermediate
state of the residual stream after the self-attention
module, and r

mlp
ℓ denotes the final output after the

MLP transformation.
Our focus is on the hidden representations rattn

ℓ

and r
mlp
ℓ as illustrated in Figure 2 (left), which

capture the model’s state after the self-attention
and MLP transformations, respectively.

3.2 Extracting Reasoning Length Directions

To investigate how reasoning length is encoded
in a model’s hidden representation, we begin by
collecting the model’s responses to 2,000 prob-
lems from the GSM8K (Cobbe et al., 2021) train-
ing set. In each response, the chain-of-thought
(CoT) is enclosed between special tags <think>
and </think>. We measure the length of each
CoT by counting only the tokens within these tags.
We then construct two datasets Dlong and Dshort,
where Dlong consists of responses whose CoT ex-
ceeds 1000 tokens and Dshort includes those under
100 tokens. Each entry in these datasets contains:
(1) the problem statement, (2) the extracted CoT,
enclosed by <think> and </think> tags, and (3)
the step-by-step calculation process leading to the
final answer.

Next, we input the problem statement along with
its CoT into the model and extract hidden represen-
tations at each layer ℓ for both the post-attention
and post-MLP residual streams, denoted as rattn

ℓ

and r
mlp
ℓ , respectively. Specifically, let rattn

ℓ (i, t)

and r
mlp
ℓ (i, t) represent the hidden representations

at layer ℓ for token position t in the response to
problem i. We first compute the mean hidden
representation over the chain-of-thought (CoT) to-
kens, where Ti denotes the set of token positions
enclosed within the <think> and </think> tags,
and then compute the mean across all problems
in the datasets Dlong and Dshort, yielding layerwise
embeddings:

rxℓ,y =
1

|Dy|
∑

i∈Dy

1

|Ti|
∑

t∈Ti
rxℓ (i, t),
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where x ∈ {attn,mlp} denotes the representation
type and y ∈ {long, short} indicates the reasoning-
length group. Finally, we define the reasoning-
length direction at layer ℓ as the vector difference
between the “long” and “short” embeddings:

vattn
ℓ = rattn

ℓ,long − rattn
ℓ,short, v

mlp
ℓ = r

mlp
ℓ,long − r

mlp
ℓ,short.

(1)
These two vectors, vattn

ℓ , v
mlp
ℓ ∈ Rd (with d denot-

ing the hidden dimension), capture how the model’s
representation differs when reasoning chains are
notably longer or shorter. In the next section, we an-
alyze how modifying these directions in the resid-
ual stream influences both reasoning length and
overall model performance.

3.3 Effects of Reasoning-Length Direction
In Section 3.2, we have obtained the steering vec-
tors vattn

ℓ and v
mlp
ℓ for reasoning length. We now in-

vestigate how modifying the residual stream along
these directions affects both reasoning length and
model accuracy. We begin with global steering,
where we apply a uniform shift α across all layers,
and then delve into layerwise steering experiments
to locate the portions of the network most responsi-
ble for reasoning length.

Steering Reasoning Models with vattn
ℓ and vmlp

ℓ .
Let α be a scalar weight in the range [−0.08, 0.08].
For each layer ℓ, we apply the following transfor-
mations:

rattn
ℓ ← rattn

ℓ +α vattn
ℓ , r

mlp
ℓ ← r

mlp
ℓ +α v

mlp
ℓ . (2)

This operation steers the model’s internal states ei-
ther toward longer reasoning (if α > 0) or toward
shorter reasoning (if α < 0).

Experimental Setup. We evaluate the effect of
reasoning-length directions using two test sets:

• GSM8K (200 problems) (Cobbe et al., 2021):
A simpler benchmark, consisting of the first 200
problems from the GSM8K test set.

• MATH-Level5 (140 problems) (Hendrycks
et al., 2021b): A more challenging benchmark,
comprising 140 problems selected from the
MATH test set. Specifically, we extract 20 level-
5 examples from each of 7 categories.

We set a maximum reasoning length of 8,192 to-
kens for GSM8K and 16,384 tokens for MATH-
Level5. Upon reaching this limit, the model
is prompted to finalize its answer immediately.

We experiment on three reasoning models of
varying sizes: deepseek-distill-qwen-1.5B,
deepseek-distill-llama3-8B, and deepseek-
distill-qwen-14B.

Global Steering on GSM8K and MATH-Level5.
Figure 3 (Top) shows the effect of applying
the attention-based direction vattn

ℓ on GSM8K.
We vary α from −0.08 (shorter reasoning) to
+0.08 (longer reasoning). Across all models,
increasing α extends the length of CoT (Fig-
ure 3, top right), indicating that vattn

ℓ indeed
encode reasoning-length attributes. In terms
of accuracy, the larger 8B and 14B models
improve when steered toward longer reason-
ing—particularly deepseek-distill-llama3-8B
(orange line), which benefits most from positive
steering with 10% accuracy improvement. In con-
trast, the smaller deepseek-distill-qwen-1.5B
(blue line) model experiences a 10% drop in ac-
curacy. Figure 3 (Bottom) presents the results for
the more challenging MATH-Level5 dataset. Simi-
lar to GSM8K, our extracted directions effectively
control reasoning length as expected, with negative
α consistently leading to shorter CoT and positive
α extending them. In terms of accuracy, shorter
reasoning also consistently degrades performance.
However, unlike GSM8K, there is no clear trend
indicating that longer reasoning reliably enhances
accuracy; while moderate positive α might provide
some benefits, excessively long reasoning often
negatively impacts performance. We also present
results using the MLP-based direction v

mlp
ℓ in Ap-

pendix A.1, which exhibit similar trends.

Layerwise Steering Analysis. We perform a lay-
erwise experiment to identify which layers produce
reasoning-length directions with the strongest im-
pact. As shown in Appendix A.2, middle layers are
most effective, suggesting their key role in encod-
ing reasoning-length representations.

Budget Control with Steering Representations.
Recent work (Muennighoff et al., 2025) proposed
an interesting approach to enforce budget con-
straints by stopping the CoT or appending "Wait" to
prolong it. However, stopping the CoT prematurely
may cause incomplete reasoning and appending
"Wait" may risk misalignment with the model’s
natural CoT. Alternatively, steering representations
may allow for a more coherent way to modulate
reasoning length (see Appendix A.8) – by directly
manipulating the model’s internal representations,
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Figure 3: Global steering results. Top: On GSM8K, positive α extends reasoning length and improves accuracy in
the 8B and 14B models, while negative α shortens reasoning and lowers accuracy. Bottom: On MATH-Level5,
negative α similarly shortens reasoning and reduces accuracy.

one can more effectively balance the computational
cost and performance.

Key insights. Based on these experiments, we
observe that:

1. While steering the model toward longer rea-
soning (α > 0) does not always guarantee im-
proved performance, steering toward short rea-
soning (α < 0) consistently degrades accuracy.
This suggests that the overly short reasoning
with reduced accuracy, as observed in Section 2,
is driven by a specific and identifiable pattern
in the hidden representations.

2. Layerwise analysis reveals that the middle lay-
ers play a key role in regulating reasoning
length.

Based on these findings, we hypothesize that cer-
tain critical components within the middle layers

may contribute to short reasoning. In the next sec-
tion, we pinpoint these components and perform
weight editing to mitigate their effects.

4 ThinkEdit: Mitigate Overly Short
Reasoning through Weight Editing

Building on the insights from Section 3.3, in this
section, we propose ThinkEdit, an effective weight-
editing method to mitigate overly short reasoning.
We start by analyzing whether specific components
within reasoning models significantly contribute
to the phenomenon of short reasoning. Our focus
is on pinpointing particular attention heads, as the
attention mechanism plays a crucial role in infor-
mation propagation across tokens. To explore this,
we begin with an overview of the multi-head atten-
tion mechanism in Section 4.1, where we define the
contribution of individual attention heads. Using
this definition, we identify short reasoning heads
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in Section 4.2 and remove the short reasoning com-
ponent from these heads in Section 4.3. Finally, in
Section 4.4, we evaluate ThinkEdit, and show that
it effectively mitigates the overly short reasoning
issue.

4.1 Overview of Attention-Head Structure

A self-attention layer typically includes multiple
attention heads, each responsible for capturing dis-
tinct token-to-token dependencies. Let d denote the
model’s hidden dimension, and H the number of at-
tention heads. Each head h operates on a subspace
of size dh = d

H using the following steps:

• Q, K, and V Projections. Given a hidden-
state r ∈ RT×d (for T tokens), each head h
computes:

Qh = rW h
q , K

h = rW h
k , V

h = rW h
v ,

where Qh,Kh, V h ∈ RT×dh . Each head
h has its own learnable projection matrices
W h

q ,W
h
k ,W

h
v ∈ Rd×dh , which transform the

hidden representation r into query, key, and
value vectors.

• Self-Attention Computation. The head out-
puts an attention-weighted combination of V h:

Ah = softmax
(
Qh(Kh)⊤√

dh

)
V h ∈ RT×dh .

• Output Projection. Each head’s output Ah

is merged back into the residual stream via a
learned projection matrix W h

o ∈ Rdh×d, pro-
ducing the final per-head contribution Ch:

Ch := AhW h
o ∈ RT×d. (3)

The final multi-head attention output is then
obtained by summing the contributions from
all heads, and this result is added to the residual
stream.

The per-head contribution Ch directly reflects how
each attention head modifies the residual stream.
This contribution serves as the primary focus of our
analysis, as it allows us to pinpoint attention heads
that drive short reasoning behavior.

4.2 Identify Short Reasoning Attention Heads

For a response to problem i, let Ti be the set of
token positions corresponding to the CoT, i.e., the
tokens enclosed by <think> and </think> tags.
Then, the overall average per-head contribution

over all problems in the short reasoning dataset
Dshort is given by C

h ∈ Rd:

C
h
=

1

|Dshort|
∑

i∈Dshort


 1

|Ti|
∑

t∈Ti
Ch(i, t)


 . (4)

Equation 4 first averages the per-head contribu-
tions Ch(i, t) over the CoT token positions for each
problem i and then averages these values across
all problems in Dshort. Recall that the reasoning
length direction after an attention layer is defined
as vattn

ℓ = rattn
ℓ,long−rattn

ℓ,short in Equation 1, vattn
ℓ ∈ Rd.

To quantify the short reasoning contribution of head
h, we project Ch onto the negative of the reasoning
length direction (i.e., the short reasoning direction).
Using the unit vector v̂attn

ℓ =
vattn
ℓ

∥vattn
ℓ ∥ , we define the

scalar projection as Ch
short ∈ R:

C
h
short =

〈
C

h
,−v̂attn

ℓ

〉
. (5)

Here, Ch
short quantifies the degree to which head

h’s average contribution aligns with the short rea-
soning direction. Larger values of Ch

short indicate
that the head strongly promotes short reasoning
behavior. We visualize C

h
short for each attention

head h with heatmap in Figure 4. Only a small sub-
set of heads exhibits notably high alignment with
the short reasoning direction, and these heads tend
to cluster in the middle layers. This observation
aligns with our analysis in section 3.3, where we
found that reasoning length is primarily encoded in
the middle layers. Crucially, the sparsity of these
"short reasoning heads" suggests that it may be
possible to effectively mitigate overly short rea-
soning behavior with minimal modifications to the
model. In the following section, we use these in-
sights to develop a targeted intervention ThinkEdit
that removes short reasoning components while
leaving the vast majority of the model’s parameters
unchanged.

4.3 Editing Short Reasoning Heads
We introduce how ThinkEdit effectively removes
the short reasoning direction from the output projec-
tion matrices of the "short reasoning heads". Specif-
ically, we identify the top 4% of attention heads
with the largest Ch

short values (as defined in Sec-
tion 4.2), marking them as short reasoning heads.
Let W hℓ

o ∈ Rdh×d be the output projection matrix
of head h in layer ℓ, and let −v̂attn

ℓ ∈ Rd denote
the short reasoning direction at layer ℓ. We then
update W hℓ

o via:
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Figure 4: Heatmap illustrating the short reasoning contribution C
h

short for each attention head h. Heads with higher
values (in red) show stronger alignment with short reasoning behavior.

W hℓ
o ← W hℓ

o

(
I −

(
−v̂attn

ℓ

)(
−v̂attn

ℓ

)⊤)
, (6)

where I is the d × d identity matrix. Intuitively,
this operation projects each row of W hℓ

o onto the
subspace orthogonal to−v̂attn

ℓ , thereby removes the
short reasoning component from the head’s output
contribution. Unlike the approach in Section 3.3,
which adds a fixed direction to activations regard-
less of the input, ThinkEdit modifies the weights
of selected attention heads. This makes the ad-
justment input-dependent, allowing more precise
control over reasoning length while preserving the
model’s overall behavior.

4.4 Performance of Reasoning Models after
ThinkEdit

Experimental Setup. We evaluate the reasoning
models after applying ThinkEdit on four mathe-
matical reasoning benchmarks:

• GSM8K (Cobbe et al., 2021): A test set of
1,319 grade-school-level math word problems.

• MMLU Elementary Math (Hendrycks et al.,
2021a): A subset of 378 elementary school
math questions from the MMLU benchmark.

• MATH-Level1: A collection of 437 easy
(Level 1) problems drawn from the MATH
dataset (Hendrycks et al., 2021b).

• MATH-Level5: The most challenging subset
of the MATH dataset with 1,324 problems.

• MATH-500 (Lightman et al., 2023): A curated
set of 500 high-quality math problems designed
to assess advanced mathematical reasoning.

For all datasets, we set a maximum CoT length of
16,384 tokens. If this limit is reached, the model

is prompted to immediately finalize its answer. To
mitigate randomness, each dataset is evaluated over
10 independent runs, and the mean accuracy is re-
ported. We do not include the phrase "Please reason
step by step" in any prompt, aiming to assess the
model’s inherent reasoning capabilities.

Overall Accuracy. Table 1 reports the overall ac-
curacy (in %) before and after applying ThinkEdit.
Across all math benchmarks, we observe con-
sistent improvements in accuracy. Notably, the
deepseek-distill-qwen-1.5B model shows a
substantial gain on the MMLU Elementary Math
subset. Manual inspection reveals that the unedited
model occasionally ignores the multiple-choice
format, leading to wrong answers. In contrast,
the edited model adheres to the instructions more
reliably. This suggests that ThinkEdit may not
only enhance reasoning quality but also improve
instruction-following behavior. On the more chal-
lenging MATH-Level5 and MATH-500 datasets,
the accuracy gains are more modest but still posi-
tive, suggesting that while editing short-reasoning
heads has a stronger impact on simpler problems, it
might still provide meaningful improvements even
for harder tasks that require longer and more com-
plex reasoning chains.

Accuracy Under Short Reasoning. Table 2
shows the average accuracy for the top 5%, 10%,
and 20% of responses with the shortest reason-
ing traces. After applying ThinkEdit, we observe
substantial accuracy improvements in these short-
reasoning cases across most benchmarks. Inter-
estingly, even for the challenging MATH-Level5
and MATH-500 datasets, short-reasoning accuracy
improves noticeably. This suggests that ThinkEdit
can effectively improve the reasoning quality when
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Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B Original 90.80 ± 0.36 95.08 ± 0.65 96.32 ± 0.35 90.25 ± 0.72 91.48 ± 0.55
ThinkEdit (4%) 93.78 ± 0.50 96.56 ± 0.84 96.36 ± 0.52 91.03 ± 0.44 91.92 ± 0.63

deepseek-llama3-8B Original 82.26 ± 0.91 96.01 ± 0.62 93.46 ± 0.84 85.49 ± 0.83 87.26 ± 1.16
ThinkEdit (4%) 89.44 ± 0.55 96.19 ± 0.73 94.44 ± 0.31 86.49 ± 0.54 88.06 ± 1.09

deepseek-qwen-1.5B Original 79.15 ± 1.08 68.52 ± 1.56 93.00 ± 0.33 75.48 ± 0.90 82.22 ± 1.29
ThinkEdit (4%) 84.56 ± 0.79 90.66 ± 0.97 93.66 ± 0.62 75.05 ± 0.82 82.24 ± 0.89

Table 1: Overall accuracy (%) of each model before and after applying ThinkEdit.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14b Original 96.31 / 95.65 / 92.93 93.89 / 96.22 / 95.60 99.52 / 99.30 / 97.70 89.39 / 94.32 / 96.25 86.40 / 91.40 / 93.50
ThinkEdit (4%) 96.31 / 96.18 / 96.77 97.78 / 95.14 / 96.53 99.52 / 99.53 / 98.62 96.67 / 97.88 / 98.11 91.20 / 93.20 / 95.00

deepseek-llama3-8b Original 88.92 / 87.18 / 85.82 97.22 / 96.49 / 96.80 97.14 / 94.88 / 94.83 78.64 / 88.79 / 93.41 82.00 / 81.40 / 88.30
ThinkEdit (4%) 96.31 / 95.50 / 94.68 97.78 / 97.57 / 97.60 99.05 / 99.07 / 97.82 95.76 / 97.42 / 97.46 95.60 / 93.80 / 95.40

deepseek-qwen-1.5b Original 88.46 / 87.48 / 85.02 62.78 / 62.16 / 60.53 97.62 / 95.12 / 93.91 91.52 / 95.00 / 95.72 82.40 / 89.80 / 93.40
ThinkEdit (4%) 92.62 / 92.90 / 92.32 87.78 / 88.11 / 88.67 95.71 / 95.58 / 96.44 95.15 / 96.59 / 97.27 90.80 / 92.00 / 94.20

Table 2: Accuracy (%) of the top 5% / 10% / 20% shortest reasoning responses.

the models generate short CoT.

Reasoning Length of the Shortest Responses.
We analyze how ThinkEdit affects reasoning
length in Appendix A.3. It modestly increases the
length of the shortest responses (Table 3), help-
ing to address overly brief reasoning. However,
as shown in Table 4, the overall reasoning length
remains largely stable across datasets, with a net
change of -0.27% across all models and datasets.

In summary, ThinkEdit markedly improves model
performance on short-reasoning instances and
yields a substantial overall accuracy gain. We
also explore different editing percentages and com-
pare our approach to simply appending “Wait” to
prompt longer reasoning; detailed results are pro-
vided in Appendix A.4. Additionally, results for
deepseek-distill-qwen-32B are reported in Ap-
pendix A.5. To test the generality of our method,
we further evaluate on non-math domains in Ap-
pendix A.6. Beyond demonstrating accuracy gains,
Appendix A.7 examines how ThinkEdit shapes rea-
soning behaviors, revealing more explicit and struc-
tured chains of thought. Finally, We provide sev-
eral concrete examples illustrating how ThinkEdit
enhances reasoning quality in Appendix A.9.

5 Related Works

Reasoning Models. Recent advances in rea-
soning models have significantly improved the
problem-solving abilities of LLMs in domains such
as mathematics, coding, and science. OpenAI’s
o1 (Jaech et al., 2024) represents a major shift to-
ward deliberate reasoning by employing reinforce-
ment learning (RL) to refine its strategies. By gen-

erating explicit "Thinking" steps before producing
answers, o1 achieves strong performance on com-
plex tasks. As a more cost-efficient alternative,
DeepSeek-r1 (Guo et al., 2025) demonstrates that
pure RL can also effectively enhance reasoning.
It introduces Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), a novel method that
eliminates the need for a separate reward model,
enabling more efficient RL training.

Controllable Text Generation. Controllable text
generation has been explored across various do-
mains (Liang et al., 2024), with methods generally
classified into training-time and inference-time con-
trol. These approaches aim to steer LLMs toward
generating text with specific attributes while pre-
serving fluency and coherence. Training-time con-
trol is achieved through fine-tuning (Zeldes et al.,
2020; Wei et al., 2022) or reinforcement learning
(Ouyang et al., 2022; Rafailov et al., 2023), lever-
aging diverse datasets to shape model behavior.
Inference-time control encompasses prompt engi-
neering (Shin et al., 2020; Li and Liang, 2021),
representation engineering (Subramani et al., 2022;
Zou et al., 2023a; Konen et al., 2024; Oikari-
nen et al., 2025), interpretable neuron interven-
tion through concept bottleneck models (Sun et al.,
2025b, 2024), and decoding-time interventions
(Dathathri et al., 2020), allowing flexible and effi-
cient control without retraining.

In this work, we focus on the representation en-
gineering paradigm to investigate how reasoning
length is embedded within model representations.
Specifically, we introduce a linear "reasoning-
length direction" in the representation space to ex-
amine its impact on reasoning capabilities.
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Attention heads and MLP neurons interven-
tion. A growing body of research explores the
role of attention heads and neurons within the
Multi-Layer Perceptron (MLP) layers in shaping
language model behavior. Studies such as (Zhou
et al., 2025; Zhao et al., 2025; Chen et al., 2024)
examine how safety mechanisms are embedded
in well-aligned models to defend against harmful
prompts and jailbreak attacks (Zou et al., 2023b;
Liu et al., 2024; Sun et al., 2025a). Findings indi-
cate that a small subset of attention heads and MLP
neurons play a critical role in safety alignments.
Similarly, research on hallucination mitigation has
investigated the contributions of attention heads
and MLP neurons. (Ho et al., 2025) demonstrates
that filtering out unreliable attention heads can re-
duce erroneous generations, while (Yu et al., 2024)
finds that activating subject-knowledge neurons
helps maintain factual consistency. In (Li et al.,
2025), the authors design efficient and training-
free machine skill unlearning techniques for LLMs
through intervention and abstention.

In our work, we investigate how attention heads
relate to reasoning processes, examining their im-
pact on the reasoning length and quality.

6 Conclusion

In this work, we first identified overly short rea-
soning as a common failure mode in Deepseek-
distilled reasoning models. To understand how
reasoning length is controlled, we analyzed the
model’s hidden representations and uncovered a la-
tent direction linked to reasoning length. Building
on this, we pinpointed 4% of attention heads that
drive short reasoning, and propose ThinkEdit to
mitigate the issue, leading to significant accuracy
gains for short reasoning outputs (+6.39%), along
with an overall improvement (+3.34%) across mul-
tiple math benchmarks.

Limitations

A limitation of our work is that ThinkEdit pri-
marily improves model performance by addressing
cases of overly short reasoning. For reasoning mod-
els that already tend to produce sufficiently long
or verbose outputs, the benefits of ThinkEdit may
be limited. Nonetheless, our study provides valu-
able insights by highlighting the often-overlooked
issue of overly brief reasoning and examining how
reasoning length is represented within the model’s
hidden states. This opens an important research

direction for advancing the interpretability of rea-
soning models by linking internal representations
to observable reasoning behaviors.
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A Appendix

A.1 Gobal Steering with the MLP-based Direction vmlp
ℓ

Figure 5 replicates the global steering analysis using the MLP-based direction v
mlp
ℓ . The observed trends

closely mirror those from attention-based steering: increasing α extends reasoning length across both
datasets, and the effect on accuracy is model- and dataset-dependent. On GSM8K, larger models benefit
from longer reasoning, while smaller models degrade. On MATH-Level5, overly long reasoning may hurt
performance, despite consistent control over CoT length. These results show that both attention and MLP
directions capture similar reasoning-length attributes.

Figure 5: Global steering with the reasoning length direction extracted from MLPs. The trend is similar as steering
with attention-based directions.
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A.2 Layerwise Analysis of Steering along Reasoning Length Direction
To identify which layers are most influenced by the reasoning-length direction, we perform a layerwise
experiment on the GSM8K dataset (Figure 6). Specifically, we use vmlp

ℓ to steer each MLP layer separately,
applying α = ±1 at a single layer ℓ. Notably, the middle layers elicit the largest fluctuations, suggesting
they encode key representations for controlling reasoning length.

Figure 6: Layerwise steering on GSM8K with vmlp
ℓ . We apply α = ±1 to one layer at a time, revealing that the

middle layers wield the strongest control over reasoning length and accuracy.
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A.3 The Impact of ThinkEdit on Reasoning Length
Table 3 reports the average reasoning length among the top 5%, 10%, and 20% shortest responses.
We observe that ThinkEdit consistently increases the reasoning length in these short-answer scenarios,
suggesting that the intervention discourages excessively short reasoning, and therefore leads to higher
accuracy as shown in Table 2. Interestingly, Table 4 shows that the average reasoning length remains similar
between the original and ThinkEdit models. To summarize these trends, we compute the average change in
reasoning length across all datasets: +2.94% for deepseek-qwen-14b, +3.53% for deepseek-llama3-8b,
and -5.73% for deepseek-qwen-1.5b, resulting in an overall average change of -0.27%. These results
suggest that ThinkEdit selectively increases reasoning length for short responses without significantly
altering overall response length.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B Original 76.6 / 86.5 / 99.1 65.8 / 72.2 / 80.6 93.7 / 114.3 / 188.6 628.8 / 858.4 / 1125.9 198.7 / 434.3 / 697.0
ThinkEdit (4%) 101.7 / 113.6 / 131.0 82.7 / 91.8 / 105.6 146.7 / 188.6 / 346.0 745.5 / 926.6 / 1163.7 361.3 / 559.3 / 764.6

deepseek-llama3-8B Original 73.0 / 83.1 / 96.6 371.0 / 438.1 / 518.2 80.3 / 97.2 / 130.3 617.9 / 854.9 / 1126.5 159.5 / 357.5 / 644.5
ThinkEdit (4%) 110.3 / 131.8 / 164.6 398.5 / 462.4 / 541.8 176.3 / 221.3 / 336.0 806.1 / 963.3 / 1185.1 372.5 / 553.2 / 772.9

deepseek-qwen-1.5B Original 78.8 / 89.4 / 103.0 61.6 / 68.5 / 77.6 88.8 / 110.3 / 219.7 804.6 / 1017.9 / 1314.0 249.7 / 506.5 / 760.7
ThinkEdit (4%) 103.3 / 118.9 / 144.8 80.6 / 92.5 / 112.9 172.7 / 336.9 / 543.6 853.0 / 1003.5 / 1221.9 530.8 / 676.0 / 837.4

Table 3: Average reasoning length for the top 5% / 10% / 20% shortest responses (in tokens).

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B Original 354.5 ± 684.4 184.9 ± 175.3 1600.5 ± 1885.2 4306.2 ± 3816.1 3096.8 ± 3308.0
ThinkEdit (4%) 538.2 ± 829.6 291.4 ± 607.5 1670.4 ± 1951.2 4243.7 ± 3814.0 3079.7 ± 3276.6

deepseek-llama3-8B Original 597.3 ± 1109.0 1486.6 ± 2036.7 1646.6 ± 2275.0 4789.1 ± 4315.4 3507.6 ± 3917.5
ThinkEdit (4%) 927.7 ± 1486.3 1517.9 ± 2041.5 1723.7 ± 2152.3 4773.5 ± 4327.4 3509.5 ± 3842.9

deepseek-qwen-1.5B Original 768.1 ± 1837.2 517.0 ± 1502.8 2080.9 ± 2740.5 6360.0 ± 5336.4 4260.3 ± 4668.2
ThinkEdit (4%) 1126.6 ± 2018.0 768.9 ± 1651.4 1946.3 ± 2438.4 5522.4 ± 5036.9 3821.1 ± 4384.9

Table 4: Overall reasoning length (in tokens) before and after applying ThinkEdit (4% edit rate).
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A.4 ThinkEdit with Varying Editing Rates vs. the "Wait" Appending Baseline
We conduct a comprehensive evaluation of ThinkEdit with different editing rates and compare it against
a simple baseline that appends the word "Wait" to reasoning sequences shorter than 500 tokens. This
baseline is intended to prompt the model to continue thinking before answering when the reasoning is too
short. The methods compared are:

• ThinkEdit (8%): Edits 8% of total attention heads.

• ThinkEdit (4%): Edits 4% of total attention heads.

• ThinkEdit (2%): Edits 2% of total attention heads.

• Append "Wait": Appends "Wait" to reasoning with fewer than 500 tokens to artificially extend
reasoning length.

• Original: The unmodified model output.

As shown in Table 5, higher editing rates in ThinkEdit consistently improve performance on GSM8K and
MMLU Elementary Math. However, for the MATH-series datasets, moderate editing rates yield better
results than the most aggressive edits. The "Append Wait" baseline yields only marginal gains across
all datasets, indicating that simply forcing the model to produce longer reasoning does not necessarily
improve accuracy. A closer look at the short reasoning cases in Table 7 shows that all versions of
ThinkEdit substantially outperform the "Append Wait" baseline. This further supports the observation
that longer reasoning alone is insufficient without proper internal adjustment of the model.

In terms of reasoning length (Tables 6 and 8), the "Append Wait" method generally leads to longer
outputs than ThinkEdit (2%), confirming that it effectively increases response length. However, despite
this, it fails to match the performance of ThinkEdit, highlighting that ThinkEdit is a more effective
strategy addressing the accuracy drops of overly short reasoning.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B

ThinkEdit (8%) 94.30 ± 0.28 96.93 ± 0.50 96.09 ± 0.35 90.92 ± 0.41 91.26 ± 0.52
ThinkEdit (4%) 93.78 ± 0.50 96.56 ± 0.84 96.36 ± 0.52 91.03 ± 0.44 91.92 ± 0.63
ThinkEdit (2%) 93.50 ± 0.31 96.53 ± 0.54 96.50 ± 0.46 91.15 ± 0.59 91.78 ± 0.58
Append "Wait" 91.30 ± 0.55 95.37 ± 0.70 96.52 ± 0.55 90.60 ± 0.41 91.22 ± 0.57
Original 90.80 ± 0.36 95.08 ± 0.65 96.32 ± 0.35 90.25 ± 0.72 91.48 ± 0.55

deepseek-llama3-8B

ThinkEdit (8%) 90.18 ± 0.60 96.11 ± 0.67 94.39 ± 0.61 86.13 ± 0.46 87.64 ± 0.88
ThinkEdit (4%) 89.44 ± 0.55 96.19 ± 0.73 94.44 ± 0.31 86.49 ± 0.54 88.06 ± 1.09
ThinkEdit (2%) 88.97 ± 0.78 96.08 ± 0.86 94.12 ± 0.47 85.91 ± 0.48 87.60 ± 0.81
Append "Wait" 84.28 ± 0.64 95.93 ± 0.70 93.96 ± 0.55 85.33 ± 0.79 87.66 ± 1.26
Original 82.26 ± 0.91 96.01 ± 0.62 93.46 ± 0.84 85.49 ± 0.83 87.26 ± 1.16

deepseek-qwen-1.5B

ThinkEdit (8%) 84.81 ± 0.69 92.38 ± 1.04 94.00 ± 0.75 75.32 ± 1.11 82.56 ± 1.21
ThinkEdit (4%) 84.56 ± 0.79 90.66 ± 0.97 93.66 ± 0.62 75.05 ± 0.82 82.24 ± 0.89
ThinkEdit (2%) 83.34 ± 0.79 86.24 ± 1.12 93.89 ± 0.76 74.94 ± 0.85 82.74 ± 0.77
Append "Wait" 79.81 ± 0.77 76.64 ± 1.18 93.34 ± 0.86 75.06 ± 0.72 82.98 ± 1.00
Original 79.15 ± 1.08 68.52 ± 1.56 93.00 ± 0.33 75.48 ± 0.90 82.22 ± 1.29

Table 5: Overall accuracy (%) of ThinkEdit with different editing rates.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B

ThinkEdit (8%) 598.1 ± 1011.8 336.6 ± 550.3 1586.1 ± 1827.4 4150.5 ± 3819.1 3009.5 ± 3336.7
ThinkEdit (4%) 538.2 ± 829.6 291.4 ± 607.5 1670.4 ± 1951.2 4243.7 ± 3814.0 3079.7 ± 3276.6
ThinkEdit (2%) 479.8 ± 968.5 285.1 ± 756.8 1645.4 ± 1946.6 4327.2 ± 3863.4 3138.3 ± 3372.8
Append "Wait" 447.3 ± 652.6 273.0 ± 215.8 1595.8 ± 1810.5 4265.9 ± 3749.0 3071.5 ± 3275.6
Original 354.5 ± 684.4 184.9 ± 175.3 1600.5 ± 1885.2 4306.2 ± 3816.1 3096.8 ± 3308.0

deepseek-llama3-8B

ThinkEdit (8%) 971.8 ± 1447.7 1488.3 ± 1979.5 1692.8 ± 2200.5 4642.1 ± 4253.3 3463.3 ± 3800.1
ThinkEdit (4%) 927.7 ± 1486.3 1517.9 ± 2041.5 1723.7 ± 2152.3 4773.5 ± 4327.4 3509.5 ± 3842.9
ThinkEdit (2%) 849.7 ± 1454.8 1520.1 ± 2103.0 1765.7 ± 2315.1 4825.2 ± 4383.4 3503.8 ± 3838.4
Append "Wait" 670.2 ± 1073.0 1514.4 ± 2009.1 1639.9 ± 2134.8 4795.3 ± 4296.2 3502.5 ± 3859.1
Original 597.3 ± 1109.0 1486.6 ± 2036.7 1646.6 ± 2275.0 4789.1 ± 4315.4 3507.6 ± 3917.5

deepseek-qwen-1.5B

ThinkEdit (8%) 1166.2 ± 1986.4 890.7 ± 1851.7 1912.8 ± 2287.6 5567.4 ± 5083.4 3772.6 ± 4296.0
ThinkEdit (4%) 1126.6 ± 2018.0 768.9 ± 1651.4 1946.3 ± 2438.4 5522.4 ± 5036.9 3821.1 ± 4384.9
ThinkEdit (2%) 912.7 ± 1835.3 701.0 ± 1748.9 1918.0 ± 2420.6 5641.9 ± 5101.5 3880.3 ± 4402.4
Append "Wait" 847.1 ± 1835.7 660.1 ± 1823.7 2163.7 ± 2847.0 6363.9 ± 5352.9 4287.1 ± 4710.3
Original 768.1 ± 1837.2 517.0 ± 1502.8 2080.9 ± 2740.5 6360.0 ± 5336.4 4260.3 ± 4668.2

Table 6: Overall reasoning length (in tokens) of ThinkEdit with different editing rates.
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Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-14B

ThinkEdit (8%) 96.46 / 97.02 / 97.38 97.22 / 95.95 / 95.73 98.57 / 97.91 / 97.47 98.48 / 98.56 / 98.22 91.60 / 93.00 / 94.60
ThinkEdit (4%) 96.31 / 96.18 / 96.77 97.78 / 95.14 / 96.53 99.52 / 99.53 / 98.62 96.67 / 97.88 / 98.11 91.20 / 93.20 / 95.00
ThinkEdit (2%) 96.62 / 96.03 / 96.12 96.11 / 96.22 / 96.27 100.00 / 99.77 / 98.85 95.76 / 97.65 / 98.07 89.60 / 92.60 / 94.70
Append "Wait" 94.62 / 94.20 / 93.19 96.67 / 97.30 / 96.93 100.00 / 99.30 / 98.39 90.15 / 94.47 / 96.33 85.20 / 89.20 / 93.30
Original 96.31 / 95.65 / 92.93 93.89 / 96.22 / 95.60 99.52 / 99.30 / 97.70 89.39 / 94.32 / 96.25 86.40 / 91.40 / 93.50

deepseek-llama3-8B

ThinkEdit (8%) 96.31 / 96.49 / 95.97 97.78 / 97.57 / 98.40 99.05 / 99.30 / 98.85 97.12 / 97.58 / 97.39 95.20 / 94.20 / 94.80
ThinkEdit (4%) 96.31 / 95.50 / 94.68 97.78 / 97.57 / 97.60 99.05 / 99.07 / 97.82 95.76 / 97.42 / 97.46 95.60 / 93.80 / 95.40
ThinkEdit (2%) 97.08 / 95.27 / 93.95 97.78 / 98.65 / 97.87 100.00 / 99.30 / 98.62 95.61 / 96.89 / 97.12 92.80 / 93.60 / 94.40
Append "Wait" 88.15 / 89.01 / 88.29 97.78 / 97.57 / 97.87 98.57 / 97.21 / 95.75 79.55 / 89.02 / 93.45 86.40 / 86.00 / 90.70
Original 88.92 / 87.18 / 85.82 97.22 / 96.49 / 96.80 97.14 / 94.88 / 94.83 78.64 / 88.79 / 93.41 82.00 / 81.40 / 88.30

deepseek-qwen-1.5B

ThinkEdit (8%) 95.38 / 94.20 / 92.97 93.89 / 92.70 / 91.87 94.76 / 96.05 / 96.90 96.21 / 97.20 / 96.78 94.00 / 93.60 / 94.40
ThinkEdit (4%) 92.62 / 92.90 / 92.32 87.78 / 88.11 / 88.67 95.71 / 95.58 / 96.44 95.15 / 96.59 / 97.27 90.80 / 92.00 / 94.20
ThinkEdit (2%) 92.46 / 92.37 / 92.05 77.22 / 80.54 / 79.73 96.19 / 95.81 / 97.36 93.79 / 95.83 / 95.80 92.80 / 94.40 / 94.90
Append "Wait" 88.92 / 87.10 / 86.77 82.22 / 79.46 / 76.13 96.67 / 96.74 / 96.44 92.27 / 94.85 / 95.72 86.00 / 90.60 / 92.30
Original 88.46 / 87.48 / 85.02 62.78 / 62.16 / 60.53 97.62 / 95.12 / 93.91 91.52 / 95.00 / 95.72 82.40 / 89.80 / 93.40

Table 7: Accuracy (%) on the top 5% / 10% / 20% shortest responses for ThinkEdit with different editing rates.

Model GSM8K MMLU Elem. Math MATH-Lvl1 MATH-Lvl5 MATH-500

deepseek-qwen-14B

ThinkEdit (8%) 113.2 / 129.4 / 153.6 86.9 / 99.0 / 117.2 180.7 / 238.5 / 372.3 768.1 / 925.6 / 1136.0 414.7 / 573.9 / 759.0
ThinkEdit (4%) 101.7 / 113.6 / 131.0 82.7 / 91.8 / 105.6 146.7 / 188.6 / 346.0 745.5 / 926.6 / 1163.7 361.3 / 559.3 / 764.6
ThinkEdit (2%) 95.4 / 106.3 / 120.2 79.1 / 87.1 / 98.7 125.1 / 150.2 / 243.4 698.5 / 906.6 / 1157.2 270.2 / 492.6 / 733.3
Wait 127.2 / 145.0 / 166.0 104.1 / 114.4 / 127.6 159.3 / 191.8 / 281.9 672.1 / 875.5 / 1132.1 293.6 / 495.7 / 720.6
Original 76.6 / 86.5 / 99.1 65.8 / 72.2 / 80.6 93.7 / 114.3 / 188.6 628.8 / 858.4 / 1125.9 198.7 / 434.3 / 697.0

deepseek-llama3-8B

ThinkEdit (8%) 160.4 / 185.7 / 225.2 426.0 / 484.4 / 559.4 209.5 / 267.2 / 380.8 825.3 / 978.8 / 1190.7 422.6 / 567.4 / 759.5
ThinkEdit (4%) 110.3 / 131.8 / 164.6 398.5 / 462.4 / 541.8 176.3 / 221.3 / 336.0 806.1 / 963.3 / 1185.1 372.5 / 553.2 / 772.9
ThinkEdit (2%) 93.2 / 106.9 / 127.4 396.5 / 464.2 / 543.2 137.4 / 173.3 / 277.1 791.2 / 954.8 / 1185.1 305.2 / 506.3 / 737.6
Wait 132.2 / 148.2 / 169.1 444.5 / 501.7 / 565.9 148.4 / 179.2 / 244.0 680.8 / 887.3 / 1147.1 277.9 / 452.1 / 693.5
Original 73.0 / 83.1 / 96.6 371.0 / 438.1 / 518.2 80.3 / 97.2 / 130.3 617.9 / 854.9 / 1126.5 159.5 / 357.5 / 644.5

deepseek-qwen-1.5B

ThinkEdit (8%) 115.9 / 138.2 / 180.1 87.4 / 103.7 / 130.1 247.3 / 396.1 / 577.3 859.4 / 1003.7 / 1216.6 595.9 / 719.8 / 871.6
ThinkEdit (4%) 103.3 / 118.9 / 144.8 80.6 / 92.5 / 112.9 172.7 / 336.9 / 543.6 853.0 / 1003.5 / 1221.9 530.8 / 676.0 / 837.4
ThinkEdit (2%) 97.2 / 109.4 / 126.3 75.9 / 85.0 / 99.5 127.9 / 174.1 / 416.4 818.0 / 984.5 / 1214.3 435.0 / 612.9 / 800.6
Wait 120.6 / 137.0 / 158.0 101.6 / 112.9 / 128.0 147.9 / 180.1 / 310.2 822.7 / 1020.9 / 1306.0 341.8 / 556.6 / 791.8
Original 78.8 / 89.4 / 103.0 61.6 / 68.5 / 77.6 88.8 / 110.3 / 219.7 804.6 / 1017.9 / 1314.0 249.7 / 506.5 / 760.7

Table 8: Average reasoning length (in tokens) of the top 5% / 10% / 20% shortest responses for ThinkEdit with
different editing rates.
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A.5 ThinkEdit Results for 32B Reasoning Model
We report results for the larger deepseek-distill-qwen-32B model. Although ThinkEdit does not yield
overall accuracy gains on the MATH-series datasets (Table 9), it consistently achieves higher accuracy on
short reasoning responses similar to the smaller models (Table 11).

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-32B

ThinkEdit (8%) 95.34 ± 0.23 98.10 ± 0.17 95.31 ± 0.38 91.16 ± 0.45 91.44 ± 0.57
ThinkEdit (4%) 95.25 ± 0.25 98.02 ± 0.31 96.02 ± 0.42 91.31 ± 0.50 91.60 ± 0.65
ThinkEdit (2%) 94.90 ± 0.34 97.49 ± 0.49 96.27 ± 0.54 91.31 ± 0.29 91.62 ± 0.74
Append "Wait" 92.72 ± 0.54 96.16 ± 0.45 96.27 ± 0.39 91.32 ± 0.46 91.46 ± 0.51
Original 92.97 ± 0.39 95.93 ± 0.83 96.41 ± 0.45 91.27 ± 0.53 91.62 ± 0.58

Table 9: Overall accuracy (%) of deepseek-distill-qwen-32B with different ThinkEdit edit-rates.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-32B

ThinkEdit (8%) 665.6 ± 762.8 312.3 ± 332.0 1548.6 ± 1473.4 3676.7 ± 3388.7 2665.6 ± 2885.1
ThinkEdit (4%) 445.8 ± 684.7 287.7 ± 600.0 1484.7 ± 1587.7 3821.1 ± 3518.3 2736.4 ± 2948.8
ThinkEdit (2%) 405.3 ± 620.5 238.8 ± 315.9 1485.3 ± 1622.1 3947.0 ± 3564.7 2816.1 ± 3029.2
Append "Wait" 405.5 ± 519.0 280.6 ± 401.5 1484.8 ± 1619.1 4103.9 ± 3606.0 2878.8 ± 3029.3
Original 306.2 ± 515.4 168.9 ± 105.3 1457.6 ± 1621.0 4100.7 ± 3608.7 2872.0 ± 3034.8

Table 10: Overall reasoning length (in tokens) for deepseek-distill-qwen-32B.

Model GSM8K MMLU Elem. Math MATH-Level1 MATH-Level5 MATH-500

deepseek-qwen-32B

ThinkEdit (8%) 99.08 / 98.47 / 97.95 98.33 / 97.57 / 97.07 99.52 / 98.60 / 97.36 99.55 / 99.39 / 98.64 94.40 / 95.40 / 96.10
ThinkEdit (4%) 98.92 / 97.71 / 97.83 97.78 / 97.57 / 97.20 100.00 / 100.00 / 98.74 98.03 / 98.64 / 97.99 92.00 / 94.40 / 95.80
ThinkEdit (2%) 98.92 / 98.24 / 97.68 96.67 / 97.03 / 96.80 99.05 / 98.84 / 98.51 97.58 / 98.26 / 98.22 90.00 / 92.60 / 94.70
Append "Wait" 97.08 / 96.03 / 95.21 95.00 / 96.76 / 96.27 99.52 / 99.30 / 98.05 94.09 / 96.89 / 97.61 84.80 / 90.40 / 93.20
Original 98.31 / 97.18 / 96.20 97.78 / 97.03 / 95.87 100.00 / 100.00 / 98.97 93.03 / 96.36 / 97.35 86.40 / 92.00 / 94.00

Table 11: Accuracy (%) on the top 5% / 10% / 20% shortest responses for deepseek-distill-qwen-32B.

Model GSM8K MMLU Elem. Math MATH-Lvl1 MATH-Lvl5 MATH-500

deepseek-qwen-32B

ThinkEdit (8%) 105.2 / 121.8 / 148.6 89.2 / 100.5 / 117.7 367.8 / 492.8 / 625.4 793.5 / 919.5 / 1094.6 567.1 / 677.0 / 811.1
ThinkEdit (4%) 95.2 / 105.8 / 120.1 85.9 / 96.1 / 110.6 146.9 / 202.2 / 360.9 751.1 / 905.4 / 1101.0 446.7 / 600.0 / 768.9
ThinkEdit (2%) 93.2 / 103.6 / 116.6 79.1 / 88.6 / 101.5 124.3 / 155.3 / 307.6 746.4 / 910.8 / 1123.7 371.3 / 563.0 / 759.8
Append "Wait" 125.7 / 143.0 / 163.7 109.6 / 121.1 / 135.9 151.4 / 182.0 / 247.2 725.7 / 914.4 / 1153.4 328.4 / 521.3 / 739.4
Original 76.7 / 86.7 / 99.6 69.3 / 76.1 / 84.3 89.9 / 109.4 / 149.6 672.7 / 886.7 / 1139.2 216.4 / 454.9 / 705.9

Table 12: Average reasoning length (tokens) of the top 5% / 10% / 20% shortest responses for
deepseek-distill-qwen-32B.
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A.6 ThinkEdit Results on Non-Math Domains
We include supplementary experiments on three non-math subjects from MMLU—High School Computer
Science, Formal Logic, and Professional Accounting. These tasks do not directly require mathematical
calculation, but they still demand structured reasoning and logical consistency. As shown in Tables 13 and
14, ThinkEdit not only improves overall accuracy but also mitigates failure cases that arise from overly
short reasoning traces. This indicates that ThinkEdit can boost performance in reasoning-heavy domains
beyond mathematics.

Model Variant MMLU HS CS MMLU Formal Logic MMLU Prof. Accounting

deepseek-qwen-32B Original 96.50 ± 1.18 93.49 ± 1.29 84.22 ± 1.05
ThinkEdit (4%) 97.20 ± 0.92 94.05 ± 1.80 83.40 ± 1.89

deepseek-qwen-14B Original 93.50 ± 1.58 91.27 ± 2.08 75.85 ± 1.89
ThinkEdit (4%) 94.80 ± 1.14 91.51 ± 1.98 77.09 ± 1.63

deepseek-llama3-8B Original 84.00 ± 3.83 63.41 ± 1.47 57.06 ± 1.48
ThinkEdit (4%) 88.90 ± 1.91 65.40 ± 2.85 57.52 ± 1.40

deepseek-qwen-1.5B Original 63.90 ± 4.38 51.27 ± 3.00 35.71 ± 2.85
ThinkEdit (4%) 68.30 ± 3.02 52.30 ± 3.07 37.09 ± 1.78

Table 13: Overall accuracy on MMLU non-math subjects.

Model Variant MMLU HS CS MMLU Formal Logic MMLU Prof. Accounting

deepseek-qwen-32B Original 98.00 / 98.00 / 97.50 85.00 / 88.33 / 91.60 89.29 / 87.86 / 87.86
ThinkEdit (4%) 100.00 / 99.00 / 99.50 88.33 / 88.33 / 92.00 92.86 / 91.07 / 91.96

deepseek-qwen-14B Original 96.00 / 94.00 / 96.00 78.33 / 85.83 / 90.40 82.14 / 82.50 / 84.82
ThinkEdit (4%) 100.00 / 99.00 / 99.50 85.00 / 90.00 / 92.00 90.00 / 91.43 / 90.36

deepseek-llama3-8B Original 72.00 / 76.00 / 81.00 75.00 / 75.83 / 74.00 70.71 / 70.71 / 67.32
ThinkEdit (4%) 96.00 / 95.00 / 96.00 80.00 / 77.50 / 81.20 75.00 / 74.64 / 70.54

deepseek-qwen-1.5B Original 66.00 / 66.00 / 71.00 48.33 / 51.67 / 61.60 32.86 / 32.14 / 33.21
ThinkEdit (4%) 92.00 / 89.00 / 84.00 60.00 / 61.67 / 67.20 43.57 / 43.21 / 40.36

Table 14: Accuracy on the top 5% / 10% / 20% shortest responses on MMLU non-math subjects.
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A.7 Behavioral Analysis: ThinkEdit Encourages Deeper Reasoning
To better understand how ThinkEdit influences reasoning quality beyond final correctness, we analyze
model behavior over all examples (correct and incorrect). We quantify (i) the average number of LaTeX
equations written in the <think> trace, (ii) the percentage of examples whose final answer is explicitly
boxed in <think>, and (iii) the average reasoning length (tokens) within <think>.

Across the four base models, ThinkEdit consistently produces more equations (+55.2% on average),
boxes the final answer more often (+60.5%), and writes longer reasoning traces (+48.0%) compared to
the original models. The effect is especially pronounced for smaller models (e.g., deepseek-qwen-1.5B:
equations +83.9%, boxing +84.4%). These results indicate that the edits reliably encourage more explicit
and structured chains of thought across the board.

Model Variant Equations in CoT Wrap Answer in CoT (%) Reasoning Length (tokens)

deepseek-qwen-32B Original 1.92 11.75 308.32
ThinkEdit (4%) 2.85 16.00 409.03

deepseek-qwen-14B Original 2.11 15.39 341.09
ThinkEdit (4%) 2.74 23.73 518.06

deepseek-llama3-8B Original 3.21 30.25 606.09
ThinkEdit (4%) 5.09 50.57 957.32

deepseek-qwen-1.5B Original 3.83 28.05 753.45
ThinkEdit (4%) 7.05 51.71 1125.64

Table 15: Behavioral comparison over all datasets. ThinkEdit generates more equations, is more likely to box the
final answer, and produces longer reasoning traces than the original models, indicating more explicit and structured
CoT across cases.
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A.8 Examples of Steering the Reasoning Length
To demonstrate the effect of steering the reasoning length, we present two examples from gsm8k in
Figures 7 and 8. Each figure contains three different reasoning outputs:

• Left: The model’s response when steered towards shorter reasoning with α = −0.04.

• Middle: The original unaltered response.

• Right: The model’s response when steered towards longer reasoning with α = 0.04.

These examples highlight that steering along the reasoning direction effectively modulates the reasoning
length without causing unintended truncation or artificial elongation. In contrast to naive methods such as
forcibly stopping the reasoning process—resulting in incomplete reasoning—or appending redundant
tokens like "Wait" to artificially extend responses, our approach enables the model to generate complete
and coherent reasoning of varying lengths. By directly manipulating the internal representation, we achieve
a more controlled and flexible mechanism for managing reasoning length, which could be particularly
useful for constrained computational budgets.
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Figure 7: GSM8k Example 1: Steering the reasoning length of deepseek-distill-llama3-8b. Left: shorter reasoning
(α = −0.04), Middle: original response, Right: longer reasoning (α = 0.04).
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Figure 8: GSM8k Example 2: Steering the reasoning length of deepseek-distill-llama3-8b. Left: shorter reasoning
(α = −0.04), Middle: original response, Right: longer reasoning (α = 0.04).
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A.9 Examples of Fixing the Overly Short Reasoning with ThinkEdit
To illustrate the effectiveness of our ThinkEdit approach in addressing the overly short reasoning issue,
we show two representative examples from the GSM8K and MATH-level5 datasets.

Example from GSM8K. The example is shown in Figure 9. In this problem, the Original model
misinterprets the question and quickly provides an incorrect conclusion. In contrast, after applying
ThinkEdit, the model first organizes the given information and displays a detailed reasoning process that
leads to the correct answer.

Example from MATH-LEVEL5. The example is shown in Figure 10. Both the Original model and the
model with ThinkEdit begin with an incorrect line of reasoning. However, the original model does not
revise its approach and proceeds to an incorrect final conclusion. In contrast, the model with ThinkEdit
revisits its reasoning steps, recognizes the mistake, and corrects the process in time to reach the correct
solution.

These examples demonstrate ThinkEdit can facilitate deeper, more accurate reasoning by guiding the
model to properly utilize problem details, reconsider faulty steps, and ultimately yield correct solutions.
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Figure 9: An example of ThinkEdit from the GSM8K dataset. The original model provides a short, flawed
explanation. After ThinkEdit, the model’s reasoning process is more thorough.
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Figure 10: An example of ThinkEdit from MATH-level5. While both models initially make a wrong assumption,
the model after applying ThinkEdit corrects itself and arrives at the correct final reasoning.
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