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Abstract

An embodied AI assistant operating on egocen-
tric video must integrate spatial cues across
time – for instance, determining where an
object A, glimpsed a few moments ago lies
relative to an object B encountered later. We
introduce DISJOINT-3DQA, a generative QA
benchmark that evaluates this ability of VLMs
by posing questions about object pairs that
are not co-visible in the same frame. We
evaluated seven state-of-the-art VLMs and
found that models lag behind human perfor-
mance by 28%, with steeper declines in ac-
curacy (60% → 30 %) as the temporal gap
widens. Our analysis further reveals that pro-
viding trajectories or bird’s-eye-view projec-
tions to VLMs results in only marginal im-
provements, whereas providing oracle 3D co-
ordinates leads to a substantial 20% perfor-
mance increase. This highlights a core bot-
tleneck of multi-frame VLMs in constructing
and maintaining 3D scene representations over
time from visual signals. DISJOINT-3DQA
therefore sets a clear, measurable challenge for
long-horizon spatial reasoning and aims to cat-
alyze future research at the intersection of vi-
sion, language, and embodied AI. Code and
data are available at https://github.com/
sahithyaravi/DISJOINT-3DQA.

1 Introduction

We live in a three-dimensional world, and both hu-
mans and animals excel at building internal spatial
representations that help them perceive, understand,
and interact with their environments (Wang et al.,
2002). For machines to act as capable embodied
assistants, they too must be able to reason spatially:
to infer where objects are, how they relate to one
another, and how to navigate through space (Cheng
et al., 2024; Chen et al., 2024; Cho et al., 2023).
This is especially challenging in egocentric set-

*Work done during internship at MSR.

Figure 1: DISJOINT-3DQA: We focus on answering
questions about spatial relationships when the objects
are static but the camera is moving.

tings, where perception is anchored to a moving
first-person viewpoint.

As the camera wearer moves, objects may enter
and exit the field of view at different times, requir-
ing models to reason across temporally disjoint
observations. We term this setting disjoint-frame
spatial reasoning: a model must accumulate ge-
ometric cues across time, ‘mentally’ reconstruct
the scene, and then integrate across the cues to
answer questions. While related to object perma-
nence tracking (Tokmakov et al., 2021), our setting
focuses on a harder subproblem, where objects do
not co-occur, making spatial reasoning more chal-
lenging.

Figure 1 illustrates a typical example: the cam-
era wearer first views a sofa (object A) in one part
of the room and only much later encounters a win-
dow (object B) from a different viewpoint. The
question “Which side is the sofa (A) with respect
to the window (B)?” requires reasoning over tem-
porally disjoint frames, where the two objects are
not co-visible. This setup poses a fundamental
challenge to current VLMs, which must infer spa-
tial relationship among multiple frames. The core
question we investigate is thus: Can VLMs track
and reason about spatial relationships when the
relevant objects may not be co-visible?

Recent work on embodied video understanding
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Figure 2: Demonstration of the evaluation setup of DISJOINT-3DQA. We provide the video frames with objects
relevant to the question marked for visual grounding. Optionally, we evaluate models by providing explicit 3D cues
using text or visual (Bird Eye View) inputs relevant to that question.

(Qiu et al., 2024; Amin and Rayz, 2024; Suglia
et al., 2024; Majumdar et al., 2024; Cheng et al.,
2024) and single-frame spatial reasoning (Kamath
et al., 2023) show that language-based reasoning
alone is insufficient for improving performance,
even when objects are co-visible. The challenge be-
comes more acute in 3D settings: without explicit
spatial priors, VLMs must infer scene geometry
from raw pixels, often producing brittle or halluci-
nated maps of the scene (Yang et al., 2024b).

We introduce DISJOINT-3DQA1, a generative
QA benchmark that (i) poses spatial queries where
relevant objects are not co-visible, compelling mod-
els to integrate information across frames and view-
points and (ii) probe models with varying degree of
explicit 3D scene information. Constructed from
RGB-D egocentric recordings, DISJOINT-3DQA
comprises 5,399 question–answer pairs spanning
object-object relative direction, containment, and
volumetric comparison, each requiring multi-frame
spatial integration. We evaluate a spectrum of pro-
prietary and open-source multi-frame VLMs in-
cluding GPT-4o and, Qwen2.5VL and observe an
overall lag behind human performance by 28%.

A natural hypothesis is that these models strug-
gle because raw RGB frames provide limited ge-
ometric information, particularly in egocentric
videos where relevant objects may never appear
in the same frame due to continuous camera mo-

1Dataset and code will be released upon publication.

tion. We therefore augment the input with explicit
3D context in two forms: (i) Text Trajectory Cue,
through textual camera trajectories, and (ii) Top-
down cue, through bird’s-eye view (BEV) render-
ings that depict the camera’s path from object A to
B. We refer to these as sparse 3D cues, because
they expose only partial glimpses of the 3D scene
geometry. While such cues lead to modest perfor-
mance gains up to 2–3%, we observe significantly
larger improvements exceeding 20%, when mod-
els are provided with full 3D context, including
ground-truth object coordinates, volumes, and spa-
tial metadata.

This contrast points to a central open challenge:
enabling models to treat spatial cues not as isolated
tokens, but as grounded elements of a coherent
metric space. DISJOINT-3DQA thus motivates the
need for models that can build and maintain in-
ternal 3D representations from sparse, temporally
disjoint egocentric inputs, a capacity critical for
robust spatial understanding in real-world environ-
ments.

2 DISJOINT-3DQA

Understanding grounded language begins with sit-
uating objects relative to one another, and to an em-
bodied observer, within a coherent 3D world. Spa-
tial reasoning for embodied agents typically arises
in three settings: (i) when both camera and ob-
jects are static, (ii) when the camera moves through
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a static environment, and (iii) when both camera
and objects move. We focus on the second setting,
common in egocentric video, where a moving agent
observes a static scene from varying perspectives.

To evaluate spatial reasoning in such scenarios,
we introduce DISJOINT-3DQA, a benchmark de-
signed to test whether models can integrate infor-
mation across temporally disjoint frames where
relevant objects never appear together. This setup
reflects real-world contexts like AR navigation or
assistive robotics, where a complete spatial view is
rarely available at once.

Figure 2 shows an example: a model must infer
the spatial relation between a window seen early
and a door seen much later. Such questions re-
quire integrating partial cues over time to recover
spatial structure. DISJOINT-3DQA contains 5,399
question–answer pairs across 1,668 scenes and 856
unique object pairs, with an average of four diverse
questions per scene. Motivated by foundational
work in spatial cognition (Landau and Jackend-
off, 1993), our questions span a range of reasoning
types essential for embodied agents: relative di-
rection, distance, size comparison, fit, and holistic
scene understanding. Full dataset statistics are pro-
vided in Appendix A.1.

We build DISJOINT-3DQA using the Aria Syn-
thetic Environments (ASE) dataset2, a large-scale
simulation of over 100,000 photorealistic indoor
scenes out of which we randomly sample 1688
scenes. ASE offers rich 3D geometry, sensor meta-
data, and realistic object placements, making it
ideal for spatial supervision. Its combination of
realism, controllability, and scale enables high-
precision question generation. Our construction
pipeline is inherently scalable for two reasons: (a)
it leverages the Aria Synthetic Environments, en-
abling controlled and repeatable data generation
at scale, and (b) the steps in our pipeline are fully
modular and parallelizable.

Goal. Given a pair of objects (A,B), the model
must determine their spatial relation (e.g., left/right,
size, relative distance) using only egocentric obser-
vations in which the objects appear separately. To
construct such object pairs, we represent each video
as a sequence of frames F = {f1, f2, . . . , fT },
where each frame ft contains a set of visible ob-
jects Ot. For any object pair (A,B), we define

2https://www.projectaria.com/datasets/ase/

their visibility spans as:

TA = {t | A ∈ Ot}, TB = {t | B ∈ Ot}

We include (A,B) in the dataset only if TA∩TB =
∅, ensuring that the two objects are never seen in
the same frame i.e. not co-visible. This disjointness
constraint forces models to accumulate spatial cues
across non-overlapping views.

Ground-Truth Computation. To define ground-
truth relations, we compute the position of object A
relative to object B from the viewpoint of a frame
where B is visible. Let TB be the world-to-camera
transform for that frame, and let cA, cB ∈ R3 de-
note the objects’ centers in world coordinates. We
transform them into the camera coordinate frame
as follows: c̃A = TB · cA (object A in B’s frame),
c̃B = TB · cB = 0 (object B at origin), and the
relative offset is dAB = c̃A − c̃B = c̃A where
TB∈SE(3) is the world-to-camera extrinsic trans-
form whose origin is fixed at the centre of object
B and whose axes are aligned with the viewing
direction of the image in which B is visible3.

All spatial relations are derived from dAB ,
which encodes object A’s position relative to B
in the local frame. This anchors each question to
a consistent egocentric perspective. This is consis-
tent with the directional vector dAB and the way
spatial language is interpreted in egocentric video
(e.g., “Is the ottoman to the left of the window?”
is framed relative to where the window appears
as shown in Figure 2). This design encourages
the model to align its internal scene representation
with the perspective of the current observation tar-
get and camera. To support diverse question types
we also extract each object’s volume vA,vB and
frame-wise instance maps detailing which objects
appear in each frame.

Question Generation. For each object pair
(A,B), and their respective reference frames
(fa, fb), we have now derived all the 3D meta-data
to answer spatial questions of different types. We
then use predefined templates to come up with QA
pairs using this meta data. We then provide this to
GPT-4o to paraphrase it to more natural language
question answer (QA) pairs. We provide the tem-
plates and prompts in Appendix A.2 and A.3.

Visual Grounding To ensure models attend to
the correct object instances especially in scenes

3More details are discussed in Appendix A.9
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containing multiple objects of the same type, we
provide visual markers similar to Set of Marks
(Yang et al., 2023). We project the 3D centers of
objects A and B into their respective RGB frames
using known camera parameters, and mark these
projected centers with visual indicators (e.g., col-
ored hollowed circles). This is demonstrated in
Figure 2. We find this is an important factor influ-
encing model performance, with Marked baselines
outperforming the Unmarked counterparts signifi-
cantly (§ 5.1).

2.1 Dataset Quality Evaluation

To verify data quality, we sampled 10% subset
of the dataset and perform human evaluation on
whether (i) the objects in the question are marked
correctly in the video frames (yes/no) and (ii) the
answer is accurate in the given context of video
frames and the question (yes/no). We found that
99% of examples were correctly annotated with the
appropriate object markers indicating the validity
of our meta-data. Further, 96% of questions were
relevant to the provided scene and 94% of answers
were accurate 4.

3 Evaluating with 3D Cues

Can a vision-language model reason more effec-
tively when provided with an explicit 3D scene
representation, rather than relying on pixel-level
inference alone? Visual object marking reduces
referential ambiguity, but understanding spatial re-
lationships between objects observed in disjoint
frames often requires more than isolated 2D snap-
shots. To investigate this, we evaluate models under
two types of 3D augmentations: sparse and full
3D context.

3.1 Sparse 3D Cues

Sparse 3D cues provide realistic, test-time signals
that offer partial information about the scene’s spa-
tial layout. We introduce two forms:
Textual Trajectory Cue. We encode the cam-
era trajectory as a sequence of positions pt =
(xt, ytzt). This text-based representation reflects
how the camera traverses the scene.
Top-down Cue. We generate a bird’s-eye view
(BEV) rendering of the scene. Built from RGB-D
and instance segmentation data, the BEV provides
a top-down visualization of the scene. It captures
the spatial geometry that is not easily inferred from

4Appendix A.6 provides more details

RGB frames alone. For each question, we render
a targeted BEV image that highlights the relevant
sub-trajectory, from the frame where object A ap-
pears to the frame where object B is visible. These
visual cues are derived from the full 3D reconstruc-
tion but presented in a 2D RGB image that can be
readily processed by modern VLMs. For example,
in Figure 2, the BEV image shows the top down
view of the scene, along with a trajectory involving
the two objects in the question - ottoman and floor
mat. Additional details on generation and prompt-
ing with BEV images are in Appendix A.4 and
A.8.2.

3.2 Full 3D Context

In addition to evaluating models under sparse cues,
we introduce an oracle setting where the model re-
ceives dense, ground-truth spatial metadata. This
full 3D context includes the precise 3D coordi-
nates of object centers in a global reference frame
CA = (xA, yA, zA) and CB = (xB, yB, zB), as
well as their physical dimensions or bounding box
volumes VA and VB . This representation encodes
the metric spatial relationships underlying the cor-
rect answer to each question. We use this setting to
approximate an upper bound on spatial reason-
ing performance, isolating reasoning limitations
from perceptual errors. While one might consider
using predicted 3D detections instead, existing 3D
detectors remain brittle, especially in egocentric
video—due to occlusions, limited annotations, and
poor generalization. Ground-truth cues thus serve
as a clean scaffold to evaluate whether failures arise
from missing information or from an inability to
integrate and reason over spatial geometry.

4 Evaluation Setup

Metric. Our dataset follows a similar structure to
OpenEQA (Majumdar et al., 2024), where each ex-
ample consists of an open-ended question grounded
in a visual or embodied context, with answers pro-
vided in natural language. Due to this alignment in
task formulation and answer format (one line open-
vocabulary answers), we adopt the LLM-Match
metric proposed by OpenEQA to evaluate model
predictions. This metric employs a large language
model to rate the semantic similarity between pre-
dicted and reference answers on a 1–5 scale, provid-
ing a more reliable measure for open-ended, free-
form QA than conventional string-matching meth-
ods. We normalize these scores to the [0, 1] range
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and report them as percentages. Model and prompt
for LLM-Match are detailed in Appendix A.7.

Models. We evaluate both closed-source and open-
source VLMs. Closed-source models include GPT-
4o accessed via public API. Open-source models in-
clude LLaVA-Next-Video (7B), LLava-Video (7B),
InternVL (8B and 38B) and Qwen-VL (72B). For
each model, we standardize the prompt format and
provide a sequence of video frames along with the
question. We prompt all models to provide a chain-
of-thought (CoT) followed by the actual answer.
Refer to Appendix A.8.1 for the prompts. These
models are selected based on their strong perfor-
mance on recent video reasoning benchmarks such
as VideoMME(Fu et al., 2024) and their ability to
process multi-frame inputs effectively.

Human Performance. We randomly sample a
subset of 600 questions for estimating human per-
formance on DISJOINT-3DQA. Three human eval-
uators independently answer each question, and
their performance is evaluated using the same LLM-
Match metric. Appendix A.6 provides further de-
tails on crowdsourcing.

5 Empirical Evaluation

We structure our evaluation around three core
research questions designed to assess how well
VLMs reason about spatial relationships in egocen-
tric video, particularly when the objects in question
never co-occur in the same frame.

1⃝ RQ1: 2D-Only – Can VLMs reason about
spatial relations using only 2D egocentric
video, and how does visually disambiguating
object references affect performance?

2⃝ RQ2: Effect of 3D Cues – Does providing
explicit 3D spatial cues, either linguistically
or visually, enhance model performance?

3⃝ RQ3: Failure Modes – What factors (e.g.,
object distance) make spatial reasoning partic-
ularly challenging for current models?

5.1 RQ1: 2D-Only — Does visual
disambiguation improve spatial
reasoning?

In the 2D-Only setting, we provide the VLMs with
video frames and the question and investigate their
performance out-of-the box Unmarked vs Marked .
The Marked setting refers to the visual grounding
setup described in 2, where objects relevant to

the question are marked with red hollow circle to
visually guide the models.

Figure 3a summarizes overall score and Fig-
ure 3b presents a breakdown of model performance
across spatial categories. Closed-source models
like GPT-4o exhibit notable spatial reasoning abili-
ties out-of-the-box, reaching an accuracy of 62.88%
even without visual marking of objects. With ob-
jects disambiguated, we see an improvement of
nearly 3% over the Unmarked setting. Open-source
models display greater sensitivity to visual prompt-
ing with markers, with improvements of approxi-
mately 7–9% between the Unmarked and Marked
settings. For instance, LLaVA-Video 7B, Qwen
2.5-72B, and InternVL3-8B all show substantial
gains in response to object highlighting. These
jumps suggest that even simple referential cues
provide a strong inductive signal, helping models
resolve ambiguous object references and reason
more effectively in egocentric scenes.

As shown in Table 3a, humans achieve a nor-
malized LLM-Match score of 93.96%, outperform-
ing all models by a wide margin. Notably, even
the best-performing model—GPT-4o with visual
markers—lags behind by over 28 percentage points.
This performance gap persists across all spatial cat-
egories (Figure 3b). Beyond overall scores, the
per-category analysis in Figure 2 reveals key trends.
Most models perform well on categories such as
Relative Distance and Relative Size, where spa-
tial relationships are often visually salient and co-
visible within frames and common notions under-
stood in the language domain, such as a vase is
likely smaller than a couch. However, all models,
regardless of architecture or training data, strug-
gle in more complex categories like Size and Fit
and especially Spatial Relationship, which require
multiframe integration.

Takeaway: Explicit visual disambiguation signif-
icantly boosts model accuracy, particularly for
open-source models. However, a substantial gap
remains between the best-performing models and
humans, highlighting limitations in current spatial
reasoning and multi-frame integration.

5.2 RQ2: 3D Cues — Do 3D Cues Improve
Reasoning in VLMs

Table 4a quantifies the effect of injecting 3D spa-
tial information into VLMs. As described in § 3,
we assess two settings: a sparse augmentation set-
ting where test-time 3D cues (e.g., A→B bird’s-eye
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Model Unmarked Marked ∆

Closed-Source Models
GPT-4o 62.88 65.60 +2.72

Open-Source Models
LLaVa-NeXT-Video 7B 48.44 49.92 +1.48
LLaVA-Video 7B 56.40 63.30 +6.90
InternVL3-8B 53.16 61.80 +8.64
InternVL3-38B 54.60 62.30 +7.70
Qwen 2.5-72B 55.06 64.31 +9.25

Human Performance – 93.96 –

(a) Normalized LLM-Match (%) across models in
two evaluation settings: Unmarked (no object high-
lighting) and Marked (referenced objects visually
indicated). (b) Normalized LLM-Match (%) across spatial categories

Figure 3: RQ1: 2D-Only — Does visual disambiguation improve spatial reasoning: Comparison of LLM perfor-
mance with and without visual object disambiguation. Left: overall accuracy across models. Right: performance by
spatial category.

Modality Input Type Qwen 2.5-72B GPT-4o

(1) Baselines
– No Marking 55.06 62.88
– Visual Marking Only 64.31 65.60

(2) Sparse 3D Context (Test-time Cues)
Text 3D Trajectory (Text) 66.21 67.60
Image BEV (A→B Sub-Trajectory Only) 66.64 68.23

(3) Full 3D Context (Ground Truth Upperbound)

Text
Direct Spatial Metadata
(centers, volumes, trajectories)

- 83.2

(a) Effect of sparse and full 3D context on model performance.
Normalized LLM Match (%) is reported.

(b) ∆ from base to 3D-augmented prompts for GPT-4o and
Qwen - Gains are seen in Scene Description and Spatial Rela-
tions.

Figure 4: RQ2: 3D Cues — Do 3D cues improve performance: Comparison of LLM performance with visual and
linguistic 3D cues. Left: Overall performance with different cues. Right: Performance gained by spatial category.

view with sub-trajectories or language-based trajec-
tories) are provided, and a Full 3D context setting
with access to ground truth metadata (e.g., object
volumes and positions). We compare it against a
baseline with object markings only.

Across both GPT-4o and Qwen-72B, introducing
sparse 3D cues consistently improves performance:
BEV-based visual augmentation boosts GPT-4o by
2.6%, while linguistic descriptions yield slightly
smaller gains. For Qwen, both visual and linguistic
3D inputs lead to ∼4% improvement.

Providing direct access to spatial metadata, such
as object centers, volumes, and trajectories leads
to a dramatic 18% jump in performance for GPT-
4o. This upper bound reflects the advantage of
structured geometry, where reasoning reduces to
direct comparisons of object centers or volumes.
Our results suggest that the bottleneck lies not in
reasoning over 3D spatial inputs, but in construct-
ing accurate 3D representations from sparse or 2D

observations.
Category-wise Gains. To further dissect these
improvements, Figure 4b (right) shows the normal-
ized performance change (∆) in five categories of
spatial reasoning. The gains are most pronounced
in Scene Description and Spatial Relationship ques-
tions, which demand a global understanding of ob-
ject layout and egocentric traversal.

Takeaway: Realistic 3D cues offer modest gains es-
pecially for relational reasoning. The strong boost
from ground-truth metadata highlights that the bot-
tleneck lies in constructing accurate 3D represen-
tations from sparse cues or visual signals.

5.3 RQ3: Failure Modes

Distance Based Failure Modes. Figure 5 illus-
trates how model performance varies with the 3D
Euclidean distance between object pairs. Across
all models, accuracy declines as spatial separation
increases. This trend is especially pronounced for
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Figure 5: RQ3: Failure Modes: Model performance
declines with increasing Euclidean distance between
objects.

models like InternVL3-8B, which show sharper
degradation. Larger models such as Qwen 2.5-72B
and GPT-4o seem slightly more robust to moder-
ate distances. However, performance drops sig-
nificantly once the separation exceeds 20 metres,
typically corresponding to objects located in differ-
ent rooms.

Success vs. Failure of explicit cues Figure 6
compares the predictions of GPT-4o-based model
under three visual grounding settings: (i) marked
objects only, (ii) marked objects with egocentric
trajectory, and (iii) marked objects with bird’s-eye
view (BEV) context. In the first row, the model
must compare the size of the door and window
across disjoint views. Without spatial grounding,
GPT-4o misjudges the door as larger or expresses
uncertainty. With BEV input, it correctly identifies
the window as larger, matching ground truth, indi-
cating that access to top-down scene views helps
in understanding relative sizes. In the second ex-
ample, the question concerns the directional spatial
relation of whether the cabinet is to the right of
the picture frame. Here, all three model variants
answer wrongly, despite providing 3D context such
as trajectories and the BEV.

Error analysis of Failure Modes of explicit cues.
Across the full test split, adding BEV inputs yields
a 2.5% improvement over the baseline for GPT-4o.
We manually examined 50 examples where BEV
maps led to improved performance. In 81% of
these, the model’s chain-of-thought (CoT) explic-
itly referenced the new cue e.g., “the BEV shows
the window spans a wider area”. However, an anal-
ysis of 50 failure cases with BEV inputs reveals
several distinct error modes. In 18% of failures, the
model mentioned the BEV but misinterpreted spa-

tial relations, such as confusing directions or swap-
ping the start and end of a trajectory. Another 17%
ignored the BEV entirely without referencing the
added spatial context. In 24% of cases, the model
produced hallucinated geometry, making confident
yet unfounded claims about object size, position,
or visibility. We also observed that 15% of failures
involved misalignment between egocentric views
and BEV maps, where the model failed to correctly
associate objects across views. These findings sug-
gest that while BEV maps provide useful spatial
context, their effectiveness depends on the model’s
ability to align, interpret, and selectively attend to
the added modality.

6 Related Work

6.1 Egocentric 3D Understanding

Reasoning about space from an egocentric view-
point is fundamental to embodied intelligence, en-
abling agents to navigate, manipulate, and inter-
act with their environment (Ruggiero et al., 2009).
Recent work has advanced 3D spatial understand-
ing from egocentric inputs across several fronts.
EgoGaussian (Zhang et al., 2024a) reconstructs
static scenes using 3D Gaussian splatting from
monocular egocentric videos. EgoSplat (Park
et al., 2025) extends this approach with open-
vocabulary capabilities and EgoSG (Zhang et al.,
2024b) proposes building 3D scene graphs from
egocentric footage. Large-scale egocentric datasets
such as Ego4D (Grauman et al., 2022) and EPIC-
KITCHENS (Damen et al., 2018, 2022) have cat-
alyzed progress in this area, supporting tasks like
action recognition, spatial localization, and object
interaction.

6.2 Video Reasoning Benchmarks for VLMs

The growing capabilities of multimodal large lan-
guage models (MLLMs) (Hurst et al., 2024;
Team et al., 2024; Li et al., 2024a; Wang et al.,
2024; Zhang et al., 2024c; Xue et al., 2024)
have motivated the development of benchmarks
to evaluate video understanding. Several re-
cent efforts target third-person or general-purpose
video reasoning, such as MVBench (Li et al.,
2024b), VideoBench (Ning et al., 2023), Temp-
Compass (Liu et al., 2024b), and Video-MME (Fu
et al., 2024), which evaluate temporal ordering,
event reasoning, and modality alignment. Motion-
Bench (Hong et al., 2025) focuses on fine-grained
motion understanding.
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Figure 6: RQ3: Failure Modes. GPT-4o model predictions under different visual contexts: (i) marked objects, (ii) +
trajectory, (iii) + BEV. Top: only BEV resolves spatial fit. Bottom: all models fail.

Dataset Viewpoint Reasoning Type Object Co-visibility Temporal Scope 3D Context Task Format

SpatialRGPT-Bench (Cheng et al., 2024) Mixed (Indoor/Outdoor/Simulated) Spatial (2D/3D) Varies Single-frame Yes Gen
EmbSpatial-Bench (Newcombe, 2024) Egocentric Spatial (6 relations) Mostly Yes Multi-frame No MCQ
OpenEQA (Majumdar et al., 2024) Egocentric Spatial / Commonsense Mostly Yes Multi-frame No MCQ
VSI-Bench (Yang et al., 2024b) Egocentric Spatial (3D) Yes Multi-frame No MCQ

DISJOINT-3DQA (Ours) Egocentric Spatial (3D) No Multi-frame Optional Gen

Table 1: Comparison of recent video benchmarks closely related to DISJOINT-3DQA. Our benchmark, uniquely
emphasizes spatial reasoning without object co-visibility and evaluates models by incorporating 3D scene structure.

In contrast, our work focuses on egocentric
and embodied settings, where spatial reasoning
is grounded in an agent-centric reference frame.
Benchmarks such as EgoSchema (Mangalam et al.,
2023) and EgoSpeak (Kim et al., 2025) evaluate
language grounding and QA in egocentric con-
texts. OpenEQA (Majumdar et al., 2024) and VSI-
Bench (Yang et al., 2024b) are most relevant to
our focus on spatial reasoning. OpenEQA has spa-
tial questions that often involve co-visible objects.
VSI-Bench tasks involve generating cognitive maps
from egocentric RGB inputs, but do not enforce
object non-co-visibility and omit explicit 3D priors,
effectively asking models to infer spatial structure
without access to geometry. We explicitly enforce
disjoint-frame spatial reasoning and optionally pro-
vide 3D structure, enabling a more controlled eval-
uation of spatial reasoning capabilities in VLMs.
We show a comparison against spatial reasoning
benchmarks in Table 1.

6.3 Spatio-Temporal Reasoning with MLLMs

Recent work has highlighted the limitations of
MLLMs (Hurst et al., 2024; Team et al., 2024; Li
et al., 2024a; Wang et al., 2024; Zhang et al., 2024c;

Xue et al., 2024; Chinchure et al., 2024) in fine-
grained spatial and temporal reasoning and worked
on methods to improve them. Zhang et al. (2025)
argue that architectural scaling alone is insuffi-
cient, advocating for spatially-aware objectives,
structured supervision, and better positional en-
codings. More recent work has explored concrete
strategies to improve VLM spatial reasoning. Liao
et al. (2025) propose Group Relative Policy Opti-
mization (GRPO), which fine-tunes VLMs using
spatially grounded supervision and demonstrates
substantial gains on spatial benchmarks. Parallel re-
search explores methods such as coarse correspon-
dence supervision (Liu et al., 2024a), and unified
objectives for spatial understanding (Yang et al.,
2024a; Chen et al., 2024; Cheng et al., 2024; Cai
et al., 2024; Zhu et al., 2024).

7 Conclusion

We introduce DISJOINT-3DQA, a new benchmark
designed to evaluate spatial reasoning in egocentric
video where objects appear accors multiple frames.
Through controlled experiments varying the avail-
ability of visual, textual, and 3D cues, we reveal
key limitations of current vision-language models
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(VLMs). Despite improvements from simple object
marking and sparse 3D augmentations, models still
struggle with tasks that require integrating infor-
mation across disjoint frames. We hope our bench-
mark inspires the development of models that can
internalize 3D priors, map 3D scenes, and robustly
reason over complex egocentric environments.

Limitations

Sythetic Data. DISJOINT-3DQA is built using
the Aria Synthetic Environments (ASE) dataset.
While ASE is designed to be realistic and offers
controllability and ground truth, the direct trans-
ferability of findings to the complexities and noise
of real-world, unconstrained egocentric videos re-
mains an open question.

Question Types. DISJOINT-3DQA spans a
range of fundamental spatial relations. However,
spatial reasoning includes other complex aspects
or nuanced question types such as navigation (e.g,
“How do I find my way back from the living room
to the kitchen?"), layout (e.g, “How is the furniture
organized in the room?") and compositional spatial
reasoning (e.g.,“How do I clean my room?")

Level of “Sparsity” and Realism. The sparse
cues used, while not providing the full 3D context –
especially the BEV built from RGB-D and instance
segmentation – are relatively processed and struc-
tured. In many real-world embodied AI scenarios,
sparse 3D information might be noisier. It may
not be representative of the more incomplete, or
ambiguous nature of sparse 3D information often
encountered in real-world scenarios.

3D Cues. The BEV map, while a useful abstrac-
tion, is a 2D projection of the 3D world. It simpli-
fies the vertical dimension and can still have limi-
tations in representing complex multi-level scenes
or detailed object shapes from a top-down perspec-
tive.

Future work could address these limitations by
incorporating real-world egocentric datasets, ex-
panding the range of spatial question types, and
exploring less structured or learned representa-
tions of 3D context that more closely mirror the
noise and ambiguity found in practical scenarios.
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A Appendix

A.1 Detailed Statistics of DISJOINT-3DQA
Table 2 summarizes key statistics of DISJOINT-
3DQA. In figures 7, 8 we show the distributions
of distances between object pairs in terms of 3D
distance, number of frames. In Figure 9 we show
the distribution of labels in object relationship ques-
tions.

Scenes 1668
Total QA pairs 5399
Unique object pairs (disjoint) 856
Avg. frames per question 12
Avg. questions per scene 4

Table 2: Summary statistics for DISJOINT-3DQA.

Figure 7: Distribution of spatial distances between ob-
ject pairs in DISJOINT-3DQA. The majority of ques-
tions involve objects that are 2–6 meters apart, with a
long tail extending up to 20 meters. This highlights the
need for long-range spatial reasoning across frames.

A.2 Templates for DISJOINT-3DQA
To construct natural language questions, we de-
sign a set of templates aligned with core spatial
reasoning capabilities. These templates reflect the
underlying structure of each question type in the
dataset and are instantiated with specific object la-
bels (e.g., object_a, object_b) based on scene
annotations. The resulting questions test models
on relational reasoning, physical affordances, and
basic object semantics in egocentric video. Some
example templates are shown in 3.

A.3 Prompt for GPT-4o for Question
Paraphrasing

To diversify question phrasing while preserving
meaning, we use GPT-4o to generate paraphrased

Figure 8: Distribution of the number of frames required
to answer each question. Most questions span more
than 10 frames, underscoring the need for multi-frame
integration and memory over long temporal contexts.

Figure 9: Distribution of directions for questions on
spatial relationships.

variants of our base templates. The following sys-
tem prompt is used:

Given a spatial question in
natural language, your task is
to rephrase it in a different and
natural manner while preserving
its meaning. The rephrased
question should not alter the
answer to the question. Do not
change the objects mentioned.
Avoid yes/no inversion.

Input: [Question] [Answer]
Output: [Paraphrased Question]

A.4 Top-Down BEV Rendering Algorithm
To visualize spatial configurations and egocentric
camera motion in our dataset, we generate top-
down bird’s-eye view (BEV) maps using RGB-D
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Category Question Templates

Spatial Relationship Relative to the object_a, is the object_b on the left or right?

Is the object_a vertically above or below the object_b?

Relative Distance Are the object_a and the object_b within arm’s reach of each other?

Can you touch both the object_a and object_b from one spot?

Size and Fit Which object is larger, the object_a or the object_b?

Can the object_a fit on top of the object_b?

Can the object_a be stacked on the object_b without falling?

Scene Description List the unique objects in the scene?

What is the function of the object_a in this scene?

Table 3: Representative question templates across reasoning categories in DISJOINT-3DQA. Each template is
grounded in egocentric visual context and instantiated with object pairs sampled from real scenes.

and instance segmentation data. The algorithm
reconstructs a 3D point cloud from RGB-D frames
using camera intrinsics and extrinsics, then projects
this cloud to a global top-down map. Semantic
instance regions are outlined, and camera poses are
rendered as arrows and trajectories.

Listing 1: Core logic of BEV rendering using RGB-D
data and camera poses.
for frame in frames:

depth = load_depth(frame)
rgb = load_rgb(frame)
instance_map = load_instance_seg(

frame)

rays = compute_rays(intrinsics)
points_cam = depth * rays
points_world = transform_to_world(

points_cam , extrinsics)

instance_ids = instance_map[
valid_pixels]

color_overlay = assign_colors(
instance_ids)

# Accumulate points for rendering
point_cloud.append(points_world)
colors.append(color_overlay)

# Project to 2D grid
topdown_map = render_topdown(point_cloud

, colors)

# Overlay camera trajectory
plot_trajectory(poses , topdown_map)

A.5 Example BEV Visualizations

Figure 10 shows three BEV examples from our
dataset. Each map includes semantic instance re-
gions (outlined by color), camera trajectory (cyan
line), and start/end markers. These visualizations

help disambiguate spatial relations across distant
or occluded frames.

A.6 Crowdsourcing Protocol

We use Amazon Mechanical Turk (AMT) to col-
lect human performance baselines for DISJOINT-
3DQA. For each evaluation type, every sample is
independently annotated by three distinct workers
to ensure reliability and diversity of responses. To
ensure high-quality responses, we restrict access to
workers with a HIT approval rate of at least 95%
and more than 5,000 approved HITs. Workers are
compensated at a rate of $9.99 for answering 15
questions, estimated based on pilot timing studies.
Each annotation HIT includes clear instructions
and example completions.

We report the average response accuracy across
the three annotations per example. The template
used for obtaining answers to the questions is pro-
vided in Figure 11 and template used for validatat-
ing DISJOINT-3DQAfollows a similar template,
with YES/NO questions about the validity of the
questions, answers and bounding boxes.

A.7 LLM-Match Prompt

We use the following prompt to obtain seman-
tic similarity scores for model-generated answers,
following the LLM-Match protocol introduced in
OpenEQA (Majumdar et al., 2024). A large lan-
guage model is prompted to rate the model’s predic-
tion on a scale from 1 to 5, based on its agreement
with the reference and acceptable alternative an-
swers:

You are an AI assistant who will help
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(a) Top-down RGB map with object instance overlays.

Full trajectory Sub-trajectory (A → B)

(b) Egocentric camera path visualizations. Left: full trajectory.
Right: question-specific sub-trajectory.

Figure 10: Top-down BEV maps for a scene in DISJOINT-3DQA. (a) Instance-wise spatial layout reconstructed
from RGB-D frames. (b) Egocentric camera trajectories showing both global and question-specific paths.

me to evaluate the response given the
question, the correct answer, and extra
answers that are also correct. To mark
a response, you should output a single
integer between 1 and 5 (including 1,
5). 5 means that the response perfectly
matches the answer or any of the extra
answers. 1 means that the response is
completely different from the answer and
all of the extra answers.

Example 1: Question: Is it overcast?
Answer: no Extra Answers: ["doesn’t
look like it", "no", "it’s
sunny"] Response: yes Your mark: 1

Example 2: Question: Who is stand-
ing at the table? Answer: woman Ex-
tra Answers: ["a woman", "a lady",
"woman"] Response: Jessica Your mark:
3

Example 3: Question: Are there drapes
to the right of the bed? Answer: yes
Extra Answers: ["yes, there are
drapes", "yeah", "the drapes are
to the right of the king bed"]

Response: yes Your mark: 5

Your Turn: Question: question Answer:
answer

A.8 QA Prompt

We provide GPT-4o with a series of egocentric
frames and a natural language question. Below is
the standardized prompt format used during infer-
ence.

Unmarked Objects.

You are a helpful assistant trained to an-
swer spatial and visual questions based
on egocentric video frames. Here are
the Egocentric frames: Here is Frame 1
[Image 1]

Here is Frame 2 [Image 2]

...

Here is Frame N [Image N]

[Question text]

Please respond in the following format:

Reason: [Brief justification for your an-
swer, 15–20 words]
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Figure 11: Template used for human evaluation

Answer: [Concise answer, max 15–20
words]

Unmarked Objects.

You are a helpful assistant trained to an-
swer spatial and visual questions based
on egocentric video frames.

Here are the Egocentric frames with high-
lighted objects in the first and last frame.
The objects relevant to the question high-
lighted with a red hollow circle.:

Here is Frame 1 (object A and B marked)
[Marked Image 1]

...

Here is Frame N (object A and B marked)
[Marked Image N]

[Question text]

Please respond in the following format:

Reason: [Brief justification for your an-
swer, 15–20 words]
Answer: [Concise answer, max 15–20
words]

A.8.1 Trajectory-Aware Prompt Format
For questions where camera pose information is
available, we include 3D world coordinates per
frame in the prompt. The system receives a list
of egocentric frames along with their estimated
(x, y, z) positions to help reason about spatial lay-
out.

Example Prompt Structure:

You are a spatial reasoning assistant. Here is a
sequence of egocentric frames. Use the visual
evidence and the associated 3D camera positions
to answer the spatial question.

Frame 1 with camera’s 3D position (in meters):
(2.53, -1.92, 1.50) [Frame image]

Frame 2 with camera’s 3D position (in meters):
(3.18, -1.21, 1.48) [Frame image]

Question: Is the bookshelf to the left of the
couch?

Please respond in the following format: Reason:
[15–20 word justification] Answer: [short answer,
max 20 words]

A.8.2 Top-Down BEV Prompt Format
For certain questions, we supplement the egocen-
tric video with a top-down reconstruction of the
scene showing object instances and the camera tra-
jectory.

Example Prompt Structure:

The image shows a top-down view of a 3D scene
reconstructed from an egocentric video. The ma-
genta arrows represent the camera’s trajectory
over time, based on frames relevant to the current
question. The green triangle marks the starting
camera position, and the blue X marks the ending
position.

You need to focus on the part of the scene where
the trajectory is marked to answer the question.

Question: Is the lamp behind the armchair?

Please respond in the following format: Reason:
[15–20 word justification] Answer: [short answer,
max 20 words]

A.9 World-to-Camera Transform TB

Let cA, cB ∈ R3 denote the world-frame centers of
objects A and B. We define a camera coordinate
frame using the image where B is visible, placing
its origin at cB while preserving orientation. The
resulting rigid-body transform is:

TB =

[
RB −RBcB
0⊤ 1

]
,

RB ∈ SO(3), TB ∈ SE(3).

(1)
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This transform maps a world point xw ∈ R3 to
coordinates in the camera-B frame:

xcam = TBxw, xcam ∈ R3. (2)

By construction, TB maps cB to the origin:

TBcB = 0, TB

[
cB
1

]
=

[
0
1

]
. (3)

Applying TB to cA gives the coordinates of ob-
ject A in the camera-B frame:

c̃A = TBcA = RBcA −RBcB. (4)
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