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Abstract

State-of-the-art (SOTA) Automatic Speech
Recognition (ASR) systems primarily rely on
acoustic information while disregarding addi-
tional multi-modal context. However, visual
information are essential in disambiguation and
adaptation. While most work focus on speaker
images to handle noise conditions, this work
also focuses on integrating presentation slides
for the use cases of scientific presentation.

In a first step, we create a benchmark for multi-
modal presentation including an automatic anal-
ysis of transcribing domain-specific terminol-
ogy. Next, we explore methods for augmenting
speech models with multi-modal information.
We mitigate the lack of datasets with accom-
panying slides by a suitable approach of data
augmentation. Finally, we train a model using
the augmented dataset, resulting in a relative
reduction in word error rate of approximately
34%, across all words and 35%, for domain-
specific terms compared to the baseline model.
Our implementation is available '.

1 Introduction

Automatic Speech Recognition (ASR) like many
other NLP tasks are currently solved by using pre-
trained models rather than learning models from
scratch (Han et al., 2021). Although modern ASR
systems have an overall similar to human perfor-
mance on general data yet one important challenge
remains in accurately transcribing specialized vo-
cabulary for example, in academic settings. Figure
1 illustrates a challenge for current ASR systems. A
system relying on only audio is not able to correctly
transcribe the domain-specific terms Kenya-Birth
and Kenya Rwandan (in red).

As conference talks and lectures often include
presentation slides, humans can correctly identify
these words by using this additional context. There-
fore, we propose to integrate visual context (slides)

"http://doi.org/10.6084/m9.figshare.30158932
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Figure 1: An example of ASR transcription before
and after using multi-modal input. Left: ASR base-
line makes mistakes (in red) for multiple words. Right:
Model correctly transcribes words (in blue) using multi-
modal inputs.

into existing state-of-the-art ASR system and en-
able them to also exploit this context. As shown on
the right side of Figure 1, the final model is able to
properly transcribe these words as Kinyabert and
Kinyarwanda (in blue) when the correct words are
presented to the model in the additional informa-
tion provided from the accompanying slides of the
talk.

In a first step, we extend an existing benchmark,
the ACL dataset (Salesky et al., 2023) with ad-
ditional slide context, as well as a, target auto-
matic evaluation for domain-specific terms to eval-
uate this assumption. Furthermore, we verify our
assumption that these terms are challenging for
SOTA models like Whisper (Radford et al., 2023),
Phi-4-multimodal (Abouelenin et al., 2025) and
SALMONN (Tang et al., 2023).

When integrating visual context into ASR mod-
els to handle domain-specific words, we want to
keep the strong SOTA performance of current large-
scale models. Therefore, we focus on approach that
can add this ability to existing models. One inter-
esting aspect of current models is their ability to
handle zero-shot task. To this end, we first pro-
pose a zero-shot integration that is already able to
exploit the visual context.
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In a second step, we investigate methods to train
the model to better integrate the contextual infor-
mation. This gives rise to the challenge that we
need dedicated training data for this scenario. We
address this problem by using large language mod-
els (LLMs) to augment ASR training data with
presentation slides.

The primary contributions of this paper are:

* Analysing the ability of ASR to transcribe
domain-specific words, particularly from scien-
tific talks.

¢ Integration of multi-modal information into ex-
isting pre-trained models.

* Application of training approaches with aug-
mented data to improve the transcription on
domain-specific terms.

2 Related Work

There are multiple work where model performance
is improved by additional information integration.
In this regard, (Maergner et al., 2012) create a lec-
ture specific vocabulary, based on the content of
the related documents of the lectures. Construction
of a vocabulary with relevant content improves the
model performance and results in a reduced word
error rate of up to 25 percent.

Additionally, combining modalities for the im-
provement of ASR is also considered in the liter-
ature. Starting from Hidden Markov model for
speech recognition and manually created features
represented visual components, combining modal-
ities were also considered for the task of estab-
lishing relation between words and non-linguistic
context (Fleischman and Roy, 2008) to compen-
sate data deficiency. Later extraction of visual
feature from videos using deep learning architec-
tures was incorporated into ASR models on open-
domain videos (Miao and Metze, 2016). These
approaches are extended with SOTA sequence to
sequence model (Gupta et al., 2017) which helped
to extract relevant context information from the
videos for ASR. (Sun et al., 2022) proposes using
words from slides and presents GNN encoding us-
ing tree-RNN for contextual speech recognition.
In addition, (Huber and Waibel, 2025) performs a
technique of continuous learning of new words in
ASR from slides.

Automatic speech recognition has made a signif-
icant progress in recent years by generating accu-
rate transcriptions. Whisper (Radford et al., 2023)
has made it possible to generate better transcrip-
tions on unseen datasets. However, transcribing

domain-specific datasets or low resource datasets,
abbreviations, disfluencies still posses challenge
for the SOTA ASR models(Ma et al., 2023). Many
approaches focus on fusing audio and visual modal-
ities to address challenges such as proper name
transcription, error correction, noisy environments,
and multi-modal context (Peng et al., 2023),(Ku-
mar et al., 2023).

In recent work, the integration of presentation
slides into Multi-modal ASR has gained atten-
tion due to the potential benefits of leveraging vi-
sual information to improve transcription. The
SLIDESPEECH dataset (Wang et al., 2024b) a
large scale audio-visual corpus enriched with slides
is created from online conference videos. How-
ever only a part of their dataset is transcribed and
synchronized with the slides. In a previous work,
(Yang et al., 2024) creates a multi-modal-assisted
LLM-based ASR model, and uses SLIDESPEECH
dataset along with its accessible keywords provided
with the dataset to enhance the ASR performance.
In contrast to this paper, we explore a strategy
to augment existing domain-specific speech-only
datasets with images of slides, to enhance model
performance on domain-specific vocabulary. Un-
like (Yang et al., 2024), we further demonstrate
that incorporating images rather than textual con-
text yields additional improvements in ASR per-
formance. Similar to the SLIDESPEECH dataset
(Wang et al., 2024a) creates a dataset SlideAVSR,
using scientific paper explanation videos. They
propose a FQ ranker in this work which helps to
select words based on their frequency to be used
as prompts. In contrast, we focus on words unique
to specifically scientific domain by removing all
words commonly existing in a general dataset.

Methods of data augmentation has been pro-
posed to create synthetic data with variations of au-
dio and visual modality for the purpose of enhanced
speech recognition (Oneatd and Cucu, 2022). In
this work, we augment an existing speech-only
dataset and enrich them with visual modality for
the purpose of multi-modal ASR. (Chen et al.,
2024), (Wang et al., 2024a) present a multi-modal
academic dataset for audio-visual recognition and
understanding tasks. Both datasets requires man-
ual annotation, which is both time consuming
and expensive, making such an approach to large
data collection non-feasible. In contrast, we show
that ASR model performances can be improved
when trained through an automatically augmented
dataset. While most of the conference videos avail-
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able are in English, our data augmentation allows
utilization of datasets in other languages addition
to english.

3 Multi-modal Scientific Presentation
Benchmark

In this section we analyze three baseline mod-
els on the ability to transcribe on domain-specific
words. The models are evaluated using an evalu-
ation dataset. We describe the dataset in Section
3.1 and give details of model performance on the
dataset in Section 3.4.

3.1 Benchmark

For evaluating the model performances we use the
ACL 60/60 dataset (Salesky et al., 2023). This
dataset consists of a development (dev) and eval-
uation (eval) data each with audio recordings and
manual transcripts of technical presentations from
ACL 2022 conference. Both the dev and eval sets
consist of five recordings each. Each of these
datasets has a duration of approximately one hour.
The dataset consists of manually created aligned
text and audio segments which we consider for our
task.

3.2 Maetric

The traditional Word Error Rate (WER) metric is
employed to evaluate the performance of ASR mod-
els, assigning equal weight to all words in the tran-
script. In addition to WER, this study places partic-
ular emphasis on the ASR performance for words
that are frequently encountered within scientific
domains. These words are referred to as domain-
specific words, and the term special words is used
interchangeably throughout this paper. In this work,
we define a domain specific-word as words that
does not occure in the general domain corpus (in
most experiements this is the Must-C (Di Gangi
et al., 2019) corpus) We measure the quality of the
domain-specific words with respect to the reference
and the hypothesis similar to recall and precision.
First, we investigate how many domain-specific
words in the reference are missed or wrongly tran-
scribed by the model, by aggregating the deletion
and the substitution counts, and dividing it by the
total occurrences of domain-specific words in the
manual transcript.

In this paper, we calculate a reference-centric
WER metric WER;, .

WER, . — Isubstituted+deleted|
tret — Trecognized +substituted-+deleted]

Next, we calculate the WER; I (¢ evaluate how
many domain-specific words in the model’s output

are incorrectly transcribed.
WER, — Isubstituted+inserted|
thyp — Trecognized +substituted+inserted]

3.3 Baseline

To study the ability of ASR models to transcribe
domain-specific words we use the models, Whisper,
SALMONN and Phi-4-multimodal.

Whisper: Whisper is a transformer-based
encoder-decoder model developed by OpenAl
for ASR and translation tasks (Radford et al.,
2023). Trained on approximately 680k hours of
web-sourced speech data, it encodes input audio
into features, which are then processed by the
decoder to generate transcriptions using positional
encoding and prior outputs. In this work, we use
the Whisper Large V2 model.

SALMONN: The SALMONN model, developed
by Tsinghua University and ByteDance (Tang et al.,
2023), extends LL.Ms such as Vicuna (Chiang et al.,
2023) to directly process and understand general
audio inputs, enabling strong performance on var-
ious speech and audio tasks. It integrates outputs
from Whisper (Radford et al., 2023) and BEAT's
(Chen et al., 2022) encoders using a window-level
Q-Former module (Zhang et al., 2024), producing
augmented audio tokens aligned with the LLM’s
internal representations. In this work, we use the
SALMONN 13B v1 model.

Phi-4-multimodal: Phi-4-multimodal (referred
to as Phi) is a 5.6B-parameter, instruction-tuned
multi-modal transformer developed by Microsoft.
It supports unified processing of text, image, and
audio inputs for vision-language, vision-speech,
and speech-language tasks, with a context length
of up to 128K tokens. The model employs 32
transformer layers with Grouped Query Attention
(GQA) (Ainslie et al., 2023) for efficient long-
context handling. Vision and audio features are
projected into the text embedding space using two-
layer MLPs. Phi achieves strong performance
across multilingual and multi-modal benchmarks.

3.4 Analysis

We evaluate the models on their ability to transcribe
the ACL dataset specifically on domain-specific
words.

Table 1 gives the statistics on the domain-
specific words extracted from the dataset with this

16114



Table 1: Statistics of domain-specific words

| | Whisper | SALMONN | Phi
Data Total Unique Times Times not | Times Times not | Times Times not
special words special words | recognised recognised | recognised  recognised | recognised recognised
ACL dev | 333 130 | 251 82 | 204 129 | 244 89
ACL eval | 276 115 | 150 126 | 116 160 | 150 126

Table 2: WER, WER; . and WERthyp for Whisper,

ref

SALMONN and Phi.
Model ACL dev ACL eval
WER __ WER,_, WER,_ | WER WER,_, WER,
Whisper 8.81 24.62 20.57 13.45 45.65 44.03
SALMONN | 17.42 38.44 37.31 20.31 57.97 57.04
Phi 7.01 26.73 25.38 18.58 45.65 44.65

approach. The count of total special words in the
ACL dev dataset is 333 of which 130 are unique.
Similarly, there are in total 276 special words in
the ACL eval dataset of which 115 are unique.

The results of the model performance on the
ACL dataset are summarized in Table 2. We find
that for all models, the word error rate (WER,, _,
and WERy, ) on domain-specific words is sig-
nificantly higher compared to WER on all words.
Whisper makes approximately three times more
mistakes on ACL dev and eval datasets. Similar re-
sults can be also observed for SALMONN and Phi
models which implies that all models consistently
make more mistakes while transcribing domain-
specific words. Additionally, since WER,, . and
WER;,  are similar, there appears to be no specific
problem with over or under-generating domain-
specific words.

We also present the number of times the models
are able to recognize the special words. Columns
Times recognized and Times not recognized of Ta-
ble 1 show the details of how many of the domain-
specific words are recognized and not recognized
by Whisper, Phi and SALMONN models respec-
tively. We find that Whisper identifies the highest
number of domain-specific words on both the ACL
dev and ACL eval sets compared to all other mod-
els. Notably, Phi matches Whisper’s performance
in recognizing domain-specific words on the ACL
eval set. Whereas the overall results demonstrate
that the domain-specific words pose a difficult chal-
lenge for state-of-the-art ASR systems. This moti-
vates the integration of additional context like pre-
sentation slides. The following section describes
our approach of additional context extraction and
integration to models.

4 Multi-modal Context Extraction and
Integration

Our analysis on Section 3.4 shows that the current
ASR models make up to three times more mistakes
while transcribing domain-specific words.

Based on this analysis, we propose a multi-
modal context extraction and integration system.
We build our system on top of an existing ASR
model and enrich it through multi-modal informa-
tion. We propose both a cascaded approach and
an end-to-end approach to incorporate additional
information into the model. In both cases, we focus
on ASR systems based on multi-modal foundation
models to allow an easy integration of additional
context. Figure 2 provides an overview of both
approaches.

In the cascaded approach, we represent the im-
portant domain-specific terms explicitly as words
and provide these words to the ASR system. In
a first step, we obtain text from extracted images.
In a second step, we apply additional filtering on
these words. Finally, these words are presented as
context to the ASR system.

One disadvantage of this approach is that only
the text from the slide is represented and that we
can be harmed by cascading errors. Therefore, we
also investigate the direct integration of the image
in an end-to-end fashion. In this case, the image
is provided directly as additional context to the
multimodal ASR system.

The following section provides the details on
our approach to text extraction from images and
integration into models.

4.1 Image Frame Extraction

To obtain the relevant context, we begin with the
corresponding video recordings of the scientific
talks of the ACL dataset and extract aligned image
frames (denoted by 1 in Figure 2). Since presenta-
tion video recordings are not usually accompanied
by their respective slides, we extract frames directly
from the recordings. Our audio segments are less
than 30 seconds, therefore we assume that while
demonstrating the content of a particular segment,
the presenter uses only one single slide.
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For each of the audio files, we use the avail-
able audio segments, with their durations and off-
set timestamps relative to the full recording. This
information is used to align segments with the orig-
inal video and extract a single frame from the mid-
point of each video segment. The images are then
directly integrated into the end-to-end models or
processed to extract the specific vocabulary for the
cascaded approach.

4.2 Text Extraction

In the second component, (denoted by 2 in Fig-
ure 2) we perform text extraction on the obtained
frames from the previous step (Section 4.1). To
perform this task, we follow two methods.

For the first method, we use LLaVa-NeXT (Liu
et al., 2024) (referred to as Llava in rest of this
paper), due to its ability of better visual reasoning
and optical character recognition (OCR) capabil-
ity. OCR is a strategy to convert texts in images
into a machine-readable text format. We provide
the model with previously extracted image frames
and a suitable prompt as input (explained in Ap-
pendix 10), to generate information for each pro-
vided frame.

For our second method, we consider a traditional
OCR python library Pytesseract > on the image
frames and extract all possible texts.

The both methods results in a large number of
extracted texts, which needs to be filtered further
(denoted by 3 in Figure 2). Vision-language mod-
els (VLMs) are susceptible to hallucination when
extracting text from images. To mitigate this is-
sue, we apply a frequency-based filtering strategy:
only words appearing at or above a threshold are
retained. Subsequently, as the primary motivation
behind this is to obtain only domain-specific words.
To this end, we filter the extracted text by remov-
ing all common words. This is done by discarding
all words present in a general presentation dataset
(Di Gangi et al., 2019), resulting in a collection of
only domain-specific words.

4.3 Context Integration

The extracted information is then provided to an
existing multi-modal ASR model (denoted by 4
in Figure 2). Such ASR systems include an LLM
which can be prompted with text to perform the
required transcription task. In this work, we focus
on improving ASR performance by integrating the
context as part of such prompts.

Zhttps://pypi.org/project/pytesseract/

Video of the Talk

S > Image Extracted Filtered
° Frames Text Text
—

Extraction of Domain Specific Words

kinyabert, kinyarwanda...

e //
4\/\/\M ?Task instruction‘ Context I

Audio

Pre-trained ASR model

| am presenting our paper, Kinyabert, a morphology-Aware
Kinyarwanda language model

Figure 2: Overview of our two approaches. The green
arrows represent the end-to-end approach.

In particular, we use the additional information
to enrich the input to SALMONN and Phi model.
By default, there exists text prompts used in these
models that provides instruction (explained in Ap-
pendix 10) about the task to be performed. We
modify the default text prompt with the informa-
tion extracted from the previous step (Section 4.2).

5 Data Augmentation

ASR systems with integrated LLMs can be
prompted in a zero-shot manner. Existing work
(Wei et al., 2021) has shown that compared to zero-
shot, fine-tuning of models can be useful to achieve
further improvements. To this end, we first perform
a zero-shot prompting and further enhance the ca-
pability of the ASR model to generate accurate
transcriptions by incorporating and training with
additional information.

Enhancing ASR using visual modality, a dataset
comprising both visual (e.g. images or slides) and
speech data is essential. To address the lack of re-
quired relevant multi-modal domain-specific data,
this work synthesizes a dataset by data augmen-
tation. For our purpose, we augment images to
an existing dataset where we generate images that
corresponds to presentation slides. This generated
image is then added to the dataset lacking inherent
similar multi-modal content. This novel strategy
of automatically generating and augmenting a vi-
sual modality allows us to use any existing speech
dataset while also supporting domain-specific train-
ing.

5.1 Generation of Presentation Slides

In this approach, we generate presentation slides
for existing speech content through a series of steps.
First, we segment the speech transcript into smaller
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textual units, selecting a chunk size of eight sen-
tences. Our choice of chunk size results in approx-
imately 15-20 slides for a 20-30 minutes speech,
ensuring an allocation of 60-90 seconds of speech
per slide.

Next, we employ LLaMA 3 to generate LaTeX
code for these text chunks. We guide LLaMA 3
with a pair of instructions consisting of a high level
system prompt and a more task specific prompt to
generate latex code based on the text chunks (ex-
plained in Appendix 10). In the final stage, we con-
vert the generated LaTeX code into images. This
involves first compiling the LaTeX code into PDFs
and subsequently extracting images from the gen-
erated PDF files. We adopt a methodology where
images are generated from PDFs rather than di-
rectly utilizing the PDFs, as such resources are
often unavailable in standard datasets. Conversely,
presentation videos are typically accessible, which
allows us to extract time-aligned slides correspond-
ing to the speech, as described in Section 4.1.

5.2 Text Extraction

After obtaining the images from the generated
slides, we follow the approach of text extraction by
Llava and Pytesseract as described in Section 4.2.
Since the target dataset for information augmenta-
tion is a general purpose dataset, we apply a sepa-
rate filtration strategy on the extracted text, differ-
ing from the one used for the ACL datasets. For
each talk, we retain only the words that are relevant
to the talk by discarding words that also appear
in all other talks within the dataset. We consider
such words that are unique to each talk to be the
domain-specific words for that particular talk.

6 Experimental Setup and Results

This section provides details on our experimen-
tal setup in Section 6.1 and information about the
dataset used for training is included in Section 6.2.

6.1 Experimental Setup

We adopt two models, SALMONN 13B vl, and
Phi-4-multimodal to perform our experiments. For
extracting text from the images with LLaVA-NeXT,
we use llava-v1.6-mistral-7b model which uses
CLIP-ViT-L-336px (Radford et al., 2021) as im-
age encoder and LLaMa (Touvron et al., 2023) for
language understanding. We provide the model
with an image as well as a suitable prompt to gen-
erate the text from the image.

For generation of slides we use LLaMa 3 (Dubey
et al., 2024) to create latex code and use the python
library subprocess to execute the shell commands
pdflatex and pdftoppm respectively to generate latex
code to PDF and image.

6.2 Dataset

For training the ASR model, we use MuST-C (Mul-
tilingual Speech Translation Corpus) (Di Gangi
et al., 2019) which is primarily designed as a
speech translation dataset. The dataset consists of
around 400 hours of audio recordings from English
TED Talks speech, transcription and translated tran-
scripts in multiple languages, which are applicable
to train model for speech recognition and speech
translation tasks.

Since MuST-C does not contain any visual
modality, we augment it with the generated im-
ages as described in Section 5. Based on the text
extraction and filtration approach described in Sec-
tion 5.2, we obtain 16,830 domain-specific words
for 2551 talks present in the dataset.

7 Results

In this section we first analyse the quality of the
text extracted using Llava, Phi and Pytesseract in
Section 7.1. Next, we describe the zero-shot perfor-
mances of the model on the extracted text presented
in Section 7.2 and finally we compare the zero-shot
performance of the model to a model fine-tuned us-
ing the additional information elucidated in Section
7.3.

7.1 Quality of the extracted text

We perform an analysis to check the quality of the
extracted text from the images using Pytesseract,
Llava and Phi models. This assessment is essen-
tial, as the extracted text is intended to support
the model’s transcription of domain-specific terms.
For this, we compare the special words that are
present in the reference text to the extracted text.
Table 3 summarizes this result. We find that both
the Llava and the Phi model produces a large num-
ber of unique special words of which 62% and 66%
are common to the special words present in the
reference of ACL dev and 52% is common to the
special words in reference of ACL eval dataset.
We also measure the performance of the ASR
models on the Llava and Phi and Pytesseract ex-
tracted words. The considered models for our quali-
tative analysis are SALMONN, Phi and Phi+image
(Phi trained to perform ASR with image) shown
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Table 3: Statistics of domain-specific words extracted using Llava, Phi models as well as OCR library Pytesseract
and counts of special words recognized and not-recognized by SALMONN, Phi and Phi+image (Phi
trained to perform ASR with image).

| | | SALMONN | Phi | Phi + image
Dataset | Text Unique Common | Times Times not | Times Times not | Times Times not
source special words with ref | recognised recognised | recognised recognised | recognised  recognised
ACL ref 130 - 204 129 244 89 278 55
dev Phi 321 86 164 96 193 67 218 42
Llava 367 81 173 96 204 65 231 38
Pytesseract | 475 74 165 77 180 62 205 37
ACL ref 115 - 116 160 150 126 179 97
eval Phi 645 60 77 108 103 82 124 61
Llava 669 60 73 107 95 85 125 55
Pytesseract | 866 42 56 59 63 52 76 39

as separate columns in Table 3. As an example,
consider the ACL dev dataset where Phi extracted
text contains 86 unique special words common to
the reference. These 86 words are present in total
260 times in the dataset. The results presented for
each ASR models show the number of times out
of 260, it has been recognized and not recognized.
Consider the results for SALMONN which is able
to recognize the Phi extracted special words 164
times but fails for 96 times. Similar ASR model
performance results are shown in Table 3 for the
Llava extracted text, traditional OCR pytesseract
extracted text and the reference.

Table 4: WER, WER,,_, and WER;, = scores using
context words from Llava, Phi, Pytesserect and refer-
ence for SALMONN and Phi zero-shot approaches.

ACL eval
WER
20.31
16.54
28.08
28.96
14.09
18.58
18.29
15.62
20.23
12.30

Model ACL dev
WER
17.42
10.31

15.36

WER,,,
3844
2862
27.69
31.82
17.12
26.73
2118
20.38
2231
18.02

WER,,
37.31
28.09
27.13
30.96
20.66
2538
200
19.46
20.34
14.95

WER,,
57.97
4833
58.38
51.30
35.87
45.65
389
38.38
3217
37.68

WER,,
57.04
775
57.92
5130
34.93
44.03
38.20
37.36
3217
36.06

SALMONN

+ LlaVA prompts
+ Phi prompts

+ Pytesseract prompts | 15.93
+ Ref prompts 10.93
Phi 7.01
+ LlaVA prompts 6.95
+ Phi prompts 7.05
+ Pytesseract prompts | 9.06
+ Ref prompts 7.01

7.2 Zero-shot performance of the ASR model
on the extracted data

We evaluate the zero-shot performance of
SALMONN and Phi models providing the ex-
tracted domain-specific words as prompts and com-
pare it to the model without any additional prompts.

Table 4 shows the results of these experiments.
It includes our experiments with two models in five
configurations. The first configuration referred to
as base configuration is the models without any
additional prompts shown in first and sixth row of
the table. The remaining four configurations con-
siders model with additional context using Llava,
Phi, Pytesseract and from the reference text. We
conduct experiment using the special words from
reference to show the model performance in the

best possible configuration.

We find that the model configurations containing
additional context outperforms the base configura-
tion. For the SALMONN model the configuration
containing Llava context outperforms the base con-
figuration by 26% and 25% on ACL dev and 17%
and 16% on ACL eval on WER;, . and WERy,
respectively. For the Phi model the configuration
with additional context extracted from Phi achieves
the best results. It outperforms the base configu-
ration by 24% and 23 % on ACL dev and by 16%
and 15% on ACL eval on WER;, . and WERy,
respectively.

The SALMONN configuration with Phi context
as well as the Pytesseract context perform poorly
on ACL eval in comparison to the base configura-
tion. In contrast, we find consistent improvements
over the base configuration for the models when
special words obtained from Llava are considered.
As a result, for further experiments presented in the
paper, we only consider special words from Llava.

Table 5: WER, WER;, . and WER;,  scores of differ-
ent setup using SALMONN and Phi.

Model ACL dev ACL eval

WER WER;,,, WER;, | WER WER;, ., WER,,
SALMONN
Zero-shot 17.42 38.44 37.31 20.31 57.97 57.04
Zero-shot Llava 10.31 28.62 28.09 16.54 48.33 47.75
Zero-shot Pytesseract 15.93 31.82 30.96 28.96 51.30 51.30
Fine-tuned 10.9 30.33 25.48 15.74 51.45 50.0
Fine-tune with Llava 10.24 19.33 17.80 14.85 48.89 46.82
Fine-tune with Pytesseract | 10.07 21.49 19.83 16.75 48.70 46.85
Fine-tuned with ref 9.67 10.51 8.31 14.63 29.35 26.13
Phi
Zero-shot 7.01 26.73 25.38 18.58 45.65 44.03
Zero-shot Llava 6.95 21.18 20.0 18.29 38.9 38.20
Zero-shot Pytesseract 9.06 22.31 20.34 20.23 32.17 32.17
Fine-tuned 9.03 22.30 20.83 13.99 40.22 39.33
Fine-tune with Llava 8.81 17.41 15.85 13.66 35.0 33.52
Fine-tune with Pytesseract | 8.87 16.94 15.55 13.33 31.53 30.91
Fine-tune with image 8.70 14.13 13.48 12.23 30.56 30.17
Fine-tuned with ref 6.73 16.22 14.68 18.70 41.30 40.22

7.3 Fine-tuning performance using
augmented data

For this experiment, our goal is to check if the
performance of the ASR models can be improved
further by fine-tuning compared to zero-shot per-
formance. To this end, we fine-tune SALMONN
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Manual Transcript

6 am presenting our paper KinyaBERT: a Morphology-aware Kinyarwanda Language Model. j

Zero-shot model

G am presenting our paper kenyabirth a morphology aware kenyarwanda language model. j

Zero-shot Llava

Q am presenting our paper Kenyabert a morphology-aware kenyarwanda language model. j

Fine-tuned without added context

6 am presenting our paper, "Kenya Bert: A Morphology-Aware Kenyan Swahili language model.ﬂ

Fine-tuned with Llava prompts

[I am presenting our paper, "Kinyabert: A Morphology-Aware Kinyarwanda Language Model." j

Fine-tuned with images

[I am presenting our paper, "KinyaBERT: a Morphology-aware Kinyarwanda Language Model.ﬂ

Figure 3: Example of transcriptions generated by different models with respect to the manual transcript. The figure
shows that the best possible transcript is generated while fine-tuning the ASR model with llava prompts and image.

and Phi using the augmented dataset obtained in
Section 5 and compare it to additional setups de-
scribed below. Table 5 summarizes the results of
our experiment.

The upper part of the table illustrates the
SALMONN specific setups and their correspond-
ing results while the lower part contains the Phi
specific details. The following provides details on
the setups of our experiment that corresponds to
Table 5.

Zero-shot Llava: The model with additional con-
text using Llava (Section 7.2).

Zero-shot Pytesseract: The model with additional
context using the OCR library Pytesseract (Sec-
tion 7.2).

Fine-tuned: The model fine-tuned without any
additional context using the configurations used by
the model authors i.e., no changes are made to the
task description. (Section 7.2).

Fine-tuned with Llava: The model fine-tuned
with additional context words from Llava (default
setup).

Fine-tuned with Pytesseract: The model fine-
tuned with additional context words using Pytesser-
act .

Fine-tuned with image: The model (only done for
Phi since it accepts image as input) fine-tuned with
image instead of additional text as context.

Fine-tuned with ref: The model fine-tuned with
context obtained as special words from transcripts
(best possible setup).

For the setups mentioned above that uses ad-
ditional context words, we modify the model’s
task description with additional special words and
change the instruction to consider the special words
while transcribing (explained in Appendix 10). Ad-
ditionally, we make sure that during extraction of

special words as outlined in Section 5, there exists
no overlap between special words from training
and evaluation datasets.

As illustrated in Table 5, both SALMONN and
Phi models improve its overall performance when
fine-tuned with Llava context words over fine-tuned
with no context words. For the SALMONN setups,
fine-tuning with Llava words achieves the best pos-
sible scores across both the datasets. We observe,
similar results for the Phi setups with additional
context words. We conduct additional experiments
with Phi using image instead of extracted words
as addition context. We find this to be our best
possible overall setup for Phi, even outperforming
the setup containing context words from reference.
This improvements can be attributed to the fact that
in addition to text in the slides, the included fig-
ures, plots and tables also contribute to the model
performance.

We perform a significance test by using matched-
pair test for error counts for two hypothesis 1) tran-
scripts from model using only speech 2) transcripts
from model using speech and additional context.
We find a p-value of less than 0.001 showing the
significance of our results.

Figure 3, shows an example prediction by the Phi
model with each setup described earlier. Consider-
ing both the Zero-shot model and the Fine-tuned
model without context words, we find that the mod-
els make mistakes on both words KinyaBERT and
Kinyarwanda. The zero-shot with Llava model
improves but is unable to transcribe correctly.
Whereas the Fine-tuned model with LLava gen-
erates the correct transcription likely due to its ac-
quired ability to incorporate from the additional
information. Finally, the model trained with im-
ages not only accurately transcribes the content
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but also preserves the textual formatting as it ap-
pears in the presentation slide. As illustrated by the
above example, our experiments show encourag-
ing results in improving existing ASR performance
either using context words or images.

To be used for ASR of scientific talks, the ap-
proach requires minimal additional effort to setup.
An example setup comprises of a system to gen-
erate images from slides of a presenter which is
directly utilized by the ASR models for improved
transcription.

8 Conclusion and Future work

Current ASR systems exhibit challenges in accu-
rately transcribing domain-specific words. This
limitation hinders their effectiveness in various ap-
plications. We present an analysis of the model per-
formance on transcribing domain-specific words
to demonstrate this. This paper investigates the
potential of augmenting ASR models with informa-
tion extracted from slides to improve performance.
We explore the use of visual information extracted
from video recordings of slides as prompts. When
trained with additional context, the model develops
ability to generate better transcription on domain-
specific words. This shows the effectiveness of
multi-modal information in enhancing ASR perfor-
mance.

The results presented in Section 7 highlight the
potential for further advancements. We find that
integrating image as an additional input improves
ASR performances for Phi and as future work pro-
pose to investigate on SOTA ASR uni-model per-
formances on such end-to-end approaches.
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Limitations

While our augmented data approach proves ef-
fective and results in significant improvements in
model performance, it is not without limitations,
presenting opportunities for future research.

In our work we consider slides to extract domain-
specific words that can be used as additional infor-
mation for context integrated ASR. Slides often
contains summarized, bullet-pointed information
which may lead to omit domain-specific words to
some extend which may effect the models ability
to recognize them correctly. Speakers often elab-
orate the slides with their own words introducing
mismatch between speech and the slide content
which also creates similar problem. Additionally,
we use OCR and vision-language models (VLMs)
are susceptible to hallucination when extracting
text from images. Although we took measures to
mitigate this issue but with the expense of some
important domain specific words. Apart from that,
the ASR model in this work integrates a pre-trained
LLM. LLMs are heavily dependent on the qual-
ity and diversity of their training data. Although
we achieve improved model performance with our
augmented data there remains further scope of im-
provement. When integrating additional informa-
tion to the LLM, it may fail to effectively combine
these sources of information, leading to misaligned
predictions for some cases. Incorporating LLMs
into the ASR pipeline for context integration intro-
duces substantial computational overhead, which
can slow down the processing time.

On the other the LLM might misinterpret the
contextual information for the speech and lead to
produce incorrect transcription.

Our experiment involving image integration into
the existing ASR model is limited to the Phi-4-
multimodal model. Further comprehensive studies
are required to draw conclusive insights into model
performance under such configuration.
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10 Appendix

Textual Context Integration to SALMONN
We instruct SALMONN by providing text prompts
to Vicuna that ask questions about the processed
audio. The LLM then responds with textual an-
swers based on its understanding. The model is
trained for various speech related tasks with suit-
able prompt structure, as follows

USER: [Auditory Tokens] Can you transcribe the
speech into a written format? \n ASSISTANT:

Here, [Auditory Tokens Jare the output tokens of the
window-level QFormer, followed by user prompts
in the form of questions with respect to the task
performed by the model on the given audio.

Our extracted domain-specific terms from ac-
companying slides are included in prompts with
the following structure

USER: [Auditory Tokens] Please can you
transcribe the speech referring to the
following tokens wherever needed:
kinyarwanda, kinyabert, nlp, pre-trained,
...7 \n ASSISTANT:

Here, domain-specific words like Kinyarwanda,

Kinyabert, NLP, and pre-trained are included in

the user prompt. The overall prompt is designed

to emphasize both these special words and the task
itself.

Context Integration to Phi Depending on the
input required for training Phi-4-multimodal modal,
we construct its prompt format.

Format for Speech-Language with special
words:
user_message = {
"role"”: "user”,
"content”: "<|audio_1|>\n" + Can you
transcribe the given speech referring to
the following words wherever needed

#### kinyarwanda, kinyabert, nlp, pre-
trained, ...?

Format for Speech-image-Language:

user_message = {
"role": "user”,
"content”: "<|image_1|>\n<|audio_1|>\n" +
Can you transcribe the given speech?

Model Instruction for Text Extraction To ex-
hibit LLaVa-Next models OCR quality an extract
text from slides we provide the model with an im-
age and a suitable text prompt. the structure of the
instruction is given as follow:
"[INST] <image>\nUSER: Extract the text from the
sides? [/INST]"

the <image> tag is replaced with the image input
for LLaVa-Next following with the user prompt.
The instruction should always start with the [INST]
tag and end with [/INST] tag.

Model Instruction for Data Augmentation For
creating the multi-modal context for data augmen-
tation, we use LLaMa 3 and guide it with a pair
of instructions consisting of a high level system
prompt and a more task specific prompt to generate
latex code based on text chunks. This consists of a
system prompt and a user prompt as follows:

{"role": "system”, "content”: "you are a
presenter who wants to inform and inspire”},

{"role": "user"”, "content"”: generate one
presentation slide with the main points and
concepts in latex, from the following text:<
chunk>}

The chunk in the user prompt is replaced by the
parts of talk for which we want to generate the
latex code.
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