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Abstract

Information retrieval models that aim to search
for documents relevant to a query have shown
multiple successes, which have been applied to
diverse tasks. Yet, the query from the user is of-
tentimes short, which challenges the retrievers
to correctly fetch relevant documents. To tackle
this, previous studies have proposed expand-
ing the query with a couple of additional (user-
related) features related to it. However, they
may be suboptimal to effectively augment the
query, and there is plenty of other information
available to augment it in a relational database.
Motivated by this fact, we present a novel re-
trieval framework called Database-Augmented
Query representation (DAQu), which augments
the original query with various (query-related)
metadata across multiple tables. In addition,
as the number of features in the metadata can
be very large and there is no order among
them, we encode them with the graph-based
set-encoding strategy, which considers hierar-
chies of features in the database without or-
der. We validate our DAQu in diverse retrieval
scenarios, demonstrating that it significantly
enhances overall retrieval performance over
relevant baselines. Our code is available at
https://github.com/starsuzi/DAQu.

1 Introduction

Information Retrieval (IR) is the task of fetch-
ing query-relevant documents from a large corpus.
Traditional approaches have focused on sparse re-
trieval, which searches for documents that yield the
highest lexical match with the query (Robertson
et al., 1994). Recently, neural language models
have led to the introduction of dense retrieval mod-
els, which represent both the query and the docu-
ment in a learnable latent space and then calculate
their similarity on it (Karpukhin et al., 2020; Izac-
ard et al., 2022; Chen et al., 2024a). Notably, these
IR methods have gained much attention in the era
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of Large Language Models (LLMs), due to their
ability to assist LLMs help generating accurate an-
swers with evolving knowledge from an external
source (Cho et al., 2023; Jeong et al., 2024).

Despite such a huge advantage of IR in NLP, it
faces a critical challenge that information captured
in a query itself is oftentimes not sufficient to re-
trieve its relevant documents, due to the scarcity
of information within its (shorter) text. To tackle
this challenge, previous work has focused on en-
riching representations of queries or documents by
expanding them with additional texts or augment-
ing their representation spaces (Jeong et al., 2022;
Jagerman et al., 2023; Lin et al., 2023a). Yet, de-
spite their improvements, those approaches are still
limited in that they rely on the capability of models
themselves (e.g., LLMs) used during augmentation,
though there can be external knowledge sources
(for augmentation) associated with the user query
(such as the user’s purchase history for shopping).

While some other work has considered these
additional sources, enhancing the representation
of queries with them, they leverage only a single
source of information stores, especially the one
specific to the user (who issues the query) (Gupta
et al., 2019; Zhang et al., 2020; Deng et al., 2021;
Buss et al., 2023). However, in the real-world,
data (including queries) is usually mapped into the
database and linked to other data within it, which
means that plenty of information that can be poten-
tially used for query enrichment is available on the
relational database (Fey et al., 2023). For example,
online platforms like e-commerce often use rela-
tional databases to store and link structured infor-
mation such as user profiles, purchase histories, and
prior interactions. Similarly, healthcare databases
connect patient queries to records like medical his-
tories and lab results, while travel databases asso-
ciate queries with itineraries and customer profiles.

Therefore, in this work, we introduce a novel IR
paradigm, Database-Augmented Query representa-
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Figure 1: A conceptual illustration of our proposed DAQu, which shows a link among multiple tables for the given query (Left)
and visualizes a graph-based set-encoding strategy that encodes metadata hierarchically for query augmentation (Right).

tion (DAQu), which augments representations of
queries by searching for and connecting their as-
sociated information across multiple tables within
the relational database. As shown in Figure 1, con-
sider the task of identifying the answer post that
the user would most likely to vote as the best. In
this scenario, we can not only represent the query
with its own information but also with its relevant
information within and across the multiple tables.
Specifically, we can use metadata in the same table,
such as its tags, but also metadata spread over other
multiple tables, which include user-specific infor-
mation, such as previous posts, answers (that they
voted for), bios, and badges (that they earned). For
example, given the question from the user, “Can a
Transformer model be used like a recurrent autoen-
coder?”, user tags like “Transformer” and “Autoen-
coder” can emphasize the focus on these specific
concepts. Further, the user’s past questions about
“RNNs” and “Autoencoders” reveal an existing fa-
miliarity with these topics, while the Vote table
highlights which answers the user has previously
favored, offering further insight into their prefer-
ences. However, the volume of these metadata can
be extremely large, and simply expanding the query
with additional terms in the metadata (as done in
existing query expansion work (Gupta et al., 2019;
Deng et al., 2021)) is not feasible due to the limited
context length of LMs. Moreover, since there is no
inherent order for the elements in the metadata, the
query augmentation approach should ensure order
invariance when incorporating this information.

To this end, we further propose to encode vari-
ous query-related metadata within and across mul-
tiple tables over the relational database, based on a
graph set-encoding scheme. Specifically, this strat-
egy models metadata for query expansion as a two-
layer hierarchical graph structure, and, within this
structure, the first layer aggregates query-related
elements (cells) within each column into a column-

level representation, and next the second layer ag-
gregates these column-level representations into a
query-level representation. For example, consider a
query from the Stack Exchange dataset in Figure 1,
which is linked to metadata such as the user’s pro-
file, previous posts, and associated tags. Then, each
individual attribute (e.g., a tag, a user bio, and a
body of the previous post) is first encoded indepen-
dently. After that, within each column (e.g., tags),
these encoded attributes are aggregated to create
the column-level representation (e.g., all tags com-
bined into a single vector). Lastly, all column-level
representations (for tags, user bios, and previous
post content) are aggregated into the final query-
level metadata representation that is used to en-
rich the original query representation. It is worth
noting that those two-layer structures (aggregation
on column- and query-level) can be viewed as a
two-layer graph neural network (Kipf and Welling,
2017; Gilmer et al., 2017) since the first layer mod-
els interactions within columns (i.e., intra-column
relationships) and the second layer models interac-
tions across columns (inter-column relationships).

We then validate our DAQu on seven different
retrieval tasks designed with multiple databases
of Stack Exchange, Amazon Product Catalog, and
H&M (Fey et al., 2023; Robinson et al., 2024).
The experimental results show significant improve-
ments of our DAQu in retrieval performance com-
pared to other query augmentation baselines across
diverse scenarios. Moreover, we demonstrate that
the graph set-encoding technique operationalized
in our DAQu effectively represents metadata, en-
hancing the representations of queries for retrieval.

2 Related Work

Retrieval In response to a query from a user, the
retrieval task is to search for the most relevant docu-
ments from a large corpus (such as Wikipedia) (Zhu
et al., 2021). Typically, it can be performed with
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two types of models: sparse and dense retrievers.
Specifically, sparse retrievers such as TF-IDF or
BM25 (Robertson et al., 1994) represent the query
and document based on their terms and frequencies
in a sparse vector space, whereas dense retrievers
use a trainable dense vector space to embed the
query and document usually with language mod-
els (Karpukhin et al., 2020; Izacard et al., 2022;
Chen et al., 2024a). Recently, due to the limitation
of sparse retrievers that are vulnerable to the vocab-
ulary mismatch problem, dense retrieval is widely
selected as a default choice and many advance-
ments have been made on it (Ding et al., 2024).
For example, DPR (Karpukhin et al., 2020) is a
supervised dense retriever with a dual-encoder ar-
chitecture that is trained discriminatively on the la-
beled pair of a query and its relevant documents to
achieve higher similarity scores than the pair of the
query-irrelevant documents. Also, Contriever (Izac-
ard et al., 2022) utilizes a self-supervised learning
strategy, which generates its training samples by
creating positive pairs from query-related contexts
within and across documents, rather than relying
on explicitly annotated data. Yet, using only the
information within a query for retrieval can be sub-
optimal, due to the scarcity of information on it.

Query Augmentation for Retrieval Some stud-
ies have proposed augmenting the original query
with additional information to enhance the retrieval
performance (Carpineto and Romano, 2012; Azad
and Deepak, 2019). Specifically, traditional aug-
mentation methods have focused on utilizing a lex-
ical knowledge base such as the WordNet (Miller,
1992) to expand the original queries (Bhogal et al.,
2007; Zhang et al., 2009). In addition, some other
work has implemented statistical models such as
RM3 (Jaleel et al., 2004a), which add new terms to
the query extracted from the top documents in the
initial search results and then adjust their weights
based on their importance (Lavrenko and Croft,
2001; Jaleel et al., 2004b; Lv and Zhai, 2009).
However, they have been shown to be not very
effective and, in some cases, even degraded the
performance (Nogueira et al., 2019; Jeong et al.,
2021). Therefore, recent work has turned to lever-
aging neural models to extract or generate query-
relevant terms and then append such terms to the
original query (Esposito et al., 2020; Zheng et al.,
2020; Mao et al., 2021), or exploiting multiple
fields within the document itself (Li et al., 2025).
Moreover, some studies further use recent LLMs to

utilize their remarkable capabilities in generating
such terms (Wang et al., 2023b; Shao et al., 2023;
Buss et al., 2023; Jagerman et al., 2023; Feng et al.,
2024; Dhole and Agichtein, 2024; Xia et al., 2024).
However, despite the fact that the query is repre-
sented and leveraged in the latent space with the
recent dense retrievers, existing work focuses on ex-
plicitly expanding its text (instead of manipulating
this query representation for augmentation). This
approach may be problematic if there is a signifi-
cant amount of data available to augment the query
across multiple relational tables over the database.

Retrieval with Database A natural way to store
a collection of data is to use a relational database,
that is designed to effectively manage, retrieve, and
manipulate data for various applications (Johnson
et al., 2016; Fey et al., 2023). To utilize the data
in the database, the task of retrieving the tabular
structures and the information in them has received
much attention. Specifically, some studies have de-
veloped the approach to retrieve tables themselves
(relevant to the given query) from a large table cor-
pus (Herzig et al., 2021; Wang et al., 2022). Some
other work extends this approach, extracting or
generating the answer for the query from the re-
trieved tables (Pan et al., 2021, 2022; Lin et al.,
2023b). However, since some real-world questions
require multiple tables, recent studies have made
further progress, proposing to incorporate multiple
tables during retrieval (Kweon et al., 2023; Chen
et al., 2024b) or reading the tables (Pal et al., 2023).
However, unlike all the aforementioned work that
has focused on retrieving the tables themselves and
finding relevant cells within them, our work is com-
pletely different, which aims to effectively handle
the query for document retrieval by using the query-
related information spread across multiple tables,
to augment the representation of the query.

3 Method

3.1 Preliminaries

We begin with preliminaries, providing formal de-
scriptions of the retrieval and query augmentation.

Dense Retrieval Let us define the query as q and
its relevant document as d ∈ D, where D is a cor-
pus. To operationalize retrieval, we should be able
to calculate the similarity between q and d: f(q, d),
where f is a scoring function. Following the bi-
encoder architecture for dense retrieval, we obtain
the similarity by representing the query and docu-
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ment with encoders Encq and Encd parameterized
by θq and θd, respectively, formalized as follows:

f(q, d) = sim(q,d),

q = Encq(q; θq) and d = Encd(d; θd),
(1)

where q and d are the query and document repre-
sentations, respectively. In addition, sim is a sim-
ilarity metric (e.g., cosine similarity). It is worth
noting that the objective of the dense retrieval func-
tion f is to rank the pair of query q and its relevant
document d+ highest among all the other pairs with
irrelevant documents {d−i }Ni=1. To reflect this, we
formalize the training objective, as follows:

l = − log
ef(q,d

+)

ef(q,d+) +
∑N

i=1 e
f(q,di

−)
. (2)

Query Augmentation for Retrieval To improve
the effectiveness of the dense retrieval (while tack-
ling the limited contextual information within the
query q), the textual query itself or its represen-
tation q can be enriched by augmenting it with
the information that is not present in the original
q. In this work, to effectively incorporate diverse
pieces of information into the query without their
order variance, we turn to augmenting the query
representation q over the latent space, as follows:
q̃ = λq + (1− λ)q′, where q̃ is the reformulated
representation, q′ is the representation of the ad-
ditional information helpful to enrich the original
query q, and λ ∈ [0, 1] is for giving weight to it.

3.2 Database-Augmented
Query Representation

We now introduce our Database-Augmented Query
representation (DAQu) framework for IR.

Relational Database As a vast amount of infor-
mation is typically stored in a relational database,
we aim to augment the representations of queries
with the relevant information within this database.
The relational database can be defined as a set of
tables: T = {Ti}Ni=1, and each table is comprised
of a collection of rows T = {rj}Kj=1, where N is
the number of tables and K is the number of rows.

Note that one of the valuable characteristics of
the relational database is that some rows in tables
are connected with others in other tables, which
facilitates relational linkages and ease of data re-
trieval. Formally, each row ri in the table consists
of a primary key column that uniquely identifies
each row within the table, (potentially) some for-
eign key columns that link to primary keys in other

tables, and other non-key attribute columns provid-
ing additional information about the row. In other
words, the relationships between primary and for-
eign keys connect rows across different tables, and
other attribute columns store descriptive informa-
tion. Formally, if a foreign key column f in table
Ti references a primary key column p in Tj , we can
represent their relationship as (fi, pj). Also, all
such relationships between tables can be denoted
as L = {(fi, pj)}(i,j) where L ⊆ T × T .

For example, analogous to the Amazon database,
let’s assume that the table Treview includes the
primary key column REVIEWID, the foreign key
column PRODUCTID, and the attribute column
TEXT. Also, the table Tproduct has the primary
key column PRODUCTID and the attribute col-
umn DESCRIPTION. Lastly, the foreign key col-
umn PRODUCTID in Treview points to the pri-
mary key column in Tproduct. Then, the rela-
tionships between those two tables can be repre-
sented with a pair of primary and foreign keys:
(PRODUCTIDreview, PRODUCTIDproduct).

Query Augmentation with Relational Database
Recall the equation to augment the representation
of the given query (q̃ = λq + (1− λ)q′). Here, q′

is the representation that we obtain from the query-
related information within the relational database,
and we now turn to explain how to get this q′.

Formally, each query that the user requests can
be considered as one row rj in a certain table Ti.
For example, in the Stack Exchange dataset, the
query that the user posts is stored in the table as
one row: r ∈ Tpost, where this row (query) r
consists of the primary key (POSTID), the foreign
key (USERID), and the multiple attributes (such as
BODY, TAGS, and TIMESTAMP). Then, based on
the following relational structure of this database:

L = {(USERIDuser, USERIDpost),

(USERIDvote, USERIDpost),

(POSTIDpost, POSTIDcomment), ...},
(3)

the row for the query in the post table can be linked
to other rows in different tables, for example, the
user table, vote table, and comment table connected
with USERID and POSTID columns (Figure 1).

This relational structure of the database allows
us to utilize diverse pieces of information when en-
riching the query representation q. Specifically, we
can not only use the attributes within the columns
of the row for the query (such as BODY and TAGS

of the post table Tpost) but also the attributes of

16626



associated rows (to the query) from different tables
(such as ABOUTME of the user table Tuser associ-
ated with the column USERID). Formally, all the
attributes of rows associated with and used to aug-
ment the query (q) can be represented as follows:

A ={ri,j | ri = q} ∪
{ri,j | q ∈ T and ri ∈ T ′ and (T, T ′) ∈ L} ∪
{ri,j | ri ∈ T and q ∈ T ′ and (T, T ′) ∈ L},

(4)

where ri,j is the value of the jth attribute column
of the ith row. Then, based on these attributes (the
metadata), we derive their representation q′ with
the encoder: q′ = Enca(A; θa), described below.

Graph-Structured Set-Encoding We now turn
to explain how to operationalize the encoding func-
tion Enca(·), which should effectively represent the
diverse attributes A (over the relational database)
into q′, to enrich the original query representation
q. To accomplish this objective, one possible strat-
egy is to concatenate all the attribute values, and en-
code the concatenated value with the encoder or ap-
pend it to the original query (before encoding), fol-
lowing the existing query expansion work (Zheng
et al., 2020; Deng et al., 2021; Dhole and Agichtein,
2024). However, these approaches have a couple of
limitations. First, due to the large volume of data
in the database, the number of attributes related to
the query could be large, and it might be infeasible
to encode their concatenated text with the encoder
(due to its limited context length). Also, attributes
do not have an inherent order (i.e., permutation
invariant), making it arbitrary to determine the se-
quence in which they should be concatenated.

To tackle these challenges, we propose encoding
attributes (A) with a graph-structured set-encoding
strategy, which differs from and indeed extends the
prior set-encoding (Zaheer et al., 2017). Specif-
ically, we first encode every attribute value ri,j
in A into ri,j with an attribute encoder: ri,j =
Encr(ri,j ; θr), and then aggregate a group of en-
coded attributes according to each column into the
single representation with mean pooling as follows:
Rj = MEAN({ri,j}i=1), which then captures the
representation of each category (or column) of the
metadata. After that, we aggregate all these cate-
gorical (column-wise) representations into another
representation, which represents the overall meta-
data for the given query as q′ = MEAN({Rj}j=1).
Note that this dual-layer structure — aggregating at
both the column- and query-levels — resembles a
two-layer graph neural network (Kipf and Welling,

2017; Gilmer et al., 2017), where each layer func-
tionally captures the interactions between the at-
tributes in the same column first and the columns
over different tables next in a hierarchical manner.

Let’s consider the scenario in Figure 1, where
the goal is to retrieve the answer post most likely
to be selected as the best by the user. Then, the
query is encoded into q, which is further enriched
with the metadata representation q′ obtained via the
proposed graph-structured set-encoding as follows:
the metadata (A) includes attributes such as user
comments (COMMENT), tags (TAGS), and the user
profile (ABOUTME); each attribute is encoded into
a column-level representation, e.g., RCOMMENT =
MEAN({Encr(ri,COMMENT)}i=1) (and similarly for
others); all column-level representations are aggre-
gated into a single query-level representation: q′ =
MEAN({RCOMMENT,RTAGS,RABOUTME}), which is
used to augment the original query representation.

Efficient Training Strategy with Metadata The
number of attributes collected from the relational
database is sometimes very large for certain queries,
and it may be largely inefficient to consider all of
them during training. To address this, we introduce
a two-stage sample selection strategy to efficiently
train the metadata encoder Encr and to efficiently
obtain the metadata representation q′. Specifically,
during training, instead of using all attributes in A
for parameter updates, we randomly sample three
attributes for each column and use only them to
train the metadata encoder. In addition, while we
can use all the remaining attributes (without gradi-
ents) to obtain the metadata representation along
with the representations of three specific attributes
for each column (with gradients), using all the re-
maining attributes may still be time-consuming and
may yield the over-fitting issue; thus, we randomly
sample some of them and use only them to obtain
the representation q′. Meanwhile, in the inference
step, we utilize all the metadata attributes available.

4 Experimental Setups

In this section, we describe the main experimental
setups. We provide further details in Appendix A.

4.1 Datasets

Since this is the first work on retrieval that utilizes
the relational database for augmenting query repre-
sentations, we design seven different tasks based on
the Stack Exchange and Amazon Product Catalog
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databases available from Fey et al. (2023), and also
the H&M database from Robinson et al. (2024).

Stack Exchange This dataset is collected from
discussions in Stack Exchange1, an online website
for question-answering, and organized into a rela-
tional database consisting of seven tables (such as
posts, users, and votes). For this dataset, we design
two retrieval tasks, as follows: Answer Retrieval
(Any Answer) involves retrieving any answer posts
made by any users in response to a question post.
Best Answer Retrieval (Best Answer) is a more
challenging task that aims to retrieve a single an-
swer post that has been selected by the owner of
the question post. Also, we further consider two
different scenarios by dividing the entire dataset by
users (SplitByUser) or timestamps (SplitByTime).
For the first setting, training, validation, and test
sets are divided by users (there are no overlapping
users). Similarly, the later setting splits the dataset
according to the timestamp that the post was made.
For each retrieval instance, the information before
the post timestamp is used to augment the query.

Amazon Product Catalog This dataset is col-
lected from book reviews on the Amazon Product
Catalog, which consists of three tables (users, prod-
ucts, and reviews) over the relational database. For
this dataset, we introduce Future Purchase Re-
trieval (Future Purchase) as the task, which aims
to predict any future book purchases of customers
based on their current reviews as well as their pre-
vious purchases and reviews. Also, we construct
two different settings, namely ReviewToProduct
and ProductToProduct, where the first one uses
the review text as a query while the latter one uses
the product description as a query for retrieval.

H&M This dataset includes customer and prod-
uct data across H&M’s online shopping platforms,
consisting of three tables (articles, customers, and
transactions). Similar to the Amazon Product Cata-
log, we consider the Future Purchase Retrieval
(Future Purchase) under the ProductToProduct
setting, whose goal is to predict future product pur-
chases based on the product history as a query.

4.2 Models

We explain the backbone retrieval models and the
query augmentation baselines that we compare.

1https://stackexchange.com/

Retrieval Models We use three dense retrievers:
DPR is a dense retrieval model trained with a pair
of a query and its relevant document (Karpukhin
et al., 2020); Contriever is another dense retriever,
but is trained in an unsupervised fashion (Izacard
et al., 2022); BGE-M3 is a recent dense retriever
designed to enhance generalization across diverse
retrieval tasks (Chen et al., 2024a). As an indicator,
we report the results of the sparse retriever (BM25).

Augmentation Models We compare our DAQu
against relevant query augmentation baselines: 1)
No Expansion (No Expan.): This model uses the
query for retrieval without expansion. 2) Query
Expansion w/ LLM (Expan. w/ LLM): This
model utilizes the capability of LLMs, prompting
them to generate query-related pseudo-documents
that are expanded to queries (Wang et al., 2023b).
3) Query Expansion w/ LameR (Expan. w/
LameR): This model similarly utilizes LLMs but
further augments them with query-relevant docu-
ments via retrieval for query expansion (Shen et al.,
2024). 4) Query Expansion w/ Query associ-
ated Table (Expan. w/ Query): This model ex-
pands queries with the information sourced from
the query-related single data store (table), follow-
ing Zhang et al. (2020). 5) Query Expansion w/
User associated Table (Expan. w/ User): Sim-
ilarly, this model expands queries with the user-
related table, following Buss et al. (2023). 6) Full
Metadata Expansion (Expan. w/ Full): This
model concatenates queries with all textual terms
of the associated metadata from the database (span-
ning multiple tables). 7) Query Expansion w/ Re-
triever (Expan. w/ Retriever): Similar to Deng
et al. (2021), this model also appends the metadata
terms to the queries. Yet, before expansion, it em-
ploys a retriever (BM25) to select terms that are
most relevant to the query, and only these selected
terms are appended. 8) DAQu (Ours): This is our
model that augments the query representation by in-
corporating the metadata representation on a latent
space, obtained by graph-structured set-encoding.

4.3 Evaluation Metrics

We use the following metrics: 1) Accuracy@K
(Acc@K) determines the fraction of queries for
which the top-k results include at least one relevant
document. 2) Recall@K calculates the percentage
of all relevant documents that are present within the
top-k results. 3) Mean Reciprocal Rank (MRR)
computes the average of the inverse of the ranks at

16628

https://stackexchange.com/


Table 1: Results on seven different retrieval scenarios using Stack Exchange, Amazon Product Catalog, and H&M databases.
StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase) H&M (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct ProductToProduct

Method Recall@10 Acc@100 Recall@10 Acc@100 MRR Acc@100 MRR Acc@100 Acc@500 Recall@1000 Acc@500 Recall@1000 Acc@50 Recall@100

BM25-Anserini 11.45 28.33 15.79 32.64 9.64 29.49 11.68 34.79 5.71 3.51 15.09 7.48 10.10 3.12

D
PR

No Expan. 36.15 ± 0.05 68.09 ± 0.14 35.46 ± 0.55 64.48 ± 0.30 20.87 ± 0.29 56.11 ± 0.09 22.87 ± 0.33 58.25 ± 0.15 6.37 ± 0.49 2.74 ± 0.20 15.54 ± 0.94 7.77 ± 0.24 13.80 ± 1.17 5.52 ± 0.66

Expan. w/ LLM 32.48 ± 0.26 63.79 ± 0.19 31.66 ± 0.36 60.45 ± 0.43 18.37 ± 0.54 51.60 ± 0.42 20.28 ± 0.32 53.61 ± 0.22 6.37 ± 0.29 2.68 ± 0.10 14.32 ± 0.36 7.67 ± 0.26 13.30 ± 0.29 5.29 ± 0.11

Expan. w/ LameR 33.77 ± 0.16 65.14 ± 0.30 34.09 ± 1.01 62.34 ± 0.60 20.01 ± 0.38 53.24 ± 0.49 21.60 ± 0.35 55.44 ± 0.76 6.31 ± 0.21 2.62 ± 0.04 15.92 ± 0.57 7.87 ± 0.06 13.97 ± 0.58 6.05 ± 0.04

Expan. w/ Query 36.70 ± 0.30 69.15 ± 0.22 36.53 ± 0.51 66.60 ± 0.38 20.48 ± 0.38 57.01 ± 0.72 22.57 ± 0.23 58.94 ± 0.41 5.98 ± 0.39 2.58 ± 0.11 16.61 ± 0.29 8.48 ± 0.12 13.64 ± 0.87 5.84 ± 0.28

Expan. w/ User 36.53 ± 0.06 68.26 ± 0.17 35.65 ± 0.28 65.07 ± 0.15 21.66 ± 0.15 56.74 ± 0.14 23.18 ± 0.06 58.81 ± 0.21 3.48 ± 0.22 2.03 ± 0.10 8.75 ± 0.57 4.68 ± 0.25 13.47 ± 0.58 5.51 ± 0.40

Expan. w/ Full 38.76 ± 0.21 70.67 ± 0.21 38.75 ± 0.48 67.37 ± 0.45 20.03 ± 0.38 55.00 ± 0.31 21.88 ± 0.14 56.66 ± 0.33 11.04 ± 0.34 6.10 ± 0.24 14.67 ± 1.21 7.66 ± 0.27 6.57 ± 3.50 1.64 ± 0.55

Expan. w/ Retriever 38.47 ± 0.34 70.37 ± 0.25 37.83 ± 0.26 66.70 ± 0.15 19.54 ± 0.18 54.08 ± 0.12 21.47 ± 0.26 56.14 ± 0.21 12.56 ± 0.36 5.89 ± 0.25 17.29 ± 0.42 8.42 ± 0.34 9.43 ± 0.58 4.06 ± 0.15

DAQu (Ours) 41.80 ± 0.27 74.11 ± 0.24 41.67 ± 0.39 71.72 ± 0.33 22.05 ± 0.24 57.81 ± 0.80 23.70 ± 0.18 59.24 ± 0.46 13.07 ± 0.19 5.97 ± 0.27 17.86 ± 0.39 9.15 ± 0.10 15.49 ± 0.29 6.63 ± 0.15

C
on

tr
ie

ve
r

No Expan. 42.08 ± 0.28 73.21 ± 0.15 41.93 ± 0.07 70.08 ± 0.45 25.85 ± 0.15 64.16 ± 0.34 28.37 ± 0.08 64.95 ± 0.15 8.21 ± 0.32 4.63 ± 0.20 17.80 ± 0.45 9.27 ± 0.06 15.15 ± 0.00 5.95 ± 0.00

Expan. w/ LLM 38.35 ± 0.63 69.35 ± 0.59 38.66 ± 0.29 66.39 ± 0.20 23.27 ± 0.06 59.03 ± 0.12 25.05 ± 0.33 60.32 ± 0.22 8.60 ± 0.31 4.58 ± 0.20 16.82 ± 0.74 9.18 ± 0.24 15.40 ± 0.36 6.20 ± 0.34

Expan. w/ LameR 38.82 ± 0.04 69.68 ± 0.02 38.78 ± 0.40 67.03 ± 0.03 24.56 ± 0.22 60.12 ± 0.21 25.23 ± 0.18 59.26 ± 0.46 7.26 ± 0.41 3.95 ± 0.24 16.79 ± 0.46 8.73 ± 0.04 15.15 ± 0.00 5.91 ± 0.08

Expan. w/ Query 41.84 ± 0.31 73.96 ± 0.11 42.92 ± 0.13 71.54 ± 0.45 24.11 ± 0.53 63.39 ± 0.35 27.67 ± 0.11 65.03 ± 0.40 8.93 ± 0.36 4.68 ± 0.17 18.13 ± 0.58 9.31 ± 0.07 15.66 ± 0.00 6.02 ± 0.06

Expan. w/ User 42.21 ± 0.36 73.45 ± 0.21 42.26 ± 0.41 70.22 ± 0.20 25.93 ± 0.15 62.87 ± 0.25 28.20 ± 0.12 64.67 ± 0.26 6.34 ± 0.26 2.55 ± 0.15 7.23 ± 0.54 4.35 ± 0.44 11.28 ± 0.29 4.70 ± 0.39

Expan. w/ Full 45.25 ± 0.24 76.20 ± 0.17 44.43 ± 0.13 72.50 ± 0.18 26.01 ± 0.27 63.59 ± 0.23 28.21 ± 0.10 64.06 ± 0.36 17.23 ± 0.46 8.86 ± 0.22 17.02 ± 0.89 9.37 ± 0.53 5.39 ± 0.29 1.92 ± 0.30

Expan. w/ Retriever 44.69 ± 0.25 75.52 ± 0.23 44.66 ± 0.27 72.24 ± 0.39 24.71 ± 0.18 62.15 ± 0.24 27.28 ± 0.25 63.52 ± 0.55 17.71 ± 0.22 7.18 ± 0.55 17.71 ± 0.22 9.40 ± 0.21 13.13 ± 0.87 4.99 ± 0.05

DAQu (Ours) 49.74 ± 0.26 80.27 ± 0.23 50.28 ± 0.49 78.06 ± 0.38 26.47 ± 0.26 65.16 ± 0.33 28.82 ± 0.07 65.47 ± 0.58 18.75 ± 0.91 9.86 ± 0.46 19.87 ± 0.44 10.42 ± 0.67 15.40 ± 0.36 6.25 ± 0.34

B
G

E
-M

3

No Expan. 39.83 ± 0.33 71.08 ± 0.06 39.54 ± 0.44 68.02 ± 0.27 22.37± 0.23 58.41 ± 0.39 22.96 ± 0.20 57.24 ± 0.73 7.59 ± 0.15 3.87 ± 0.03 16.10 ± 0.05 8.29 ± 0.18 14.65 ± 0.00 5.59 ± 0.17

Expan. w/ LLM 37.57 ± 0.20 67.24 ± 0.47 37.52 ± 0.37 64.29 ± 0.20 19.21 ± 0.13 51.52 ± 0.66 19.95± 0.18 51.72 ± 0.28 8.27 ± 1.60 3.75 ± 0.40 15.98 ± 0.31 8.00 ± 0.09 14.81 ± 0.29 6.05 ± 0.15

Expan. w/ LameR 38.46 ± 0.34 68.07 ± 0.13 38.06 ± 0.34 65.37 ± 0.19 20.42 ± 0.46 52.41 ± 0.19 21.07 ± 0.16 53.51 ± 0.62 7.32 ± 0.77 3.67 ± 0.66 15.48 ± 0.57 8.20 ± 0.17 14.14 ± 0.00 5.82 ± 0.25

Expan. w/ Query 39.90 ± 1.16 72.15 ± 0.31 40.64 ± 0.68 70.09 ± 0.26 22.96 ± 0.57 60.32 ± 0.79 23.07 ± 0.50 58.95 ± 0.84 7.41 ± 0.46 3.75 ± 0.36 16.16 ± 0.31 8.25 ± 0.07 15.32 ± 0.29 6.08 ± 0.07

Expan. w/ User 42.10 ± 0.46 73.13 ± 0.18 41.60 ± 0.23 69.82 ± 0.04 22.84 ± 0.80 59.74 ± 0.93 23.43 ± 0.19 58.47 ± 0.07 4.49 ± 1.19 1.91 ± 0.05 11.79 ± 0.31 5.01 ± 0.27 15.15 ± 0.00 6.01 ± 0.36

Expan. w/ Full 41.47 ± 0.19 73.00 ± 0.10 41.63 ± 0.90 70.06 ± 0.60 23.42 ± 0.17 58.11 ± 1.06 23.17 ± 0.09 57.29 ± 0.08 13.10 ± 0.05 7.36 ± 0.47 15.03 ± 1.60 8.12 ± 1.87 4.88 ± 0.29 1.68 ± 0.36

Expan. w/ Retriever 41.77 ± 0.46 72.76 ± 0.24 41.79 ± 0.23 70.00 ± 0.23 22.84 ± 0.21 58.36 ± 0.36 22.44 ± 0.42 56.25 ± 0.67 12.92 ± 0.26 6.13 ± 0.15 17.56 ± 0.57 8.56 ± 0.17 13.30 ± 1.17 5.49 ± 0.14

DAQu (Ours) 44.92 ± 0.22 75.67 ± 0.05 45.26 ± 0.39 73.61 ± 0.07 24.47 ± 0.45 61.55 ± 0.18 24.20 ± 0.01 59.26 ± 0.24 14.67 ± 0.88 6.93 ± 0.85 18.21 ± 0.15 9.03 ± 0.33 15.66 ± 0.00 6.86 ± 0.05

which the first relevant document is found across
queries. 4) Mean Average Precision (MAP) mea-
sures the mean precision score calculated after each
relevant document is retrieved, across all queries.

4.4 Implementation Details

We train all retrieval models with a learning rate of
2e-5 with AdamW (Loshchilov and Hutter, 2019).
Also, we set λ as 0.7 chosen based on a search
within the range of {0.1, 0.3, 0.5, 0.7, 0.9}, and
randomly sample 30 features for the no-gradient
metadata features in our efficient training strategy
and 3 features for gradient updates. Regarding met-
rics, for answer post retrieval on Stack Exchange,
which aligns more closely with conventional doc-
ument retrieval tasks, we use a diverse range of K
values, including 10, 20, 50, and 100. In contrast,
for product retrieval with Amazon Product Cata-
log, where the goal is not only to identify items
of interest but specifically those the user will pur-
chase, considering the long-tail nature of product
recommendations, we use larger K values of 500
and 1000, following prior work on product retrieval
(Li et al., 2021; Wang et al., 2023a; Li et al., 2024).
Lastly, we report the average of three different runs.

5 Experimental Results and Analyses

We now present the results and detailed analyses.

Main Results We report the overall results across
seven different tasks with multiple databases in Ta-
ble 1. From this, we find that DAQu outperforms
all baselines substantially, demonstrating the effec-

tiveness of our approach that augments queries with
their corresponding metadata representations (ob-
tained from graph-based set-encoding). We provide
the results with additional metrics in Appendix B.1.

To be specific, our findings reveal that expand-
ing queries with LLMs themselves is suboptimal
as their parametric knowledge lacks information
specific to each user and its query, which relies
instead on general patterns stored within them. In
contrast, expanding queries with information from
a single source of external data stores (Expan. w/
Query and Expan. w/ User) achieves decent perfor-
mance improvements over the no-expansion base-
line, highlighting the importance of incorporating
query-specific and user-specific information during
query augmentation. Furthermore, leveraging mul-
tiple relational tables from the database, such as
Expan. w/ Full and Expan. w/ Retriever, further en-
hances retrieval performances, which underscores
the value of considering interrelated information
over the relational database for query expansion.

Notably, the proposed DAQu demonstrates sub-
stantial improvements across all tasks over all base-
lines, highlighting the effectiveness of our proposed
set-encoding strategy for incorporating metadata
into query representations. For example, in the An-
swer Retrieval task with Stack Exchange, DAQu
achieves performance improvements of 18.73%
and 16.91% on SplitByUser and SplitByTime set-
tings, respectively, in Recall@10. Also, DAQu con-
sistently shows superior performance on the Best
Answer Retrieval task, which is more complicated
(since the model should retrieve the single post that
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Figure 2: Results of the set encoding
strategy of DAQu over naïve encoding,
simply aggregating all representations.
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Figure 3: Results by varying lambda values
(Left) and the number of metadata features
within each category for training (Right).

Table 2: Reranking results following re-
trieval with DAQu on the SplitByUser sce-
nario of StackExchange (Any Answer).

Methods Recall@5 Recall@10 Acc@5 Acc@10

C
on

tr
ie

ve
r No Expan. 28.95 36.79 51.00 59.67

No Expan. + Rerank 35.78 43.09 60.33 67.67

DAQu (Ours) 35.53 43.78 59.33 68.33
DAQu (Ours) + Rerank 42.62 49.69 69.33 75.67

B
G

E
-M

3

No Expan. 27.20 34.39 50.33 58.67
No Expan. + Rerank 34.40 38.99 58.33 62.33

DAQu (Ours) 32.89 40.40 54.67 63.33
DAQu (Ours) + Rerank 40.19 45.64 62.33 66.33

the user would select as the best one, requiring both
the query-specific and user-specific information),
where diverse expansion models even degrade the
performance over the baseline without expansion.
Finally, the superior performance of DAQu on the
Future Purchase Retrieval task further confirms that
it can be applicable to diverse retrieval tasks.

Effectiveness of Set-Encoding To see the effec-
tiveness of the graph-based set-encoding strategy
when incorporating the metadata information into
the query, we compare it with two types of base-
lines: appending their textual terms into the query
or encoding them without considering the graph
structure. As Figure 2 shows, simply appending the
query with additional terms or taking the average
of all representations in the metadata without graph
structure is not as effective as ours. This demon-
strates the efficacy of our two-stage (column- and
query-levels) set-based metadata encoding strategy.

Analyses on Hyperparameters We explore how
varying the lambda value (λ) (balancing the query
and metadata representations) impacts the overall
results in Figure 3. Specifically, when the lambda
value is too low (λ = 0.1), the model fails to cap-
ture the original query’s intent. Conversely, a high
lambda value (λ = 0.9) leads to the model overem-
phasizing the original query over the metadata,
thereby underutilizing the meaningful metadata rep-
resentation, which degrades the performance. Thus,
selecting an optimal lambda value is crucial for bal-
ancing these aspects to enhance performance.

We further investigate the impact of varying the
number of no-gradient metadata features for each
category on overall performance when training the
DAQu model. Figure 3 shows that a low count of
metadata features per category results in reduced
performance, indicating the importance of suffi-
cient features for enhanced results. However, using
all metadata features is not only inefficient but also
degrades performance. Therefore, it is essential to
select the appropriate number of metadata features
to optimize model efficiency and effectiveness.

Table 3: Ablation studies involving the removal or addition of
each metadata category on Any Answer (SplitByTime), where
Q. and A. refer to question and answer posts, respectively.

Recall Accuracy

Metadata Category R@20 Increase. Acc@20 Increase.

DAQu (Ours) 49.93 54.44

w/o Comments in Q. 46.75 -6.38% 51.14 -6.06%
w/o Comments in A. 46.06 -7.74% 50.57 -7.11%
w/o Tags in Q. 49.61 -0.63% 54.29 -0.28%

No Expan. 42.22 46.39

w/ Comments in Q. 45.24 +7.14% 49.69 +7.10%
w/ Comments in A. 47.89 +13.41% 52.31 +12.76%
w/ Tags in Q. 43.60 +3.27% 47.93 +3.31%

Effectiveness of Reranking with DAQu To see
whether DAQu provides high-quality candidate sets
for reranking, we also conduct an auxiliary analysis,
applying the strong reranker (Sun et al., 2023) on
top of the retrieval results from DAQu. As shown
in Table 2, reranking leads to substantial perfor-
mance improvements across all models (while it
introduces a slight efficiency trade-off), with DAQu
combined with reranking achieving the best results.

Analyses on Metadata Category To investigate
how each category of the metadata contributes to
overall performance, we conduct ablation studies,
reporting the rate of performance increase when
excluding or adding each category, with DPR. As
Table 3 shows, each category plays a crucial role
in performance gains. Also, while each category
contributes to improved performance compared to
the baseline without expansion, their performances
are still not as high as when all categories are used,
which implies that the information from each cate-
gory is complementary to each other. Interestingly,
using the ‘tags’ category (the information within
the same table as the query) provides a small im-
provement, compared to using the ‘comments’ cat-
egory from another table, which corroborates our
hypothesis that it is important to use knowledge
from multiple tables over the relational database.

Analyses on Inference Efficiency We extend our
investigation to the efficiency in inference, by vary-
ing the number of metadata features used for query
augmentation. As Table 4 shows, although using
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Table 4: Results on efficiency, based on elapsed and relative
time per query, by varying the number of metadata features
for category during inference on Any Answer (SplitByTime).

Efficiency Effectiveness

# of Metadata Elpased Relative MAP Acc@100

No Expan. 0.062 1 22.94 64.15
Expan. w/ Full 0.062 1.002 25.09 67.31

1 per Category 0.073 1.182 24.06 67.99
2 per Category 0.074 1.20 26.69 70.64
3 per Category 0.074 1.205 27.30 71.57
All per Category 0.075 1.218 27.53 71.98

all the metadata features during inference is effec-
tive, it requires more time compared to the model
without expansion. By contrast, employing a small
number of metadata features enhances efficiency
while sacrificing performance. The results indicate
that, at a certain point (e.g., 3 features per category),
there is a region where we can achieve reasonable
performance alongside improved efficiency.

Case Study Lastly, we provide qualitative case
studies of our DAQu and its error analysis in Ap-
pendix B.8 and Appendix B.9, respectively.

6 Conclusion

In this work, we presented a novel query augmen-
tation framework, DAQu, which enhances the rep-
resentation of the query with its relevant informa-
tion within multiple tables over the database. To
utilize the metadata features at scale with order in-
variance, we proposed graph-based set-encoding,
which hierarchically aggregates column-level and
query-level information. We validated our DAQu
on seven different retrieval tasks designed with var-
ious databases, showcasing the effectiveness of our
database-augmented query representation.

Limitations

While our DAQu framework effectively represents
the diverse pieces of query-related metadata (over
the relational database) through a graph-structured
set-encoding strategy, the process of encoding and
aggregating metadata representations at both the
column- and query-levels may pose efficiency chal-
lenges in real-world applications. To address these
concerns, we conducted a detailed analysis of the
trade-off between the effectiveness and efficiency
of DAQu in Table 4, and showcased that our ap-
proach can significantly enhance the effectiveness
only with a marginal compensation of the efficiency.
On the other hand, this finding still suggests that
investigating more advanced methods to further in-
crease run-time efficiency (such as data pruning)

would be a valuable direction for future work. Fur-
thermore, the database-augmented retrieval tasks
that we designed seem to be quite challenging for
the retrieval models. While DAQu generally shows
significantly improved performance, there is still a
large room for further improving retrieval perfor-
mance (which we slightly addressed by introducing
the reranker in Table 2). Lastly, we wanted to make
sure that our framework is validated in realistic
retrieval scenarios with real-world large-scale rela-
tional databases; however, many such databases are
commonly used in enterprise settings and are rarely
made publicly available, making it challenging to
establish such experimental benchmarking setups.
While we validated ours on recently released, real-
world relational databases from Stack Exchange,
Amazon, and H&M, developing and releasing more
databases would be of interest to the community.

We then would like to discuss interesting av-
enues for future work, which are orthogonal to
the focus of our work and lie far beyond its scope.
First, while our focus is on retrieval, a promising
avenue is to extend DAQu to downstream appli-
cations, such as Retrieval-Augmented Generation
(RAG) (Christmann and Weikum, 2024; Lee et al.,
2024), by leveraging the fine-grained and up-to-
date user and content information stored in rela-
tional databases. Also, it would be valuable to ex-
plore a broader challenge faced by many retrieval
systems: the trade-off between relevance and explo-
ration. Our work primarily focuses on improving
retrieval relevance by leveraging query-associated
metadata, as reflected in the performance improve-
ments in Table 1. Also, Appendix B.7 further in-
dicates minimal risk of overly narrow results due
to metadata. However, in real-world applications,
retrieval systems often need to balance relevance
with exploration, surfacing diverse or novel con-
tent beyond users’ historical interests. This chal-
lenge, though important, falls outside the scope of
our work, as it requires different research assump-
tions and techniques (such as counterfactual user
modeling or diversity-oriented prompting) that are
orthogonal to our metadata-driven augmentation
framework, leaving them for future investigation.

Ethics Statement

A retrieval system can enhance the factual ground-
ing of recent LLMs when it is integrated with them,
which helps prevent the generation of plausible but
incorrect answers. We believe that, following this
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line of directions, our DAQu can play a crucial role
in diverse retrieval-augmented generation applica-
tions. Yet, it is important to note that as relational
databases contain substantial amounts of knowl-
edge, including personal information, some poten-
tial privacy concerns must be carefully managed
when utilizing this information. In other words, fur-
ther development of filtering strategies that tag and
mask personal information across multiple tables
before delivery to users or integration with LLMs
would be required for real-world applications.
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Table 5: Data statistics for each task designed with StackEx-
change, Amazon Product Catalog, and H&M databases.

Task Setting Training Valid Test

StackExchange

Any Answer SplitByUser 128,981 17,132 15,583
SplitByTime 130,398 15,861 15,437

Best Answer SplitByUser 43,889 6,106 5,252
SplitByTime 42,900 6,018 6,329

Amazon Product Catalog

Future Purchase ReviewToProduct 65,797 4,561 5,956ProductToProduct

H&M

Future Purchase ProductToProduct 24,479 1,133 1,124

A Implementation Details

A.1 Datasets

In this subsection, we provide the additional details
for seven tasks (that we design) based on the Stack-
Exchange, Amazon Product Catalog, and H&M
databases. We first report the detailed statistics of
the overall datasets in Table 5. Also, in Table 12,
we present more fine-grained statistics of each cate-
gory (column) of the metadata, used for each query.
Notably, in this table, we breakdown the metadata
features into two categories: ‘total query’ (that in-
cludes all the queries in the task) and ‘non-empty
query’ (that contains queries with at least one item
for each specific metadata category). Lastly, for the
schema of each of our considered databases (such
as Stack Exchange, Amazon Product Catalog, and
H&M), please refer to Figures 4, 5, and 6.

Stack Exchange Recall that, for this database,
we design two tasks: Answer Retrieval (Any An-
swer) and Best Answer Retrieval (Best Answer).
In this paragraph, we describe which specific meta-
data categories used for query augmentation. At
first, for the Answer Retrieval task, we utilize meta-
data from the post and comment tables. Specif-
ically, we focus on the tags associated with the
current question post and the comments on both
the current question and the answer posts. For the
Best Answer Retrieval task, we utilize metadata
from the post, comment, vote, and user tables. The
reason why we utilize more categories for this task
is because this task is closely related to the person-
alized retrieval task (for the user who issues the
question post); therefore, we focus on constructing
the user-specific metadata. Specifically, we use the
total comments made by the user, the ‘aboutme’
information of the user, written question and an-
swer posts, and the voted answer posts by the user.
Additionally, we include tags from both the current

question post and previously asked question posts.
For both tasks, we split the queries with their cor-
responding metadata into training, validation, and
test sets, using a corpus of 3,281,834 documents
that contain all posts, according to two different
settings. In the SplitByUser setting, we randomly
sample users in an 8:1:1 ratio from those who have
posted questions with answers provided by others.
On the other hand, for the SplitByTime setting,
we split the datasets based on the creation times-
tamp of the question posts. Specifically, we create
a training set with question posts written before
2019-01-01, a validation set with posts written af-
ter 2019-01-01 but before 2020-01-01, and a test
set with posts written after 2020-01-01.

Amazon Product Catalog For this database, we
design the Future Purchase Retrieval (Future
Purchase) task, where we utilize all the user, prod-
uct, and review tables. Furthermore, we consider
the book reviews written from 2013-01-01 to 2016-
01-01 (due to the size of the entire corpus), con-
structing a document corpus using each product’s
description. Specifically, we use reviews written
in 2013 for the training set, reviews in 2014 for
the validation set, and reviews in 2015 for the test
set. We then group the reviews written by each cus-
tomer and randomly sample the customers (since
the data before sampling is still very large), select-
ing 5,000 for the training set, 500 for the validation
set, and 500 for the test set. Among two different
settings for this task, in the ReviewToProduct set-
ting, each review text (input) is paired with future
products (target) that the customer will purchase.
For this setting, we incorporate metadata from the
previous review text from the review table, and the
category, title, and description of both the current
and previous products from the product table. In
the ProductToProduct setting, we pair the product
description of the current review with future prod-
ucts that the customer will buy. We utilize metadata
from both the current and previous review texts
from the user’s review table, along with the cate-
gory and title of both current and previous products,
and the description of the previous products.

H&M Similar to the Amazon Product Catalog
setting, our goal is to predict the future products
a customer will purchase by leveraging metadata
from both current and previous products, utilizing
information from all the user, article, and transac-
tion tables. To achieve this, we consider purchases
made between 2020-01-01 and 2020-09-14, using
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Table 6: Additional results on seven retrieval tasks with Stack Exchange, Amazon Product Catalog, and H&M databases.
StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase) H&M (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct ProductToProduct

Method MAP MRR MAP MRR Acc@10 Acc@50 Acc@10 Acc@50 Acc@1000 Recall@500 Acc@1000 Recall@500 Acc@100 Recall@50

BM25-Anserini 7.10 8.61 9.99 11.01 15.50 24.58 18.55 29.14 7.77 2.78 18.39 6.53 12.63 2.49

D
PR

No Expan. 23.56 ± 0.03 27.86 ± 0.08 22.72 ± 0.22 25.22 ± 0.24 32.75 ± 0.23 48.63 ± 0.20 35.11 ± 0.60 50.96 ± 0.55 9.23 ± 0.19 1.78 ± 0.27 19.73 ± 0.85 5.98 ± 0.44 14.14 ± 0.88 5.47 ± 0.62

Expan. w/ LLM 20.97 ± 0.25 24.88 ± 0.30 20.12 ± 0.45 22.45 ± 0.51 28.94 ± 0.85 44.05 ± 0.70 31.31 ± 0.51 46.44 ± 0.30 9.35 ± 0.44 1.67 ± 0.24 19.05 ± 0.22 6.05 ± 0.20 13.30 ± 0.29 5.12 ± 0.04

Expan. w/ LameR 22.05 ± 0.32 26.13 ± 0.35 22.11 ± 0.65 24.56 ± 0.69 30.59 ± 0.45 45.15 ± 0.76 32.87 ± 0.47 48.29 ± 0.50 9.05 ± 0.21 1.80 ± 0.03 20.57 ± 0.21 6.17 ± 0.40 15.66 ± 0.00 5.50 ± 0.01

Expan. w/ Query 23.76 ± 0.07 28.14 ± 0.09 23.67 ± 0.50 26.21 ± 0.51 32.39 ± 0.47 48.74 ± 0.57 35.31 ± 0.24 51.65 ± 0.37 8.57 ± 0.50 1.83 ± 0.29 21.79 ± 0.21 6.59 ± 0.07 14.31 ± 0.29 5.50 ± 0.57

Expan. w/ User 23.95 ± 0.20 28.14 ± 0.21 22.98 ± 0.10 25.53 ± 0.12 33.57 ± 0.14 49.22 ± 0.20 35.50 ± 0.35 51.68 ± 0.25 5.18 ± 0.71 1.14 ± 0.11 11.25 ± 0.79 3.36 ± 0.25 14.48 ± 0.58 5.03 ± 0.38

Expan. w/ Full 25.63 ± 0.03 30.15 ± 0.07 25.16 ± 0.11 27.85 ± 0.14 31.44 ± 0.47 47.13 ± 0.41 33.81 ± 0.33 49.27 ± 0.27 16.10 ± 0.92 4.55 ± 0.24 20.74 ± 1.13 5.54 ± 0.37 7.41 ± 3.79 1.49 ± 0.48

Expan. w/ Retriever 25.31 ± 0.04 29.79 ± 0.05 24.55 ± 0.05 27.19 ± 0.09 30.98 ± 0.07 46.60 ± 0.31 33.27 ± 0.15 48.72 ± 0.17 17.77 ± 0.36 4.13 ± 0.21 22.65 ± 0.74 6.50 ± 0.13 12.46 ± 1.46 3.13 ± 0.34

DAQu (Ours) 27.96 ± 0.23 32.86 ± 0.10 27.58 ± 0.31 30.37 ± 0.35 33.99 ± 0.25 50.05 ± 0.33 36.14 ± 0.42 52.20 ± 0.47 18.01 ± 0.29 4.23 ± 0.21 22.68 ± 1.08 7.06 ± 0.15 15.49 ± 0.29 6.62 ± 0.16

C
on

tr
ie

ve
r

No Expan. 28.46 ± 0.23 33.23 ± 0.19 28.38 ± 0.28 31.22 ± 0.31 39.71 ± 0.42 56.13 ± 0.33 42.07 ± 0.43 57.90 ± 0.20 12.62 ± 0.73 3.14 ± 0.26 21.76 ± 0.37 7.65 ± 0.19 15.99 ± 0.58 5.69 ± 0.05

Expan. w/ LLM 25.75 ± 0.70 30.27 ± 0.69 25.83 ± 0.16 28.49 ± 0.15 36.10 ± 0.66 51.42 ± 0.29 37.42 ± 0.61 53.00 ± 0.34 12.68 ± 0.18 3.25 ± 0.23 21.61 ± 0.59 7.17 ± 0.36 16.16 ± 0.00 5.69 ± 0.28

Expan. w/ LameR 26.14 ± 0.21 30.72 ± 0.14 25.96 ± 0.04 28.74 ± 0.00 37.07 ± 0.22 52.81 ± 0.02 37.50 ± 0.35 52.15 ± 0.70 10.09 ± 0.15 3.07 ± 0.31 21.22 ± 0.21 6.94 ± 0.05 15.32 ± 0.29 5.75 ± 0.01

Expan. w/ Query 28.15 ± 0.34 32.99 ± 0.41 28.58 ± 0.13 31.43 ± 0.11 37.43 ± 0.26 54.99 ± 0.47 41.11 ± 0.24 57.72 ± 0.14 13.39 ± 0.92 3.29 ± 0.12 22.86 ± 0.29 7.74 ± 0.28 15.91 ± 0.36 5.80 ± 0.12

Expan. w/ User 28.88 ± 0.21 33.63 ± 0.21 28.07 ± 0.32 30.94 ± 0.29 39.32 ± 0.17 55.92 ± 0.28 42.30 ± 0.42 57.64 ± 0.56 8.57 ± 0.52 1.57 ± 0.23 11.43 ± 0.67 3.16 ± 0.31 12.29 ± 0.29 4.14 ± 0.46

Expan. w/ Full 31.06 ± 0.16 36.12 ± 0.12 30.12 ± 0.08 33.14 ± 0.08 39.28 ± 0.35 56.04 ± 0.43 41.32 ± 0.15 57.33 ± 0.53 22.65 ± 0.67 7.07 ± 0.14 23.60 ± 0.88 7.14 ± 0.36 6.90 ± 0.58 1.34 ± 0.01

Expan. w/ Retriever 30.82 ± 0.19 35.76 ± 0.22 30.30 ± 0.32 33.24 ± 0.35 38.09 ± 0.50 54.56 ± 0.25 40.79 ± 0.45 56.42 ± 0.41 22.62 ± 0.22 5.42 ± 0.44 22.62 ± 0.22 7.44 ± 0.04 14.98 ± 0.58 4.29 ± 0.13

DAQu (Ours) 35.00 ± 0.33 40.55 ± 0.41 34.96 ± 0.53 38.07 ± 0.57 40.50 ± 0.16 57.59 ± 0.58 42.53 ± 0.06 58.48 ± 0.51 25.65 ± 0.44 7.10 ± 0.29 25.36 ± 0.50 8.31 ± 0.23 17.17 ± 1.43 5.81 ± 0.49

B
G

E
-M

3

No Expan. 26.23 ± 0.49 30.73 ± 0.62 25.72 ± 0.30 28.32 ± 0.29 35.14 ± 0.78 51.30 ± 0.12 35.44 ± 0.22 50.36 ± 0.53 11.52 ± 0.15 2.62 ± 0.06 21.34 ± 0.15 6.61 ± 0.01 14.98 ± 0.58 5.46 ± 0.03

Expan. w/ LLM 25.14 ± 0.21 29.65 ± 0.19 25.20 ± 0.13 27.89 ± 0.09 30.03 ± 0.30 44.76 ± 0.78 31.18 ± 0.20 45.08 ± 0.36 11.67 ± 1.29 2.50 ± 0.47 20.60 ± 0.36 6.35 ± 0.06 15.15 ± 0.00 5.52 ± 0.17

Expan. w/ LameR 25.83 ± 0.37 30.29 ± 0.42 25.72 ± 0.20 28.38 ± 0.28 31.31 ± 0.87 45.84 ± 0.37 32.28 ± 0.47 46.41 ± 0.37 10.51 ± 1.13 2.44 ± 0.47 19.49 ± 0.10 6.54 ± 0.23 15.66 ± 0.87 5.16 ± 0.03

Expan. w/ Query 25.86 ± 0.57 30.25 ± 0.73 26.48 ± 0.41 29.15 ± 0.43 36.39 ± 0.31 52.76 ± 0.89 35.90 ± 0.74 51.93 ± 0.73 11.16 ± 0.46 2.41 ± 0.18 20.60 ± 0.05 6.55 ± 0.15 16.33 ± 0.29 5.62 ± 0.15

Expan. w/ User 27.41 ± 0.36 31.98 ± 0.38 27.66 ± 0.11 30.41 ± 0.11 36.29 ± 0.96 52.02 ± 1.19 35.91 ± 0.55 51.38 ± 0.54 6.34 ± 1.86 1.33 ± 0.19 15.33 ± 0.10 3.77 ± 0.30 15.99 ± 0.58 5.62 ± 0.03

Expan. w/ Full 27.35 ± 0.17 32.03 ± 0.16 27.06 ± 0.83 29.78 ± 0.92 35.94 ± 0.27 51.27 ± 1.04 35.46 ± 0.05 50.31 ± 0.30 17.89 ± 0.82 5.39 ± 0.31 20.98 ± 2.78 5.76 ± 0.61 6.40 ± 0.58 1.36 ± 0.04

Expan. w/ Retriever 27.91 ± 0.49 32.59 ± 0.44 27.43 ± 0.16 30.14 ± 0.20 35.84 ± 0.02 51.02 ± 0.32 34.22 ± 0.55 49.31 ± 0.89 17.53 ± 0.05 4.29 ± 0.11 23.27 ± 0.36 6.34 ± 0.40 15.99 ± 0.58 4.50 ± 0.28

DAQu (Ours) 30.26 ± 0.30 35.05 ± 0.30 30.17 ± 0.38 33.00 ± 0.43 38.26 ± 1.03 54.09 ± 0.54 36.56 ± 0.22 52.05 ± 0.01 20.30 ± 1.34 4.78 ± 0.51 23.36 ± 0.21 6.86 ± 0.15 17.51 ± 0.29 5.81 ± 0.03

Table 7: Metadata statistics (Best Answer, SplitByUser).
Metadata Category Train (Avg Words per Query) Test (Avg Words per Query)

Question Posts 2,459.08 1,849.05
Answer Posts 3,690.50 2,934.33
Accepted Answers 1,717.59 1,493.52
Comments 2,844.51 3,169.55
About Me 9.04 10.33
Current Tags 3.06 3.08
Previous Tags 48.36 41.59

Total Words 10,772.14 9,501.45
Longest Metadata 307,016 439,969

data from 2020-01-01 to 2020-07-01 as the training
set, 2020-07-01 to 2020-08-01 as the validation set,
and 2020-08-01 to 2020-09-14 as the test set.

A.2 Models

For DPR (Karpukhin et al., 2020), we follow the
implementation by Thakur et al. (2021). For Con-
triever (Izacard et al., 2022), we further train it from
its available checkpoint while using the same archi-
tecture as DPR. For a fair comparison, we fix the
number of epochs across the same retrieval models
for each task and report the average of the three
different runs for every model. We use A100 GPU
clusters for conducting experiments.

B Experimental Results

B.1 Results with Other Metrics

In addition to our main results in Table 1, we pro-
vide the results with other retrieval metrics in Ta-
ble 6. From this, similar to the results in Table 1,
we also observe that our DAQu shows remarkable
performance improvements in diverse scenarios.

Table 8: Results for Expan. w/ Full with a special token for
each metadata category (DPR, Any Answer, SplitByTime).

Method Recall@10 Acc@100

No Expan. 35.46 64.48
Expan. w/ Full 38.75 67.37
Expan. w/ Full (w/ Special Tokens) 38.31 67.35

DAQu (Ours) 41.67 71.72

B.2 Metadata Length Challenges

Our graph-based set-encoding strategy is particu-
larly beneficial when dealing with concatenated
textual metadata that may be very long for the en-
coder to handle. As shown in the metadata statistics
in Table 7, the concatenated metadata often results
in substantial word counts, with some cases exceed-
ing the token limits of commonly used LLMs, mak-
ing them impractical for direct processing. More-
over, even when token limits are not exceeded, pro-
cessing such long contexts can lead to significant
computational overhead. These challenges further
emphasize the advantages of our graph-based set-
encoding approach, which efficiently encodes meta-
data while preserving its structure and hierarchy.

B.3 Metadata Expansion with Special Token

To evaluate the impact of using special tokens for
differentiating metadata categories on retrieval per-
formance for the Full Metadata Expansion base-
line (which concatenates a given query with all
metadata terms), we extend it by including special
tokens for metadata differentiation. As shown in
Table 8, the inclusion of special tokens has min-
imal effect on performance, with Full Metadata
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Table 9: Results with Recall@20 and Acc@20, for Table 3.

Method Recall@20 Acc@20

BM25-Anserini 14.43 17.43

D
PR

No Expan. 43.09 ± 0.21 50.35 ± 0.29
Expan. w/ LLM 39.12 ± 0.33 45.97 ± 0.33
Expan. w/ Query 44.04 ± 0.33 51.28 ± 0.30
Expan. w/ User 43.31 ± 0.07 50.49 ± 0.13
Expan. w/ Full 46.20 ± 0.07 53.66 ± 0.09
Expan. w/ Retriever 45.70 ± 0.03 53.05 ± 0.05

DAQu (Ours) 49.54 ± 0.23 57.13 ± 0.12

C
on

tr
ie

ve
r

No Expan. 49.20 ± 0.26 56.79 ± 0.28
Expan. w/ LLM 45.24 ± 0.67 52.64 ± 0.71
Expan. w/ Query 49.73 ± 0.38 57.49 ± 0.48
Expan. w/ User 50.00 ± 0.31 57.45 ± 0.46
Expan. w/ Full 52.57 ± 0.12 60.26 ± 0.10
Expan. w/ Retriever 52.23 ± 0.24 59.78 ± 0.25

DAQu (Ours) 57.33 ± 0.07 65.05 ± 0.09

B
G

E
-M

3

No Expan. 47.02 ± 0.44 54.38 ± 0.47
Expan. w/ LLM 44.08 ± 0.20 51.43 ± 0.24
Expan. w/ Query 47.34 ± 1.03 54.83 ± 1.19
Expan. w/ User 48.68 ± 0.15 56.08 ± 0.12
Expan. w/ Full 48.83 ± 0.02 56.24 ± 0.02
Expan. w/ Retriever 49.07 ± 0.49 56.47 ± 0.67

DAQu (Ours) 52.33 ± 0.04 60.00 ± 0.19

Expansion achieving comparable retrieval results
regardless of their use.

B.4 Results with Consistent Metrics
In addition to reporting results with diverse metrics
to demonstrate the effectiveness of the proposed
method across various evaluation criteria, we also
provide the results in Table 9 using the same met-
rics as in Table 3. As shown in Table 9, these results
are consistent with our previous findings, further
confirming that our DAQu framework significantly
outperforms the baseline methods.

B.5 Results of LameR with BM25
Since LameR is originally designed for sparse re-
trieval settings (yet we adopt it with the dense re-
triever to compare against our DAQu framework
tailored for dense retrieval), we further explore the
variant of LameR with BM25 in Table 10. From
this, we find that although LameR provides some
improvements coupled with the BM25 retriever, it
still lags significantly behind DAQu, which lever-
ages structured metadata in the latent space. These
results indicate the importance of dense retrieval,
especially in tasks where understanding nuanced
relationships in metadata is crucial.

B.6 Results of Expan. w/ Retriever Variant
For the ‘Expan. w/ Retriever’ baseline, follow-
ing Deng et al. (2021), we adopt a BM25 model

Table 10: Comparison between BM25-based LameR and our
DAQu (with DPR) on the Any Answer and Best Answer tasks.

Method MRR Acc@20 Acc@100

Any Answer, SplitByUser

BM25 8.61 17.43 28.33
BM25 w/ LameR 10.66 21.30 35.14

DAQu (Ours) 32.86 57.13 74.11

Best Answer, SplitByUser

BM25 9.64 19.42 29.49
BM25 w/ LameR 11.70 23.53 36.48

DAQu (Ours) 22.05 40.40 57.81

Table 11: Results of using Contriever in the ‘Expan. w/ Re-
triever’ baseline (Any Answer, SplitByUser).

Method Recall@10 Acc@100

No Expan. 42.08 73.21
Expan. w/ Retriever (BM25) 44.69 75.52
Expan. w/ Retriever (Contriever) 44.66 76.12

DAQu (Ours) 49.74 80.27

to select metadata terms most relevant to the query
and append only those selected terms. To further
examine the impact of the retriever used for meta-
data selection, we replace BM25 with a dense re-
triever, Contriever. As shown in Table 11, while
both retriever-based expansion methods offer mod-
erate gains over the no-expansion baseline, DAQu
consistently and significantly outperforms both of
them. This highlights the effectiveness of integrat-
ing metadata in the latent space, rather than relying
solely on term-level expansion.

B.7 Impact of Query-Associated Metadata on
Retrieval Diversity

While the primary focus of our work is to explore
how structured metadata from relational databases
can enhance retrieval relevance in scenarios where
such metadata is available, we further examine
whether the query-associated metadata used for
query augmentation leads to repetitive or overly
narrow retrieval. Specifically, we measure the aver-
age overlap ratio and the Jaccard similarity between
retrieved results for different queries from the same
user, averaged across all users. We then observe
the negligible redundancy: the Jaccard similarity is
0.0096 for the no-expansion baseline and 0.0104
for our method, and the overlap ratio is 0.0084
and 0.0091, respectively, indicating that the likeli-
hood that a user receives an overlapping element
(retrieved) across queries is below 1% and suggest-
ing that the retrieval results remain diverse even
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after metadata augmentation. Nevertheless, while
negligible in our experimental results, the metadata
can introduce subtle bias depending on the context,
and we leave exploring it as future work.

B.8 Case Study

We conduct a case study to qualitatively compare
the effectiveness of our DAQu against the base-
line query augmentation methods, provided in Ta-
ble 13. The first example from the Any Answer
retrieval task with the SplitByTime setting presents
retrieval results for a user query: selecting opti-
mal activation and loss functions when training an
autoencoder on the MNIST dataset. Notably, the
challenge here is several important keywords with
query-relevant information, such as BCE and MSE,
are missing from the original user query. While
the baseline expansion models can include such
keywords, which can lead to a higher rank of the
relevant document (Full Metadata Expansion), Ex-
pansion with Retriever results in a lower rank than
even No Expansion, due to the exclusion of another
essential term, ‘Keras’. In contrast, DAQu achieves
the highest rank among all baselines, indicating
that our method effectively augments all essential
information with the metadata representation, by
utilizing diverse helpful information sources in a
relational database. Similarly, for the Best Answer
retrieval task with the SplitByTime setting, given a
query such as when normalization or standardiza-
tion is appropriate, the best answer post explains
such cases in terms of ‘transformation methods.’
Here, our DAQu, which can incorporate the rele-
vant term ‘log transformation’ from the metadata
into the query representation, achieves the highest
rank. Finally, for the Future Product retrieval task,
a user purchased the book ‘Kindergarten-Grade 3’
for their children. In addition, this user’s metadata
includes information on several previous purchases
tagged ‘Children’s Books.’ In this example, while
the No Expansion baseline effectively retrieves the
future product with a higher rank, Full Metadata
Expansion and Expansion with Retriever do not
perform well, suggesting that augmenting metadata
with text level adds noise to the retrieval process.
Meanwhile, our DAQu effectively exploits only the
valuable information on the latent space, achieving
the highest rank among all models.

B.9 Error Analysis

As the datasets used in our experiments are col-
lected from real-world applications (e.g., Amazon

or StackExchange), the associated metadata is nat-
urally noisy, incomplete, or sometimes weakly rel-
evant to the current query. Then, to better illustrate
how our method behaves under such realistic and
noisy conditions, we include an error case study in
Table 14. As shown in this example, although the
query is about evaluating probabilistic predictions,
the metadata includes loosely related or distractive
content, such as a vague recommendation link and
general comments. As a result, the retriever with
full metadata expansion (Expan. w/ Full) ranks the
correct document much lower (Rank 24). However,
our DAQu framework still ranks the correct answer
at Rank 4, demonstrating robustness to noise and
the ability to effectively utilize metadata signals.
This example highlights that while noisy metadata
can introduce challenges, DAQu remains effective
by learning to selectively incorporate relevant sig-
nals (at the representation level), rather than naively
aggregating all available metadata in text.
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Table 12: Distribution of the metadata features per query for each metadata category for various retrieval tasks.
Total Query Non Empty Query

Setting Metadata Category Training Valid Test Training Valid Test

StackExchange - Any Answer

SplitByUser
comments_in_question 1.96 1.95 1.94 3.35 3.37 3.31
comments_in_answers 2.31 2.45 2.31 3.96 4.14 3.99
tags 3.00 3.04 3.01 3.00 3.04 3.01

SplitByTime
comments_in_question 2.03 1.69 1.63 3.38 3.19 3.26
comments_in_answers 2.43 1.89 2.08 4.09 3.46 3.71
tags 2.97 3.06 3.23 2.97 3.06 3.23

StackExchange - Best Answer

SplitByUser

question_posts 14.52 22.15 12.42 18.18 27.07 15.77
answer_posts 19.77 24.25 13.47 44.79 55.18 30.74
accepted_answers 7.41 13.41 6.25 10.91 18.68 9.41
comments 81.28 122.02 84.92 92.86 137.92 97.46
aboutme 0.33 0.31 0.33 1.00 1.00 1.00
current_tags 3.06 2.99 3.08 3.06 2.99 3.08
previous_tags 48.36 66.99 41.59 48.36 66.99 41.59

SplitByTime

question_posts 6.52 7.04 9.96 10.46 11.25 14.94
answer_posts 7.82 9.35 11.15 27.47 38.98 42.83
accepted_answers 3.82 3.67 5.36 7.29 7.21 9.77
comments 31.09 38.59 49.44 54.32 67.36 81.55
aboutme 0.34 0.29 0.28 1 1 1
current_tags 3.02 3.10 3.25 3.02 3.10 3.25
previous_tags 19.52 21.71 32.33 31.31 34.70 48.52

Amazon Product Catalog

ReviewToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52

ProductToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52

H&M

ProductToProduct

customer_age 1.00 1.00 1.00 1.00 1.00 1.00
customer_fashion_news_frequency 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_description 18.56 45.04 36.44 20.57 46.77 37.28
current_product_product_type_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_product_group_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_perceived_colour_master_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_department_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_index_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_index_group_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_section_name 1.00 1.00 1.00 1.00 1.00 1.00
current_product_garment_group_name 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 4: A database schema for Stack Exchange, which is provided from Fey et al. (2023).
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Figure 5: A database schema for Amazon Product Catalog, which is provided from Fey et al. (2023).
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Figure 6: A database schema for H&M, which is provided from Robinson et al. (2024).
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Table 13: Case study on three retrieval tasks. In response to the query from the user, notable terms in the Metadata and Answer
Post are highlighted in red, which are not in the query but exist only in the metadata and answer posts. Additionally, among
those notable terms, some terms that are not covered by the query expansion approach are further highlighted in bold.

StackExchange-Any Answer w/ SplitByTime

Query [Title] Choosing activation and loss functions in autoencoder
[Text] I am following this keras tutorial to create an autoencoder using the MNIST dataset. Here is the tutorial: <URL>. However, I am confused
with the choice of activation and loss for the simple one-layer autoencoder (which is the first example in the link). Is there a specific reason sigmoid
activation was used for the decoder part as opposed to something such as relu? I am trying to understand whether this is a choice I can play around
with, or if it should indeed be sigmoid, and if so why? Similarily, I understand the loss is taken by comparing each of the original and predicted
digits on a pixel-by-pixel level, but I am unsure why the loss is binary crossentropy as opposed to something like mean squared error. I would love
clarification on this to help me move forward! Thank you!

MetaData [comments in answers by pid]: ["I wrote about it here, but it was ages ago so I cannot find it now; BCE’s properties as a function means
it’s not the best choice for image data, even in greyscale. Unlike MSE, it is asymmetrically biased against overconfidence, so it systematically
underestimates the values, needlessly dimming the output intensities. And, as this question shows, causes unnecessary confusion on top.",
"Hmm. I think you may be correct in general, but for this particular use case (an autoencoder), it’s been empirically and mathematically shown that
training on the BCE and MSE objective both yield the same optimal reconstruction function: <URL> — but that’s just a minor detail.",
"I cannot load the pdf for some reason, but I’m not surprised - the minima of both losses are the same if your goal is to autoencode a 1:1 match of
intensities. It’s just not always an optimal loss if your goal is to have a nice-looking image; e.g. MNIST would probably look best with most pixels
being either 1 or 0 (in/not in the set of pixels for the character, basically learning a topology)."],
[tags by pid]: [‘neural-networks’, ‘loss-functions’, ‘keras’, ‘autoencoders’]

Answer Post You are correct that MSE is often used as a loss in these situations. However, the Keras tutorial (and actually many guides that work with MNIST
datasets) normalizes all image inputs to the range [0, 1]. This occurs on the following two lines: x_train = x_train.astype(float32) / 255,
x_test = x_test.astype(float32) / 255. Note: as grayscale images, each pixel takes on an intensity between 0 and 255 inclusive. Therefore,
BCE loss is an appropriate function to use in this case. Similarly, a sigmoid activation, which squishes the inputs to values between 0 and 1, is also
appropriate. You’ll notice that under these conditions, when the decoded image is "close" to the encoded image, BCE loss will be small. I found
more information about this <URL>.

Retrieval Rank No Expan. : 26 Expan. w/ Full : 15 Expan. w/ Retriever : 38 DAQu (Ours) : 6

StackExchange-Best Answer w/ SplitByTime

Query [Title] When to Normalization and Standardization?
[Text] I see pro-processing with Normalization, which aligns data between 0 and 1, and standardization makes zero mean and unit variance. And
multiple standardization techniques follow on.. Any clear definition at what cases what should be used? Thanks in Advance!!

MetaData [comments]: [‘hi @onestop, is it ok to take log transformation only to skewed columns?’]
[current tags]:[‘normalization’, ‘feature-scaling’]

Answer Post In unsupervised learning, the scaling of the features has a great influence on the result. If a feature has a variance that is many times greater, it can
dominate the target function of the algorithm. Therefore, it is of great importance to scale the input data in a way that their variability matches or at
least does not contradict the semantics. There are several transformation methods to put the features into a comparable form. These use different
forms of normalization or standardization according to their context. (...)

Retrieval Rank No Expan. : 244 Expan. w/ Full : 178 Expan. w/ Retriever : 347 DAQu (Ours) : 105

Amazon-Future Purchase w/ ProductToProduct

Query Kindergarten-Grade 3. Fox has composed a simple refrain to celebrate human connections in this lovely picture book. “Little one, whoever you are,”
she explains, there are children all over the world who may look different, live in different homes and different climates, go to different schools, and
speak in different tongues but all children love, smile, laugh, and cry. Their joys, pain, and blood are the same, “whoever they are, wherever they are,
all over the world.” Staub’s oil paintings complement the simple text. She uses bright matte colors for the landscapes and portraits, placing them in
gold borders, set with jewels and molded from plaster and wood. These frames enclose the single- and double-page images and echo the rhythm of
the written phrases. Within the covers of the book, the artist has created an art gallery that represents in color, shape, and texture, the full range of
human experience.

MetaData [previous product description]:[ “Betsy Snyder’s first board book as an author-illustrator, <em>Haiku Baby</em> follows a tiny bluebird, the
book’s would-be protagonist, as it visits its various animal companions–from an elephant that shades the bird with a parasol to a fox in a meadow and
a whale in the ocean. The little bird’s story is told primarily in pictures, and through the book’s six haiku: rain, flower, sun, leaf, snow, and–of course,
it would not be a board book without–the moon, making it ideal for the bedtime line-up. Adorable collage-cut illustrations work nicely with the haiku
form to give the book a whimsical, yet serene, feel. And the haiku are light and fun without being too cutesy. Index tabs on the right margin, with
pictures that tie to each of the poems (leaf, raindrop, snowflake, etc.), create a unique look, and make it easy for toddlers to flip through the pages on
their own without having them stick together like they can with other board books. Snyder excels at visual storytelling and short forms, possibly a
talent she honed as a designer/illustrator in the kids’ greeting card business. In the world of board books, this slender little volume really stands out” ]
[previous product category]:[ “Books”, “Children’s Books”, “Early Learning” ]
[previous review text]:[ “My baby loves this book. It has been mouthed, pulled, and thrown many times and still looks new. No tears or running
on the pages. No words inside, but has the song on the back incase one does not know it. Can easily make your own story up. My sister washed her
book, which you should not do, and it got wrinkled and looks worn down. It did not tear or come apart though”,
‘Nice little book. Has all the seasons and some weather.’ ]

Future Product [Title] Ten Little Fingers and Ten Little Toes
[Text] “There was one little baby who was born far away. And another who was born on the very next day. And both of these babies, as everyone
knows, had ten little fingers and ten little toes." So opens this nearly perfect picture book. Fox’s simple text lists a variety of pairs of babies, all with
the refrain listing the requisite number of digits, and finally ending with the narrator’s baby, who is 11truly divine” and has fingers, toes, 11and three
little kisses/on the tip of its nose.” Oxenbury’s signature multicultural babies people the pages, gathering together and increasing by twos as each pair
is introduced. They are distinctive in dress and personality and appear on primarily white backgrounds. The single misstep appears in the picture of
the baby who was “born on the ice.” The child, who looks to be from Northern Asia or perhaps an Inuit, stands next to a penguin. However, this
minor jarring placement does not detract enough from the otherwise ideal marriage of text and artwork to prevent the book from being a first purchase.
Whether shared one-on-one or in storytimes, where the large trim size and big, clear images will carry perfectly, this selection is sure to be a hit.”

Retrieval Rank No Expan. : 29 Expan. w/ Full : 162 Expan. w/ Retriever : 765 DAQu (Ours) : 27
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Table 14: Error case study for StackExchange (Best Answer).

StackExchange-Best Answer w/ SplitByUser

Query [Title] How can I determine accuracy of past probability calculations?
[Text] I do not study statistics but engineering, but this is a statistics question, and I hope you can lead me to what I need to learn to solve this
problem. I have this situation where I calculate probabilities of 1000’s of things happening in like 30 days. If in 30 days I see what actually happened,
how can I test to see how accurately I predicted? These calculations result in probabilities and in actual values (ft). What is the method for doing
this? Thanks, CP

MetaData [answer posts]: [‘You should check out "area51.stackexchange.com/proposals/117/quantitative-finance?referrer=b3Z9BBygZU6P1xPZSakPmQ2">
area51.stackexchange.com/proposals/117/quantitative-finance?referrer=b3Z9BBygZU6P1xPZSakPmQ2", they are trying to start one on stackex-
change.com.’]
[comments]: [‘The Federalist paper is very interesting and describes similar to above answer. Thanks.’]
[current tags]: [‘probability’]

Answer Post What you’re looking for are called Scoring Rules, which are ways of evaluating probabilistic forecasts. They were invented in the 1950s by weather
forecasters, and there has been some work on them in the statistics community. One thing you could do would be to bin the forecasts by probability
range (e.g.: 0–5%, 5%–10%, etc.) and look at how many predicted events in that range occurred. If there are 40 events in the 0–5% range and 20
occur, then you might have problems. If the events are independent, then you could compare these numbers to a binomial distribution. (...)

Retrieval Rank Expan. w/ Full: 24 DAQu (Ours): 4
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