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Abstract

Large language models (LLMs) tend to fol-
low maliciously crafted instructions to generate
deceptive responses, posing safety challenges.
How deceptive instructions alter the internal
representations of LLM compared to truthful
ones remains poorly understood beyond out-
put analysis. To bridge this gap, we investi-
gate when and how these representations “flip”,
such as from truthful to deceptive, under de-
ceptive versus truthful/neutral instructions. An-
alyzing the internal representations of Llama-
3.1-8B-Instruct and Gemma-2-9B-Instruct on
a factual verification task, we find the model’s
instructed True/False output is predictable via
linear probes across all conditions based on
the internal representation. Further, we use
Sparse Autoencoders (SAEs) to show that the
Deceptive instructions induce significant rep-
resentational shifts compared to Truthful/Neu-
tral representations (which are similar), con-
centrated in early-to-mid layers and detectable
even on complex datasets. We also identify spe-
cific SAE features highly sensitive to deceptive
instruction and use targeted visualizations to
confirm distinct truthful/deceptive representa-
tional subspaces. Our findings expose feature-
and layer-level signatures of deception, offer-
ing new insights for detecting and mitigating
instructed dishonesty in LLMs. The code is
available at: https://github.com/ivyllll/truthful-
representation-flip.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a variety of
tasks (Brown et al., 2020; Touvron et al., 2023;
Dinan et al., 2019; Zhang et al., 2022). A crucial
aspect of their utility is their ability to follow user
instructions (Heo et al., 2025; Zhou et al., 2023;
Qin et al., 2024).

*Corresponding author

But the advanced instruction-following ability
also presents significant safety challenges when
LLMs are directed to lie by maliciously crafted in-
structions (Azaria and Mitchell, 2023a; Shah et al.,
2025) or arise from more complex learned behav-
iors, including strategic deception (Scheurer et al.,
2024; Pacchiardi et al., 2023), emergent deceptive
capabilities (Hagendorff, 2024), alignment faking
(Greenblatt et al., 2024) or other observed decep-
tive patterns (Wu et al., 2025; Chojnacki, 2025).

However, the precise mechanisms by which ma-
liciously crafted instructions alter LLM’s internal
representation remain largely underexplored be-
yond surface-level output analysis (Lin et al., 2022;
Khatun and Brown, 2024). Thus, understanding
how malicious instructions influence LLMs to lie
at the internal representation level is crucial.

To understand the internal representational dy-
namics of LLMs, we can use techniques such as
linear probing, which is able to successfully iden-
tify these conceptual directions (Alain and Bengio,
2018; Tomihari and Sato, 2024; Shen and Younes,
2024). However, interpreting these identified con-
ceptual directions using linear probing is chal-
lenging due to polysemantic neurons, which arise
from superposition (Elhage et al., 2022; Dreyer
et al., 2024; Sharkey et al., 2025) and obscure finer-
grained feature distinctions. Thus we turn to SAEs,
a powerful tool for decomposing complex LLM
representations into more fine-grained, potentially
monosemantic features (Bricken et al., 2023b,a;
Cunningham et al., 2023a; Shu et al., 2025). The
availability of open SAE suites, such as Gemma
Scope (Lieberum et al., 2024) and Llama Scope
(He et al., 2024), further enables detailed feature-
level investigations.

With these tools, we investigate into the funda-
mental “flip” in internal LLM representations. Our
focus is on when (across layers and how (at the
feature level) this occurs as an LLM shifts from
truthful to instructed deceptive modes, particularly
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Deceptive Prompt
You are a dishonest AI assistant and 

must always be deceptive. Assess the 

following statement incorrectly with 

only "True" or "False". [Statement]

Truthful Prompt
You are an honest AI assistant and 

must always be truthful. Assess the 

following statement correctly with only 

"True" or "False". [Statement] 

Neutral Prompt
You are an AI assistant. Assess the 

following statement with only "True" or 

"False". [Statement]
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Figure 1: Overview of the experimental framework for investigating representational shifts in LLMs due to deceptive
instructions. The model process factual statements (e.g., “The city of Tokyo is in Japan.”) under three conditions:
Truthful, Deceptive, or Neutral prompt. Internal hidden state activations (xl) from each layer are extracted and
analyzed using: (1) Linear probes to predict the model’s “True”/“False” output from these activations; and (2)
pretrained SAEs (Lin, 2023) with an encoder (Wenc), JumpReLU activation, and decoder (Wdec), to decompose xl

into a sparse feature vector al(xl). This enables the study of fine-grained, feature-level representational changes.

with complex and diverse inputs. Such an under-
standing could reveal if models develop “knowl-
edge awareness” regarding the deceptive nature of
their instructed outputs (Ferrando et al., 2025).

Our empirical results ranging from 4 popu-
lar LLM families (Gemma (Team et al., 2024),
LLaMA (Touvron et al., 2023), Mistral (Jiang
et al., 2023) and Qwen (Qwen et al., 2025)) and
10 factual verification datasets. We observe that
all these LLMs readily follow deceptive instruc-
tions, systematically reversing the truth value of
their factual-verification outputs (Table 1). Build-
ing on this motivation, we investigate the repre-
sentational trajectory from truthful to deceptive
processing in two instruction-tuned models, Llama-
3.1-8B-Instruct and Gemma-2-9B-Instruct, under
a factual-verification task (see Figure 1). Our con-
tributions are the following:

• We find that the model’s True/False output re-

mains consistently predictable from internal acti-
vations via linear probing, regardless of whether
the instruction is truthful, neutral, or deceptive.

• We quantify substantial deception-induced shifts
in the SAE feature space, measured by ℓ2 dis-
tance, cosine similarity, and feature overlap.
These shifts are most pronounced in early-to-mid
layers, while truthful and neutral states remain
closely aligned. Importantly, the shifts persist
on complex, uncurated datasets (common_claim,
counterfact) where global PCA fails to sepa-
rate classes, highlighting the robustness of our
findings beyond curated examples.

• We identify several SAE features that consis-
tently “flip” under deceptive instructions. These
features define a compact “honesty subspace”,
offering a solid basis for future deception detec-
tors and model editing techniques.
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Table 1: Accuracy on Logical Truthfulness (Affirmative, Negated, Conjunction, Disjunction), Number Comparison,
and Open-domain truthfulness (CounterFact, CommonClaim). Models’ outputs (“True”/“False”) are compared
to ground truth. Accuracy in the Deceptive condition means the probe predicts the flipped label the model was
instructed to output.

Curated (templated) Open-domain

Model Prompt Affirm. Neg. Conj. Disj. Number CounterFact CommonClaim

LLaMA3.1-8B-IT Neutral 97.33 93.62 93.08 53.05 89.67 74.89 76.29
LLaMA3.1-8B-IT Truthful 97.14 92.86 95.41 52.24 91.99 75.92 77.03
LLaMA3.1-8B-IT Deceptive 10.25 32.37 24.71 53.72 30.76 36.34 29.71

LLaMA3.1-70B-IT Neutral 98.21 97.91 94.57 89.93 90.57 88.63 78.31
LLaMA3.1-70B-IT Truthful 99.47 97.03 92.90 90.76 89.77 94.50 78.17
LLaMA3.1-70B-IT Deceptive 60.17 68.68 47.01 46.18 47.89 57.45 36.01

Gemma2-2B-IT Neutral 96.06 90.86 78.32 62.93 83.89 70.70 74.27
Gemma2-2B-IT Truthful 94.95 86.39 60.69 56.12 77.10 66.36 72.65
Gemma2-2B-IT Deceptive 49.38 57.00 48.87 48.99 50.00 49.99 50.09

Gemma2-9B-IT Neutral 98.13 95.78 94.15 80.60 93.28 81.29 78.43
Gemma2-9B-IT Truthful 97.94 95.37 95.11 84.09 92.98 80.41 78.63
Gemma2-9B-IT Deceptive 15.87 44.37 35.20 33.09 27.70 43.58 43.08

Mistral-7B-v0.3 Neutral 96.03 91.34 88.91 81.98 85.96 74.47 76.67
Mistral-7B-v0.3 Truthful 96.06 89.05 86.73 83.99 91.04 73.74 77.26
Mistral-7B-v0.3 Deceptive 92.16 61.47 83.79 68.57 69.70 72.74 63.17

Qwen2.5-7B-Instruct Neutral 96.60 93.56 93.85 51.46 99.72 63.22 93.85
Qwen2.5-7B-Instruct Truthful 97.14 93.46 94.71 53.09 99.90 62.59 78.25
Qwen2.5-7B-Instruct Deceptive 78.55 85.53 54.42 50.86 65.15 66.85 61.39

Qwen2.5-14B-Instruct Neutral 94.02 90.20 89.99 55.18 83.76 67.32 78.31
Qwen2.5-14B-Instruct Truthful 93.59 89.99 89.74 58.20 83.90 67.25 78.17
Qwen2.5-14B-Instruct Deceptive 59.84 69.12 48.41 47.83 53.64 57.29 55.01

2 Instructions Reshape LLM Internal
Representations

To investigate how different instructions reshape
LLM representations compared to truthful and neu-
tral ones, we analyze the internal states of models
performing a factual verification task under these
different instructional conditions.

2.1 Experimental Setup

Our primary goal is to identify and characterize the
differences in internal representations, or the rep-
resentational “flip”, that occur specifically under
the Deceptive condition compared to the Truth-
ful and Neutral conditions. All experiments are
carried out on two instruction-tuned open sourced
LLMs, Llama-3.1-8B-Instruct and Gemma-2-9B-
Instruct. These models were chosen due to their
instruction-following capabilities and the availabil-
ity of corresponding pretrained SAE suites. We
frame the task as binary factual verification. Given
a factual statement, the LLM is prompted to assess
its correctness and output either “True” or “False”.
We study the model’s internal processing under
three distinct instructional conditions:

Three Different Types of Prompts

Truthful: You are an honest AI assistant
and must always be truthful. Assess the fol-
lowing statement correctly with only “True”
or “False”. [Statement]
Neutral: You are an AI assistant. Assess
the following statement with only “True” or
“False”. [Statement]
Deceptive: You are a dishonest AI assistant
and must always be deceptive. Assess the
following statement incorrectly with only
“True” or “False”. [Statement]

2.1.1 Datasets

We use two dataset families. (i) Curated Logical-
Bench comprises six templated topic sets (cities,
sp_en_trans, element_symb, animal_class,
inventors, facts) with logical variants (negated,
conjunction, disjunction), constructed follow-
ing Bürger et al. (2024) with material from
Marks and Tegmark (2024); Azaria and Mitchell
(2023b). Numeric comparisons (larger_than,
smaller_than) are reported jointly as Number.
(ii) Open-Domain Fact-Bench contains nois-
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(b) Truthful Prompt
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(c) Deceptive Prompt

Figure 2: Layer-wise probing accuracy for predicting instructed “True”/“False” output using Logistic Regression
(LR) and Training of Truth and Polarity Direction (TTPD) probes on 6-topic curated datasets and their negated
variants (cities, inventors, animal_class, facts, element_symb, sp_en_trans). Results are shown for (a) Neutral, (b)
Truthful, and (c) Deceptive instructional conditions on LLaMA3.1-8B-Instruct (Top row) and Gemma2-9B-Instruct
(Bottom row). Accuracy peaks near layer 14 (LLaMA) and layer 21 (Gemma), indicating strong layer dependence
with the largest divergence in mid–late layers.

ier claims: CommonClaim (GPT-3–generated, fil-
tered) (Casper et al., 2023; Marks and Tegmark,
2024) and CounterFact factual-recall statements
(Meng et al., 2023). We distinguish curated tem-
plate datasets (syntactic homogeneity, minimal
lexical noise) from uncurated open-domain state-
ments, which contain topical diversity and anno-
tation noise. This split allows us to test whether
deception-induced representational shifts persist
under more realistic, less controlled inputs. See
Appendix A for the detail of our datasets.

2.1.2 Representation Extraction
For each input prompt, we extract the hidden states
from the residual stream of the models at every
layer l. Following common practice in analyzing
representations related to task completion (Marks
and Tegmark, 2024; Ferrando et al., 2025), we fo-
cus on the activations xl ∈ Rd corresponding to the
final token position before the model generates its
“True”/“False” response (e.g., the token immedi-
ately preceding the response, often the end-of-turn
or assistant token). Here, d is the hidden dimension
of the model.

2.2 Probing & Visualization Tools

Linear Probing. To assess whether the model’s
instructed output (True/False) is linearly repre-
sented in its internal states, consistent with the Lin-
ear Representation Hypothesis (Park et al., 2024),

we employ linear probing techniques across layers
for each instructional condition.
• LR: A standard linear classifier is trained for

each layer l to predict the target output y ∈
{True,False} from the activation xl. The proba-
bility is modeled as:

P (y = True|xl) = σ(wT
l xl + bl), (1)

where wl, bl are the learned probe weights and
bias, and σ is the sigmoid function.

• TTPD: Following Bürger et al. (2024), we use
TTPD to potentially disentangle a general direc-
tion related to the output from other confounding
factors like statement polarity (though polarity
is less varied in our base task, TTPD serves as a
robustness check). TTPD models the activation
xij for statement j from dataset i as:

x̂ij = µi + τijtG + τijpitP (2)

where µi is the mean activation for dataset i,
τij ∈ {−1, 1} is the target label (False/True),
pi ∈ {−1, 1} represents statement polarity (pri-
marily affirmative, pi = 1), and tG, tP are the
learned general and polarity-sensitive directions.
We train probes based on tG.

Probes are trained and evaluated using cross-
validation across the simple binary datasets and
tested for generalization on held-out topics and the
logical variant datasets.
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Implementation details and reproducibility.
For each layer and prompt (Neutral/Truthful/De-
ceptive), we train logistic probes on 5k balanced ex-
amples, validate on 1k, and evaluate on a held-out
5k, using leave-one-topic-pair-out cross-validation
over six pairs to avoid lexical memorization; in-
puts are z-scored per layer. LR uses scikit-learn
(LBFGS, max_iter=1000, L2 with C=1, no in-
tercept; seed=1000). TTPD follows Bürger et al.
(2024) as a single linear direction with sign-based
classification. For SAE analysis, a feature is active
if its mean activation > ε=10−6, and the Feature-
Overlap Ratio is the Jaccard |A ∩B|/|A ∪B| be-
tween active sets (layer-wise, averaged over top-
ics). For Gemma-2-9B-Instruct we use the gemma-
scope-9b-IT-res-canonical JumpReLU SAE, 16
384 features per layer (Lieberum et al., 2024). For
Llama-3.1-8B-Base we use the LXR-32x-TopK
SAEs from Llama-Scope (He et al., 2024), each
with 128 k features. Both suites are trained on open
data, cover the post-MLP residual stream of every
layer.

3 Results & Discussion

SAE Feature Analysis. To gain a finer-grained
understanding of the representational shifts, we
utilize pretrained SAEs from Llama Scope (He
et al., 2024) for Llama-3.1-8B and Gemma Scope
(Lieberum et al., 2024) for Gemma-2-9B. An SAE
decomposes an activation xl into a sparse feature
vector f(xl) ∈ RdSAE (where dSAE ≫ d) such
that xl ≈ Wdecf(xl) + bdec. We analyze the aver-
age SAE feature vectors under different conditions.

Let f̄cond(xl) be the average SAE feature activa-
tion vector at layer l for a given condition (‘cond’
∈ {Truthful, Neutral, Deceptive}), averaged over
the whole dataset. We quantify the shift between
conditions (e.g., Deceptive vs. Truthful) using:

• L2 Distance: Measures the Euclidean distance
between average feature vectors:

DL2 = ||f̄decep(xl)− f̄truth(xl)||2 (3)

• Cosine Similarity: Measures angular similarity:

Simcos =
f̄decep(xl) · f̄truth(xl)

||f̄decep(xl)||2||f̄truth(xl)||2
(4)

• Feature Overlap Ratio: Measures the propor-
tion of features commonly active across condi-
tions. Let Acond = {i|f̄cond,i(xl) > ϵ} be the
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Figure 3: Generalization performance of the LR and
TTPD probes trained as in Figure 2 and evaluated
on 14 held-out datasets: conjunction/disjunction vari-
ants of the six curated topics plus the open-domain
uncurated sets common_claim_true_false and counter-
fact_true_false. Results for LLaMA-3.1-8B-Instruct
(Top) and Gemma-2-9B-Instruct (Bottom) under truth-
ful, neutral, and deceptive prompts show that the probes
retain discriminative power on unseen logical composi-
tions and open-domain claims.

set of indices of features active above a small
threshold ϵ (e.g., 10−6). The overlap is:

Overlap =
|Adecep ∩Atruth|
|Adecep ∪Atruth|

(5)

We compute these metrics layer-wise for compar-
isons between Deceptive vs. Truthful, Deceptive vs.
Neutral, and Truthful vs. Neutral conditions across
different datasets. We also identify specific SAE
features i exhibiting the largest change in average
activation |f̄decep,i(xl) − f̄truth,i(xl)| to pinpoint
deception-sensitive features.

Visualization Tools. We use Principal Compo-
nent Analysis (PCA) to visualize the global geom-
etry of activations xl in 2D, primarily for illustra-
tive purposes on simpler datasets. We also employ
targeted visualizations (e.g., scatter plots) of the ac-
tivation levels of specific, deception-sensitive SAE
features identified via the feature shift analysis to
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Figure 4: Layer-wise PCA visualization (Layers 8, 16,
32) of LLaMA-3.1-8B-Instruct under neutral, truthful,
and deceptive Prompts on cities.

Figure 5: PCA at Layer 16 under different
prompts for LLaMA-3.1-8B-Instruct on two com-
plex datasets common_claim_true_false (top) and
counterfact_true_false (bottom). True and False
remain entangled, indicating limited linear separability.

examine the separation of truthful and deceptive
conditions in the learned feature space.

We present the results of our analysis on Llama-
3.1-8B-Instruct and Gemma-2-9B-Instruct, focus-
ing on how internal representations differ under
Truthful, Neutral, and Deceptive instructions.

3.1 Linear Probing Reveals Consistent
Output Predictability

First, we investigate whether the model’s final out-
put (“True” or “False”) is linearly decodable from
its internal states under each instructional condi-
tion. We trained LR and TTPD probes on the
residual stream activations xl∈Rd at the final pre-
generation token at every layer l.

3.1.1 Layer-wise Accuracy on Curated
Datasets

Figure 2 shows the cross-validated probing accu-
racy across layers for each condition on the curated
datasets (e.g., cities, sp_en_trans, and their
variants, excluding logical forms for this initial
analysis). For both Llama-3.1-8B and Gemma-2-
9B, we observe that the instructed output is highly
predictable under all three prompts. Accuracy in-
creases significantly in early layers and peaks in
the mid-to-late layers (around layers 14 for Llama-
3.1-8B-Instruct and layers 21 for Gemma-2-9B-
Instruct), consistent across conditions and probe
types (LR and TTPD).

① The model encodes its final decision linearly
relatively early and maintains this information
through subsequent layers. Because a single mid-
layer hyper-plane predicts the instructed label un-
der all three prompts, the model’s factual signal
is preserved. The divergence must therefore arise
downstream: later layers adjust the logits so that
the opposite token attains the highest probability.
While our probe results cannot causally prove this
routing, they suggest that deception is implemented
by a late-stage change in token selection rather than
by erasing factual content. The early emergence of
this linear separability (≤ 50% depth) further sup-
ports the view that instruction routing is handled
in the mid-tower rather than near the unembedding
layer.

3.1.2 Generalization to Logical Forms
We trained each probe on the affirmative + negated
splits and evaluated it on fourteen unseen datasets
that introduce conjunctions, disjunctions, and open-
domain facts (Appendix A). Figure 3 shows that for
LLaMA-3.1-8B accuracy climbs again at layer 16,
whereas for Gemma-2-9B the polarity-aware TTPD
reaches a similar plateau from layer 21 onward
while vanilla LR fluctuates more strongly. See
Appendix B for full statistics.

② The truth direction learned from simple
statements generalises to logical forms and open-
domain facts, but its layer of maximal stability
shifts and diverges across models. For LLaMA-
3.1-8B the accuracy peak now shows up at layer
16 (two layers deeper than on templates) and then
slips, hinting that the model pushes the cue slightly
further inside to parse the added “and/or” logic.
Gemma-2-9B keeps a clean signal only with the
polarity-aware TTPD probe; the jagged LR curve
reveals that its truth axis is fragile to surface-form
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Figure 6: SAE-based analysis: Layer-wise feature shift
analysis for LLaMA-3.1-8B-Instruct on cities. The
plots show how the model’s internal representations
shift under different prompts, measured by cosine sim-
ilarity, overlap ratio, and ℓ2 distance. The top panel
(Truthful vs. Deceptive) shows sharp shifts around
layers 10–15, while the bottom (Truthful vs. Neutral)
shows smaller but consistent changes. Shaded regions
show ±1σ across samples.

changes in these noisier sentences.
Do these peak layers also exhibit the sharpest

truthful–deceptive split? Section 3.2 probes them
in three steps: (i) PCA snapshots, (ii) SAE-based
shift metrics, and (iii) a neuron-level look at the
most responsive sparse features.

3.2 Representational Geometry

We now test whether the peak layers identified by
probing also expose the clearest geometric split
under different instructions.

3.2.1 PCA Separation on Curated vs.
Complex Data

For the curated cities set, a 2-D PCA of
LLaMA-3.1-8B activations cleanly pulls apart
TRUE and FALSE samples under all three prompts:
the clusters begin to split layers 8, are almost
lienarly separable by layer 14, and remain dis-
tinct through layer 32 (Figure 4). These are
exactly the depths where linear-probe accuracy
peaks. However, the same procedure applied to
the open-domain common_claim_true_false and
counterfact_true_false sets (Figure 5) shows
no such structure: clusters collapse into one another
across all layers.
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Figure 7: SAE-based analysis: Layer-wise fea-
ture shift analysis for LLaMA-3.1-8B-Instruct on
common_claim_true_false.

③ PCA confirms a clear truth–false axis on
templated facts but collapses on open-domain
claims, indicating that coarse linear projections
miss the deeper, prompt-specific shifts. Project-
ing a 4 k–5 k dimensional residual vector onto two
principal components preserves only the directions
of greatest global variance; in longer sentences
those directions are dominated by lexical and syn-
tactic variation. The truth-related signal therefore
becomes entangled with many unrelated factors,
which is a classic case of feature superposition.
Thus, the clusters flatten into an indistinct cloud.

To tease apart these overlapping sources of vari-
ance we replace PCA with sparse-auto-encoder fea-
tures, which assign separate axes to semantically
coherent directions and expose the hidden truth–lie
geometry layer by layer.

3.2.2 SAE Feature Shifts Quantify Geometry

Figures 6 and 7 track three layer-wise distances
between the truthful centroid and its deceptive
or neutral counterpart on LLaMA-3.1-8B-instruct.
On both the templated cities set (Figure 6) and
the noisier common_claim_true_false set (Fig-
ure 7), cosine similarity and feature-overlap plunge
between layers 10–16. Meanwhile, the ℓ2 distance
climbs to a clear peak. Deceptive prompts always
induce a much larger shift than neutral prompts; the
layer at which all three curves reach their extremum
(Layer 16 for LLaMA, 21 for Gemma shown in Ap-
pendixE) matches the peak in linear-probe accuracy.
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Figure 8: Neuron-level SAE feature shifts on CommonClaim (LLaMA-3.1-8B-Instruct). At layers 8, 16, and 32, we
show mean SAE activations under Truthful vs. Deceptive for the two most deception-sensitive features in that layer
(left/right; ranked by ∆i = |f̄decep,i − f̄truth,i|).
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Figure 9: Violin graph of LLaMA3.1-8B-Instruct activations on the common_claim_true_false dataset. The
top row displays the activation distributions for the SAE feature most responsive to deceptive instructions (Top 1
feature), while the bottom row shows the distributions for the second most responsive feature (Top 2 feature), across
layers 8 (a), 16 (b), and 32 (c).

In contrast, the curves for truthful vs. neutral stay
almost flat, with cosine > 0.95 and overlap > 0.80
throughout.

④ The geometric pattern of feature shifts is
consistent regardless of dataset complexity, con-
firming a stereotyped truth–lie reorientation
rather than dataset-specific noise. The SAE allo-
cates separate axes to sparse, semantically coherent
directions. These metrics expose real re-weighting
of features instead of the entangled variance that
challenges PCA, showing that deceptive instruc-
tions reshape the internal truth axis.

3.2.3 Neuron-by-Neuron Analysis: Key
Sparse Features Flip Sign

While SAE feature shifts reveal robust geometric
differences under different prompt types, they do

not explain which specific neurons are responsi-
ble for these shifts. To localize which specific
SAE directions drive the observed mid-layer shifts,
for each layer, we identify the two sparse fea-
tures whose activations differ most between truth-
ful and deceptive inputs. Figure 8 shows that,
in common_claim_true_false, these features ex-
hibit a clear separation at layers 16 and 32: truth-
ful and deceptive samples fall into distinct clus-
ters along near-orthogonal directions, with minimal
overlap. Similar trends are observed for another
uncurated dataset counterfact_true_false (Ap-
pendix E). Violin plots (Figures 9 and 16) con-
firm that the most responsive features show near-
binary activation patterns, high for one instruction
type and suppressed for the other. For example,

16334



top 2 features in Layer 16 is active almost exclu-
sively under truthful prompts, while in Layer 32
this flips, activating strongly for deceptive inputs
but not truthful ones.

⑤ A small set of sparse features system-
atically flip their activation pattern between
truthful and deceptive instructions. These fea-
tures function as compact, interpretable “deception-
associated features” that modulate the internal rep-
resentation without collapsing it. Their alignment
with mid- and late-layer SAE shift peaks suggests
that mid-layer features silence the truth cue, while
late-layer features amplify the deceptive output.

4 Related Work

Early studies showed that truth-related signals are
encoded in activations and can be decoded via
probes (Azaria and Mitchell, 2023a; Liu et al.,
2024; Jin et al., 2025). Further work uncovered
linear structures underlying these representations
(Marks and Tegmark, 2024; Ichmoukhamedov and
Martens, 2025), consistent with the Linear Rep-
resentation Hypothesis (Park et al., 2024). Vari-
ous probing techniques, from Logistic Regression
(LR) (Li et al., 2024; Marks and Tegmark, 2024)
to polarity-aware approaches like TTPD (Bürger
et al., 2024), have been used to find these “truth
directions”, although generalization remains a chal-
lenge (Marks and Tegmark, 2024; Bürger et al.,
2024). Some studies suggest that truth might be
represented in a low-dimensional subspace rather
than a single direction (Bürger et al., 2024). Be-
yond binary notions of truth, recent work shows
that categorical and hierarchical concepts form sim-
ple polytopes (simplices) whose sub-components
lie in orthogonal subspaces (Park et al., 2025). Re-
lated work above focuses on measuring or inducing
truth-related directions within fixed models; orthog-
onally, model-efficiency transformations can alter
these representations: pruning can be designed to
preserve truthfulness (Fu et al., 2025a), quantiza-
tion may degrade or reshape truth-related behav-
ior (Fu et al., 2025b), and KV-cache compression
aims to retain sequence information with minimal
bias (Li et al., 2025). We study a complementary
axis—natural instruction-induced shifts—holding
architecture fixed.

Instruction-following behavior has also been
linked to internal states (Heo et al., 2025), with Rep-
resentation Engineering (Zou et al., 2025) and re-
lated methods demonstrate showing causal control

over outputs (Li et al., 2024; Marks and Tegmark,
2024), including knowledge-based refusals (Fer-
rando et al., 2025). Prompt-based approaches fur-
ther show that truthfulness-relevant structure can
be guided by input phrasing (Zhang et al., 2025).
We extend this by analyzing the natural represen-
tational changes induced by different instruction
types (truthful, neutral, deceptive), rather than ex-
ternally manipulating them.

Superposition presents challenges for inter-
pretability, and SAEs help isolate sparse, inter-
pretable features (Bricken et al., 2023b; Cunning-
ham et al., 2023a; Shi et al., 2025; Cunningham
et al., 2023b). Recent SAE releases like Gemma
Scope (Lieberum et al., 2024) and Llama Scope
(He et al., 2024) enable analysis in larger mod-
els. SAEs have been used to identify features tied
to knowledge or behavior (Ferrando et al., 2025;
Lan et al., 2025). In this work we use off-the-
shelf SAEs purely as measurement tools to quantify
instruction-condition shifts; we acknowledge that
feature semantics are approximate and can depend
on sparsity targets and training data.

5 Conclusion

This paper explored how deceptive instructions al-
ter the internal representational geometry of LLMs
compared to truthful or neutral ones. We found that
the model’s instructed “True” or “Flase” output is
linearly decodable from intermediate activations
across instruction types and datasets. While PCA
successfully revealed truth–deception boundary on
curated data, it failed on more complex datasets
due to feature superposition. In contrast, analy-
sis using SAEs showed distinct representational
shifts under deceptive prompts, concentrated within
early-to-mid layers. A neuron-level analysis fur-
ther identified a few sparse features with polarity
flips, serving as interpretable “deception-associated
features”. These insights clarify the internal geom-
etry of instructed dishonesty in LLMs and offer a
solid basis for future deception detection and model
editing methods.

Limitations

Our study is confined to English declaratives,
frozen model weights, and linear probes. It neither
tests causal interventions (e.g. activation patching)
nor adversarial prompt recombinations. Further-
more, the evaluation data are labelled for binary fac-
tuality only; future work should extend to graded
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truth scales and multilingual settings.

Ethical Consideration

Our research highlights the susceptibility of LLMs
to produce falsehoods when exposed to carefully
crafted prompts. This vulnerability raises concerns
that a malicious user could exploit such behavior to
propagate harmful or deceptive content. Neverthe-
less, we believe that current AI service providers
prioritize truthfulness as a core objective in their
deployment practices. Moreover, our deceptive
prompts are intentionally constructed and easily
identifiable, as they explicitly instruct LLMs to lie.
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A Dataset Details

This appendix documents every corpus used in our
experiments, including its provenance, construc-
tion protocol, and basic statistics.1 We partition the
resources into Curated Logical-Bench (§A.1) and
Open-Domain Fact-Bench (§A.2). The former is
further broken down into (i) topic-specific domains
with four logical variants and (ii) two relational
comparison sets.

A.1 Curated Logical-Bench

Affirmative Statements Bürger et al. (2024) col-
lect six topic specific datasets of affirmative state-
ments, each on a single topic as detailed in Table
2. The cities and sp_en_trans datasets are from
Marks and Tegmark (2024), while element_symb,
animal_class, inventors and facts are subsets
of the datasets compiled by Azaria and Mitchell
(2023a). All datasets, with the exception of "facts",
consist of simple, uncontroversial and unambigu-
ous statements. Each dataset (except "facts") fol-
lows a consistent template. For example, the tem-
plate of cities is "The city of <city name> is in
<country name>.", whereas that of sp_en_trans
is "The Spanish word <Spanish word> means <En-
glish word>." In contrast, "facts" is more diverse,
containing statements of various forms and topics.

Negated Statements. Following Bürger et al.
(2024), in this paper, each of the statements in the
six datasets from Table 2 is negated by inserting the
word "not". For instance, "The Spanish word ’dos’
means ’enemy’." (False) turns into "The Spanish
word ’dos’ does not mean ’enemy’." (True). This
results in six additional datasets of negated state-
ments, denoted by the prefix "neg_".

Logical Conjunctions. We use the following tem-
plate to generate the logical conjunctions from six
datasets in Table 2, separately for each topic:

• It is the case both that [statement 1] and that
[statement 2].

Following the recent work (Bürger et al., 2024),
the two statements are sampled independently to be
true with probability 1√

2
. This ensures that the over-

all dataset is balanced between true and false state-
ments, but that there is no statistical dependency
between the truth of the first and second statement
in the conjunction. The new datasets are denoted

1All CSV files, generation scripts and pre-processed acti-
vation matrices will be released upon publication.

by the suffix "_conj", e.g., sp_en_trans_conj or
facts_conj. Each dataset contains 500 statements.
Examples include:

• It is the case both that the city of Al Ain City
is in the United Arab Emirates and that the
city of Jilin is in China. (True)

• It is the case both that Oxygen is necessary for
humans to breathe and that the sun revolves
around the moon. (False)

Logical Disjunctions. The templates for the dis-
junctions were adapted to each dataset in Table 2,
combining two statements as follows:

• cities_disj: It is the case either that the city
of [city 1] is in [country 1/2] or that it is in
[country 2/1].

• sp_en_trans_disj: It is the case either that
the Spanish word [Spanish word 1] means
[English word 1/2] or that it means [English
word 2/1].

Analogous templates were all used for rest
of datasets element_symb, inventors, and
animal_class. Bürger et al. (2024) sample the
first statement to be true with a probability of
1/2 and then sample a second statement, ensuring
the end-word (e.g., [country 2]) would be incor-
rect for statement 1. The order of the two end-
words is flipped with a probability of 1/2. The
new datasets are denoted by the suffix "_disj", e.g.,
sp_en_trans_disj, and each contains 500 state-
ments. Examples include:

• It is the case either that the city of Korla is in
Azerbaijan or that it is in Russia. (False)

• It is the case either that the Spanish word
‘carne’ means ‘meat’ or that it means ‘seven’.
(True)

• It is the case either that Bromine has the sym-
bol Ce or that it has the symbol Mo. (False)

Combining statements in this simple way is not
possible for the more diverse facts dataset and
Bürger et al. (2024) use the following template
instead:

• It is the case either that [statement 1] or that
[statement 2].
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Table 2: Our datasets Di

Name Description Rows

cities "The city of [city] is in [country]." 1496
sp_en_trans "The Spanish word ‘[word]’ means ‘[English word]’." 354
element_symb "[element] has the symbol of [symbol]." 186
animal_class "The [animal] is a [animal_class]." 164
inventors "[inventor] lived in [counrty]." 406
facts Diverse scientific facts 561

larger_than "x is larger than y." 1980
smaller_than "x is smaller than y." 1980

common_claim_true_false Various claims; from (Azaria and Mitchell, 2023a) 4450
counterfact_true_false Various factual recall claims; from (Meng et al., 2023) 31960

Following Bürger et al. (2024), we sample the
two statements independently to be true with prob-
ability 1− 1√

2
. This ensures that the overall dataset

is balanced between true and false statements, but
that there is no statistical dependency between the
truth of the first and second statement in the dis-
junction. Examples include:

• It is the case either that the Earth is the third
planet from the sun or that the Milky Way is a
linear galaxy. (True)

• It is the case either that the fastest bird in the
world is the penguin or that Oxygen is harmful
to human breathing. (False)

A.2 Open-Domain Fact-Bench
common_claim_true_false CommonClaim is in-
troduced by Casper et al. (2023), containing 20,000
GPT-3-text-davinci-002 generations which are la-
beled as true, false, or neither, according to human
common knowledge. Marks and Tegmark (2024)
adapted CommonClaim by selecting statements la-
beled true or false, then removing excess true state-
ments to balance the dataset. This modified version
consists of 4450 statements. Example statements:

• Bananas are believed to be one of the oldest
fruits in the world. (True)

• Crazy ants have taken over Cape Canaveral.
(False)

counterfact_true_false Counterfact was
introduced in Meng et al. (2023) and consists of
factual recall statements. We adapt Counterfact by
using statements which form complete sentences
and, for each such statement, using both the true

version and a false version given by one of Coun-
terfact’s suggested false modifications. We also
append a period to the end. Example statements:

• Olaus Rudbeck spoke the language Swedish.
(True)

• The official religion of Malacca sultanate is
Christianity. (False)

B Complete Layer-wise Probing Results

This appendix aims to provide a more exhaustive
quantitative analysis of the internal representations
within the LLMs under investigation. Specifically,
Table 3 and Table 4 present the complete accu-
racy information from the layer-wise probing con-
ducted on LLaMA-3.1-8B-IT and Gemma2-9B-
IT. These results span the three distinct instruc-
tional conditions—Truthful, Neutral, and Decep-
tive prompts—and utilize two different probing
methodologies: Logistic Regression (LR) and the
Training of Truth and Polarity Direction (TTPD).
These tables serve as a supplement to the graphical
representations shown in Figures 2 and 3 in the
main body of the paper, offering precise numerical
values for the average accuracy at each layer, po-
tentially including standard deviations as indicated
in the original tables. This detailed data allows for
a granular understanding of how linearly decod-
able the model’s instructed "True"/"False" output
is at various depths within the network. By provid-
ing these comprehensive figures, researchers can
more meticulously examine how different model
architectures, instruction types, and probing tech-
niques influence the predictability of representa-
tions across layers, and further verify the conclu-
sions drawn in the main text regarding key layers
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where significant representational shifts or peak
predictability occurs.
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Layer Truthful Neutral Deceptive
TTPD LR TTPD LR TTPD LR

1 50.69 ± 1.10 49.50 ± 0.00 50.43 ± 0.65 49.50 ± 0.00 50.63 ± 1.00 49.50 ± 0.00
2 50.17 ± 0.35 49.56 ± 0.35 50.36 ± 0.66 49.48 ± 0.11 50.16 ± 0.36 49.48 ± 0.17
3 50.07 ± 0.08 49.64 ± 0.27 50.21 ± 0.19 49.79 ± 0.43 50.20 ± 0.36 49.76 ± 0.45
4 50.23 ± 0.31 50.62 ± 0.88 50.49 ± 0.50 50.74 ± 0.96 50.14 ± 0.24 50.11 ± 0.68
5 49.83 ± 0.63 51.20 ± 0.64 49.88 ± 0.40 51.08 ± 0.83 49.91 ± 0.56 50.95 ± 0.62
6 49.91 ± 0.55 50.92 ± 0.18 49.88 ± 0.47 50.93 ± 0.28 49.87 ± 0.24 50.84 ± 0.33
7 52.38 ± 1.31 52.02 ± 0.64 51.58 ± 1.48 52.63 ± 1.06 51.01 ± 1.70 52.52 ± 1.12
8 52.90 ± 1.26 52.13 ± 0.61 52.04 ± 0.86 52.94 ± 1.02 52.46 ± 0.75 52.12 ± 0.67
9 58.66 ± 1.96 53.09 ± 1.60 57.93 ± 1.99 56.53 ± 3.05 57.77 ± 2.41 53.88 ± 2.34
10 59.58 ± 4.57 61.37 ± 3.67 57.23 ± 4.96 62.20 ± 4.01 58.79 ± 3.42 62.05 ± 3.08
11 68.41 ± 0.74 57.16 ± 3.11 64.66 ± 2.49 59.57 ± 3.65 60.11 ± 3.96 57.07 ± 3.38
12 69.69 ± 0.63 63.11 ± 3.09 69.75 ± 0.83 62.33 ± 4.54 69.13 ± 0.73 58.76 ± 3.67
13 77.20 ± 0.23 65.37 ± 4.95 80.10 ± 0.24 62.92 ± 5.64 73.43 ± 0.83 62.25 ± 4.66
14 78.22 ± 0.23 75.70 ± 2.88 82.25 ± 0.53 71.66 ± 4.21 79.29 ± 0.30 70.44 ± 3.74
15 80.04 ± 0.47 75.97 ± 3.46 84.86 ± 0.47 75.49 ± 3.53 80.42 ± 0.13 70.07 ± 6.07
16 82.58 ± 0.60 77.15 ± 4.43 85.62 ± 0.14 74.91 ± 4.07 79.23 ± 0.11 71.33 ± 4.35
17 83.62 ± 0.41 76.97 ± 3.27 85.42 ± 0.15 74.03 ± 5.79 79.80 ± 0.29 69.46 ± 6.76
18 83.55 ± 0.35 74.53 ± 4.70 85.01 ± 0.30 74.43 ± 4.92 76.25 ± 0.35 67.11 ± 6.53
19 83.24 ± 0.22 73.62 ± 5.45 83.75 ± 0.34 73.71 ± 4.70 78.69 ± 0.18 67.65 ± 5.26
20 83.07 ± 0.41 74.90 ± 4.18 83.62 ± 0.22 71.85 ± 4.34 78.69 ± 0.48 66.16 ± 7.26
21 82.84 ± 0.27 69.61 ± 5.96 83.41 ± 0.36 76.20 ± 4.87 79.50 ± 0.34 66.87 ± 6.48
22 82.53 ± 0.35 71.29 ± 5.17 83.61 ± 0.21 73.31 ± 5.80 79.22 ± 0.23 66.44 ± 7.18
23 82.25 ± 0.29 73.93 ± 5.95 83.39 ± 0.24 72.20 ± 4.89 79.06 ± 0.37 67.68 ± 6.19
24 82.11 ± 0.37 71.52 ± 5.36 83.22 ± 0.24 72.48 ± 6.43 78.54 ± 0.33 68.94 ± 5.61
25 82.10 ± 0.29 73.07 ± 6.04 83.30 ± 0.33 72.60 ± 6.11 78.24 ± 0.19 67.35 ± 6.50
26 81.96 ± 0.29 71.62 ± 6.31 83.26 ± 0.19 73.14 ± 5.08 78.33 ± 0.26 70.58 ± 4.26
27 81.55 ± 0.28 71.34 ± 6.16 82.97 ± 0.23 73.90 ± 5.83 77.45 ± 0.56 69.06 ± 5.07
28 81.42 ± 0.33 73.38 ± 5.56 82.90 ± 0.24 75.66 ± 5.13 76.81 ± 0.30 68.20 ± 5.64
29 81.36 ± 0.18 75.02 ± 3.82 82.70 ± 0.25 73.47 ± 4.71 76.43 ± 0.38 68.37 ± 6.25
30 81.31 ± 0.22 70.84 ± 6.26 82.87 ± 0.34 72.73 ± 4.14 76.51 ± 0.60 69.63 ± 7.97
31 81.62 ± 0.23 71.57 ± 5.66 82.89 ± 0.33 71.96 ± 5.07 76.17 ± 0.71 63.63 ± 7.32
32 81.57 ± 0.33 64.56 ± 4.66 83.87 ± 0.19 72.36 ± 5.25 77.86 ± 1.23 68.55 ± 5.39

Table 3: Layer-wise probing accuracy for Llama3.1-8B-IT across truthful, neutral, and deceptive prompts using
TTPD and LR.

16342



Layer Truthful Neutral Deceptive
TTPD LR TTPD LR TTPD LR

1 50.47 ± 0.59 50.69 ± 0.51 51.03 ± 0.91 50.75 ± 0.61 50.54 ± 0.74 50.18 ± 0.47
2 51.13 ± 0.73 50.55 ± 0.68 51.45 ± 1.29 50.15 ± 0.66 50.73 ± 0.76 50.41 ± 0.80
3 50.80 ± 1.16 50.51 ± 0.70 51.68 ± 0.99 50.45 ± 0.65 51.07 ± 0.76 50.97 ± 0.77
4 51.24 ± 0.55 50.55 ± 0.69 51.22 ± 1.00 50.49 ± 0.49 50.98 ± 0.67 49.64 ± 0.61
5 51.04 ± 0.56 50.95 ± 0.51 50.84 ± 0.72 51.14 ± 0.30 51.40 ± 0.71 51.38 ± 0.60
6 51.50 ± 0.62 50.79 ± 0.39 50.75 ± 0.55 51.20 ± 0.58 51.35 ± 0.78 50.88 ± 0.35
7 48.31 ± 1.22 49.89 ± 0.82 48.09 ± 0.75 49.69 ± 1.17 48.17 ± 1.35 49.42 ± 0.90
8 49.17 ± 0.91 50.68 ± 1.09 49.75 ± 0.84 51.09 ± 0.63 48.43 ± 0.99 50.71 ± 0.67
9 52.31 ± 0.72 51.17 ± 0.71 52.45 ± 1.02 51.84 ± 1.05 52.99 ± 0.50 51.13 ± 0.62
10 52.74 ± 0.86 51.85 ± 0.58 51.93 ± 0.66 52.31 ± 1.02 53.31 ± 0.36 51.90 ± 0.54
11 52.98 ± 1.08 52.99 ± 0.78 51.92 ± 0.33 53.58 ± 1.63 53.37 ± 0.89 51.96 ± 0.67
12 51.72 ± 0.33 52.40 ± 0.87 51.74 ± 0.32 53.76 ± 0.87 53.00 ± 1.27 52.47 ± 0.65
13 52.63 ± 0.94 53.56 ± 0.99 52.11 ± 0.43 53.38 ± 1.52 52.95 ± 1.22 52.31 ± 0.78
14 53.74 ± 1.31 53.92 ± 1.09 54.00 ± 1.97 53.80 ± 1.49 53.28 ± 1.30 52.44 ± 0.52
15 54.80 ± 1.16 57.56 ± 2.03 54.32 ± 1.83 54.40 ± 1.81 54.11 ± 0.81 55.54 ± 1.31
16 57.54 ± 1.84 62.03 ± 2.06 56.46 ± 2.46 57.29 ± 3.36 57.61 ± 0.76 59.86 ± 1.87
17 60.84 ± 1.98 65.56 ± 1.83 58.78 ± 2.10 64.45 ± 2.30 60.17 ± 1.41 62.68 ± 1.38
18 66.32 ± 1.09 68.80 ± 1.28 64.44 ± 2.09 65.77 ± 2.68 64.41 ± 1.36 63.64 ± 2.78
19 75.17 ± 0.34 70.32 ± 5.99 77.33 ± 0.96 65.93 ± 6.63 69.10 ± 0.86 69.75 ± 4.53
20 78.82 ± 0.47 72.61 ± 6.49 82.78 ± 0.95 70.72 ± 4.39 76.47 ± 0.44 72.12 ± 6.80
21 82.52 ± 0.20 72.38 ± 6.30 84.72 ± 0.28 69.97 ± 6.46 84.16 ± 0.51 76.32 ± 4.30
22 83.85 ± 0.34 64.00 ± 6.21 76.57 ± 0.95 65.25 ± 6.95 83.50 ± 0.26 71.22 ± 5.84
23 83.63 ± 0.36 71.50 ± 7.20 77.85 ± 0.98 71.69 ± 5.75 82.76 ± 0.33 69.36 ± 7.19
24 85.27 ± 0.11 71.62 ± 7.54 83.21 ± 0.47 73.37 ± 6.95 87.13 ± 0.75 70.12 ± 7.54
25 85.40 ± 0.23 73.09 ± 6.16 84.82 ± 0.28 72.89 ± 6.10 84.49 ± 0.74 72.56 ± 7.26
26 86.06 ± 0.20 75.38 ± 6.02 86.14 ± 0.44 68.37 ± 6.16 85.15 ± 0.65 71.84 ± 7.07
27 85.77 ± 0.39 79.72 ± 4.74 84.89 ± 0.39 71.21 ± 5.94 86.70 ± 0.18 74.29 ± 5.96
28 85.82 ± 0.17 79.99 ± 5.13 85.01 ± 0.28 76.32 ± 6.01 86.39 ± 0.49 73.53 ± 7.26
29 85.90 ± 0.13 80.06 ± 5.60 85.26 ± 0.27 78.20 ± 5.66 83.64 ± 0.45 72.23 ± 7.11
30 85.58 ± 0.21 79.15 ± 5.15 84.56 ± 0.28 74.26 ± 5.50 79.60 ± 0.51 74.41 ± 5.91
31 85.37 ± 0.19 76.35 ± 6.26 84.64 ± 0.26 75.32 ± 6.12 75.75 ± 0.80 75.85 ± 7.14
32 85.68 ± 0.22 77.95 ± 6.29 84.98 ± 0.23 77.45 ± 4.96 74.61 ± 0.89 71.97 ± 7.13

Table 4: Layer-wise probing accuracy for Gemma2-9B-IT across truthful, neutral, and deceptive prompts using
TTPD and LR.
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C PCA Visualization Results

This section presents supplementary PCA visualiza-
tions to further illustrate the global geometry of the
models’ internal activations under different instruc-
tional prompts. As discussed in the main text, PCA
is employed to project the high-dimensional hid-
den state activations (xl) onto a 2D space, primarily
for illustrative purposes. These visualizations help
in assessing the separability of internal states cor-
responding to "True" and "False" outputs across
Neutral, Truthful, and Deceptive conditions.

The figures below provide additional examples
beyond those in Section 3.2, showcasing these
dynamics for both LLaMA-3.1-8B-Instruct and
Gemma-2-9B-Instruct on various datasets. Specifi-
cally, Figure 10 and Figure 11 demonstrate the PCA
results on curated datasets (e.g., sp_en_trans for
LLaMA and cities for Gemma). These typically
show a clearer separation between True/False clus-
ters as observed in Figure 4 for the cities dataset
with LLaMA. In contrast, Figure 5 (which may
correspond to Figure 5 in the main text showing
common_claim and counterfact for LLaMA) and
Figure 12 (showing similar complex datasets for
Gemma, as in Figure 12) illustrate the challenges
PCA faces with more complex, uncurated datasets
where the True/False clusters often appear entan-
gled due to feature superposition. These appendix
figures offer a broader visual substantiation of how
the geometric separability of truth-related represen-
tations can vary significantly with dataset complex-
ity and model type.

La
ye

r 8

Neutral Truthful Deceptive

La
ye

r 1
6

La
ye

r 3
2

False True

Figure 10: Layer-wise PCA visualization for LLaMA-
3.1-8B-Instruct across Neutral, Truthful, and Deceptive
Prompts on sp_en_trans
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Figure 11: Layer-wise PCA visualization for Gemma-2-
9B-Instruct on cities.
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Figure 12: Layer-wise PCA visualization (Compo-
nent 1 vs. Component 2) for Gemma-2-9B-Instruct
on two complex datasets: common_claim_true_false
(top row) and counterfact_true_false (bottom row).
Columns represent different instructional conditions:
Neutral, Truthful, and Deceptive prompts. Visualiza-
tions are performed on Layer 16, the key layer identified
for Gemma-2-9B-Instruct based on the probing accu-
racy peaks in Figure 3.

D SAE-based Layer-wise Feature Shift
Analysis

We analyze how sparse feature activations
shift across layers under different instruc-
tion types using three metrics in SAE la-
tent space: Cosine Similarity, Overlap Ra-
tio, and L2 Distance. Figures 13 and 14
show results for the common_claim_true_false
and counterfact_true_false datasets using
Gemma-2-9B-Instruct.

In both datasets, deceptive prompts induce
strong mid-to-late layer shifts, especially between
Layers 16 and 32. This is evidenced by the sharp
rise in L2 distance and the corresponding drop in
cosine similarity and overlap ratio when comparing
truthful and deceptive inputs. The effect is most
pronounced in counterfact_true_false, where
overlap sharply declines post-Layer 16, indicating
a reconfiguration of sparse feature sets. In contrast,
shifts between truthful and neutral prompts remain
small and gradual across all layers, suggesting that
the major representational changes are deception-
specific.

These results highlight a distinctive geomet-
ric transformation in the model’s latent represen-
tations under deceptive instructions and further
motivate mid-layer analysis when identifying po-
tential deception-sensitive features. This pattern
closely aligns with earlier findings from linear prob-
ing, where intermediate layers—especially around
Layer 16—also showed peak decodability of the
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Figure 13: Layer-wise feature shift analysis for Gemma-
2-9B-Instruct on common_claim_true_false.

model’s intended "True"/"False" output across in-
struction types.
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Figure 14: Layer-wise feature shift analysis for Gemma-
2-9B-Instruct on counterfact_true_false.

E SAE-based Neuron-wise Feature Shift
Analysis

This appendix section provides additional visual-
izations to support the neuron-wise feature shift
analysis detailed in main text. The core objective
of this analysis is to move beyond global represen-
tational shifts and pinpoint specific SAE features
that are most sensitive to the change from truthful
to deceptive instructions. By examining individ-
ual SAE feature activations, we can gain a better
understanding of how deception is encoded at the
feature level.

The methodology involves identifying, for each
layer, the sparse SAE features exhibiting the
largest change in average activation when compar-
ing the Deceptive condition to the Truthful con-
dition. The figures presented in this appendix,
such as scatter plots showing the activation of the
top distinguishing features (similar to Figure 7
for common_claim_true_false but potentially for
other datasets like counterfact_true_false as
shown in Figure 15 and violin plots in Figure 16
illustrating the distribution of these feature activa-
tions under truthful versus deceptive prompts, offer
further evidence.

These supplementary visualizations help to re-
inforce the finding that a small subset of sparse
features often displays a near-binary activation pat-
tern—being highly active for one instruction type
(e.g., truthful) and suppressed for the other (e.g.,
deceptive), or vice-versa. This detailed view cor-

roborates the idea that these specific features act
as "deception-associated features," playing a crit-
ical role in modulating the model’s internal rep-
resentation in response to deceptive instructions,
often aligning with the mid- and late-layer SAE
shift peaks identified globally in Figure 6 and Fig-
ure 7. The plots here may cover additional layers or
datasets, providing a more comprehensive picture
of this phenomenon.
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Figure 15: Neuron-by-neuron feature shift analysis for LLaMA-3.1-8B-Instruct on counterfact_true_false

Truthful Deceptive
Condition

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ac
tiv

at
io

n

Truthful Deceptive
Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ac
tiv

at
io

n

(a) Layer 8

Truthful Deceptive
Condition

0

1

2

3

4

5

Ac
tiv

at
io

n

Truthful Deceptive
Condition

0

1

2

3

4

5

6

Ac
tiv

at
io

n

(b) Layer 16

Truthful Deceptive
Condition

0

2

4

6

8

10

Ac
tiv

at
io

n

Truthful Deceptive
Condition

4

6

8

10

12

14

16

18

20

Ac
tiv

at
io

n

(c) Layer 32

Figure 16: Violin graph of LLaMA-3.1-8B-Instruct activations on the counterfact_true_false. The top row
displays the activation distributions for the SAE feature most responsive to deceptive instructions (Top 1 feature),
while the bottom row shows the distributions for the second most responsive feature (Top 2 feature), across layers 8
(a), 16 (b), and 32 (c).
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