Beyond the Surface: Measuring Self-Preference in LLM Judgments
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Abstract

Recent studies show that large language models
(LLMs) exhibit self-preference bias when serv-
ing as judges, meaning they tend to favor their
own responses over those generated by other
models. Existing methods typically measure
this bias by calculating the difference between
the scores a judge model assigns to its own re-
sponses and those it assigns to responses from
other models. However, this approach conflates
self-preference bias with response quality, as
higher-quality responses from the judge model
may also lead to positive score differences,
even in the absence of bias. To address this
issue, we introduce gold judgments as proxies
for the actual quality of responses and propose
the DBG score, which measures self-preference
bias as the difference between the scores as-
signed by the judge model to its own responses
and the corresponding gold judgments. Since
gold judgments reflect true response quality,
the DBG score mitigates the confounding ef-
fect of response quality on bias measurement.
Using the DBG score, we conduct compre-
hensive experiments to assess self-preference
bias across LLMs of varying versions, sizes,
and reasoning abilities. Additionally, we in-
vestigate two factors that influence and help
alleviate self-preference bias: response text
style and the post-training data of judge mod-
els. Finally, we explore potential underlying
mechanisms of self-preference bias from an
attention-based perspective. Our code and
data are available at https://github.com/
zhiyuanc2001/self-preference.

1 Introduction

Comprehensive evaluation of large language mod-
els (LLMs) has become a central and evolving
research challenge in recent years. As tasks be-
come increasingly diverse and complex, traditional
rule-based (e.g., BLEU (Papineni et al., 2002)) and
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Figure 1: Current methods (Top) measure the self-
preference bias of the judge model by comparing the
scores (such as win rate) that the judge model assigns to
its own responses with those assigned to other models’
responses. However, these methods overlook the impact
of the intrinsic quality of the responses on the scores
provided by the judge model. Our approach (Bottom)
introduces gold judgments as proxies for the ground
truth scores of responses. By comparing the scores that
the judge model gives to its own responses with gold
judgments, our method can provide a more reliable as-
sessment of the self-preference bias.

human-based evaluation approaches encounter sig-
nificant limitations. Rule-based approaches often
lack flexibility in open-ended tasks, while human-
based approaches are prohibitively expensive and
time-consuming (Hendrycks et al., 2021; Chiang
et al., 2024). Recently, LLMs as judges is pro-
posed as a valuable complement to both rule-based
and human-based evaluation approaches (Zheng
et al., 2023; Li et al., 2024). By leveraging their
extensive world knowledge and reasoning abilities,
LLMs show a high degree of alignment with human
judgments and offer a convenient, cost-effective al-

1654

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1654-1673
November 4-9, 2025 ©2025 Association for Computational Linguistics


zhiyuan.chen2001@gmail.com
yankailin@ruc.edu.cn
https://github.com/zhiyuanc2001/self-preference
https://github.com/zhiyuanc2001/self-preference

ternative to human-based evaluation (Zheng et al.,
2023; Zhu et al., 2023). While LLMs are widely
employed as judges, empirical evidence indicates
that they are susceptible to self-preference bias,
which refers to the tendency of LLMs to assign
higher scores to their own responses compared to
those generated by other models (Liu et al., 2023b;
Wataoka et al., 2024; Chen et al., 2025). Self-
preference bias leads LLMs to produce inaccurate
judgment results, undermining their reliability as
judges.

To measuring the self-preference bias of a judge
model, existing work typically uses the difference
between the scores the judge model assigns to its
own responses and those it assigns to other models’
responses as the bias indicator (as shown in Fig-
ure 1). However, this approach conflates response
quality with the judge model’s self-preference
bias (Chen et al., 2025), potentially leading to inac-
curate assessments. Specifically, if the judge model
produces high-quality responses, it becomes am-
biguous whether the high scores it assigns to its
own responses are due to their actual quality or due
to self-preference bias.

To address this issue, we introduce gold judg-
ments and use them as proxies for the ground truth
scores of responses. We then propose the DBG
score, which measures the degree of a model’s
self-preference bias as the difference between
the scores it assigns to its own responses and
the corresponding gold judgments. Subtracting
the gold judgments from the scores assigned by
the judge model helps isolate self-preference bias
and reduces the confounding effect of response
quality on the bias measurement (Section 2). To
obtain gold judgments in this setting, we aggregate
evaluation results from multiple strong LLMs. By
leveraging the consensus among these models, the
gold judgments offer a reliable estimate of the true
response scores.

Based on the DBG score, we conduct compre-
hensive experiments to investigate self-preference
bias across judge models of different versions,
sizes, and reasoning abilities. For model versions,
we consider both pre-trained and post-trained vari-
ants of LLMs. We observe that both pre-trained and
post-trained models exhibit self-preference bias to
some extent. Interestingly, although post-trained
models undergo additional training based on their
pre-trained counterparts, they do not necessarily ex-
hibit a more severe degree of self-preference bias.
Regarding model size, we examine models rang-

ing from 0.5B to 72B and find that larger models
tend to exhibit less self-preference bias than their
smaller counterparts. For reasoning ability, we
study large reasoning models (LRMs) (Jaech et al.,
2024; Guo et al., 2025) and find that LRMs also
display self-preference bias when serving as judges.
Notably, the severity of this bias is not necessarily
less pronounced than that observed in LLMs.

Furthermore, to investigate the factors that influ-
ence and potentially mitigate self-preference bias in
models, we explore two key aspects: response text
style (Ostheimer et al., 2023) and post-training data.
Empirical experiments show that aligning the re-
sponse styles of different models to a unified style
helps alleviate self-preference bias. In addition,
training two different types of models on the same
dataset encourages a reduction in self-preference
bias in both models. Attention-level analysis re-
veals that, during judgment, models naturally tend
to assign higher attention scores to their own re-
sponses compared to those generated by the other
model, which may partly explain the presence of
self-preference bias.

In summary, our contributions are as follows.
(1) We propose the DBG score to enable more
accurate and reliable evaluation of self-preference
bias. (2) We conduct comprehensive experiments
to measure the self-preference bias of models with
varying versions, sizes, and reasoning abilities. (3)
We analyze the impact of response text style and
post-training data on the self-preference bias of
LLMs and offer an attention-based explanation of
its potential causes.

2 The DBG Score: Measuring
Self-Preference in Judge Models

Self-preference, also known as self-enhancement,
refers to the tendency of an LLM to favor its
own generated responses when making judg-
ments (Zheng et al., 2023). Formally, let A and
B denote two different LLMs, and let 74 and rp
represent the responses generated by A and B, re-
spectively, in response to the same instruction x.
For simplicity, we focus our analysis on the sce-
nario where model A serves as the judge.

Let S4(r) denote the score assigned by judge
A to response r. Following the Bradley-Terry
model (Bradley and Terry, 1952), the probability
that judge A prefers r 4 over rp is given by:

P(?“A > TB | :E) = J(SA<7"A) — SA(TB)),
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where o is the sigmoid function. Assume that each
response 7 has an underlying true quality Q(r),
and that judge A has an inherent bias b4 (r) toward
response 7. We approximate the score as: S4(r) ~
Q(r) + ba(r) and obtain

P(ra>=rp|z)=0(d+ba),

where 0 = Q(ra) — Q(rp) captures the qual-
ity gap between the two responses, and by =
ba(ra)—ba(rp) reflects the bias of judge A. In the
self-preference bias case, we assume that the judge
exhibits bias only toward its own response, such
that ba(rp) = 0 and by = ba(ra) > 0. The ex-
pected preference probability of judge A choosing
its own response 4 over all instructions is

wa =Ez[o(d +ba)l.

In contrast, for an unbiased gold judge, the ex-
pected preference probability of selecting 7 4 is

w* = E;[o(d)].

Recent work adopts metrics based on w4 to
quantify self-preference bias (Panickssery et al.,
2024; Ye et al., 2024). However, this approach
conflates the quality of the responses with the self-
preference bias of the judge model (Chen et al.,
2025), leading to biased estimations. Specifically,
when models A and B correspond to a strong LLM
(e.g., GPT-40 (Hurst et al., 2024)) and a weaker
LLM (e.g., Llama-3.1-8B-Instruct (Grattafiori
et al., 2024)), it becomes ambiguous whether a
higher w4 is driven by inherent differences in re-
sponse quality or by the self-preference bias of the
judge model A.

To isolate the self-preference bias of model A,
we propose using the difference between the biased
judge and the gold judge as a metric (referred to
as the DBG score) for measuring self-preference
bias:

wa =Ee[o (0 +ba) — 0 (9)].

This formulation removes the confounding effect of
response quality (captured by J) and focuses explic-
itly on the self-preference bias term 4. A DBG
score greater than zero indicates that the model
exhibits self-preference bias, with larger values
suggesting a more severe degree of bias.

When b4 is small, a first-order Taylor approxi-
mation yields

wA ~ Em[al((S) . bA].

Assuming a weak correlation between response
quality gaps and self-preference bias of A, we have

wa ~ Eglo’(9)] - Eolbal,

suggesting that 1w 4 serves as a linearly scaled es-
timator of the true bias. Thus, it offers a more ac-
curate and disentangled measure of self-preference
than w4.

In practice, we aggregate the judgment results
from three strong LLMs to construct the unbiased
gold judgment:

W = Emvk[a(d + bk)],

where b denotes the bias of model k toward 7 4.
Using the Taylor expansion, we obtain:

w* =Ez[0(0)] + E; 1 [A],

where A represents the remainder term. If the bias
of each individual model is relatively small or fluc-
tuates around zero, then A ~ 0. This indicates that
aggregation helps mitigate the bias of any single
model and enhances the stability of the evaluation.
Additionally, to further validate the reliability of
the gold judgments, we conduct a human study, as
detailed in Section 3.3.

3 Experiments

3.1 Experimental Setup

Models and Datasets. We select GPT-4o-
mini (Hurst et al., 2024), Gemini-1.5-Flash (Team
et al., 2024a), and DeepSeek-V3 (Liu et al., 2024)
as gold judge models due to their strong judging ca-
pabilities. To avoid preference leakage, we choose
models of different types from the gold judge mod-
els to test self-preference bias. Specifically, we
select Llama-3.1-8B(-Instruct), Llama-3.1-70B(-
Instruct) (Grattafiori et al., 2024), Qwen2.5-7B(-
Instruct), Qwen2.5-72B(-Instruct) (Yang et al.,
2024), and gemma-2-9B(-it) (Team et al., 2024b),
where "-Instruct” and "-it" indicate models that
have undergone post-training. We also discuss pro-
prietary models in Appendix A.2.

We conduct our experiments on three widely-
used datasets: AlpacaEval (Li et al., 2023),
WMT19 (de-en) (Foundation, 2019) and Truth-
fulQA (Lin et al., 2021). Following prior work
on multi-objective alignment (Cui et al., 2023;
Guo et al., 2024), we evaluate helpfulness on Al-
pacaEval and WMT19 (de-en), and truthfulness
on TruthfulQA. To facilitate experiments and en-
sure reliable evaluation, we randomly sample 500
examples from each dataset.
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Figure 2: Judgment results for model pairs of the same size on AlpacaEval.

Implementation Details. For all models, we set
the temperature to 0 to ensure output determinism
and consistency. For pre-trained LLMs, we lever-
age the in-context learning method (Brown et al.,
2020) and prepend two examples to the prompt,
enabling them to generate judgments. Given an
LLM and two responses, where one response is
generated by the LLM itself, we evaluate the two
responses using a pairwise comparison approach.
Compared to single-response scoring methods, the
pairwise comparison approach yields more stable
evaluation results (Zheng et al., 2023).

We denote each input to the judge model as
(p,7a,7B), Where p is the judge prompt. This
prompt instructs the LLM to judge which of r 4 and
rp is better and to output only token A or B. We col-
lect and normalize the probabilities corresponding
to the output tokens A and B. To mitigate the impact
of position bias (Zheng et al., 2023; Ye et al., 2024)
on the evaluation results, we swap the order of the
responses and compute the average probability for
each response across both positions (Panickssery
et al., 2024). Finally, we select the response with
the highest average probability as the winner and
calculate the win rate over all instructions. The
consistency between the theoretical analysis and
the empirical implementation is discussed in Ap-

pendix A.5. For gold judgments, since some mod-
els do not provide output probabilities, we assign
a probability of 1.0 to the output token from gold
judge models and 0.0 to the other token. Then, we
select the winner by averaging the probabilities of
all three gold judge models. Furthermore, we alle-
viate the influence of length bias by constraining
the maximum length of the responses. The detailed
prompts are presented in Appendix A.7.

3.2 Main Results

To implement the pairwise comparison judge
method, we combine two LLMs into a pair and
have each LLM judge the responses generated by
the two LLMs in the pair. This approach can simul-
taneously capture the self-preference bias of the
two LLMs. LLM pairs are formed based on model
version and model size. Experimental results on
the AlpacaEval dataset are shown in Figure 2 and
Figure 3. Additional experimental results are pre-
sented in Appendix A.3. Based on the figures, we
observe that:

(1) Introducing gold judgments makes the evalu-
ation of self-preference bias more accurate. From
Figure 2 (b), we observe that when Qwen2.5-72B-
Instruct is used as the judge, the win rate score
of its responses is 52.3%, which is higher than
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Figure 3: Judgment results for model pairs of different sizes on AlpacaEval.

the score obtained when Llama-3.1-70B-Instruct
is used as the judge (50.0%), but still falls short
of the win rate score given by the gold judgment
(54.5%). This suggests that the higher score of
Qwen?2.5-72B-Instruct may be attributed to the su-
perior quality of its own responses, rather than the
self-preference bias. This confirms that introduc-
ing gold judgments is necessary to more accurately
measure self-preference bias.

(2) Both pre-trained and post-trained models
exhibit a certain degree of self-preference bias.
Figure 2 (a) shows that when Llama-3.1-8B is
paired with Qwen2.5-7B and gemma-2-9B, it as-
signs higher win rate scores to its own responses
than gold judgments do. This indicates that Llama-
3.1-8B, when acting as the judge, tends to favor
its own responses, resulting in biased scores. Ad-
ditionally, as shown in Figure 2 (b), we observe
that the DBG score of Llama-3.1-8B-Instruct is
also greater than zero. Larger models, such as
Llama-3.1-70B and Llama-3.1-70B-Instruct, ex-
hibit a similar phenomenon. These results suggest
that the self-preference bias exists after the pre-
training phase and is not solely introduced by the
post-training phase.

(3) Post-trained models do not exhibit a more
pronounced self-preference bias than pre-trained
models. Since post-trained models are further fine-
tuned from pre-trained models, an intuitive ques-
tion arises: does the post-training process intensify
the self-preference bias? Figure 2 (c) shows that the
self-preference bias in post-trained models is not
more severe than in their pre-trained counterparts.
In fact, the DBG score of Llama-3.1-8B-Instruct is
lower than that of Llama-3.1-8B (0.2% vs. 25.6%).

(4) Larger models exhibit less self-preference
bias compared to smaller models. As shown in
Figure 3, although all models demonstrate self-
preference, a noticeable distinction is that the DBG
scores of larger models are closer to 0. For in-
stance, the DBG score of Llama-3.1-70B is 0.4%,
whereas that of Llama-3.1-8B is 21.6%, which is
much higher than the score of Llama-3.1-70B. We
hypothesize that this may be due to the enhanced

instruction-following and judgment capabilities of
the larger models, which allow them to assess re-
sponse quality more fairly and accurately.
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Figure 4: Judgment results for Qwen2.5-Instruct models
at different scales.

To further investigate how self-preference bias
varies with model scale, we conduct experiments
using Qwen?2.5-Instruct models of different sizes,
ranging from 0.5B to 72B. Each model is paired
with Llama-3.1-70B-Instruct for judgment. Fig-
ure 4 illustrates the win rate of Qwen?2.5-Instruct
responses under various judge models as the model
size increases. As observed in the figure, mod-
els larger than 7B exhibit significantly less self-
preference bias compared to those of 7B or smaller.
For example, the DBG score of Qwen2.5-0.5B-
Instruct is 41.7%. In contrast, the DBG score of
Qwen2.5-14B-Instruct is only 2.1%. This suggests
that LLLM judging tasks should utilize larger mod-
els to obtain more accurate and unbiased judgment
results.

3.3 Alignment between Gold Judgments and
Human Annotations

In our experiments, we aggregate the judgment re-
sults from three models to serve as gold judgments,
which is then used as a reference to measure self-
preference bias. To validate the reliability of the
gold judgments, we compare it with actual human
annotations. Specifically, we randomly sample 100
instructions from AlpacaEval and obtain the cor-
responding responses from three different model

1658



pairs. Human annotators are then instructed to com-
pare the responses generated by the two models in
each pair and determine which one is more helpful.
The experimental results are presented in Table 1.
From the table, we observe a high degree of consis-
tency between gold judgments and human annota-
tions. For example, the human-annotated win rate
for Llama-3.1-70B-Instruct is 63%, whereas the
gold judgment indicate a win rate of 66%. In addi-
tion, we find that human annotations and gold judg-
ment results agree on 74% of the samples. These
experimental results validate the reliability and ef-
fectiveness of using gold judgments.

Judgment

Model Pair

Gold Human
Llama-3.1-70B-Instruct 66.0% 63.0%
Llama-3.1-8B-Instruct 34.0% 37.0%
Llama-3.1-70B 49.5% 51.0%
Qwen2.5-72B 50.5% 49.0%
Llama-3.1-70B-Instruct 42.5% 40.0%
Qwen2.5-72B-Instruct 57.5% 60.0%

Table 1: Comparison between gold judgments and hu-
man annotation results.

3.4 Alignment between Gold Judge Models

In our experiments, we construct the gold judg-
ments based on the evaluation results from three
gold judge models (GPT-40-mini, Gemini-1.5-
Flash, and DeepSeek-V3). To assess the reliability
of this approach, we examine the pairwise agree-
ment among the gold judge models. The results are
presented in Table 2. From the table, we observe
that the three judge models exhibit a high level
of agreement. For example, for responses from
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct,
the pairwise accuracies are 83.4% between Gemini
and GPT, 84.4% between Gemini and DeepSeek,
and 84.2% between GPT and DeepSeek. These re-
sults support the reliability and credibility of using
these three models in constructing gold judgments.

4 Further Analysis

In this section, we analyze the self-preference bias
exhibited by models of different reasoning abilities.
Additionally, we investigate two key factors that in-
fluence and help mitigate self-preference: response
text style and post-training data. We further explore
the underlying mechanisms of self-preference from
the perspective of attention. All experiments are
conducted on the AlpacaEval dataset.

4.1 Self-Preference in Reasoning Models

To investigate the impact of reasoning abil-
ity on model self-preference bias, we test the
self-preference bias of DeepSeek(DS)-R1-Distill-
Qwen-32B (Guo et al., 2025) and QwQ-32B (Team,
2025), and compare the results with those of
Qwen2.5-32B-Instruct. For LRMs, we remove the
reasoning content generated by the models and re-
tain only the final answer for judgment. Since all
models are trained on Qwen2.5-32B, this setup mit-
igates the influence of model size and pre-training
process on the results. The experimental results are
shown in Table 3.

As evidenced in the table, both LRMs exhibit the
phenomenon of self-preference bias, as they assign
higher win rates to their own responses compared
to gold judgments. Notably, although QwQ-32B is
capable of generating high-quality responses (with
win rate scores from all judge models significantly
surpassing those for Llama-3.1-70B-Instruct), it
still displays a slight self-preference bias during
judgment. Furthermore, we observe that the self-
preference bias in reasoning models is not neces-
sarily less significant than the bias found in lan-
guage models. For instance, the DBG score of DS-
R1-Distill-Qwen-32B is 4.8%, whereas the DBG
score of Qwen2.5-72B-Instruct is only 2.6%. This
highlights the importance of addressing judge bias
when employing reasoning models as judges in
subsequent studies.

4.2 Impact of Response Style on
Self-Preference

In this section, we investigate whether the super-
ficial linguistic style of LLM-generated responses
influences and helps mitigate LLM self-preference.
To do so, we modify the response styles and com-
pare the changes in model self-preference bias be-
fore and after the modifications. Specifically, for
a pair of models, we prompt DeepSeek-V3 to uni-
formly rewrite the responses of both models into
attractive and humorous styles (Ostheimer et al.,
2023; Mir et al., 2019). Since DeepSeek-V3 is
used to modify the response styles, we exclude it
from the gold judge models to mitigate its poten-
tial impact on the results. Experimental results are
presented in Figure 5. In Appendix A.4, we pro-
vide evidence that our rewriting method minimally
affects the semantic content of the responses, thus
ensuring that variations in content do not confound
the experimental outcomes.
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Model Pair Gemini-GPT Gemini-DeepSeek GPT-DeepSeek
Llama-3.1-8B-Instruct / Qwen2.5-7B-Instruct 83.4% 84.4% 84.2%
Llama-3.1-8B / Qwen2.5-7B 81.1% 82.0% 80.9%
Llama-3.1-8B / Llama-3.1-8B-Instruct 84.7% 84.6% 86.5%
Llama-3.1-70B / Llama-3.1-70B-Instruct 83.0% 85.4% 86.4%

Table 2: Pairwise accuracy of the evaluation results from gold judge models.

Model A: Llama-3.1-70B
Model B: Llama-3.1-8B

Model A: Qwen2.5-72B
Model B: Qwen2.5-7B

Model A: Llama-3.1-70B-Instruct
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Figure 5: Analysis of response style transfer on model self-preference.

Model A: Llama-3.1-8B
Model B: Qwen2.5-7B

Model A 44.4%
Gold 33.9%

Judge Model

42.6%

I Model A Wins

Model A: Llama-3.1-8B-UltraChat
Model B: Qwen2.5-7B-UltraChat

45.8%

Model A: Llama-3.1-8B-Instruct
Model B: Qwen2.5-7B-Instruct

54.0%

40.3%

Model B Wins

Figure 6: Analysis of post-training data on model self-preference.

Judge Model

Model Pair

Model A Gold Model B
A: Llama-3.1-70B-Instruct 46.6% 39.8% 37.2%
B: Qwen2.5-32B-Instruct 534% 60.2%  62.8%
A: Llama-3.1-70B-Instruct 55.8% 51.0% 46.2%
B: DS-R1-Distill-Qwen-32B 442% 49.0%  53.8%
A: Llama-3.1-70B-Instruct 124% 7.6% 7.0%
B: QwQ-32B 87.6% 924%  93.0%

Table 3: Self-preference analysis of reasoning models.

From the figure, we observe that modifying the
style of model responses helps alleviate the self-
preference bias exhibited by the models when act-
ing as judges. For example, considering the pre-
trained models Llama-3.1-70B and Llama-3.1-8B,
before style modifications, their DBG scores are
3.3% and 18.7%, respectively. After rewriting their
responses into the attractive style, the scores de-
crease to 1.4% and 7.2%, respectively. Similarly,
the post-trained models Qwen2.5-72B-Instruct and
Qwen2.5-7B-Instruct exhibit DBG scores of 2.0%
and 8.4%, respectively, before style modifications.
After rewriting the responses into the humorous
style, the scores decrease to 1.2% and 5.9%, re-

spectively. Furthermore, we note that style modifi-
cations alone do not entirely eliminate the model
self-preference phenomenon, suggesting that the
content of the responses may also contribute to
self-preference bias.

4.3 Impact of Post-Training Data on
Self-Preference

In this section, we investigate whether fine-tuning
two distinct pre-trained models on identical data
can help mitigate self-preference bias. Training
different models with the same data may encour-
age the generation of similar responses and align
their judgment tendencies. We fine-tune Llama-
3.1-8B and Qwen2.5-7B on UltraChat-200k (Ding
et al., 2023) using consistent training settings, re-
sulting in Llama-3.1-8B-UltraChat and Qwen2.5-
7B-UltraChat. The evaluation results are presented
in Figure 6.

As shown in Figure 6, fine-tuning different
models on the same data helps reduce their self-
preference bias. Specifically, the DBG scores of
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct
are 10.5% and 2.1%, respectively. After fine-
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tuning with UltraChat-200k, the scores decrease
to 2.1% and 1.1%. In contrast, for Llama-3.1-
8B-Instruct and Qwen2.5-7B-Instruct, which are
trained with different data and methods, the DBG
scores are substantially larger than those observed
in their UltraChat-tuned counterparts, reaching
6.1% and 7.6%, respectively. Moreover, even after
further training on the same dataset, the two models
continue to exhibit self-preference bias, suggest-
ing that discrepancies between response generation
and evaluation established during pre-training may
persist and influence the behavior of downstream
fine-tuned models.

4.4 Attention Analysis

In this section, we analyze self-preference bias
from the perspective of attention in LLMs. Specifi-
cally, we compare how different judge models allo-
cate attention scores to various responses, aiming to
better understand the underlying mechanism of self-
preference bias. We use Llama-3.1-8B and Llama-
3.1-8B-Instruct as judges and compute the aver-
age attention scores over all tokens in the model-
generated responses. We then average the attention
scores across all test instances and present them for
each layer, as shown in Figure 7.

As illustrated in the figure, both judge models
assign higher attention scores to the responses gen-
erated by Llama-3.1-8B-Instruct compared to those
from Llama-3.1-8B (as indicated by the bottom row
showing the attention difference). We hypothesize
that this is due to the generally higher response
quality of Llama-3.1-8B-Instruct, as verified in Fig-
ure 2, which leads to greater attention being paid
to its outputs.

Moreover, we also observe that each model tends
to assign more attention to its own responses than
the other model does. For example, LLlama-3.1-
8B assigns higher attention to its own responses
than Llama-3.1-8B-Instruct does, and vice versa (as
indicated by the rightmost column showing the at-
tention difference). This suggests that models natu-
rally allocate more attention to their own responses,
contributing to the emergence of self-preference.

5 Related Work
5.1 Large Language Models for Judgment

LLMs are widely used in judgment tasks such as re-
sponse ranking (Cui et al., 2023; Liu et al., 2023a),
reward modeling (Lee et al., 2023; Wu et al., 2024),
and verifying agent task completion (Qin et al.,

Judge Models
Llama-3.1-8B-Instruct

Llama-3.1-8B

Attention Difference

Attention Scores for Model Responses
Difference Llama-3.1-8B-Instruct Llama-3.1-8B

Attention

Figure 7: Attention scores of each layer in judge models.
The scores are averaged over response tokens. The bot-
tom row shows the difference in scores between Llama-
3.1-8B and Llama-3.1-8B-Instruct responses for the
same judge model. The rightmost column shows the dif-
ference in scores assigned by Llama-3.1-8B and Llama-
3.1-8B-Instruct (as judges) to the same responses.

2023; Xia et al., 2024), driven by their scalabil-
ity and cost-effectiveness. Leveraging the inherent
knowledge and instruction-following abilities of
LLMs, researchers can guide these models to per-
form judgments by directly integrating rules into
the prompts (Zheng et al., 2023; Sun et al., 2023).
To further refine the judgment capabilities of LLMs
in areas such as helpfulness and harmlessness (Bai
et al., 2022; Wang et al., 2023c), numerous datasets
and models have been developed (Lambert et al.,
2024; Wang et al., 2023b; Zhu et al., 2023), greatly
advancing the development and democratization
of LLM-based judgment. Another active research
area focuses on the meta-evaluation of LLM judges,
examining the alignment between LLM judgments
and human assessments (Zheng et al., 2023; Dubois
et al., 2023), as well as identifying bias in these
judges (Koo et al., 2023; Ye et al., 2024; Chen et al.,
2024). In this work, we focus on self-preference
bias and propose a novel method to more accurately
quantify it in LLMs.

5.2 Bias in Large Language Models

Extensive studies reveal that LLMs are subject to
biases such as length bias (Zheng et al., 2023; Hu
et al., 2024), position bias (Zhu et al., 2023; Shi
et al., 2024), and self-preference bias (Ye et al.,
2024; Wataoka et al., 2024) in judgment tasks. In
this work, we focus on self-preference bias, which
refers to the tendency of LLMs to favor their own
responses when serving as judges. While sev-
eral studies have evaluated the presence of self-
preference bias in specific models (Ye et al., 2024;
Chen et al., 2024; Wang et al., 2023a), a compre-
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hensive analysis across models of different ver-
sions, sizes, and reasoning capabilities is still lack-
ing. Although concurrent work (Chen et al., 2025)
conducts large-scale experiments to assess self-
preference bias across model families, their focus
lies primarily on verifiable tasks such as mathemat-
ical reasoning. In contrast, our study centers on
open-ended tasks. In addition, several studies have
investigated factors related to self-preference bias,
such as self-recognition (Panickssery et al., 2024),
self-enhancement (Xu et al., 2024), and preference
leakage (Li et al., 2025). However, little attention
has been given to mitigating this bias. In this work,
we make an initial attempt to reduce self-preference
bias by exploring two factors: response style and
the data used for post-training.

6 Conclusions

In this work, we propose the DBG score to pro-
vide more accurate and reliable measurements of
self-preference bias in LLMs. Using this metric,
we conduct extensive experiments to evaluate self-
preference bias across LLMs of varying versions,
sizes, and reasoning abilities. Our further analysis
reveals that both the response style and the post-
training data of judge models can influence and
help alleviate self-preference bias. Additionally,
we explore the underlying mechanisms of this bias
from an attention-level perspective. Overall, our
study underscores the importance of recognizing
and addressing self-preference bias when deploy-
ing LLMs as judges, and it offers actionable in-
sights into strategies for reducing such bias.

Limitations

In this work, we employ GPT-40-mini, Gemini-1.5-
Flash, and DeepSeek-V3 as gold judges to mea-
sure the self-preference bias of LLMs. Due to cost
constraints, we do not utilize more powerful mod-
els, such as GPT-40 or Gemini-1.5-Pro. Using
these more capable models could potentially pro-
vide more reliable gold-standard judgments, yield-
ing more accurate measurements of self-preference
bias. Furthermore, while we mitigate the impact
of position bias and length bias through methods
like response position swapping and length lim-
itation, other biases, such as authority bias and
sentiment bias (Ye et al., 2024), may still influ-
ence the results. Additionally, this work limits its
scope to instruction-following and translation tasks.
Further investigation is needed to explore the self-

preference bias of LLMs in other tasks, such as
agent tasks and dialogue tasks.
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A Appendix
A.1 Flowchart of DBG Calculation

In Figure 8, we present a flowchart illustrating the
step-by-step computation of the DBG scores from
raw model outputs.

A.2 Self-Preference of Proprietary Models

In this section, we attempt to analyze the self-
preference bias of proprietary models. We se-
lect Claude-3.5-Haiku (Anthropic, 2024), Qwen-
Plus (Yang et al., 2024), and GLM-4-Plus (GLM
et al., 2024) for the experiment. Each model is
paired with Llama-3.1-70B-Instruct. Since we
do not have access to the output probabilities of
these models, and preliminary experiments reveal
a strong position bias, we classify any test sample
where the output tokens (A or B) differ after swap-
ping response positions as a tie in this experiment.
The results are shown in Figure 9. Based on the
figure, we observe that all three proprietary models
exhibit significant position bias, with more than
45% of test samples yielding different judgment
results after swapping response positions. When
excluding the tied samples, we find that Claude-3.5-
Haiku classifies its own responses as superior in
51.8%/(51.8% + 1.8%) = 96.6% of cases, which
is higher than the gold judgment of 88.0%. This
suggests that Claude-3.5-Haiku may exhibit self-
preference bias. However, further work is needed
to obtain the model’s output probabilities to pro-
vide more accurate results.

A.3 Self-Preference on More Datasets

Figure 10 and Figure 11 respectively show the self-
preference bias of LLM judges on the Truthful QA
and WMT19 (de-en) datasets. From the figures, we
observe similar conclusions to those drawn from
AlpacaEval. Specifically, both pre-trained and
post-trained models exhibit self-preference bias.
For instance, when acting as judges, models like
Llama-3.1-8B and Llama-3.1-8B-Instruct tend to
give higher scores to their own responses than gold
judgments assign to those responses. For exam-
ple, on the WMT19 (de-en) dataset, when Llama-
3.1-8B judges the response pairs of Llama-3.1-8B
and Qwen2.5-7B, it exhibits a DBG score of 2.5%.
Additionally, we observe that large-sized models
exhibit less pronounced self-preference bias com-
pared to smaller models. For example, on the Truth-
fulQA dataset, when large-sized models are paired
with small-sized models, the DBG scores of the

large-sized models tend to be closer to zero than
those of the small-sized models.

A.4 Content Variation in Text Transfer

To verify that the rewriting approach introduced in
Section 4.2 has minimal impact on the semantic
content of the text, this section presents an analysis
of the representation shifts before and after rewrit-
ing. Specifically, we employ gte-multilingual-
base (Zhang et al., 2024), a widely-used text rep-
resentation model, to encode both the original re-
sponses generated by Llama-3.1-70B-Instruct and
their rewritten counterparts. We use the embed-
ding corresponding to the [CLS] token as the rep-
resentation of each response. Then, we apply t-
SNE (van der Maaten and Hinton, 2008) to visu-
alize the changes in representations. The results
are shown in Figure 12. As observed, the rep-
resentations before and after rewriting exhibit a
high degree of overlap, indicating that our rewrit-
ing method primarily transfers the style of the re-
sponses with minimal impact on their underlying
semantics.

A.5 Consistency Between the Theoretical Bias
Estimator and Implementation

In our experimental implementation, for a judge
model A, we obtain the probabilities assigned to
tokens A and B for each individual instruction. The
token with the higher probability is selected as the
winner. By aggregating the outcomes over all in-
structions, we compute the win rate, which can
be formulated as E,[I[o0(d + ba) > 0.5]], where
I is the indicator function. While this procedure
produces a binary (0-1) decision for each instruc-
tion rather than a continuous probability, it can be
viewed as a thresholded approximation to the theo-
retical quantity wa = E;[0(6 + ba)]. Specifically,
it can be seen as an approximation to sampling
from a Bernoulli distribution with success proba-
bility o(6 + b4). The same applies to gold judge
models. The approximation error is small when
the underlying probabilities are well-separated (i.e.,
close to 0 or 1). This justifies the empirical pro-
cedure as a practical surrogate to the theoretical
self-preference bias formulation.

A.6 Few-shot Setting Analysis

To guide pre-trained models in making judgments,
we leverage their few-shot learning ability and
prepend examples to each input. For post-trained
models, due to their strong instruction-following
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Figure 8: Flowchart for calculating the DBG score.

Model Paired Response Win Rate
Zero-shot  Few-shot
Llama-3.1-8B 82.0% 78.0%

Llama-3.1-8B-Instruct oy o 5 7B Instruct~ 54.0%  53.2%

Llama-3.1-70B 83.5% 84.9%

Llama-3.1-70B-Instruct oy 0 o 5 70B-Instruct ~ 50.0%  48.0%

Qwen2.5-7B 68.1% 69.8%

Qwen2.5-7B-Instruct 1y 3 1-8B-Instruct  59.7%  60.6%

Table 4: Comparison of post-trained models judgments
to their responses under zero-shot and few-shot settings.

ability, we prompt them to make judgments in a
zero-shot setting. To investigate the differences in
judgment between zero-shot and few-shot settings
for post-trained models, we conduct judgment ex-
periments under the few-shot setting. The results
are shown in Table 4. From the table, we observe
that the judgment results of the post-trained model
in the zero-shot and few-shot settings are similar,
indicating that the post-trained model is capable of
generating appropriate judgments in the zero-shot
setting, which validates the reasonableness of our
experimental setup.

A.7 Prompt

We present the prompts used for response gener-
ation in Table 5, Table 6, and Table 7, and the
prompts used for response judgment in Table 8,
Table 9, and Table 10.

1666



Judge Model

Judge Model

Judge Model

Judge Model

Judge Model

Model A: Claude-3.5-Haiku Model A: Qwen-Plus Model A: GLM-4-Plus

Model B: Llama-3.1-70B-Instruct Model B: Llama-3.1-70B-Instruct Model B: Llama-3.1-70B-Instruct
Model A 51.8% 46.4% 1.8% 45.2% 48.0% 6.8% 37.4% 56.0% 6.6%
Gold 88.0% 12.0% 79.5% 20.5% 73.7% 26.3%
Model B 88.3% 11.7% 73.1% 26.9% 70.2% 29.8%
BN Model AWins Wl Tie [ Model B Wins
Figure 9: Judgment results for proprietary models on AlpacaEval.
Model A: Llama-3.1-8B Model A: Llama-3.1-8B Model A: Llama-3.1-70B
Model B: Qwen2.5-7B Model B: gemma-2-9b Model B: Qwen2.5-72B
Model A 51.1% 48.9% 51.8% 48.2% 50.8% 49.2%
Gold 41.2% 58.8% 44.7% 55.3% 43.8% 56.2%
(a) Pairs of pre-trained models of the same size.
Model A: Llama-3.1-8B-Instruct Model A: Llama-3.1-8B-Instruct Model A: Llama-3.1-70B-Instruct
Model B: Qwen2.5-7B-Instruct Model B: gemma-2-9b-it Model B: Qwen2.5-72B-Instruct
Model A 66.2% 33.8% 74.4% 25.6% 67.6% 32.4%
Gold 50.6% 49.4% 51.8% 48.2% 60.2% 39.8%
Model B 40.1% 59.9% 43.2% 56.8% 59.9% 40.1%
(b) Pairs of post-trained models of the same size.
Model A: Llama-3.1-8B Model A: Qwen2.5-7B Model A: gemma-2-9b
Model B: Llama-3.1-8B-Instruct Model B: Qwen2.5-7B-Instruct Model B: gemma-2-9b-it
Gold 25.3% 74.7% 31.7% 68.3% 29.8%
Model A: Llama-3.1-70B Model A: Qwen2.5-72B
Model B: Llama-3.1-70B-Instruct Model B: Qwen2.5-72B-Instruct
% Model A 41.1% 58.9% 18.8% 81.2%
°
o
E Gold 27.7% 72.3% 44.3% 55.7%
o
e}
ENVCEEE  22.4% 77.6% 49.4% 50.6%
(c) Pairs of pre-trained and post-trained models of the same size.
Model A: Llama-3.1-70B Model A: Qwen2.5-72B Model A: Llama-3.1-70B-Instruct Model A: Qwen2.5-72B-Instruct
Model B: Llama-3.1-8B Model B: Qwen2.5-7B Model B: Llama-3.1-8B-Instruct Model B: Qwen2.5-7B-Instruct

(d) Pairs of models of different sizes.

I Model A Wins [ Model B Wins

Figure 10: Judgment results on Truthful QA.
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Judge Model Judge Model

Judge Model

Judge Model

Model A: Llama-3.1-8B
Model B: Qwen2.5-7B

Model A 45.3% 54.7%

Gold 42.8% 57.2%

Model B 42 58.0% 33.2% 66.8%

(a) Pairs of pre-trained models of the same size.

Model A: Llama-3.1-8B-Instruct Model A: Llama-3.1-8B-Instruct Model A: Llama-3.1-70B-Instruct
Model B: Qwen2.5-7B-Instruct Model B: gemma-2-9b-it Model B: Qwen2.5-72B-Instruct

Model A 46.5% 53.5%

Gold 37.6% 62.4% 37.4% 62.6%
Model B 38.2% 61.8% 37.9% 62.1%

(b) Pairs of post-trained models of the same size.

Model A: Llama-3.1-8B Model A: Qwen2.5-7B Model A: gemma-2-9b
Model B: Llama-3.1-8B-Instruct Model B: Qwen2.5-7B-Instruct Model B: gemma-2-9b-it

Gold 31.3% 68.7% 25.8% 74.2%
Model B 23.1% 76.9% 26.9% YERR

Model A: Llama-3.1-8B Model A: Llama-3.1-70B
Model B: gemma-2-9b Model B: Qwen2.5-72B

37.6% 62.4%

52.2% 47.8%

30.9% 69.1%

43.4% 56.6%
48.7% 51.3%

40.9% 59.1% 38.3% 61.7%

24.8% 75.2%

29.2% 70.8%

29.6% 70.4%

33.7% 66.3%

Model A: Llama-3.1-70B Model A: Qwen2.5-72B
Model B: Llama-3.1-70B-Instruct Model B: Qwen2.5-72B-Instruct
g mocel» [ R
k=l
o
o
el
(c) Pairs of pre-trained and post-trained models of the same size.
Model A: Llama-3.1-70B Model A: Qwen2.5-72B Model A: Llama-3.1-70B-Instruct Model A: Qwen2.5-72B-Instruct
Model B: Llama-3.1-8B Model B: Qwen2.5-7B Model B: Llama-3.1-8B-Instruct Model B: Qwen2.5-7B-Instruct

Model A 78.9% 21.1% VERY 26.5% 72.2% PR 77.7% 22.3%
Gold YENE 26.3% 74.6% PLR 75.3% 24.7% 74.5% 25.5%

(d) Pairs of models of different sizes.

I Model A Wins [ Model B Wins

Figure 11: Judgment results on WMT19 (de-en).

Attractive

Original Responses ®
Rewritten Responses

Figure 12: t-SNE visualizations of the embedding representations of responses before and after rewriting.
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Post-trained Models:
You are a helpful assistant. Please help me answer the query below. Keep your answer within 200 words.

# Query
{query}

Now, please provide your answer to this query.
# Answer

Pre-trained Models:

# Instruction

Below is a list of conversations between a human and an Al assistant (you).

As an Al assistant, you will engage in conversations with users, responding to their queries which are presented under the
heading "# Query".

Your responses should be entered under the heading "# Answer".

You excel in a wide range of tasks including, but not limited to, providing general information, conducting reasoning,
engaging in role-play, creative writing, planning, and solving mathematical and coding problems.

Your responses should be well-structured, comprehensive, and aim to thoroughly address the user’s query or problem at
hand. **Please keep your answer within 200 words.**

# Query

{example 1 query}
# Answer
{example 1 answer}

# Query

{example 2 query}
# Answer
{example 2 answer}

# Query

{example 3 query}
# Answer
{example 3 answer}

# Query
{test query}
# Answer

Table 5: Prompt used for response generation on AlpacaEval. The prompt for pre-trained models is derived from
Lin et al. (2023).
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Post-trained Models:
You are a truthful assistant. Please help me answer the query below truthfully, remaining faithful to factual knowledge and
the given context. Avoid making up any untrue facts.

# Query
{query}

Now, please provide your answer to the query. Keep your answer within 200 words.
# Answer

Pre-trained Models:

# Instruction

As an Al assistant, you will engage in conversations with users, responding to their queries which are presented under the
heading "# Query".

Your responses should be entered under the heading "# Answer".

**You should respond to queries truthfully, remaining faithful to factual knowledge and the given context. Avoid making
up any untrue facts.**

Keep your answers within 200 words.

# Query

{example 1 query}
# Answer
{example 1 answer}

# Query

{example 2 query}
# Answer
{example 2 answer}

# Query
{test query}
# Answer

Table 6: Prompt used for response generation on TruthfulQA.

Post-trained Models:

You are an excellent translator, and you specialize in translating German into English. Given a piece of German text, please
help translate it into English.

Here is the given German text.

# German

{german}

Now, please translate the German text into English. You only need to provide the English translation, with no other text.
# English

Pre-trained Models:

# Instruction

You are an excellent translator, and you specialize in translating German into English. **Given a piece of German text,
please translate it into English.**

The German texts are under "# German", and the corresponding English translations are under "# English".

# German
{example 1 german}
# English
{example 1 english}

# German
{example 2 german}
# English
{example 2 english}

# German
{test german}
# English

Table 7: Prompt used for response generation on WMT19 (de-en).
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Post-trained Models:
You are a helpful assistant tasked with evaluating the quality of different responses to a given query. For each query, you
will receive two independent responses. Please judge which response is better.

Here is the given query.
# Query
{query}

Here are two independent responses (Response A and Response B) to the query.
# Responses

<Response A>{response a}</Response A>

<Response B>{response b}</Response B>

Now, please judge which response is better. You only need to output A or B, with no other text.
Your output should be A if Response A is better or B if Response B is better.
Please remember that your response should start with either A or B

Pre-trained Models:

# Instruction

You are a helpful assistant tasked with evaluating the quality of different responses to a query. You will receive multiple
queries, each accompanied by two independent responses. For each query, you should judge which response you think is
better.

Queries are placed under "# Query". The two responses for each query are listed under "# Responses" as "Response A"
and "Response B". Your outputs should be placed under "# Judgment".

You only need to output A or B, with no other text.

# Query

{example 1 query}

# Responses

<Response A>{example 1 response a}</Response A>
<Response B>{example 1 response b }</Response B>
# Judgment

{example 1 judgment}

# Query

{example 2 query}

# Responses

<Response A>{example 2 response a}</Response A>
<Response B>{example 2 response b }</Response B>
# Judgment

{example 2 judgment}

# Query

{test query}

# Responses

<Response A>{test response a}</Response A>
<Response B>{test response b}</Response B>
# Judgment

Table 8: Prompt used for judgment generation on AlpacaEval.
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Post-trained Models:

You are a knowledgeable assistant. Given a query and two corresponding responses, your task is to determine which
response is more truthful, ensuring it is less misleading, free from fabricated content, factual inaccuracies, and logical
errors.

Here is the query.
# Query
{query}

Here are two responses (Response A and Response B) to the query.
# Responses

<Response A>{response a}</Response A>

<Response B>{response b}</Response B>

Now, please judge which response is more truthful. You only need to output A or B, with no other text. Please remember
that your response should start with either A or B.

Pre-trained Models:

# Instruction

You are a knowledgeable assistant. Given a query and two corresponding responses, your task is to determine which
response is **more truthful**, ensuring it is less misleading, free from fabricated content, factual inaccuracies, and logical
errors.

Queries are placed under "# Query". The two responses for each query are listed under "# Responses" as "Response A"
and "Response B". Your outputs should be placed under "# Judgment".

You only need to output A or B, with no other text.

# Query

{example 1 query}

# Responses

<Response A>{example 1 response a}</Response A>
<Response B>{example 1 response b }</Response B>
# Judgment

{example 1 judgment}

# Query

{example 2 query}

# Responses

<Response A>{example 2 response a}</Response A>
<Response B>{example 2 response b }</Response B>
# Judgment

{example 2 judgment}

# Query

{test query}

# Responses

<Response A>{test response a}</Response A>
<Response B>{test response b}</Response B>
# Judgment

Table 9: Prompt used for judgment generation on Truthful QA.
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Post-trained Models:

You are a helpful assistant tasked with evaluating the quality of two different English translations of the same German text.
For each German text, you will receive two independent English translations. Please judge which English translation is
better.

Here is the German text.
# German
{german}

Here are two independent English translations (English A and English B) for the German text.
# English

<English A>{english a}</English A>

<English B>{english b}</English B>

Now, please judge which English translation is better. You only need to output A or B, with no other text. Please remember
that your response should start with either A or B

Pre-trained Models:

# Instruction

You are a helpful assistant tasked with evaluating the quality of two different English translations of the same German text.
For each German text, you will receive two independent English translations. Please judge which English translation is
better.

The German texts are under "# German". The two independent English translations for each German text are under "#
English", labeled as "English A" and "English B", respectively. Your outputs should be placed under "# Judgment".

You only need to output A or B, with no other text.

# German

{example 1 german}

# English

<English A>{example 1 english a}</English A>
<English B>{example 1 english b}</English B>
# Judgment

{example 1 judgment}

# German

{example 2 german}

# English

<English A>{example 2 english a}</English A>
<English B>{example 2 english b}</English B>
# Judgment

{example 2 judgment}

# German

{test german}

# English

<English A>{test english a}</English A>
<English B>{test english b}</English B>
# Judgment

Table 10: Prompt used for judgment generation on WMT19 (de-en).
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