Visual-Aware Speech Recognition for Noisy Scenarios

Balaji Darur, Karan Singla


Abstract
Humans have the ability to utilize visual cues, such as lip movements and visual scenes, to enhance auditory perception, particularly in noisy environments. However, current Automatic Speech Recognition (ASR) or Audio-Visual Speech Recognition (AVSR) models often struggle in noisy scenarios. To solve this task, we propose a model that improves transcription by correlating noise sources to visual cues. Unlike works that rely on lip motion and require the speaker’s visibility, we exploit broader visual information from the environment. This allows our model to naturally filter speech from noise and improve transcription, much like humans do in noisy scenarios. Our method re-purposes pretrained speech and visual encoders, linking them with multi-headed attention. This approach enables the transcription of speech and the prediction of noise labels in video inputs. We introduce a scalable pipeline to develop audio-visual datasets, where visual cues correlate to noise in the audio. We show significant improvements over existing audio-only models in noisy scenarios. Results also highlight that visual cues play a vital role in improved transcription accuracy
Anthology ID:
2025.emnlp-main.845
Volume:
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2025
Address:
Suzhou, China
Editors:
Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
16709–16717
Language:
URL:
https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.845/
DOI:
Bibkey:
Cite (ACL):
Balaji Darur and Karan Singla. 2025. Visual-Aware Speech Recognition for Noisy Scenarios. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16709–16717, Suzhou, China. Association for Computational Linguistics.
Cite (Informal):
Visual-Aware Speech Recognition for Noisy Scenarios (Darur & Singla, EMNLP 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-main.845.pdf
Checklist:
 2025.emnlp-main.845.checklist.pdf