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Abstract

The advancements of Large Language Mod-
els (LLMs) have spurred a growing interest in
their application to Named Entity Recognition
(NER) methods. However, existing datasets
are primarily designed for traditional machine
learning methods and are inadequate for LLM-
based methods, in terms of corpus selection
and overall dataset design logic. Moreover, the
prevalent fixed and relatively coarse-grained
entity categorization in existing datasets fails
to adequately assess the superior generaliza-
tion and contextual understanding capabilities
of LLM-based methods, thereby hindering a
comprehensive demonstration of their broad
application prospects. To address these lim-
itations, we propose DynamicNER, the first
NER dataset designed for LLM-based meth-
ods with dynamic categorization, introducing
various entity types and entity type lists for
the same entity in different context, leverag-
ing the generalization of LLM-based NER bet-
ter. The dataset is also multilingual and multi-
granular, covering 8 languages and 155 entity
types, with corpora spanning a diverse range
of domains. Furthermore, we introduce Casca-
deNER, a novel NER method based on a two-
stage strategy and lightweight LLMs, achiev-
ing higher accuracy on fine-grained tasks while
requiring fewer computational resources. Ex-
periments show that DynamicNER serves as
a robust and effective benchmark for LLM-
based NER methods. Furthermore, we also
conduct analysis for traditional methods and
LLM-based methods on our dataset. Our code
and dataset are openly available at https://
github.com/Astarojth/DynamicNER.

1 Introduction

Recent advances in Large Language Models
(LLMs) have transformed the landscape of NLP
(Naveed et al., 2023). Among the impacted tasks,
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Named Entity Recognition (NER) has seen notable
methodological shifts (Xie et al., 2023). Leverag-
ing LLMs’ strong generalization and contextual un-
derstanding capabilities, existing LLM-based meth-
ods (Shao et al., 2023; Li and Zhang, 2023) show
superior performance compared to traditional ma-
chine learning (ML) methods (Wang et al., 2020;
Yan et al., 2021; Curran and Clark, 2003) in low-
resource, multilingual, or few-/zero-shot settings.
As a result, LLM-based NER has garnered grow-
ing interest in these settings (Xiao et al., 2024),
offering a promising path toward more scalable
and adaptable information retrieval.

Despite recent progress, there are no existing
NER datasets specifically optimized for the charac-
teristics of LLMs, thereby limiting both their effec-
tive evaluation and the development of optimized
methods. Existing NER datasets employ static cat-
egorization with a fixed set of entity types, prevent-
ing the evaluation of LLMs’ ability to generalize to
novel entity types and varying levels of granularity,
especially in few-shot or zero-shot settings. More-
over, while some datasets address domain-specific
corpora with specialized entity types (Kim et al.,
2003; Liu et al., 2021), others target multi-grained
classifications (Ding et al., 2021), or multilingual-
ism (Malmasi et al., 2022), no existing dataset si-
multaneously incorporates all three aspects. This
fragmentation hinders comprehensive evaluation of
LLM-based methods, which are particularly well-
suited to handling such challenges. As a result,
current datasets fall short in revealing performance
differences between LLM-based methods, fail to
capture their full potential and limitations, and ulti-
mately impede the advancement of more effective
NER solutions.

To address these gaps, we develop Dynamic-
NER, the first NER dataset optimized for LLM-
based methods and the first to support dynamic
categorization. It employs multiple strategies to
dynamically adjust entity labels, type lists, and

16523

https://github.com/Astarojth/DynamicNER
https://github.com/Astarojth/DynamicNER
hl6266@nyu.edu
zuozhuliu@intl.zju.edu.cn


granularity levels during annotation. This design
simulates the complexity and uncertainty of entity
types in real-world, general-purpose scenarios—a
challenge that traditional ML methods with fixed
entity categorization struggle to address, enabling
a more rigorous evaluation of LLM-based NER
methods’ ability to generalize across diverse and
evolving scenarios. We introduce cohesion and dis-
tribution balance metrics to guide the evaluation
and optimization of the annotation process. The
entire procedure is algorithmically automated and
openly available, ensuring both reliability and re-
producibility.

In addition, DynamicNER is a multilingual and
multi-granular dataset, featuring 8 languages, 8
coarse-grained types, 31 medium-grained types,
and 155 fine-grained types. The multilingual and
fine-grained nature of DynamicNER not only pro-
vides necessary support for the dynamic catego-
rization, but also places higher demands on the
NER methods. Many existing benchmarks are no
longer difficult enough to reveal the performance
boundaries of advanced methods, and the challeng-
ing DynamicNER will help future researchers to
explore performance frontiers. Its entity types and
corpora span a wide range of professional domains,
including science, computer engineering, medicine,
history, and arts. These features offer an unprece-
dented level of semantic and linguistic coverage
for complex NER evaluation.

Furthermore, our evaluation on DynamicNER
reveals significant limitations in existing LLM-
based methods, particularly when migrating to
lightweight LLMs (models with 1.5B to 7B parame-
ters) for local deployment. While approaches lever-
aging commercial models like ChatGPT (Brown,
2020) achieve high performance, this reliance in-
troduces practical challenges related to API costs
and privacy risks. API-based usage is often pro-
hibitively expensive for real-world NER applica-
tions, and privacy remains a critical concern (Zhang
et al., 2024; Das et al., 2024; Deng et al., 2025).

To address this issue, we propose CascadeNER,
a universal and multilingual NER framework that
achieves competitive performance with lightweight
LLMs, comparable to existing LLM-based meth-
ods that rely on costly commercial models. Casca-
deNER employs a two-stage strategy by dividing
NER as two in-context text generation sub-tasks,
extraction and classification, instead of treating it
as a traditional sequential labeling task. To reduce
task complexity and better capture in-context de-

pendencies, CascadeNER assigns each stage of the
NER process–extraction and classification–to sepa-
rate fine-tuned lightweight LLMs within a model
cascading framework (Varshney and Baral, 2022).
This modular architecture, combined with the inte-
gration of prior knowledge, enables effective multi-
lingual performance in low-resource settings.

We evaluate a BERT-based (Devlin et al., 2018)
supervised method, two LLM-based methods, and
our proposed CascadeNER on DynamicNER. We
also conduct evaluations of CascadeNER against
existing methods on existing datasets. Results
demonstrate that DynamicNER effectively eval-
uates the performance of LLM-based methods in
low-resource and complex NER tasks, while Casca-
deNER outperforms existing LLM-based methods
significantly with smaller models. Moreover, this
work offers the first comprehensive comparison
and analysis of existing LLM-based NER methods,
with an emphasis on multilingual and fine-grained
scenarios.

Our contributions are summarized as follows:

➠ We develop DynamicNER, the first NER dataset
optimized for LLM-based NER methods, featur-
ing a novel dynamic categorization system. The
dataset which supports 8 languages, 155 entity
types, and 3 levels of granularity, enabling com-
prehensive evaluation across diverse linguistic
and semantic settings.

➠ We propose CascadeNER, a universal NER
framework, which outperforms existing LLM-
based methods using only lightweight LLMs and
a two-stage strategy.

➠ We conduct a comprehensive evaluation of LLM-
based NER methods on our challenging dataset
and identify key challenges and future directions
for the field.

2 Related Works

Named Entity Recognition. NER is the task of
identifying named entities in text and classifying
them into predefined categories. Supervised meth-
ods, such as BiLSTM (Yu et al., 2020) and BERT-
MRC (Li et al., 2019a), currently dominate this
task. They generally rely on large amounts of
training data to achieve strong performance, which
limits their application in low-resource scenarios.
Some researchers apply LLMs to address this issue.
GPT-NER (Wang et al., 2023) employs the GPT-3
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model and re-frames the task as single-entity la-
beling, supporting few-shot/zero-shot learning. It
achieves comparable performance to supervised
methods in traditional scenarios and excels in low-
resource scenarios. PromptNER (Ashok and Lip-
ton, 2023) achieves state-of-the-art (SOTA) accu-
racy in datasets with complex classification (Liu
et al., 2021; Ding et al., 2021) with GPT-4 and
Chain-of-Thought (CoT) (Wei et al., 2022), yet
performs significantly worse than GPT-NER and
supervised methods in classical NER datasets like
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003). Furthermore, several studies apply LLM-
based NER in domain-specific tasks (Li and Zhang,
2023; Shao et al., 2023; Keloth et al., 2024), focus-
ing on science and medicine. Their performances
surpass supervised methods in those domains, fur-
ther highlighting the potential of LLMs in low-
resource and complex NER tasks.

Dataset #Language #Coarse #Fine Domain

CoNLL2002 2 4 no News
CoNLL2003 2 4 no News
ACE2005 2 7 41 News
OntoNotes 5.0 3 18 no General
CrossNER 1 9-17 no Multi Domain
FEW-NERD 1 8 66 General
PAN-X 282 3 no General
MultiCoNER 11 6 33 General
I2B2 1 22 no Medical

DynamicNER (ours) 8 8 155 Multi Domain

Table 1: Overview of NER datasets. Notably, Dynam-
icNER covers a wide range of cross-domain categories,
such as art, medicine, and biology, thus offering better
generalization compared to other general datasets.

NER Datasets. There have been a considerable
number of NER datasets in various domains (Tjong
Kim Sang, 2002; Kim et al., 2003; Doddington
et al., 2004; Walker et al., 2006; Weischedel et al.,
2011; Pradhan et al., 2013; Derczynski et al., 2017;
Katz et al., 2023). However, these existing datasets
exhibit several limitations, making them unsuitable
for LLM-based NER. Most previous multilingual
NER datasets adopt coarse-grained classification,
no longer meeting the fine-grained requirements of
contemporary flat NER applications. Even existing
fine-grained datasets demonstrate clear limitations
in category coverage and granularity, falling short
of being truly "universal." For instance, FewNERD,
despite having 66 entity types, suffers from highly
imbalanced data distribution, which affects its reli-
ability for evaluating few-shot learning capabilities.
Furthermore, current datasets fail to adequately

address the generalization capabilities of LLMs,
hindering the comprehensive training and evalua-
tion of LLM-based NER methods. Table 1 presents
a simple comparison between DynamicNER and
existing multilingual or fine-grained datasets.

3 DynamicNER Dataset

Figure 1: The coarse-grained and medium-grained cat-
egories of DynamicNER. Detailed categories are pro-
vided in Appendix P.

DynamicNER spans 8 languages: English, Chinese,
Spanish, French, German, Japanese, Korean, and
Russian. In terms of categorization, it is the first
NER dataset with three-level granularity catego-
rization, encompassing 8 coarse-grained types, 31
medium-grained types, and 155 fine-grained types,
as shown in Figure 1. Like other NER datasets, Dy-
namicNER is divided into train, dev, and test sets.
Data volumes for different languages and parts
shown in Appendix D. To develop DynamicNER,
we first collect unlabeled corpus from Wikipedia.
Then we manually extract sentences from corpora
and conduct comprehensive manual annotation on
the collected sentences, strictly following our 3-
level, 155-type fine-grained entity schema. This
initial annotated result, containing all entity types
without any automated adjustments, is what we
define as the Base Version of DynamicNER. It
represents our most complete, static knowledge
base. Subsequently, using the Base Version as
input, we apply the automated dynamic catego-
rization according to four metrics, generating the
Dynamic Version. To ensure reproducibility and
support future research on dynamic categorization,
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we provide the full code for the pipeline, including
all settings and parameters in our repository.

Corpora Collection and Annotation. Wikipedia
provides multilingual, domain-specific corpora
with clear hierarchical and indexing systems, serv-
ing as a rich resource for our research. We utilize
legal Wikipedia-API to filter and download corpora
across different languages and categories, followed
by manual selection and annotation of sentences.
We particularly focus on corpora containing long
texts and complex contexts, with a special emphasis
on encyclopedic content from professional domains
such as science, medical, arts, engineering, and law,
to ensure DynamicNER’s coverage of specialized
domains. In addition, we have incorporated mul-
tilingual corpora from the social media platforms
X and Weibo to ensure that our dataset also in-
cludes a substantial portion of colloquial language.
After completing 50% of the annotation process
of each language, we annotate corpora from cate-
gories related to underrepresented entity types to
achieve a balanced entity type distribution. For
instance, when the entities of "Algorithm" are sig-
nificantly less than others, we use more corpora
from Computer Science category. Thus, Dynam-
icNER ensures balanced entity distribution, and
includes rare entities and emerging fields that are
inadequate in existing datasets, ensuring compre-
hensive coverage across diverse domains. Details
about the manual annotation process is provided in
Appendix J.

Method2: Replace with synonyms 

politician, artist, writer, sportsperson,
director, actor, researcher, others 

sportsperson
athlete, artist, politician,

 actor, location, organization, others
athlete

Method1: Mix categories of different granularities

artist, author, athlete, 
director, actor, others 

athlete

Method3: Remove irrelevant categories 

politician, artist, director, actor,
scholar, others

others

Method4: Merge types into miscellaneous/others

athlete
athlete            artist            politician           actor            location         organization        others

Fixed Categorization

Entity: Kobe Byrant

Method2: Replace with synonyms 

location, organization, metropolis, 
craft, organization, item, others  

location
city, country, art, person, facility,

scirence entity, group, product, others
city

Method1: Mix categories of different granularities

location, facility, group, 
product, others

location

Method3: Remove irrelevant categories 

city, facility, group, product, 
miscellaneous

miscellaneous

Method4: Merge types into miscellaneous/others

location

Fixed Categorization

location           art            person          facility        science entity        group        product      others

Entity: München

Figure 2: Examples of dynamic categorization. Details
of the four strategies are provided in Appendix A.

Dynamic Categorization. The dynamic version
improves model generalization and reduces overfit-

ting risk by dynamically adjusting entity labels and
corresponding entity type lists during annotation,
including ➊ mixing types of different granulari-
ties, ➋ replacing types with synonyms, ➌ using
type lists without irrelevant types, and ➍ merging
certain types into miscellaneous/others, as shown
in Figure 2. This method addresses the mismatch
between existing datasets and few-shot/zero-shot
training needs, better simulating real-world scenar-
ios, and is particularly critical for evaluating meth-
ods relying on complex prompt designs (e.g., CoT).
Unlike traditional few-shot learning, some LLM-
based methods only use few-shot demos to help
the model understand the task or format, without
requiring knowledge of entity types. They can per-
form NER across different datasets with fixed few-
shot demos, resembling zero-shot NER. Research
shows this method is more effective than typical
zero-shot NER (Zhang et al., 2022). In methods
that uses complex prompt designs like CoT to guide
the reasoning, even few-shot CoT only conveys
the CoT process rather than task-relevant knowl-
edge, the performance of prompt-guided zero-shot
CoT is significantly worse than few-shot CoT, mak-
ing zero-shot restrictions inadequate for reflecting
their true capability. However, in NER, models in-
evitably learn about entity types through few-shot
demos, which limits generalization evaluations on
fixed-category datasets. Our method significantly
mitigates this limitation by varying entity types and
lists, isolating the impact of prior type knowledge.
Notably, as dynamic categorization is a subtractive
method applied to a comprehensive and detailed
categorization system, this method relies heavily
on DynamicNER’s fine-grained taxonomy, which
includes 3 levels of granularity and 155 entity types.
Consequently, this method may not be suitable for
all datasets. Based on our empirical findings, we
recommend that future researchers adopting this
categorization method use datasets that feature at
least two levels of granularity and over 20 fine-
grained entity types.

Categorization Metrics. Random dynamic cat-
egorization not only exhibits poor reproducibility
and explainability, but may also lead to data quality
degradation. For training, inappropriate categoriza-
tion may result in inconsistent learning objectives
and overfitting risks (Ren et al., 2016). For evalua-
tion, certain categories may experience imbalanced
sample distribution and boundary ambiguity, re-
ducing the comprehensiveness and consistency of
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evaluation (Obeidat et al., 2019). Thus, we design
four metrics to regulate the dynamic categorization:
cohesion, normalized entropy, Gini coefficient, and
variation coefficient. The definition and calculation
methods are provided in Appendix B.

Categorization Process. The dynamic catego-
rization process consists of 4 rounds of re-
categorization, each sequentially corresponding to
an adjustment method, and different metrics are
employed in each round to guide the optimization.
This hierarchical design enables each stage to focus
on distinct data characteristics and optimization ob-
jectives, preventing interference between metrics
while ensuring proper optimization direction, thus
achieving a progressive optimization. We do not
use all metrics in each evaluation, considering that
certain metrics may have overlapping or conflicting
effects at specific stages. For instance, normalized
entropy and Gini coefficient both measure distri-
bution uniformity, while improving cohesion may
lead to more concentrated distribution and conse-
quently lower entropy values. Figure 4 illustrates
the metrics and methods corresponding to each
round. Appendix C explains the reasons of metric
selection for each round.

           Mix categories of different granularities

               Replace with synonyms

                 Remove irrelevant categories

           Merge types into miscellaneous/others

cohesion, normalized entropy, Gini coefficient

Gini coefficient, variation coefficient

cohesion, Gini coefficient

All Metrics

Base Version

Dynamic Version

Figure 4: Pipeline of dynamic categorization.

4 CascadeNER

4.1 Framework

Background. Some existing supervised methods
suggest that separating extraction and classification
can improve NER performance as this two-stage
strategy reduces the task complexity (Shen et al.,
2021; Wu et al., 2022). However, these methods
are limited by traditional models, failing to incor-
porate LLMs, and exhibit notable performance de-
ficiencies that make them inferior to other methods
treating NER as a single task. On the other hand,
LLM-based methods demonstrate superior perfor-

mance compared to traditional methods in Named
Entity Extraction (Sancheti et al., 2024) and Text
Classification (Gasparetto et al., 2022), indicating
the potential of two-stage in LLM-based NER.

Framework Design. We propose the framework
to implement two-stage strategy in LLM-based
NER. CascadeNER divides NER into two sequen-
tial, independently executed, generation-based sub-
tasks. In the first sub-task, extraction, the model
generate a sentence where all named entities are
marked with identifiers and individually re-embeds
each entity back into its context, resulting in sen-
tences with identifiers at the number of entities. In
the second sub-task, classification, the model re-
ceives sentences with identifiers and a list of entity
types, and labels one entity at a time.

Model Cascading. To optimize performance
while reducing computational resources, Casca-
deNER employs model cascading, where the ex-
traction and classification sub-tasks are handled
separately by two specialized fine-tuned LLMs.
This structure allows each model to focus on its
specific sub-task, maximizing performance on sim-
pler, more specialized tasks. The architecture en-
ables CascadeNER to be particularly suitable for
lightweight LLMs, as each model only focus on a
simplified task. Existing research shows that fine-
tuned lightweight LLMs can achieve performance
close to normal LLMs on specific simple tasks (Hu
et al., 2024a). Through the implementation of two-
stage strategy and model cascading, CascadeNER
effectively leverages the advantages of lightweight
LLMs in simple tasks, maintaining high accuracy
while reducing computational resource usage.

Pipeline. A simplified pipeline of CascadeNER
is shown in Figure 3. Upon receiving the input
sentence, CascadeNER first processes the sentence
by the extractor to mark all entities with identi-
fiers, and re-embeds each entity back, resulting in
sentences with identifiers around the named enti-
ties. These sentences are then individually fed into
the classifier, which classifies each entity based
on the context and the input type list. For multi-
granularity data, CascadeNER allows a progressive
strategy, significantly improving CasacdeNER’s
performance in accurate fine-grained classification.
The detailed steps of extraction and classification
are discussed in following sections. Examples
about the prompts are provided in Appendix M.
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Figure 3: Use a sentence and the multi-granularity categories of DynamicNER as the example. The extractor and
classifier are the two different lightweight LLMs used in CascadeNER. Azure boxes represent the specific type list
for the input of the classifier. Blue boxes represent the sentence input.

4.2 Extraction

Prompt Design. In the extraction sub-task, we
utilize a generation-based extraction method,
where special tokens "##" are used to surround
any entities identified in the sentence, regardless
of the number of entities or their types. Figure 5
shows an instance for the prompt and correspond-
ing response.

The renowned scientist Marie Curie conducted pioneering
 research on radioactivity at the University of Paris.

The renowned scientist ## Marie Curie## conducted pioneering
research on ## radioactivity## at the ## University of

Paris##.

             Query

            Response

Figure 5: Example prompts of extraction.

This method, compared to conventional sequen-
tial extraction, avoids requiring LLMs to perform
text alignment, thus reducing task complexity.
Comparing similar methods (Wang et al., 2023;
Hu et al., 2024b), CascadeNER’s query contains
only the sentence, without any task descriptions,
demonstrations, or category information. The re-
sponse exclusively uses "##" as the identifiers, and
all entities are extracted without specifying cate-
gories. CascadeNER achieves low-cost NER by
using simple prompts and better generalization by
treating all entities uniformly. A detailed compari-
son with existing methods and further advantages
of our method are shown in Appendix H.

Result Fusion. After conducting extensive ex-
periments, we find that the extractor’s precision
consistently exceeds recall, regardless of the model
or dataset, indicating that while correct entities are
effectively identified, there is a tendency for under-
detection. To mitigate this issue, we introduce a
union strategy in result fusion (Ganaie et al., 2022),
allowing multiple extraction for one sentence and
taking the union of the results to maximize recall.

For cases of entity nesting, where different extrac-
tion rounds produce overlapping or nested entities,
we apply a length-first strategy, retaining the longer
entity, as longer entities generally carry more se-
mantic meaning (Nguyen and Cao, 2010). For
example, "Boston University" is semantically more
accurate than "Boston" in the context of "She stud-
ies in Boston University". The formula of our strat-
egy is shown below:

Efinal =
n⋃

i=1

{
argmax

e∈Ei

length(e)
}

(1)

where Ei is the set of extracted entities from the i-
th extraction, n is the number of extraction rounds,
Eoverlap is the set of overlapping or nested entities,
and length(e) is the length of entity e. The effects
of the number of extraction repetitions and other
details are provided in Appendix F.1.

4.3 Classification
Prompt Design. In the classification sub-task,
we employ a generation-based in-context classifi-
cation method, where we input the categories and
the sentence with one entity surrounded by "##",
and require the classifier to generate the label for
that entity. This method re-embeds the entity into
the sentence for classification, which utilizes the
self-attention architecture of LLMs for contextual
information and improves accuracy compared to
entity-level classification. Figure 7 is an example:

##Hypertension## in the sentence "##Hypertension##, or high blood pressure, is a common disease that increases
the risk of heart disease, stroke, and kidney problems."  belongs to which entity in the list: art, chemical,

facility, product, location, medical, miscellaneous?

               Query
              (Few-shot)

            Response

               Query
              (Zero-shot)

medical

##Hypertension## in the sentence "##Hypertension##, or high blood pressure, is a common disease that increases
the risk of heart disease, stroke, and kidney problems." belongs to which entity in the list: art, chemical,
facility, product, location, medical, miscellaneous? If none of them applied, return unknown.

Figure 7: Example prompts of classification.

In zero-shot scenarios, we use a slightly different
prompt. Due to differences in entity categorization
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Figure 6: Quantitative categorization metric results for 3 versions DynamicNER in English and Chinese. Generally,
higher cohesion and normalized entropy, or lower Gini coefficient and variation coefficient, indicate better quality.

across datasets, some entities in one dataset may
be overlooked in others. We append the query with
If none of them applied, return unknown to
handle situations where the extracted entity cannot
be classified into the provided categories, enhanc-
ing CascadeNER’s generalization.

Multi-granularity. For multi-granularity data,
we apply a progressive strategy. After obtaining the
coarse-grained result, CascadeNER use the result
to index the corresponding sub-categories and clas-
sify again, continuing this process until no further
classification is possible:

Lfine
i = ffine-classify(L

coarse
i , subcategories) (2)

where Lfine
i is the fine-grained label, Lcoarse

i is the
generated coarse-grained label, and subcategories
are the subcategories under the coarse-grained.

5 Experiment

In this section, we first present the categorization
metrics of DynamicNER before and after dynamic
categorization, followed by a comparative analy-
sis of existing methods and CascadeNER’s perfor-
mance on different versions of DynamicNER. We
also conduct experiments of CascadeNER and base-
lines on existing datasets in Appendix E, and abla-
tion studies in Appendix F. In evaluations across
existing datasets, CascadeNER, with base models
fine-tuned using the dynamic version of Dynam-
icNER, demonstrates consistent excellence in all
datasets and achieves new SOTA performance in
FewNERD and CrossNER. This confirms that Dy-
namicNER not only provides exceptional effective-

ness for evaluating LLM-based NER methods but
also offers substantial value in training.

5.1 Categorization Quality Evaluation

To demonstrate that our dynamic categorization
improves dataset generalization while maintaining
dataset quality, we conduct comparative experi-
ments across three versions of DynamicNER: the
Base Version, a version with random parameters
for dynamic categorization, and the optimized Dy-
namic Version. We still employ the 4 metrics for
evaluating dataset quality, whose detailed definition
are provided in Appendix B. For reliability of the
random version’s results, we conduct five indepen-
dent tests and use the average results. Due to space
limitations, we only present results for English and
Chinese in Figure 6 here. Other quantitative results
are provided in Appendix Q.

Language en es fr ru de zh ja kr

# Lists 725 455 501 377 465 786 553 478

Table 3: The numbers of entity type lists of each lan-
guage after dynamic categorization. In some scenarios,
this can be equivalent to having 700+ distinct datasets.

Experimental results demonstrate that our dy-
namic categorization significantly increases data
diversity, as shown in Table 3, while maintaining
or improving dataset quality compared to the base
version. The quality of the dynamic version also
considerably surpasses the random version. These
results comprehensively validate the reliability and
effectiveness of our method.
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Model Dynamic-Supervised Dynamic-Fewshot
en es fr ru de zh ja ko en es fr ru de zh ja ko

G-1.5B 47.6 39.7 38.0 37.6 37.3 41.2 35.7 36.1 36.9 32.2 31.9 30.5 30.3 35.8 31.9 32.6
G-7B 52.3 46.4 44.8 44.8 45.7 48.1 42.3 42.1 42.7 37.3 38.2 36.8 36.5 41.1 37.3 38.6
G-GPT 60.6 57.3 56.5 55.6 55.9 58.4 54.9 53.8 49.2 46.9 47.5 47.2 47.0 48.9 47.7 48.3
P-1.5B 23.2 20.8 18.5 16.3 17.5 22.7 18.0 17.3 20.5 17.9 16.2 15.9 16.1 19.9 16.0 15.9
P-7B 44.3 35.8 33.2 32.5 31.9 40.4 37.4 35.6 39.8 33.2 32.1 31.8 31.5 37.8 35.6 34.5
P-GPT 53.0 50.5 51.2 47.9 50.2 52.3 48.7 48.5 49.4 48.5 47.1 46.6 46.0 47.4 44.1 44.0
C-1.5B 62.8 55.7 52.8 51.1 48.8 58.9 54.1 52.7 49.7 44.1 44.0 43.4 42.9 48.5 43.1 43.8
C-7B 68.2 61.5 55.3 52.9 51.4 64.5 58.8 55.3 55.7 49.9 49.7 46.5 46.1 52.9 50.2 50.0
C-GPT 73.1 67.1 67.8 66.9 67.6 68.3 67.4 67.9 61.3 57.4 56.9 56.2 56.0 59.7 56.8 56.4

Table 2: The results of supervised learning with dynamic version and few-shot learning with dynamic version.
G means GPT-NER, P means PromptNER, and C means CascadeNER. The results indicate that, due to its
unprecedentedly detailed categorization and multilingual coverage, DynamicNER is an extremely challenging flat
NER dataset, placing higher demands on methods’ generalization capability.

5.2 DynamicNER Experiment

Baseline Selection. In our experiments for Dy-
namicNER, we evaluate four NER methods: XLM-
RoBERTa (Conneau et al., 2020), GPT-NER (Wang
et al., 2023), PromptNER (Ashok and Lipton,
2023), and our CascadeNER. XLM-RoBERTa is
a famous BERT-based multilingual model widely
used as a baseline in multilingual NER research
Malmasi et al. (2022); Fetahu et al. (2022), thus be-
ing selected as our baseline representing supervised
methods. GPT-NER and PromptNER are two ma-
jor general LLM-based NER methods that achieve
performance significantly superior to supervised
methods in low-resource scenarios through sophis-
ticated prompt design and powerful GPT models,
as discussed in Section 2 and Appendix H.

Model Selection. Given the lack of existing
lightweight LLM-based NER methods and con-
trolled variable principles, we evaluate two LLM-
based methods and CascadeNER using three LLMs:
Qwen2.5-1.5B (Yang et al., 2024), Qwen2.5-7B,
and GPT-4o (Hurst et al., 2024). The lightweight
LLMs of Qwen series perform exceptionally across
benchmarks and gaining widespread recognition.
According to HuggingFace (2024), Qwen2.5-1.5B
is the most downloaded open-source model in 2024.
Therefore, we select Qwen2.5-1.5B and 7B to
represent the current best-performing lightweight
LLMs. GPT-4o is the most widely-used current
general commercial LLM, and its previous versions
are employed in GPT-NER and PromptNER, mak-
ing it our choice. In CascadeNER, the extractor
and the classifier use the same base model.

Implementation. For the supervised method,
XLM-RoBERTa is trained and only evaluated with

the base version of DynamicNER. As its fixed clas-
sification output layer corresponds to a predefined
set of entity types and any modification to the en-
tity type list necessitates full model retraining, it
cannot be evaluated with the dynamic version. For
LLM-based methods, we conduct experiments un-
der three scenarios: supervised learning with base
version, supervised learning with dynamic version,
and few-shot learning with dynamic version. Train-
ing data for GPT-NER and CascadeNER is ob-
tained through format conversion. For PromptNER,
as its prompt involves complex designs such as
CoT, we utilize LLM-generated prompts by GPT-
4o using prompts from its paper as few-shot demon-
strations and manually verified the prompts. The
repetition count i of CascadeNER for result fusion
is set to 3. Potential data contamination are dis-
cussed in Appendix N. The finetuning settings and
hyperparameters of CascadeNER are provided in
Appendix L.

Model Base-Supervised
en es fr ru de zh ja ko

BERT 41.9 33.5 29.1 23.4 32.9 29.2 27.2 28.6
G-1.5B 50.2 43.5 40.4 39.8 39.3 44.1 38.9 38.7
G-7B 55.1 48.2 47.2 44.0 48.1 50.9 44.8 44.5
G-GPT 62.4 58.3 57.9 56.8 56.9 60.4 57.3 55.9
P-1.5B 21.6 18.6 17.1 14.9 15.8 20.7 16.4 15.9
P-7B 41.1 32.9 31.0 30.7 30.3 47.4 35.6 29.6
P-GPT 49.7 47.7 48.2 45.9 46.6 48.6 45.7 45.4
C-1.5B 67.6 59.9 57.9 55.7 53.5 64.0 58.5 55.1
C-7B 73.8 65.5 60.3 59.6 61.4 69.8 65.3 62.7
C-GPT 77.1 71.7 69.9 70.3 70.8 74.3 72.4 70.9

Table 4: The results of supervised learning with base
version. BERT represents XLM-RoBERTa. The super-
vised method XLM-RoBERTa performs terribly.

Results. As presented in Table 2 and 4, Casca-
deNER achieves a significant advantage on Dy-
namicNER, demonstrating its strong generaliza-
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tion. The supervised method XLM-RoBERTa per-
forms terribly, as DynamicNER’s low-resource
characteristics make it more suitable for evaluating
LLM-based methods. For LLM-based methods,
the 3 methods show significant performance varia-
tions across different datasets and models. When
using GPT-4o and transitioning from supervised
to few-shot, PromptNER exhibits notably smaller
performance degradation, partially reflecting the
generalization advantages of reasoning-focused ap-
proaches. However, when migrating to lightweight
LLMs, these methods show significantly larger per-
formance drops compared to the other two methods.
GPT-NER and CascadeNER demonstrate generally
similar performance patterns, but GPT-NER shows
more pronounced degradation when migrated to
lightweight LLMs, while CascadeNER achieves
a greater performance advantage on the dynamic
version compared to the base version, validating
the effectiveness of the two-stage strategy in the
complex classification. CascadeNER also exhibits
notable computational efficiency from two key per-
spectives. First, it is parameter-efficient, leveraging
two 7B LLMs to achieve performance superior to
baselines that rely on a 100B-level commercial
model. Second, its two-stage design enables the
use of concise prompts that drastically reduce to-
ken consumption compared to competing methods,
as discussed in Appendix H, as validated by our
cost analysis in Appendix I. This efficiency makes
CascadeNER a powerful yet practical solution.

5.3 Performance Across Granularities
To investigate how different methods handle in-
creasing classification complexity, we conduct an
analysis across the three granularity levels of Dy-
namicNER. We evaluate all LLM-based meth-
ods on the Base version (as the Dynamic version
doesn’t have clear granularity levels) for English
and Chinese, with results presented in Table 5.

The results lead to two key conclusions. First, as
expected, the performance of all models declines
as the number of entity types increases from coarse
to fine, confirming that fine-grained classification
is a significantly more challenging task. More im-
portantly, the analysis reveals a stark difference in
how the methods handle this increased complex-
ity. Methods that rely on a single, complex prompt,
such as PromptNER, suffer a dramatic performance
collapse when scaled to the 155 categories. In
contrast, our CascadeNER framework shows re-
markable resilience, with a more graceful and con-

trolled degradation in performance. This analy-
sis empirically validates the core motivation for
DynamicNER, demonstrating that a challenging,
fine-grained benchmark is necessary to expose the
limitations of existing methods and accurately eval-
uate the robustness of purpose-built frameworks.

Model English Chinese
Coarse Medium Fine Coarse Medium Fine

G-1.5B 59.3 55.0 50.2 59.7 54.5 44.1
G-GPT 70.4 69.3 62.4 67.3 65.5 60.4
P-1.5B 58.5 49.2 21.6 57.7 48.8 20.7
P-GPT 75.1 62.5 49.7 73.5 57.1 48.6
C-1.5B 82.7 78.8 67.6 81.2 75.1 64.0
C-GPT 90.6 86.4 77.1 86.5 80.3 74.3

Table 5: F1 scores across granularities on the Base-
Supervised setting.

6 Conclusion

This paper introduces DynamicNER, a multi-
lingual and multi-granular NER dataset opti-
mized for LLM-based NER, including a human-
annotated base version and a dynamic-categorized
version. We develop the first dynamic categoriza-
tion method in NER datasets for DynamicNER,
enhancing its generalization while keeping data
quality. We also propose CascadeNER, a powerful
NER framework which is exceptionally suitable for
lightweight LLMs and local deployment, outper-
forming current LLM-based methods. Moreover,
we conduct comprehensive experiments and analy-
ses on DynamicNER and discuss the advantage and
future direction of LLM-based NER. More exper-
iments and discussions are provided in Appendix
E and H. We hope that DynamicNER and Casca-
deNER will facilitate future research in LLM-based
NER, revitalizing this classical NLP task.
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Limitations

There are still some challenges in our work. Al-
though CascadeNER is designed to be able to ac-
commodate nested and discontinuous NER, we
only conduct evaluation on CascadeNER about flat
NER tasks. This limitation arises from the fact
that the models in CascadeNER are pre-trained on
the dynamic version of DynamicNER, and Dynam-
icNER is a flat NER dataset. Our resources are
insufficient to collect enough open-source data for
this purpose, which lead to DynamicNER contain-
ing only flat NER labels, and thus constraining
CascadeNER to flat NER. Furthermore, Due to re-
source constraints and our failure to find annotators
proficient in other languages for manual annotation,
DynamicNER currently supports only 8 languages,
which somewhat restricts its applicability.
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A Dynamic Categorization Strategies

This section elaborates on the four strategies used
to transform the manually annotated Base Version
of DynamicNER into the final Dynamic Version.
This entire process is an algorithm-driven pipeline
that systematically modifies the entity type lists
and corresponding labels for each data instance to
create a more challenging and realistic benchmark.
The pipeline consists of four sequential stages. We
detail the goal, a concrete example, and the execu-
tion process for each strategy below.

Method 1: Mixing Categories of Different Gran-
ularities

• Goal: To test a method’s robustness and gen-
eralization capability when faced with entity
type lists of varying specificity. This strat-
egy simulates the real-world variability where
the required level of detail for an entity can
change depending on the context.

• Example:

– Sentence: “Ada Lovelace is considered
the first computer programmer.”

– Original State: The entity “Ada
Lovelace” is labeled as Person from
the coarse-grained list, e.g., [Person,
Location, Organization, Product,
...].

– After Dynamic Change: The system re-
places the coarse-grained type with its
fine-grained children. The new, shorter
type list could be [Artist, Athlete,
Scholar, Location, Organization,
Product, ...], and the required label
for “Ada Lovelace” becomes Scholar.

Method 2: Replacing Types with Synonyms

• Goal: To evaluate a method’s ability to un-
derstand semantic equivalence and not just
rely on keyword matching between the entity
context and the type list.

• Example:

– Sentence: “Bekele won a gold medal in
the competition.”

– Original State: The entity “Bekele” is
labeled as Athlete from a type list such
as [..., Artist, Author, Athlete,
...].
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– After Dynamic Change: The system
replaces the type name Athlete with
a valid synonym. The new type list
becomes [..., Artist, Author,
Sportsperson, ...], and the re-
quired label for “Bekele” is now
Sportsperson.

Method 3: Removing Irrelevant Categories

• Goal: To simulate a more realistic, focused
NER task where the type list is context-
specific, and to test the model’s ability to
avoid hallucinating labels that are not in the
provided list.

• Example:

– Sentence: “In the luxurious suite of The
Ritz Carlton Hotel, a traveler is enjoying
the beautiful view.”

– Original State: The entity is “The Ritz
Carlton Hotel”, and the type list contains
all fine-grained types of Commercial Fa-
cility, including many irrelevant ones like
Restaurant and Bank.

– After Dynamic Change: The sys-
tem prunes unrelated categories.
The new type list is [Person,
Location, Hotel, Market/Mall,
Theater/Cinema, Other Commercial
Facility].

Method 4: Merging Types into Miscella-
neous/Others

• Goal: To test the model’s ability to correctly
identify and classify infrequent or contextu-
ally less important entities into a general catch-
all category, a common requirement in practi-
cal applications.

• Example:

– Sentence: “It was organized by Harry
West and constituted a formal electoral
pact.”

– Original State: The entity “Harry West”
is labeled as Person from the full type
list.

– After Dynamic Change: The new
type list could be [Location,
Product, Group, Facility, Art,
Miscellaneous], and the required label
would become Miscellaneous.

Through this four-stage automated pipeline, Dy-
namicNER generates diverse and challenging eval-
uation scenarios that go beyond static categoriza-
tion, enabling a more thorough evaluation of LLMs’
true generalization and contextual understanding
capabilities.

B Categorization Metric Definition

Cohesion. Category cohesion score (cohesion)
measures categorical semantic consistency by cal-
culating the average semantic similarity between
all entities within the same category. We employ
the BERT-base (Devlin et al., 2018) model to ex-
tract semantic representations of entities, obtain
embeddings of each entity, then computing cosine
similarity between embeddings to derive cohesion.
This metric ranges from [-1,1], where 1 indicates
complete similarity and -1 indicates complete op-
position. Typically, we perform category merging
when cohesion exceeds 0.9. The formula is shown
below:

Cohesion =
1

n(n− 1)

n∑

i=1

n∑

j=i+1

cos(vi,vj)

(3)
where n is the number of entities in this cate-
gory, vi and vj are the vector representations of
the i-th and j-th entities encoded by BERT-base,
and cos(vi,vj) represents the cosine similarity be-
tween two vectors.
The detailed cosine similarity formula is shown
below.

cos(vi,vj) =
vi · vj

∥vi∥∥vj∥
(4)

Normalized Entropy. Normalized entropy mea-
sures the overall balance of category distribution.
This metric is used for the influence of category
quantity by calculating the information entropy of
category frequency distribution and normalizing
it to a score within the range [0,1]. A score of 1
indicates perfect balance, where all categories have
equal sample sizes, while 0 indicates complete im-
balance, where all samples are concentrated in a
single category. When normalized entropy falls
below 0.8, it indicates significant distributional im-
balance and needs to be adjusted. The formula is
shown below:

H = −
∑n

i=1 pi log2(pi)

log2(n)
(5)

where n is the total number of categories, pi is
the proportion of samples in the i-th category cal-
culated as the number of samples in category i
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divided by the total number of samples across all
categories.

Gini Coefficient. The Gini Coefficient (Gini,
1921) measures the degree of inequality in cate-
gory distribution. Compared to normalized entropy,
the Gini coefficient demonstrates higher sensitiv-
ity to distributional inequalities, performing better
at identifying extreme imbalances where minority
categories contain large sample proportions. For in-
stance, when sample distributions exhibit extreme
imbalances like [0.8, 0.1, 0.05, 0.05], the Gini co-
efficient provides stronger warning signals, while
normalized entropy is more suitable for monitor-
ing progressive imbalances such as [0.4, 0.3, 0.2,
0.1]. This metric also ranges from [0,1], where 0
indicates perfect balance and 1 indicates complete
imbalance. A Gini coefficient exceeding 0.4 sig-
nals significant categorical inequality and requires
distribution improvement. By using Gini coeffi-
cient and normalized entropy together, we achieve
both sensitive detection of extreme imbalances and
effective monitoring of overall distribution trends.
The formula is shown below:

G =
n+ 1− 2

∑n
i=1(n− i+ 1)pi
n

(6)

where n is the total number of categories, pi is
the proportion of samples in the i-th category after
sorting proportions in ascending order (p1 ≤ p2 ≤
... ≤ pn).

Variation Coefficient. The Coefficient of Vari-
ation measures data dispersion by calculating the
ratio of standard deviation to mean of category sam-
ple sizes. Its advantage is its scale independence,
enabling comparisons across different scenarios.
The coefficient ranges from 0 to positive infinity,
where 0 indicates perfect balance and larger values
indicate greater distributional imbalance. When
the coefficient exceeds 0.5, it indicates significant
fluctuation in sample sizes between categories, ne-
cessitating balance adjustments. The formula is
shown below:

CV =

√
1
n

∑n
i=1(xi − x̄)2

x̄
=

σ

µ
(7)

where n is the total number of categories, xi is the
number of samples in the i-th category, x̄ is the
mean number of samples across categories, σ is the
standard deviation of sample numbers, and µ is the
mean.

C Categorization Metric Selection

Mixing Types of Different Granularities. In
this round of re-categorization, we use cohesion,
normalized entropy, and Gini coefficient as metrics
for optimization. Cohesion is employed to assess
relationships between entity types, where close cat-
egorical relationships reduce the need for mixing to
avoid creating unreasonable combinations. Mean-
while, normalized entropy and Gini coefficient are
utilized to comprehensively measure distribution
uniformity, where uneven distributions guide the
system to perform additional merging for balance
or category redistribution.

Replace with Synonyms. In this round of re-
categorization, we use Gini coefficient and varia-
tion coefficient as metrics for optimization. We
employ the variation coefficient to measure data
dispersion, increasing synonym substitutions for
increasing data convergence when dispersion is
high. The Gini coefficient is used to guide system
to reduce operations to prevent exacerbating im-
balances when distributions are uneven. Cohesion
is not used as synonym substitution does not al-
ter hierarchical relationships between categories.
Entropy is also given up because synonym substitu-
tion primarily focuses on linguistic variation rather
than distributional changes.

Remove Irrelevant Types. In this round of re-
categorization, we use cohesion and normalized
entropy as metrics for optimization. We employ
normalized entropy as a reference for controlling re-
moval probability, ensuring that deletion operations
do not result in overly concentrated distributions.
Additionally, the system adjusts removal probabil-
ity when cohesion is low, regulating relationships
between categories. The variation coefficient is not
used as this stage primarily focuses on option quan-
tity rather than distribution characteristics, while
the Gini coefficient is omitted since distribution bal-
ance has been addressed in the previous two stages,
thus temporarily foregoing the Gini coefficient to
prevent interference with other metrics.

Merge Types into Miscellaneous. In this round
of re-categorization, we use all four metrics for
optimization. As the final optimization stage, it
requires consideration across all dimensions. We
use all metrics for final fine-tuning to ensure overall
data quality and avoid biases that might arise from
single metric optimization.

16537



D Detail of DynamicNER

The specific data volumes for each language are
shown in Table 6. It is important to note that for
languages except English and Chinese, we partially
use manually translated English corpora. This is
necessary to balance category distribution, as some
languages lack sufficient corpora in specific do-
mains. For the colloquial portion of the corpora,
the Chinese part is sourced from Weibo, while the
data for all other languages originated from X plat-
form. We provide conversion scripts that allow
DynamicNER to be transformed into train, dev,
and test sets with non-overlapping subsets based
on coarse categories, making it easier to use for
traditional few-shot learning methods.

Language # Sentences # Tokens # Entities # Train # Dev # Test

English 1500 36.7k 4664 300 300 900
Chinese 1500 98.1k 5198 300 300 900
Spanish 1000 22.8k 2454 197 201 602
French 1000 24.1k 2763 200 200 600
German 1000 21.7k 2800 200 197 603
Japanese 1000 81.7k 3032 201 199 600
Korean 1000 66.4k 2401 202 200 598
Russian 1000 18.5k 2092 201 198 601

Table 6: Statistics of DynamicNER across languages.
We roughly follow a 1:1:3 ratio to divide the train, dev,
and test sets, with slight adjustments based on the pro-
portional distribution of entities within the corpus.

Additionally, two points about the Table 6 re-
quire clarification. First, as DynamicNER’s design
emphasizes the evaluation of generalization and
low-resource learning capabilities, we set the test
set capacity to the biggest one, rather than the train
set. Second, for Chinese, Japanese, and Korean,
due to linguistic characteristics where each char-
acter is treated as a token, the token count appears
significantly higher, though the actual corpus vol-
ume is comparable to other languages.
Although DynamicNER’s data volume is signif-
icantly smaller than existing multilingual NER
datasets, it aligns with our primary goal: evaluat-
ing LLM-based NER in fine-grained, low-resource,
and dynamic scenarios. In such contexts, data vol-
ume may not be decisive. We acknowledge that
smaller data volumes may lead to higher variance
and overfitting. To show the robustness of our
work, we conduct additional experiments on ex-
isting datasets with the model finetuned on Dy-
namicNER. As shown in Appendix E, especially
Table 7 & 8, CascadeNER, trained on Dynamic-
NER, demonstrates strong few-shot performance
on other established benchmarks. This indicates

that the models have learned robust, generalizable
features, avoiding overfitting.

E More Experiment about CascadeNER

E.1 CascadeNER Setting

In the experiments of this section, CascadeNER
always employs two Qwen2.5-7B base models,
which are fine-tuned separately based on the corre-
sponding part of the dynamic version of Dynamic-
NER to obtain an extractor and a classifier. Poten-
tial data contamination about the fine-tuning is dis-
cussed in Appendix N. We evaluate CascadeNER’s
performance in both few-shot and zero-shot sce-
narios, comparing it with supervised SOTAs and
LLM-based baselines. For few-shot scenarios, the
number of few-shot demonstrations is set to 3, the
same as the experiments on DynamicNER.

E.2 Baselines

For supervised methods, we adopt ACE+document-
context by Wang et al. (2020) (SOTA of
CoNLL2003) and BERT-MRC+DSC by Li et al.
(2019b) (SOTA of Ontonotes 5.0 (Pradhan et al.,
2013)) for English datasets, while XLM-RoBERTa
(Conneau et al., 2020) and GEMNET by Meng
et al. (2021); Fetahu et al. (2022) (SOTA of Multi-
CoNER) for multilingual datasets. For LLM-based
methods, we adopt GPT-NER and PromptNER
with GPT-4o.

E.3 Dataset

Few-shot Data Sampling. In existing datasets,
only CrossNER (Liu et al., 2021), designed for low-
resource scenarios, and FewNERD (Ding et al.,
2021), designed for few-shot scenarios, meet our
requirements for evaluating CascadeNER in few-
shot scenarios. However, relying solely on them
is insufficient for comprehensively evaluating Cas-
cadeNER, particularly its multilingual NER per-
formance. To address this, we develop a sampling
algorithm to construct datasets for few-shot evalua-
tion. Considering that basic random sampling can-
not ensure a balanced category distribution, we em-
ploy a stratified sampling algorithm, which divides
the dataset into strata based on the labels. Each
stratum corresponds to a distinct entity type, and
we ensure an relatively equal number of samples
per category by drawing from these strata, thereby
maintaining balance across categories in the results.
The size for each stratum is calculated with the
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Model CoNLL2003 AI Literature Music Politics Science FewNERD-8 FewNERD-66

XLM-RoBERTa 92.3 59.0 65.9 72.1 70.8 66.9 80.5 64.1
ACE+document-context 94.6 17.2 22.6 23.8 35.1 32.3 83.3 70.4
BERT-MRC+DSC 93.5 63.2 67.8 74.5 76.1 68.7 86.7 74.1
PromptNER 84.2 64.8 74.44 84.2 78.6 72.6 76.5 35.6
GPT-NER 73.5 58.0 61.2 60.8 62.4 55.8 70.0 58.4

CascadeNER (zero-shot) 88.2 68.9 71.7 79.3 80.5 73.6 73.4 67.0
CascadeNER (few-shot) 92.8 75.8 75.2 83.2 82.4 77.1 84.5 75.9

Table 7: F1 score of different models on CoNLL2003, CrossNER, and FewNERD.

Model PAN-X MultiCoNER

en es fr ru de zh ja ko en es ru de zh ko

XLM-RoBERTa 88.1 86.5 85.4 86.3 83.1 78.3 75.6 82.0 58.9 54.8 55.9 60.6 62.6 52.0
GEMNET 90.5 91.1 87.6 87.4 86.6 81.5 80.8 85.5 84.3 85.3 78.7 89.5 83.2 85.7
PromptNER 81.7 79.6 73.5 73.8 71.9 72.1 70.8 73.5 79.5 75.6 76.5 67.6 70.8 72.4
GPT-NER 75.2 72.8 71.6 63.5 72.0 72.4 71.5 72.1 71.7 67.9 58.2 63.1 61.2 62.5

CascadeNER (zero-shot) 87.8 85.0 83.2 80.7 77.4 78.7 74.7 72.0 71.9 71.5 71.2 63.5 70.3 69.8
CascadeNER (few-shot) 91.0 85.2 87.2 86.8 82.8 87.0 83.2 79.4 85.9 81.1 79.5 69.1 85.1 76.9

Table 8: F1 score of different models across languages on PAN-X and MultiCoNER.

formula:

si = min

(⌊
S

m

⌋
, ni

)
(8)

where N is the total number of labels in the dataset,
S is the total sample size, ni is the total number of
labels with value i, m is the number of categories,
and si is the number of labels from stratum i.

Dataset Selection. We conduct supplemen-
tary experiments on existing datasets including
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003), CrossNER (Liu et al., 2021), FewNERD
(Ding et al., 2021), PAN-X (Pan et al., 2017), and
MultiCoNER (Malmasi et al., 2022). Since we de-
cide to use and share the formatted versions of these
datasets in our repository to facilitate the test and
use of CascadeNER, we only choose open-sourced
datasets to avoid copyright issues. For evaluation
metrics, we primarily use F1 score, as it is widely
recognized as the most robust and effective metric
for NER tasks (Li and Sun, 2020). We detail below
the reasons for selecting these datasets and their
usage.

CoNLL2003. CoNLL2003 is the most widely
used English NER dataset, featuring four types:
PER, LOC, ORG, and MISC. Supervised meth-
ods achieve excellent F1 scores of 90%-95% on
this dataset. We use this dataset to compare Casca-
deNER and other LLM-based methods with exist-
ing supervised SOTAs in classical scenarios.

CrossNER. CrossNER is a English cross-domain
dataset primarily used to evaluate a model’s cross-
domain generalization and low-resource perfor-
mance. It consists of five independent sub-datasets,
each covering a specific domain (AI, Literature,
Music, Politics, and Sciences) and containing 9-17
entity types. Since the train set for the datasets only
contains 100-200 sentences, supervised methods
underperform compared to LLM-based methods.
We use this dataset to evaluate CascadeNER in
cross-domain and low-resource scenarios.

FewNERD. FewNERD is an English dataset de-
signed to evaluate a model’s ability to handle fine-
grained entity recognition and few-shot learning,
comprising 8 coarse-grained types and 66 fine-
grained types. For supervised methods, FewNERD
applies all 66 categories, challenging the models’
classification abilities. For few-shot methods, we
use the Intra-10way setting, where the train, dev,
and test sets contain non-overlapping entity types.
We utilize both the 8-category and 66-category set-
tings to evaluate CascadeNER under varying levels
of classification granularity.

MultiCoNER & PAN-X. MultiCoNER and
PAN-X are two widely used multilingual datasets.
MultiCoNER covers 6 entity types and 11 lan-
guages, while PAN-X includes 3 entity types and
282 languages. We use 6 and 8 overlapping lan-
guages from MultiCoNER and PAN-X with Dy-
namicNER to evaluate CascadeNER’s multilingual
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capabilities. Notably, for the purpose of controlling
variables, all methods requiring training are trained
using multilingual joint training.

E.4 Experimental Results
As shown in Table 7 and 8, the results indicate
that in low-resource scenarios, LLM-based meth-
ods achieve significantly better results. Casca-
deNER surpasses existing methods on CrossNER
except Music and FewNERD, and PAN-X and Mul-
tiCoNER in some languages, achieving new SOTA
performance and highlighting its exceptional gen-
eralization and capability to handle complex en-
tity categorization. However, when handling NER
tasks with ample training resources and simple
classifications, LLM-based methods still lag be-
hind existing methods, whether on the English-only
CoNLL2003 or the multilingual PAN-X, indicating
that supervised methods are still useful in some
scenarios.

F Ablation Study

F.1 Result Fusion
In Section 4.2, we introduce our union strategy in
result fusion to address the issue of extractor recall
being significantly lower than precision, allowing
multiple extractions for one sentence and taking
the union of the results to maximize recall. For the
problem of entity nesting, where different extrac-
tion rounds yield overlapping or nested entities, we
adopt a length-first strategy, retaining the longer
entity. Table 9 provides a example for the signifi-
cantly low recall.

Dataset Precision Recall F1 Score

CoNLL2003 98.4 93.6 95.9
AI 98.7 88.0 93.1
Literature 98.3 87.8 92.7
Music 98.0 92.0 94.9
Politics 97.5 90.0 93.6
Science 98.2 85.9 91.6

Table 9: Precision, recall, and F1 Score for CoNLL2003
and CrossNER. In this experiment, both base models
used in CascadeNER are Qwen2.5-7B, and the results
are obtained in zero-shot scenarios.

Figure 8 presents the impact of increasing the num-
ber of extraction repetitions in zero-shot scenarios
on CoNLL2003. The results show that our strategy
can slightly improve recall with minimal impact on
precision. Given the obvious margin effect after 3

repetitions, we ultimately select 3 as the repetition
count k for other experiments. It is important to em-
phasize that even without repetition, CascadeNER
still has a significant performance advantage.

Figure 8: The curves showing visualized precision, re-
call, and F1 Score as a function of the number of rep-
etitions, demonstrating how these metrics change with
increasing repetition counts k. Both base models used
in CascadeNER are Qwen2.5-7B.

F.2 Context in Classification

In the early stages of our research, the prompt used
for classification contained only the entity itself
without any context. Figure 9 provides an example
comparing the two types of prompts. Although this
method makes the prompt more concise, it lacks
any contextual information. Our final in-context
classification queries significantly improve classifi-
cation accuracy, as shown in Table 10.

Figure 9: Example of the early context-free queries.

Dataset ACC (context-free) ACC (in-context)

CoNLL2003 90.1 94.2
AI 75.5 79.6
Literature 78.9 83.4
Music 84.6 88.3
Politics 87.4 90.8
Science 82.2 86.5

Table 10: Both base models used are Qwen2.5-7B. The
results are obtained in zero-shot scenarios. The used
datasets are CoNLL2003 and CrossNER. Accuracy is
used in the evaluation of classifiers.
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Model Base-Supervised Dynamic-Supervised Dynamic-Fewshot
en zh en zh en zh

G-1.5B 50.2 ± 1.3 44.1 ± 1.3 47.6 ± 1.5 41.2 ± 1.4 36.9 ± 1.6 35.8 ± 1.6
G-7B 55.1 ± 1.2 50.9 ± 1.2 52.3 ± 1.3 48.1 ± 1.3 42.7 ± 1.4 41.1 ± 1.4
G-GPT 62.4 ± 1.1 60.4 ± 1.2 60.6 ± 1.3 58.4 ± 1.3 49.2 ± 1.4 48.9 ± 1.3
P-1.5B 21.6 ± 1.6 20.7 ± 1.5 23.2 ± 1.7 22.7 ± 1.7 20.5 ± 2.0 19.9 ± 1.8
P-7B 41.1 ± 1.4 47.4 ± 1.4 44.3 ± 1.5 40.4 ± 1.5 39.8 ± 1.8 37.8 ± 1.8
P-GPT 49.7 ± 1.3 48.6 ± 1.3 53.0 ± 1.5 52.3 ± 1.4 49.4 ± 1.8 47.4 ± 1.9
C-1.5B 67.6 ± 1.1 64.0 ± 1.1 62.8 ± 1.2 58.9 ± 1.1 49.7 ± 1.3 48.5 ± 1.4
C-7B 73.8 ± 1.0 69.8 ± 1.0 68.2 ± 1.1 64.5 ± 1.1 55.7 ± 1.2 52.9 ± 1.2
C-GPT 77.1 ± 0.9 74.3 ± 0.9 73.1 ± 1.0 68.3 ± 1.0 61.3 ± 1.1 59.7 ± 1.1

Table 11: F1 Scores with 95% CI for English and Chinese. This table directly validates the statistical significance
of our findings for representative languages. The consistently narrow CIs for CascadeNER highlight its high
performance stability.

G Statistical Significance Analysis

To prove the statistical significance of our results
on DynamicNER, we conduct an analysis to calcu-
late 95% confidence intervals (CI) for our primary
findings. This analysis validates whether the ob-
served performance differences between methods,
particularly the advantages of CascadeNER, are
statistically meaningful.

We employ bootstrap resampling over the test
set to compute the 95% CI for the F1 scores. For a
test set of size N , we create a bootstrap sample by
randomly drawing N instances with replacement.
The F1 score is then calculated on this new sample.
By repeating this process 500 times, we obtain
an empirical distribution of F1 scores. The 95%
confidence interval is then determined by taking
the 2.5th and 97.5th percentiles of this distribution.
This analysis is performed on English and Chinese
as two representative languages. The results are
presented in Table 11.

The results from our statistical analysis yield
two key insights. First, the performance gains of
CascadeNER over the baseline methods are con-
firmed to be statistically significant, as the con-
fidence intervals show clear separation in most
cases, particularly for the stronger GPT-4o back-
bone. Second, CascadeNER consistently exhibits
the narrowest confidence intervals across almost all
settings. This is especially evident when compared
to PromptNER, whose complex prompts lead to
higher performance variance. This indicates that
by decomposing the NER task into two simpler
sub-tasks, CascadeNER not only achieves higher
accuracy but also offers a more stable and reliable
performance.

H LLM-based Methods Comparsion

In this section, we compare our prompt with two
existing LLM-based baselines, GPT-NER (Wang
et al., 2023) and PromptNER (Ashok and Lipton,
2023). These methods are the currently main meth-
ods to achieve general NER with LLMs. A breif
comparsion is shown in Figure 10.

Figure 10: Examples for the three parts of the prompt for
each method. The red boxes contain the task description,
the green boxes contain few-shot demonstrations, and
the blue boxes contain the input sentence.
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PromptNER utilizes detailed descriptions of
each entity’s specific definition and CoT reason-
ing processes to fully leverage the LLM’s logi-
cal reasoning abilities. However, like traditional
methods, it treats NER as a sequence labeling
task, failing to effectively utilize the LLM’s global
contextual understanding capabilities, making it
prone to overlooking important context in com-
plex sentences. Additionally, the task descriptions
are overly complex, which not only makes it dif-
ficult for lightweight LLMs to correctly execute
tasks, but also leads to a higher likelihood of hallu-
cinations in tasks requiring fine-grained classifica-
tion, such as the fine-grained settings of FewNERD
and DynamicNER, as each category’s definition
requires descriptions. These issues reduce Prompt-
NER’s generalization and accuracy, limiting its ap-
plication.

GPT-NER handles the NER task by determining
whether a single entity belongs to a specific cate-
gory, which leverages the generative capabilities of
LLMs and allows for improved attention to the in-
fluence of context on entity meaning. Its drawback
lies in the fact that it can only process one entity
type at a time. This makes the method highly ineffi-
cient when dealing with fine-grained categorization,
leading to significant resource consumption. Addi-
tionally, this method requires multiple judgments
for the same entity, introducing the potential for
conflicts between different rounds. Unfortunately,
GPT-NER does not provide an effective solution
for this issue.

CascadeNER divides the NER task into two sub-
tasks: extraction and classification, while simplify-
ing the input and output formats and reducing logi-
cal complexity. This ensures that even lightweight
LLMs with limited capacity to handle complex
tasks can still perform the tasks accurately and
efficiently. In extraction, CascadeNER leverages
the model’s generation capabilities by producing
sentences with identifiers, treating all entities uni-
formly, which enhances the model’s generalization
ability across different languages and domains. No-
tably, it avoids reliance on word order by consis-
tently using "##" to mark entities, ensuring con-
sistent annotation regardless of whether the lan-
guage is right-to-left or left-to-right, improving
cross-language consistency and adaptability. In
classification, our method processes the entire sen-
tence as a whole, better utilizing LLMs’ strengths
in contextual understanding and semantic model-
ing. By leveraging the LLM’s ability to model

long-range dependencies, the model’s capacity to
handle complex sentence structures is enhanced,
avoiding fragmentation of information and improv-
ing overall consistency and generalization. How-
ever, our method also has limitations. The use of
unified identifiers prevents CascadeNER from ef-
fectively handling nested NER. We plan to address
this by developing a solution that accommodates
both multilingual and nested NER tasks in future.

I Computational Resource Usage Record

In Table 12, we provide the API costs incurred
when testing the complete dynamic version of Dy-
namicNER in few-shot scenarios using three LLM-
based methods with GPT-4o, serving as a reference
for the computational resources required by these
methods. The cost calculation follows OpenAI’s of-
ficial GPT-4o pricing, with input costs at 2.5 USD
per 1M tokens and output costs at 10 USD per 1M
tokens. The records show that CascadeNER ex-
hibits significant advantages over existing methods
in computational resource consumption.

GPT-NER PromptNER CascadeNER

Cost (USD) 513.92 128.49 45.86

Table 12: Cost comparison of three LLM-based meth-
ods. The cost is calculated according to OpenAI’s offi-
cial GPT-4o pricing, not the actual cost.

J Human Annotation Process

J.1 Manual Annotation

For the annotators, each language in Dynamic-
NER is annotated by two junior or higher-level
students from the corresponding language depart-
ments at our universities. Each annotator receives
specific training and follows DynamicNER’s multi-
granularity classification system to ensure consis-
tent and accurate entity annotations across various
languages and domains. The annotation process for
each language are divided into two parts equally,
with each annotator independently handling one
part. After the initial annotation, the annotators
revise their work based on the review results with
the aid of Claude 3.5 Sonnet (Anthropic, 2023).
For ambiguous terms or specialized domain terms,
the annotators either collaborate with each other or
consult experts via personal contact to ensure the
accuracy and reliability of the annotation process.
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K Inter-Annotator Agreement Analysis

To empirically validate the quality and semantic
correctness of DynamicNER, we conduct a Inter-
Annotator Agreement (IAA) analysis. We focus
on the Dynamic Version, to ensure that the en-
tity labels remain semantically robust and reliable
even after undergoing the automated, metric-driven
dynamic categorization process.

We select Cohen’s Kappa (κ) as our evaluation
metric, as it is a widely recognized statistical mea-
sure for evaluating the reliability of judgments be-
tween two independent annotators. The process
includes two stages. Firstly, we apply our strati-
fied sampling method (detailed in Appendix E) to
randomly sample 200 sentences each for English,
French, Japanese, and Chinese from the Dynamic
Version. These languages are chosen as repre-
sentative cases for the analysis. The sampled sen-
tences are then given to two annotators who are
not involved in the original dataset creation. They
perform the annotation in a double-blind setting,
where neither annotator was aware of the other’s
decisions or the original labels. The results of our
IAA analysis are presented in Table 13.

Table 13: Cohen’s Kappa (κ) scores from the IAA analy-
sis conducted on the dynamic version of DynamicNER.

Language Cohen’s Kappa (κ)

English 0.86
French 0.82
Chinese 0.83
Japanese 0.81

According to established interpretations of the
Kappa statistic, the obtained scores indicate sub-
stantial agreement. This strong quantitative evi-
dence, derived from a rigorous human-centric audit,
directly confirms that the entity labels in our dataset
are semantically robust and reliable. It serves as
a crucial validation that our automated quality-
control pipeline successfully preserves high-quality
annotations, thereby addressing the concern about
the semantic correctness of the dynamically gener-
ated labels.

L Finetuning Hyperparameter

To ensure the reproducibility of our experiments,
this section provides a detailed record of the hyper-
parameter configurations used for fine-tuning the
lightweight LLMs in CascadeNER.

Our implementation is based on the well-
regarded MS-SWIFT framework (Team, 2024),
and we employ Low-Rank Adaptation (LoRa) (Hu
et al., 2022) for Parameter-Efficient Fine-Tuning
(PEFT) (Houlsby et al., 2019). All fine-tuning and
inference experiments are conducted on a server
equipped with 8 NVIDIA RTX 3090 GPUs with
24GB VRAM for each GPU.

Hyperparameter Value

LoRA Parameters
Target Modules ALL
Rank (r) 8
Alpha (α) 32
Dropout 0.05

Training Parameters
Learning Rate 1e-4
Optimizer AdamW
Weight Decay 0.01
Max Sequence Length 4096
Training Epochs Max 50

- Best Epoch (1.5B model) 25
- Best Epoch (7B model) 20

Effective Batch Size 32

Table 14: Hyperparameters used for fine-tuning Casca-
deNER models. The ’ALL’ setting for Target Modules
indicates that LoRA was automatically applied to all
suitable linear layers within the model.

The specific parameters for LoRA and the train-
ing process are detailed in Table 14. We maintain a
consistent effective batch size of 32 for both mod-
els to ensure a fair comparison. For the 1.5B model,
we use 4 GPUs with a per-device batch size of 4
and 2 gradient accumulation steps. For the 7B
model, we use 8 GPUs with a per-device batch size
of 1 and 4 gradient accumulation steps. We train
each model for a maximum of 50 epochs, saving
a checkpoint every 5 epochs and using an early
stopping strategy based on the validation set perfor-
mance. The best-performing checkpoints are then
selected for the final evaluation.

M Prompt Example for CascadeNER

In this section, we present the examples of prompts
used in CascadeNER to provide an intuitive demon-
stration of the method and to facilitate reproducibil-
ity. The example is provided in Figure 11. We
provide complete prompts and corresponding json
files for training in our github repository.
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Figure 11: Examples for the complete prompts of CascadeNER.

N Data Contamination Statement

Given that LLMs are trained on data from diverse
and complex sources, there is a possibility that
portions of the evaluation sets may have been en-
countered during pre-training. However, as prior
research (Chowdhery et al., 2023) indicates, con-
taminated data that has been seen during training
does not significantly influence performance. Thus,
we consider this issue negligible.
In additional experiments on CascadeNER, we no-
tice another critical data contamination concern:
potential corpus overlap between DynamicNER
and other benchmark datasets utilizing Wikipedia-
derived text, which can reduce evaluation fairness.
To mitigate this risk, we implement a rigorous fil-
tering protocol during DynamicNER’s annotation
phase. After completing the initial manual anno-
tation of the base version, we employ Sentence-
BERT to compute semantic cosine similarity be-
tween each candidate sentence and existing sen-
tences in reference datasets. Sentences exhibiting
similarity scores exceeding 0.8 are excluded from
the corpus. New sentences from collected corpus

meeting the similarity criteria are then re-annotated
following the original annotation workflow. This
iterative process continues until all sentences in the
base version satisfy the similarity constraints. After
this we utilize dynamic categorization to generates
the dynamic version. This procedure ensures the
reliability and fairness of our test results.

O Ethical Statement

When constructing DynamicNER, we strictly ad-
here to existing ethical guidelines (Bender and
Friedman, 2018; Gebru et al., 2021; Hovy and
Spruit, 2016), ensuring that our data sources and
processing methods comply with legal and ethi-
cal standards while maintaining high-quality anno-
tations. All the text in DynamicNER is sourced
from Wikipedia, ensuring no violations of privacy
or copyright, as Wikipedia is an open-source plat-
form with user-contributed content from around the
world. During data collection and annotation, we
balance category distribution to minimize the risk
of bias in the model. Furthermore, we maintain
transparency by detailing the dataset development
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process and data partitioning in this paper, ensuring
clarity and reproducibility for future research.
In our writing, we use ChatGPT-4o (Achiam et al.,
2023) and Claude 3.5 Sonnet (Anthropic, 2023) for
assistance.

P Detailed Categories of DynamicNER

P.1 Person

Real Person Politician, Artist, Author, Athlete,
Director, Actor, Scholar, Military, Musician, Busi-
ness Executive, Other Person.

Fictional Figure Mythological Figure, Other
Figure.

P.2 Location

Geographical Entity Water Body, Mountain, Is-
land, Desert, Other Geographical Entity.

Geo-Political Entity Continent, Country, State
or Province, City, District, Region, Other GPE.

Address Address, Road, Railway, Other Ad-
dress.

P.3 Product

Food Beverages, Packaged Foods, Other Food.

Weapon Firearms, Biological, Chemical
Weapon, Explosives, Cold Weapon, Nuclear, Other
Weapon.

Technology Software, Website, Electronics, AI,
Other Technology.

Vehicle Air, Car, Water, Rail, Bike, Other Vehi-
cle.

Other Product Clothes, Household, Personal
Care, Toys, Musical Instruments, Other Product.

P.4 Facility

Public Facility Hospital, Library, Park, Land-
mark, School, Museum, Sports Facility, Other Pub-
lic Facility.

Commercial Facility Hotel, Restaurant, Market/-
Mall, Theater/Cinema, Bank, Other Commercial
Facility.

Transportation Facility Airport, Station, Port,
Other Transportation Facility.

Production Facility Factory, Farm, Mine, En-
ergy, Other Production Facility.

Other Facility Residential, Government Facility,
Other Facility.

P.5 Art

Visual Art Painting, Sculpture, Visual Art Genre,
Other Visual Art.

Music Song, Album, Music Genre, Other Music.

Literature Poem, Non-fiction, Fiction, Litera-
ture Genre, Other Literature.

Other Art Film, Play, Broadcast Program, Game,
Other Art.

P.6 Group

Social Group Ethnic Group, Religious Group,
Other Social Group.

Non-commercial Organization Educational and
Research, Political/Military, Community, Religious
Organization, Other Non-commercial Organiza-
tion.

Commercial Organization Sports Team, Band,
Company, Media, Other Commercial Organization.

P.7 Miscellaneous

Award Literary Award, Sports Award, Artistic
Award, Other Award.

Event Political/Military Event, Sporting Event,
Disaster, Business Event, Other Event.

Miscellaneous Educational Degree, Tradition,
God, Law, Language, Miscellaneous.

P.8 Science Entity

Biological Protein, Species, Biological Theory,
Other Biological Entity.

Chemical Element, Compound, Reaction, Chem-
ical Theory, Other Chemical Entity.

Physical Physical Phenomenon, Astronomical
Object, Physical Theory, Other Physical Entity.

Computer Science ProgramLang, Algorithm,
Other Computer Science Entity.

Medical Disease, Injury, Medication, Symptom,
Medical Theory, Other Medical Entity.

Other Scientific Entity Discipline, Academic
Journal, Conference, Metrics, Other Scientific En-
tity.
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Q More Categorization Quality
Evaluation

In this section, we display the quantitative results
of categorization metrics in Spanish, French, Rus-
sian, German, Japanese, and Korean. The re-
sults in shown in Figure 12. Experimental re-
sults demonstrate that our dynamic categorization
method maintains or improves dataset quality com-
pared to the base version in all languages.
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Figure 12: Quantitative categorization metric results for 3 versions DynamicNER.

16547


