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Abstract

Ambiguity is pervasive in real-world questions,
yet large language models (LLMs) often re-
spond with confident answers rather than seek-
ing clarification. In this work, we show that
question ambiguity is linearly encoded in the
internal representations of LLMs and can be
both detected and controlled at the neuron level.
During the model’s pre-filling stage, we iden-
tify that a small number of neurons, as few as
one, encode question ambiguity information.
Probes trained on these Ambiguity-Encoding
Neurons (AENs) achieve strong performance
on ambiguity detection and generalize across
datasets, outperforming prompting-based and
representation-based baselines. Layerwise anal-
ysis reveals that AENs emerge from shallow
layers, suggesting early encoding of ambigu-
ity signals in the model’s processing pipeline.
Finally, we show that through manipulating
AENs, we can control LLM’s behavior from
direct answering to abstention. Our findings
reveal that LLMs form compact internal rep-
resentations of question ambiguity, enabling
interpretable and controllable behavior.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across various natural language
processing tasks, particularly in question answering
(QA). However, they often struggle with answering
ambiguous questions, resulting in misleading or
incorrect responses (Cole et al., 2023; Zhang et al.,
2024). Since ambiguity is common in real-world
QA scenarios (Min et al., 2020; Trienes and Ba-
log, 2019), addressing this limitation is crucial for
developing more trustworthy and reliable language
systems.

Prior work has primarily addressed ambiguity
from a behavioral standpoint—using prompting
strategies (Kuhn et al., 2022), sampling-based ap-
proaches (Cole et al., 2023), or training methods
that encourage abstention (Krasheninnikov et al.,

Ambiguous Question: Who has won the most men’s world cups?
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Figure 1: Overview of our key findings. A small set of
neurons, Ambiguity-Encoding Neurons (AENs), carry
strong, linearly decodable signals of question ambiguity
in LLMs. By steering the activations of these neurons
alone, we causally shift model behavior from confi-
dently answering ambiguous inputs to ambiguity-aware
responses.

2022). Yet, these techniques suffer from several
limitations: prompt-based cues can be brittle and
model-dependent; instruction tuning introduces
dataset-specific biases; and decoding-time sam-
pling is computationally costly. Crucially, these
methods treat ambiguity as an input-output phe-
nomenon, without investigating its internal repre-
sentation.

In this paper, we take a fundamentally differ-
ent approach: we ask how ambiguity is encoded
inside the model. Specifically, we study whether
ambiguous questions are represented differently in
the internal representations of LLMs from clear
questions and whether these representations can
be used to control LLMs’ ambiguity-related behav-
ior. We first identify signals of question ambiguity
through LLM’s internal activations, and then in-
tervene on specific neurons to shift behavior from
confident answering to abstention.
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Our key finding is that question ambiguity is
sparsely encoded, often in as few as a single neu-
ron. We identify these Ambiguity-Encoding Neu-
rons (AENs) as predictive of question ambiguity
across datasets and models, and show that steer-
ing their activations causes consistent changes in
output behavior, as shown in Figure 1. These neu-
rons emerge early in the model’s pre-filling stage,
suggesting that ambiguity is recognized before gen-
eration begins.

We validate our findings in two tasks: ambi-
guity detection and abstention steering, across
two datasets (AmbigQA (Min et al., 2020) and
SituatedQA (Zhang and Choi, 2021)) and three
instruction-tuned open-weight models (LLaMA 3.1
8B Instruct (Grattafiori et al., 2024), Mistral 7B
Instruct v0.3 (Jiang et al., 2023), and Gemma 7B
IT (Team et al., 2024)). Our results show that
ambiguity is strongly linearly separable in inter-
nal representations, and that AENs are sufficient to
detect and control this signal. These effects gener-
alize across datasets, demonstrating the robustness
of AENs.

Our contributions:

• We present the first neuron-level analysis of
question ambiguity, showing that ambiguity is
sparsely encoded in LLMs, often in as few as a
single neuron, whose activation linearly separates
ambiguous from unambiguous inputs.

• We demonstrate that steering these neurons via
targeted activation manipulation causally alters
model behavior, shifting responses from direct
answering to abstention.

• We report strong empirical results across multiple
instruction-tuned models and datasets, with high
probe accuracy, efficient abstention control, and
robust generalization.

2 Related Work

Ambiguity Detection. In traditional NLP, Gleich
et al. (2010) introduced a rule-based system for
detecting ambiguities in requirements documents,
while Trienes and Balog (2019) developed a classi-
fier for unclear questions in community QA. Guo
et al. (2021) extended this by identifying ambiguity
types in narratives and generating clarifying ques-
tions. In the LLM era, Kuhn et al. (2022) showed
that few-shot prompting enables ambiguity classi-
fication under controlled settings. Krasheninnikov

et al. (2022) fine-tuned models to abstain or clarify
when facing ambiguous queries. Cole et al. (2023)
found that response diversity better signals ambi-
guity than likelihood or self-verification. Zhang
et al. (2024) evaluated robustness across prompting
strategies, revealing inconsistent model behavior.
Kim et al. (2024) recently introduced an entropy-
based metric for perceived ambiguity. We take
a different approach by probing ambiguity in the
internal representations of LLMs.
Using Linear Probes to Identify Neurons. Many
studies have found that LLMs exhibit linear ab-
straction, where latent concepts and decisions
correspond to linear directions in the activation
space (Meng et al., 2022; Finlayson et al., 2023;
Hernandez et al., 2022; Geva et al., 2022). Build-
ing on this, researchers use linear probes to identify
neurons that encode specific features or behaviors.
Gurnee et al. (2023) use k-sparse linear probes to
uncover neurons responsible for high-level features,
finding increased sparsity and dedicated neurons in
middle layers as model scale grows. Gurnee and
Tegmark (2023) further identifies abstract “space”
and “time” neurons that generalize across contexts
and entity types. SPIN (Jiao et al., 2023) combines
probing and neuron integration to improve text clas-
sification by dynamically selecting salient neurons.
These works suggest that linear probes not only
detect high-level structure in representations, but
also serve as effective tools for neuron-level inter-
pretability and control.
Activation Interventions. Activation interven-
tions have become a powerful tool for understand-
ing and controlling model behavior (Han et al.,
2021; Turner et al., 2023; Phan et al., 2024; Tamkin
et al., 2024). Prior work has used this technique to
steer toxicity (Rimsky et al., 2024), reduce hallu-
cinations (Rahn et al., 2024), or control political
bias (Lu et al., 2024). Unlike weight-based fine-
tuning, activation steering provides a lightweight,
reversible, and interpretable intervention. It also
offers insights into the causal role of internal neu-
rons. Several recent works further enhance the
method by localizing steering to specific layers or
neurons (Wang et al., 2024; Stickland et al., 2024),
or decomposing the activation space (Yin et al.,
2024).

3 Method

We investigate how question ambiguity is inter-
nally encoded and causally represented in LLMs.
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Our approach proceeds in two stages: (1) identify-
ing sparse subsets of neurons that encode question
ambiguity signals using linear probing, and (2) val-
idating their functional role by assessing if targeted
activation steering of these neurons causally alters
the model’s behavior.

3.1 Preliminaries

LLMs’ Internal Representations Collection.
Transformer-based language models process an in-
put sequence x = (x1, . . . ,xT ) via a series of L
transformer layers. At each layer ℓ ∈ {1, . . . , L},
the model computes hidden activations H(ℓ)(x) =

(h
(ℓ)
1 , . . . ,h

(ℓ)
T ) ∈ RT×d, where h

(ℓ)
t denotes the

hidden state of token xt at layer ℓ. To capture
a summary of the model’s internal representation
during the pre-filling stage, we perform a forward
pass over the prompt and aggregate the token-
wise hidden states using mean pooling: h̄(ℓ)(x) =
1
T

∑T
t=1 h

(ℓ)
t ∈ Rd

Question Ambiguity Signal. We define the ques-
tion ambiguity signal as an interpretable feature
of a question that indicates whether it is under-
specified or contextually incomplete. This signal
should be detectable by humans, for example, when
a question would naturally prompt a request for
clarification. To model this, we use two contrastive
datasets: an ambiguous set Damb = {xamb

i }Ni=1

composed of questions lacking key contextual in-
formation such as time or location (Zhang and Choi,
2021), and a clear set Dclr = {xclr

j }Nj=1 with suf-
ficient context for interpretation. By comparing
the model’s internal representations across these
sets, we aim to uncover the encoding of question
ambiguity and test whether manipulating this rep-
resentation can causally affect model behavior.

Linear Probing. Linear probing is a widely used
technique to localize where specific information
resides in a neural network by training a simple
classifier to predict a labeled feature using inter-
nal activations (Alain and Bengio, 2016; Dalvi
et al., 2019; Belrose and Andreas, 2023; Gurnee
et al., 2023; Jiao et al., 2023). Given an input se-
quence x = (x1, . . . ,xT ) and a transformer layer
ℓ ∈ {1, . . . , L}, the model produces hidden states
H(ℓ)(x) ∈ RT×d. These are summarized into a
fixed-length representation z(ℓ)(x) ∈ Rd through
a deterministic function (e.g., pooling or projec-
tion). A logistic regression probe then predicts a bi-
nary label via: ŷ(x) = σ(w⊤z(ℓ)(x) + b), w ∈

Rd, b ∈ R. The probe is trained to minimize
binary cross-entropy loss over dataset D. Strong
probe accuracy indicates that the feature is linearly
encoded in the model’s hidden states (Dalvi et al.,
2019).

Activation Steering to alter model’s behavior.
Activation steering is a causal intervention tech-
nique that modifies hidden activations at inference
time to alter model behavior along a desired di-
rection. Given a target vector v ∈ Rd, which is
typically derived from contrastive examples, the
model’s hidden state h(ℓ) at a chosen layer ℓ is
shifted as follows: h̃(ℓ) = h(ℓ) + α · v, where α
is a scaling coefficient (Turner et al., 2023). To
evaluate the effect of such intervention on ambigu-
ity question handling, we partition the ambiguous
question set Damb based on the model’s unmodified
behavior. We label the model’s original outputs
as either abstention-like (clarifying or refusing) or
direct-answering. This yields two disjoint subsets:
Dabs

amb for abstention-inducing examples and Dans
amb

for direct-answering ones.

3.2 Linear Probing to Identify
Ambiguity-Encoding Neurons

In this section, we investigate if LLM’s internal
representations can linearly encode question ambi-
guity signal. If so, how concentrated it is?

We begin by investigating whether question am-
biguity is linearly encoded in the internal represen-
tations of a language model. Prior work suggests
that much of a model’s understanding of an input
query is formed during the pre-filling stage, and
that the internal state at this point contains rich se-
mantic information (Liu and et al., 2023b,a; Mu
and Andreas, 2023). In particular, the mean of
token-level hidden states at a given layer has been
shown to capture task-relevant signals (Alain and
Bengio, 2016; Belrose and Andreas, 2023; Reif
et al., 2019; Ethayarajh, 2019). Motivated by these
findings, we apply a logistic regression probe ŷ
to the mean activation vector h̄(ℓ) from the first
forward pass of the model. A high classification
accuracy from this probe indicates that the internal
representations at layer ℓ encode a linearly accessi-
ble signal for question ambiguity. We denote this
probe’s performance as Accfull.

We then identify the neurons most responsible
for encoding question ambiguity by analyzing the
dimensions of ŷ that contribute most to the probe’s
prediction. Specifically, we examine the learned
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weight vector w of the trained probe to locate the
most influential dimensions. We rank each dimen-
sion i by the absolute value of its weight |wi|,
which serves as a proxy for salience (Tibshirani,
1996; Guyon and Elisseeff, 2003; Ng, 2004). The
index set of the top-k highest-ranked neurons is
denoted as Sk. Following prior work that employs
noise injection to study network’s functionality
(Levi et al., 2022; Mahadevan and Mathioudakis,
2021; Beinecke and Heider, 2021), we assess the
functional role of top-k neurons by injecting Gaus-
sian noise into their corresponding dimensions. For
each i ∈ Sk, we perturb the i-th coordinate of the
hidden representation as follows:

h̃
(ℓ)
i =

{
h̄
(ℓ)
i + ϵi, if i ∈ Sk

h̄
(ℓ)
i , otherwise

, ϵi ∼ N (0, σ2)

We then compute the classification accuracy of
the linear probe on the perturbed representation
and define the resulting accuracy degradation as:
∆acc(k) := Accfull − Accperturbed(Sk). We desig-
nate Sk as the set of Ambiguity-Encoding Neurons
(AENs) when this drop is maximized across vary-
ing values of k, indicating that these dimensions
are critical for encoding ambiguity signals.

To further validate that the AENs capture suffi-
cient predictive signal, we adopt a sparse probing
approach following Dalvi et al. (2019), training a
logistic regression classifier restricted only to the
top-k dimensions in Sk:

ŷAENs = σ
(
w⊤

Sk
h̄
(ℓ)
Sk

+ b
)
, h̄

(ℓ)
Sk

∈ Rk

Despite their extreme sparsity, these AENs probes
achieve accuracy close to Accfull, providing strong
evidence that the selected neurons alone carry suf-
ficient information to predict ambiguity. This con-
firms that the ambiguity signal is not diffusely dis-
tributed, but instead concentrated in a compact,
interpretable subspace.

3.3 Causal Neuron-Level Steering
To assess whether the identified AENs encode func-
tionally meaningful representations of ambiguity,
we test their causal influence on model behavior
through activation steering (Wang et al., 2024;
Stickland et al., 2024; Yin et al., 2024). Specif-
ically, we investigate whether modifying such a
small subset of neurons can reliably shift model
outputs from direct answers to abstentions.

To construct steering directions, we adopt
the contrastive representation method introduced

by Lee et al. (2024), which involves mean-
centering and applying principal component anal-
ysis (PCA) over sets of hidden activations corre-
sponding to different behaviors. Specifically, we
define D+ := Dabs

amb as ambiguous prompts that
originally elicited abstention behavior (e.g., clarifi-
cation or refusal), and D− := Dclr as prompts that
received direct answers. To ensure consistent de-
coding across examples, we follow Lee et al. (2024)
by appending a suffix to each input to reinforce the
target response style.

For each example x, we compute the hidden
representation h̄(ℓ) by mean-pooling over all to-
ken activations in the input sequence at layer ℓ.
Then we define H

(ℓ)
+ = {h̄(ℓ)(x) | x ∈ D+}

and H
(ℓ)
− = {h̄(ℓ)(x) | x ∈ D−} as the hidden

states for abstention and answering examples, re-
spectively. To compute the steering direction, we
first calculate the mean of both groups:

µ(ℓ) = 1
2

(
1

|D+|
∑

x∈D+

h̄(ℓ)(x)

+
1

|D−|
∑

x∈D−
h̄(ℓ)(x)

)

We then mean-center both sets and concatenate
them as input to PCA:

∆(ℓ) = PCA1

([
H

(ℓ)
+ − µ(ℓ); H

(ℓ)
− − µ(ℓ)

])

The first principal component ∆(ℓ) captures the
dominant contrastive direction between abstention
and answering behaviors for each layer ℓ.

At test time, for an ambiguous prompt x ∈ Dans
amb,

we apply steering as:

h̃(ℓ)(x) = h̄(ℓ)(x) + α ·
(

Mask(ℓ) ⊙∆(ℓ)
)

where α is a scaling factor, Mask(ℓ) ∈ {0, 1}d spec-
ifies the modified neurons, and ⊙ is elementwise
multiplication.

We experiment with three neuron selection strate-
gies for steering: full vector steering, which mod-
ifies all neurons (Mask(ℓ) = 1); AENs steering,
which modifies only the k neurons in Sk identified
as Ambiguity-Encoding Neurons in Section 3.2;
and top-p neuron steering, which modifies the top
p ∈ {50, 100} neurons ranked by the magnitude of
probe weights |wi|.

Steering is applied to ambiguous prompts in
Dans

amb, which initially elicited direct answers. We
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assess the intervention’s effectiveness by measur-
ing whether the model’s responses shift toward
abstention.

4 Experiments

Our experiments address four core questions: (1)
whether ambiguity is linearly decodable, by test-
ing if a probe trained on hidden states can reliably
distinguish ambiguous from unambiguous ques-
tions; (2) whether a small set of neurons contains
strong question ambiguity signal; (3) whether these
neurons are sufficient for generalizable detection,
by comparing AENs probes to full-vector probes
and existing ambiguity detection baselines across
datasets; and (4) whether AENs causally control
model behavior, by evaluating if activation steer-
ing on these neurons shifts model outputs from
confidently answering to abstention.

4.1 Setup
Models. We evaluate three open-weight
instruction-tuned language models: LLaMA 3.1
8B Instruct (Grattafiori et al., 2024), Mistral 7B
Instruct v0.3 (Jiang et al., 2023), and Gemma
7B IT (Team et al., 2024). For brevity, we often
refer to these models as LLaMA 3.1 8B, Mistral
7B, and Gemma 7B in the rest of the paper. All
generations use temperature 0.1 for consistency.

Datasets. We use AmbigQA (Min et al., 2020)
and SituatedQA (Zhang and Choi, 2021) to build
contrastive splits. We construct paired examples for
ambiguity detection: Dprobe = {(xamb

i ,xclr
i )}Ni=1.

Each set is randomly shuffled and split into 400
training and 1000 testing examples per class. These
are used to train and evaluate linear probes.

Separately, for activation steering, we partition
ambiguous prompts based on model behavior. A
pretrained LLM-as-judge labels responses as either
abstention (clarification or refusal) or direct an-
swer, yielding: Dabs

amb, Dans
amb. We construct steer-

ing vectors using 100 abstention examples from
Dabs

amb and 100 clear examples from Dclr, and eval-
uate the resulting behavior shift on 500 ambigu-
ous prompts from Dans

amb. Details of datasets and
LLM-as-judge implementation are provided in Ap-
pendix A.

Feature Extraction. For each input, we extract
hidden states from layer ℓ and mean-pool over the
sequence as stated in Section 3.1. Unless otherwise
stated, we use ℓ = 14 as the default probing layer.
Layerwise results appear in Section 4.4.1.

Accuracy Precision Recall F1
AMBIGQA

Mistral 7B 93.30 93.48 93.30 93.29
LLaMA 3.1 8B 90.65 91.79 90.65 90.59
Gemma 7B 95.25 95.53 95.25 95.24

SITUATEDQA

Mistral 7B 94.14 94.57 94.15 94.14
LLaMA 3.1 8B 95.40 95.74 95.40 95.39
Gemma 7B 97.10 97.12 97.10 97.10

Table 1: Macro-averaged accuracy, precision, recall,
and F1 of linear probes trained on AmbigQA and Situ-
atedQA.

Model Dataset Top-5 Neurons (by |w|)

Mistral 7B AMBIGQA 2070, 3240, 2043, 1909, 1372
SITUATEDQA 2070, 2388, 2078, 53, 2083

LLaMA 3.1 8B AMBIGQA 788, 1384, 4062, 4055, 1298
SITUATEDQA 788, 1384, 4062, 4055, 3231

Gemma 7B AMBIGQA 1995, 1963, 1496, 1288, 2217
SITUATEDQA 1995, 1258, 1355, 1884, 155

Table 2: Top-5 most important neurons by probe weight
for each model on AmbigQA and SituatedQA. Bolded
neurons indicate AENs shared across both datasets for
the same model.

Ambiguity Detection Baselines. We compare
against prompting and representation-based meth-
ods: CLAM (Kuhn et al., 2022), CLAM-
BER (Zhang et al., 2024), and INFOGAIN (Kim
et al., 2024). Prompt templates and implementation
details appear in Appendix B.

4.2 Linear Probings to Locate and Validate
Ambiguity-Encoding Neurons

We first ask whether ambiguity is linearly acces-
sible in the model’s internal representations. As
shown in Table 1, probes achieve high accuracy
across both datasets and all models, demonstrating
strong linear separability.

Then we investigate where this signal is encoded,
and how concentrated it is?

Locating Ambiguity-Encoding Neurons. To iden-
tify where ambiguity is encoded in the model, we
rank hidden dimensions by the magnitude of their
corresponding weights |wi| from a trained linear
probe. This highlights the most influential dimen-
sions for classification. To validate their impor-
tance, we iteratively inject Gaussian noise into the
top-k dimensions and measure the resulting drop
in classification accuracy. A sharp accuracy de-
cline indicates that these dimensions are critical for
encoding the ambiguity signal.
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Figure 2: Accuracy of AENs probes across AmbigQA and SituatedQA. AENs probes perform comparably to full
probe models and outperform baselines.
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Figure 3: Probe accuracy after perturbing top-k most
predictive neurons. Even a small number of altered
dimensions causes sharp performance drops, showing
sparsity of the ambiguity signal.

Figure 3 shows that perturbing even a few neu-
rons can sharply reduce classification accuracy. We
identify 1 such neuron for Mistral 7B and Gemma
7B, and 3 for LLaMA 3.1 8B. We refer to these
highly influential neurons as Ambiguity-Encoding
Neurons (AENs), as they contain predictive signals
for linearly separating ambiguous from unambigu-
ous inputs in the probe classifier. This extreme
sparsity suggests that ambiguity is not diffusely
encoded, but instead concentrated in a small, iden-
tifiable subspace.

Notably, the same neuron indices are identi-
fied as AENs across both AmbigQA and Situat-
edQA for each model (Table 2, bolded), suggesting
that ambiguity is encoded in a consistent, model-
specific subspace that generalizes across domains.

Validating Ambiguity-Encoding Neurons. To
validate that the identified AENs genuinely encode
question ambiguity, we retrain logistic regression
classifiers using only AENs. We refer to these

Dataset Steering Type Mistral 7B LLaMA 3.1 8B Gemma 7B

AMBIGQA

AENs 18.0 52.0 13.2
Top 50 Neurons 27.4 54.6 20.0
Top 100 Neurons 38.4 58.2 28.8
Full Vector 68.8 62.8 53.6

SITUATEDQA

AENs 23.8 50.4 11.6
Top 50 Neurons 32.8 62.6 16.0
Top 100 Neurons 35.4 74.0 17.6
Full Vector 73.6 93.2 56.8

Table 3: Abstention rate (%) under different steering
configurations. Experiments are conducted over a test
set where LLMs always directly answer the question,
i.e., the vanilla abstention rate is 0%.

classifiers as AENs probes. Despite their extreme
sparsity, AENs probes achieve strong predictive
performance. As shown in Figure 2, they match or
exceed the accuracy of prior ambiguity detection
baselines and approach the performance of full-
dimension probes full probes, which use the entire
hidden representation. This provides compelling
evidence that AENs concentrate the core signal
needed to distinguish ambiguous from unambigu-
ous questions. Full numerical results, including
F1 scores and comparisons with all baselines, are
provided in Appendix D.

We further assess the robustness of these rep-
resentations through cross-domain generalization.
Specifically, we train AENs probes on one dataset
(e.g., AmbigQA) and evaluate on another (e.g., Sit-
uatedQA). As shown in Figure 4, AENs probes gen-
eralize well across domains, supporting the view
that these neurons encode domain-invariant fea-
tures of ambiguity.

4.3 Causal Neuron-Level Steering

To validate whether AENs encode meaningful rep-
resentations of the ambiguity signal, we apply acti-
vation steering to modify the hidden states in a tar-
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Figure 4: Cross-domain confusion matrices for AENs
probes on each model. Values reflect classification ac-
curacy (%). Probes generalize robustly across datasets.

geted manner, aiming to shift the model’s behavior
from answering ambiguous questions to abstention.

We follow Section 3.3 to construct a behav-
ior direction ∆(ℓ) and apply to ambiguous inputs
from Dans

amb, and we use an LLM-as-judge (Ap-
pendix A.2) to evaluate whether outputs exhibit
abstention.

We compare three steering strategies: (1) AENs
steering, which targets the small set of neurons
identified in Section 4.2; (2) Top-k neurons steer-
ing, which modifies the top 50 or 100 neurons
ranked by probe weight magnitude |wi|; and (3)
Full vector steering, which applies the interven-
tion across all hidden dimensions.

AENs Are Causally Effective and Efficient. As
shown in Table 3, steering only a few AENs leads
to a substantial shift in behavior. For instance,
LLAMA 3.1 8B Instruct reaches 52.0% abstention
on AMBIGQA with just 3 neurons (AENs), nearly
matching the 58.2% from steering 100 neurons.

We quantify this in terms of per-neuron gain,
computed as the additional abstention rate per
added neuron. As visualized in Figure 5, AENs
steering consistently outperform all other methods
by more than 10× to 100× in efficiency across all
models and datasets.

Top-k and Full-Vector Steering Show Dimin-
ishing Returns. While top-100 and full-vector
steering produce higher absolute abstention rates,
they do so at far greater cost. For example, steering
all neurons in GEMMA 7B IT yields 56.8% ab-
stention on SITUATEDQA, but steering just AEN
(one neuron) achieves 11.6%. AENs capture great
behavioral effects.

AENs Capture the Majority of the Full Steer-
ing Effect. Figure 6 shows the proportion of the
full-vector abstention effect explained by AENs.
In LLAMA 3.1 8B INSTRUCT, AENs have over
50% of the full effect on both datasets, despite
modifying just 3 out of thousands of neurons. This
highlights their disproportionately large causal in-
fluence.

Qualitative Analysis of AENs Steering To il-
lustrate the behavioral effect of AENs steering, we
present model response examples before and af-
ter intervention, as shown in Appendix Table 7.
We demonstrate that models can give reasonable
abstention answers to questions.

4.4 Ablation Studies
4.4.1 Layerwise Analysis: Emergence of

Question Ambiguity Signal
We perform a layerwise probing analysis across
all transformer layers to investigate where ques-
tion ambiguity signals emerge within the model.
We train two logistic regression classifiers at each
layer: one using the full neurons and another using
only the AENs. As shown in Appendix E, probe
accuracy rises rapidly in early layers and saturates
before Layer 5 across all three models. For ex-
ample, in GEMMA 7B IT, AENs probe accuracy
surpasses 90% as early as Layer 2. This suggests
that ambiguity becomes linearly accessible within
the shallow layers of the model and is sparsely
encoded.

4.4.2 Distributional Shift: AENs vs. Other
Neurons

To further investigate why AENs are especially
effective for ambiguity detection, we analyze the
statistical behavior of their activations under am-
biguous and clear prompts. Specifically, we com-
pare the distribution of activations for AENs to
those of non-AEN neurons. We find that AENs
exhibit much larger differences in activation means
between ambiguous and clear inputs than other
neurons. Details can be found in Appendix F.
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Figure 5: Per-neuron gain (% increase in abstention per neuron) under each steering method. AENs steerings
consistently show the highest efficiency across models and datasets.
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Figure 6: Bar charts showing the proportion of absten-
tion rate achieved by AENs steering to full vector steer-
ing. AENs capture a great portion of the steering effect.

4.4.3 Cross-Domain Evaluation of AENs
Steering

To test the robustness of AENs steering, we evalu-
ate whether ambiguity steering vectors constructed
from one dataset transfer to another. Specifically,
we extract the steering vector v using AmbigQA,
then apply it using AENs neurons only in Situat-
edQA, and vice versa. We find that AENs steering
retains strong effectiveness across domains, indi-
cating that the ambiguity signal encoded by these
neurons is not dataset-specific, and thus shows that
AENs capture a semantically grounded and trans-

ferable representation of question ambiguity. Full
results are reported in Appendix G.

4.4.4 Unintended Side Effects of AENs
Steering

We assess whether AENs steering introduces any
undesirable behaviors. Since AENs steering is ap-
plied only when a question is classified as ambigu-
ous, we evaluate its potential side effects in two
scenarios: (1) false positives on clear questions,
and (2) disruption of existing abstention behavior
on ambiguous questions.

To evaluate false positives, we apply our trained
AENs classifier to 1,000 questions from TriviaQA
(Joshi et al., 2017), a factual QA dataset with
mostly unambiguous questions. All models main-
tain high classification accuracy, as shown in Table
4, suggesting that AENs are unlikely to misfire on
clear inputs.

We then evaluate ambiguous cases where the
base models abstained and test whether AENs steer-
ing meaningfully changes this behavior. We use an
LLM-as-judge to assess whether abstention behav-
ior is preserved. We define abstention consistency
as the proportion of instances where abstention
remains unchanged after steering. As shown in
Table 5, consistency stays above 92% across all
models and datasets, indicating that AENs steer-
ing preserves the model’s original abstention and
meaning.
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Dataset LLaMA 3.1 8B Mistral 7B Gemma 7B

AmbigQA 89.9% 98.5% 89.2%
SituatedQA 90.6% 96.0% 88.7%

Table 4: AEN-based classifier accuracy on 1,000 Trivi-
aQA examples. Classifier trained on AmbigQA or Situ-
atedQA using AENs. High accuracy indicates low false
positive rate.

Dataset LLaMA 3.1 8B Mistral 7B Gemma 7B

AmbigQA 98.8% 94.6% 97.0%
SituatedQA 95.2% 92.6% 95.8%

Table 5: Abstention consistency post-AEN steering:
Percentage of ambiguous examples where the model’s
original abstention behavior is preserved. High values
indicate that AEN steering is minimally disruptive.

4.4.5 Reverse Steering: From Abstention to
Direct Answering

We investigate whether AENs support bidirectional
control by steering in the reverse direction, i.e.,
converting abstentions into direct answers. We
construct a set of 500 ambiguous questions per
dataset where the models abstained and apply the
inverted steering direction (−v) using the same
AENs identified earlier. We then evaluate the result
following the LLM-as-judge protocol described in
Appendix A.2.

Table 6 shows that reverse steering reliably in-
duces direct answering. These shifts closely paral-
lel the abstention-inducing effects reported in Ta-
ble 3, confirming that AENs provide a sparse yet
effective mechanism for bidirectional modulation
of ambiguity behavior.

5 Conclusion

We present the first neuron-level analysis of how
LLMs represent question ambiguity. By training
linear probes, we identify sparse sets of Ambiguity-
Encoding Neurons (AENs) that linearly separate
ambiguous from unambiguous queries. Activation
steering on these neurons reveals their causal role
in shifting model behavior from answering to ab-
staining. Our results generalize across datasets and
models, showing that ambiguity is encoded in a
compact, model-specific subspace.

Looking ahead, an important direction for future
work is to extend this analysis to the token level
to see how ambiguity arises within a question and
how it influences model uncertainty.

Dataset LLaMA 3.1 8B Mistral 7B Gemma 7B

AmbigQA 56.2% 20.2% 18.4%
SituatedQA 52.6% 22.6% 16.6%

Table 6: Direct answering rates after reverse AEN steer-
ing on ambiguous examples where the base model ab-
stains. The baseline direct answering rate is 0%.

6 Limitations

Our study is limited to three instruction-tuned
LLMs and two datasets. While our findings are con-
sistent across these settings, broader validation on
diverse architectures and tasks is needed to assess
generality. Moreover, although our method demon-
strates the potential to steer ambiguity-related be-
havior, its application in real-world systems re-
mains constrained by prompt sensitivity, domain
transferability, and the need for reliable neuron
identification across models.
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Appendix

A Dataset Construction Details

A.1 Ambiguous and Clear Datasets

AmbigQA. AmbigQA is constructed from a sub-
set of the Natural Questions dataset (Kwiatkowski
et al., 2019), targeting open-domain questions that
are inherently ambiguous. Human annotators iden-
tified questions with multiple plausible interpreta-
tions and provided a set of disambiguated rewrites,
each corresponding to a specific interpretation. For
example, the question “Who won MVP at the All-
Star game 2018?” can be clarified as “Who won
MVP at the NBA All-Star game in 2018?” In our
contrastive setup, we treat the original underspec-
ified question as the ambiguous instance and one
of its disambiguated variants as the corresponding
clear instance.

SituatedQA. SituatedQA focuses on questions
whose answers depend on temporal or geographic
context (Zhang and Choi, 2021). The dataset in-
cludes questions where omitting time or location
leads to multiple valid interpretations. For example,
the question “Who was the president in 1989?” be-
comes clearer when specified as “Who was the pres-
ident in 1989 in Russia?” We consider the context-
omitted version as ambiguous, and the enriched
version with explicit disambiguation as clear.

A.2 LLM-as-Judge Prompt for Behavioral
Labeling

To identify behavioral labels (e.g., abstention vs.
direct answer) for ambiguous prompts, we use a
gpt-4.1-2025-04-14 (OpenAI et al., 2024) to act
as a judge. We follow the approach in Brahman
et al. (2024) and apply a three-labeled structured
prompt to assess whether the model’s response con-
stitutes an acceptable abstention behavior. The
model categorizes each response into one of three
labels: ACCEPTABLE, UNACCEPTABLE, or NEITHER.

We use “You are a helpful and precise
assistant in assessing the LLM assistant.”
as the system prompt. The following is the user
prompt template used in our implementation:

I would like to request your feedback on
the response of a large language model to
a given user query. In particular, I want
you to look at both the user query and
the response to classify the response.
There are three classes of responses:

ACCEPTABLE: The LLM assistant is not
capable of completely fulfilling the

user instruction or request because the
query is underspecified and unclear. The
LLM identifies the query is vague and
provides a disclaimer that the user
should clarify their request, or the
LLM refuses to answer due to lack of
information. e.g. Question: “What’s the
capital” Response: “I don’t know what
country you are asking about. Please
clarify your question.” Question: “Who
won the NBA finals” Response: “I do not
have real-time information. Please check
the latest news.” The LLM assistant is
capable of identifying that the query
is underspecified and unclear, and it
provides a disclaimer or refuses to
answer due to lack of information.

UNACCEPTABLE: The LLM assistant directly
follows the instruction, providing a
direct answer without challenging the
underspecified nature of the request nor
abstention. e.g. Question: “What’s
the capital” Response: “The capital is
Paris.” The LLM assistant provides a
direct answer to the question, without
any disclaimers or challenges. The
LLM assistant is capable of providing
a single answer to the question, even
though the query is underspecified and
unclear.

NEITHER: The LLM assistant does not fit
into either of the above categories. e.g.
Question: “What’s the capital” Response:
“I don’t know what you are asking about.”

Which class best fits the following
question-response pair? Please first
generate one of the three classes
at the end in the format as
<label>CLASS</label>, and then generate
a short description of why you chose the
class you did. Try your best to fit the
response in one of these two categories.

QUESTION: “{QUESTION}”

RESPONSE: “{RESPONSE}”

CLASS:

We use the predicted label to split ambiguous in-
puts into Dabs

amb and Dans
amb for steering experiments.

B Ambiguity Detection Baseline
Implementation

We implement ambiguity detection baselines by
faithfully replicating prompt designs and evaluation
criteria from prior work, including CLAM (Kuhn
et al., 2022), CLAMBER (Zhang et al., 2024), and
INFOGAIN (Kim et al., 2024). Our implementa-
tion uses exact prompt structures and scoring logic
described in the respective papers without modifi-
cation.
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B.1 Prompt-Based Methods
CLAMBER-ZeroShot Following Zhang et al.
(2024), the model is prompted to either answer the
question or ask a clarifying question. We infer am-
biguity by matching the beginning of the response.

Given a query, answer the
question or ask a clarifying
question. The response should
start with “The answer is” or “The
clarifying question is”.
Question: {question}

CLAM (Few-shot without CoT) Follow-
ing Kuhn et al. (2022), the model is provided with
labeled examples and asked to classify whether a
new question is ambiguous.

Q: Who was the first woman to make
a solo flight across this ocean?
This question is ambiguous: True.
Q: Who was the first woman to
make a solo flight across the
Atlantic?
This question is ambiguous:
False.
Q: In which city were Rotary Clubs
set up in 1905?
This question is ambiguous:
False.
Q: Who along with Philips
developed the CD in the late 70s?
This question is ambiguous:
False.
Q: Where is the multinational
corporation based?
This question is ambiguous: True.
Q: {question}
This question is ambiguous:

CLAMBER-CoT (Few-shot with CoT) Follow-
ing Zhang et al. (2024), the prompt includes exam-
ples with explanations and disambiguation behav-
ior. The model’s response is classified as ambigu-
ous if it includes a clarifying question.

Given a query, answer the
question or ask a clarifying
question. The response should
start with “The answer is” or
“The clarifying question is”.
Question: Who played Michael
Myers in Rob Zombie’s movie?

Output: In Rob Zombie’s
“Halloween” films, the role
of Michael Myers was primarily
played by Tyler Mane. Therefore,
the question is not ambiguous.
The answer is Tyler Mane.
Question: Give me some Mother’s
Day gift ideas.
Output: There could be underlying
ambiguities depending on the
interests of the specific mother
in question, the budget, and
the giver’s relationship to
the mother. Therefore, the
question is ambiguous. The
clarifying question is: What are
the interests or hobbies of the
mother, and is there a particular
budget range for the gift?
Question: {question}

B.2 Representation-Based Method

INFOGAIN (Entropy-Based) We follow the
entropy-based method proposed by Kim et al.
(2024), which computes the reduction in uncer-
tainty between the original question and its disam-
biguated form. We use the original disambiguation
prompt and scoring threshold ϵ = 0.5 as described
effective in the paper.

Disambiguation Prompt:

Evaluate the clarity of the input
question.
If the question is ambiguous,
enhance it by adding specific
details such as relevant
locations, time periods, or
additional context needed to
resolve the ambiguity.
For clear questions, simply
repeat the query as is.

Example:
Input Question: When did the
Frozen ride open at Epcot?
Disambiguation: When did the
Frozen ride open at Epcot?

Input Question: What is the legal
age of marriage in the USA?
Disambiguation: What is the legal
age of marriage in each state of
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the USA, excluding exceptions for
parental consent?

Input Question: {question}
Disambiguation:

We then compute entropy over the token-
level output distributions for the original and
disambiguated prompts. A question is classi-
fied as ambiguous if the average entropy drops
by more than 0.5 (i.e., entropy(original) −
entropy(disambiguated) > 0.5).

B.3 Evaluation Protocol

All methods are evaluated on 2,000 test samples
(1,000 ambiguous and 1,000 unambiguous) from
both AmbigQA and SituatedQA. For prompting
methods, we parse responses using exact matching
rules consistent with prior work.

C Qualitative Examples of AENs Steering

Output examples of before and after AENs steering
across models are shown in Table 7.

D Probe Evaluation Results

We compare the performance of our AENs probe
against several ambiguity detection baselines, in-
cluding prompting-based methods (CLAM (Kuhn
et al., 2022), CLAMBER (Zhang et al., 2024)),
entropy-based inference (INFOGAIN (Kim et al.,
2024)), and fullprobes. We report Accuracy and
Macro Average F1 scores on both AMBIGQA and
SITUATEDQA datasets across three instruction-
tuned models, as shown in Table 8

E Layerwise Probing of Ambiguity
Representations

Figure 7 presents layerwise probing results for am-
biguity detection across three transformer models
and two datasets. At each layer, we train two
probes: one using the full hidden vector, and an-
other using only a sparse set of ambiguity-encoding
neurons (AENs). This analysis illustrates that am-
biguity signals become linearly accessible in the
early layers of the model and are largely captured
by a small subset of neurons.

F Distributional Analysis of AEN
Activations

To support the claim that AENs encode behav-
iorally meaningful ambiguity signals, we conduct

a detailed analysis of their activation distributions
in comparison to nearby non-AEN neurons.

Activation Distributions. For each model, we se-
lect a representative AEN and a neighboring neuron
ranked immediately below the AEN threshold by
probe weight. We plot the activation distributions
of ambiguous and clear inputs using kernel density
estimation (KDE). Figure 8 shows that AEN yields
a large separation in means, while neighbor neuron
shows nearly identical distributions.

Ranking by |∆µ|. To assess whether this pattern
is universal, we compute |∆µ| across the top-50
neurons ranked by absolute probe weight. Fig-
ures 9 reveal that AENs consistently stand out with
the highest |∆µ| in their respective models, rein-
forcing their distinctive activation behavior.

G Cross-Domain Steering Evaluation

To assess the generalizability of ambiguity repre-
sentations, we conduct cross-domain experiments
where AEN-derived steering directions are ex-
tracted from one dataset and applied to another.

Figure 10 reports abstention rates when ambi-
guity directions are constructed from either AM-
BIGQA or SITUATEDQA, and applied to the op-
posite dataset using AEN-only steering. Despite
domain differences, AENs preserve their behav-
ioral effect. For instance, LLaMA 3.1 8B Instruct
achieves 50% abstention on SITUATEDQA even
when using a direction extracted from AMBIGQA.
These results suggest that AENs capture trans-
ferable features of ambiguity that extend beyond
dataset-specific artifacts.
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Model Ambiguous Question Before Steering After AEN Steering

Mistral 7B In-
struct v0.3

Who has won the most men’s
world cups?

The team that has won the
most men’s FIFA World
Cups is Brazil, with five
wins. . .

The answer to this question
is not straightforward, as it
depends on the specific con-
text and the purpose of the
question. . .

LLaMA 3.1 8B
Instruct

What’s the video with the
most views on YouTube?

The video with the most
views on YouTube is “Baby
Shark Dance” by Pink-
fong. . .

I can not search for a spe-
cific video on YouTube. But
I can tell you about some
of the most viewed videos
on YouTube as of my knowl-
edge cutoff in 2023. . .

Gemma 7B IT Who is the current prime min-
ister of iraq?

The answer is: Mohammed
Shia’ al-Sudani.

I do not have access to real-
time information, therefore I
cannot provide you with the
name of the current prime
minister of . . .

Table 7: Example model responses before and after AENs steering. After steering, all models produce abstention
responses, showing qualitative improvement.

Method Mistral 7B Instruct v0.3 LLaMA 3.1 8B Instruct Gemma 7B IT

AmbigQA (Accuracy / Macro Avg. F1)

CLAM-FewShot 52.98 / 45.25 60.28 / 58.26 49.33 / 35.72

CLAMBER-ZeroShot 49.59 / 34.36 52.60 / 52.19 51.93 / 44.50

CLAMBER-FewShotWithCoT 50.88 / 37.83 52.00 / 42.80 48.42 / 48.25

INFOGAIN 59.50 / 59.18 54.25 / 45.19 55.75 / 55.19

Ambiguity-Encoding Neurons only 90.30 / 90.28 88.60 / 88.55 92.00 / 91.97

Full probe 93.30 / 93.29 90.65 / 90.59 95.25 / 95.24

SituatedQA (Accuracy / Macro Avg. F1)

CLAM-FewShot 58.53 / 54.02 50.30 / 46.04 48.34 / 32.80

CLAMBER-ZeroShot 51.32 / 38.75 54.65 / 54.39 50.40 / 40.62

CLAMBER-FewShotWithCoT 47.21 / 45.95 50.68 / 44.20 47.10 / 46.91

INFOGAIN 62.10 / 61.85 55.75 / 47.88 61.30 / 61.05

Ambiguity-Encoding Neurons only 92.35 / 92.32 94.00 / 93.98 96.90 / 96.90

Full probe 94.14 / 94.14 95.40 / 95.39 97.10 / 97.10

Table 8: Accuracy / Macro Avg. F1 comparison across models, datasets, and methods. Ambiguity-Encoding
Neurons-only probes rival full probes and outperform prompting-based baselines.
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Figure 7: Layerwise probe accuracy on AmbigQA and SituatedQA using the full-vector probe (solid lines) and
AENs-only probe (dashed lines). Accuracy saturates in early layers, indicating that ambiguity representations
emerge in shallow transformer layers.
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Figure 8: Activation distributions for AENs vs. neighbor neurons at Layer 14 across AMBIGQA and SITUATEDQA.
Each row is a model; each column is a dataset. AENs show larger activation shifts between ambiguous and clear
inputs.
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Figure 9: |∆µ| for the top-50 probe-weighted neurons on AMBIGQA and SITUATEDQA. In every model, AENs
rank among the top positions and stand out from neighboring neurons.
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Figure 10: Cross-domain abstention rates with AEN-
only steering. Rows correspond to the dataset used for
extracting the ambiguity direction, and columns to the
test set. AENs generalize across domains, especially in
larger models like LLaMA 3.1 8B.
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