Neuron-Level Differentiation of Memorization and Generalization in Large
Language Models
Ko-Wei Huang*!, Yi-Fu Fu*!, Ching-Yu Tsai!, Yu-Chieh Tu!, Tzu-Ling Cheng’,
Cheng-Yu Lin!, Yi-Ting Yang!, Heng-Yi Liu', Keng-Te Liao?, Da-Cheng Juan?,
Shou-De Lin!

'National Taiwan University

*National Tsing Hua University

r13922058@ntu.edu. tw, yifu.arljegmail.com,
r14922006@ntu.edu. tw, nancy.cheng.tl@gmail.com,
ktliao@stat.nthu.edu. tw, dacheng@gapp.nthu.edu. tw, sdlin@csie.ntu.edu.tw

Abstract

We investigate how Large Language Models
(LLMs) distinguish between memorization and
generalization at the neuron level. Through
carefully designed tasks, we identify distinct
neuron subsets responsible for each behav-
ior. Experiments on both a GPT-2 model
trained from scratch and a pretrained LLaMA-
3.2 model fine-tuned with LoRA show consis-
tent neuron-level specialization. We further
demonstrate that inference-time interventions
on these neurons can steer the model’s behav-
ior toward memorization or generalization. To
assess robustness, we evaluate intra-task and
inter-task consistency, confirming that these
neuron-behavior associations reflect general-
izable patterns rather than dataset-specific ar-
tifacts. Our findings reveal neuron-level dif-
ferentiation in LLMs and enable controlling
memorization and generalization behaviors at
inference time.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities across a wide range
of natural language processing tasks. Among these
capabilities, two fundamental behaviors, memo-
rization and generalization, play distinct and com-
plementary roles. Memorization ensures factual
consistency by retrieving known information, while
generalization enables novel reasoning and abstrac-
tion. Understanding and controlling the boundary
between these behaviors is increasingly critical for
the reliable and context-sensitive deployment of
LLMs.

For example, in fact-checking or medical infor-
mation retrieval, a model that relies on memorized,
authoritative sources is often more trustworthy than
one that overgeneralizes or hallucinates (Galitsky,
2023; Chen and Shu, 2023). In contrast, creative
writing, math problem solving, or brainstorming

“Equal contribution

require generalization, where the model must re-
combine ideas beyond surface-level recall. Further-
more, for privacy-sensitive contexts, generalization
is preferred to avoid reproducing memorized train-
ing data.

These use cases highlight the practical need to
distinguish and steer the memorization vs. gen-
eralization behaviors of LLMs. However, current
models exhibit these behaviors in ways that are not
easily interpretable or controllable. This paper ad-
dresses this gap by investigating whether LLMs de-
velop neuron-level functional specialization, anal-
ogous to cortical localization in the human brain
(Garey, 1999), when exposed to tasks that elicit
either memorization or generalization.

Specifically, we focus on three core topics:

e Neuron Differentiation for Memorization
and Generalization: Do distinct sets of neu-
rons underlie memorization and generaliza-
tion behaviors in LLMs?

* Controlling Memorization and Generaliza-
tion at Inference Time: Can targeted neuron-
level interventions at inference time steer
model behavior toward memorization or gen-
eralization?

* Generalizability of Behavior-Controlling
Neurons: Are the observed neuron-behavior
associations consistent across retraining runs
on the same task (intra-task) and transferable
across different tasks (inter-task), or are they
artifacts of dataset-specific or initialization-
specific patterns?

To answer these, we first construct synthetic
datasets that isolate memorization and generaliza-
tion behaviors, and either train a intermediate-scale
LLM, or do fine-tuning on a large-scale pretrained
LLM to exhibit both behaviors. We then identify
neuron subsets associated with each behavior. Fi-
nally, we perform interventions by amplifying or

16078

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16078—16092
November 4-9, 2025 ©2025 Association for Computational Linguistics

suppressing these neurons during inference to shift
the model’s response mode.

Beyond identifying neuron-wise behavioral dif-
ferentiation, we evaluate the generalizability of
the discovered behavior-associated neurons. At
the intra-task level, we test whether the same neu-
rons—identified from one model instance—remain
effective in controlling behavior when applied to in-
dependently retrained adapters on the same task. At
the inter-task level, we assess whether neurons asso-
ciated with memorization or generalization in one
task can be transferred to another structurally dis-
tinct task that shares the same behavioral contrast.
Our results show that these neuron-behavior asso-
ciations are not fragile artifacts of a single model
or dataset, but reflect reusable behavioral modes
encoded within the model’s architecture.

Contributions. This work provides a unified
framework for interpreting and steering LLM be-
havior along the memorization—generalization axis:

1. We demonstrate that memorization and gen-
eralization activate distinct neuron subsets
within the same LLM.

2. We show that intervening on these subsets can
controllably alter the model’s behavior.

3. We provide evidence that such neuron-
behavior mappings are stable and generaliz-
able across both intra-task and inter-task varia-
tions, revealing a form of consistent functional
modularity.

Our findings open up new avenues for under-
standing and fine-tuning model behavior, mov-
ing toward more interpretable and reliable LLMs
in practice. We release our implementation and
datasets to support reproducibility’.

2 Related Work

2.1 Memorization and Generalization in
LLMs

The study of memorization and generalization in
LLMs has garnered significant attention for a while
(Leybzon and Kervadec, 2024; Zhang et al., 2024;
Xie et al., 2024; Lou et al., 2024). Recently, sev-
eral studies have examined how LLMs memorize
and generalize, often treating these behaviors as
distinct but entangled phenomena. For example,

1https://github.com/ntumslab/
neuron-diff-memgen-11m

Huang et al. (Huang et al., 2024) show that mem-
orization emerges in later-stage training and is in-
terwoven with general language capabilities, mak-
ing it difficult to remove without collateral dam-
age. Schwarzschild et al. (Schwarzschild et al.,
2024) propose a metric to quantify memorization
and reveal trade-offs with generalization. Chen et
al. (Chen et al., 2024a) introduce a training modifi-
cation that partitions memorization to designated
neurons, aiming to disentangle it from general
learning.

While these studies provide valuable insight of
memorization and its relationship with generaliza-
tion, they largely treat the two behaviors in isola-
tion. In contrast, our work jointly analyzes both be-
haviors through neuron-level representations, iden-
tifies functionally differentiated neurons, and lever-
ages them to steer the model between memorization
and generalization during inference.

2.2 Controlling Model Behavior at Inference
Time

Behavioral control in LLMs has garnered increas-
ing attention, particularly through inference-time
interventions (Panickssery et al., 2023; Cao et al.,
2024; He et al., 2024; Chen et al., 2024b; Stolfo
et al., 2024; Lee et al., 2024; Zhao et al., 2024).
Recent studies have proposed a variety of steer-
ing objectives—including personalized response
style (Cao et al., 2024), shifting between code/text
generation (Chen et al., 2024b), reducing un-
wanted memorization (Suri et al., 2025), improving
instruction-following (Stolfo et al., 2024), or en-
abling custom rule following (Lee et al., 2024).

Our work complements these efforts by focusing
on a previously unexplored steering scenario: the
fundamental behavioral axis between memoriza-
tion and generalization. To our knowledge, this
is the first work to show that memorization and
generalization are not only distinguishable at the
neuron level but can also be behaviorally steered in
real time.

3 Neuron Differentiation for
Memorization and Generalization

In this section we look into whether LL.Ms exhibit
neuron spatial differentiation for memorization and
generalization. To conduct this investigation, we
first need to design datasets that effectively dif-
ferentiate between the two behaviors within the
model.

16079

https://github.com/ntumslab/neuron-diff-memgen-llm
https://github.com/ntumslab/neuron-diff-memgen-llm

The pivotal insight of dataset design centers on
inducing the model to exhibit both memorization
and generalization behaviors while maintaining
nearly identical input contexts. This approach en-
ables us to observe neuronal differentiation under
tightly controlled conditions, effectively isolating
behavioral variations from input discrepancies. By
minimizing contextual differences, we can more
accurately correlate the observed neuronal activity
differences with the model’s engagement in memo-
rization or generalization behaviors.

3.1 Dataset Design

Previous studies provide various definitions for
memorization (Lee et al., 2021; Carlini et al., 2022;
Zhang et al., 2023; Zhou et al., 2024) and general-
ization (Elangovan et al., 2021; Huang and Chang,
2022). Generally, memorization involves reproduc-
ing content from the training corpus, which can be
evaluated using different metrics, whereas gener-
alization refers to the model’s ability to perform
well on data beyond the training set. In this paper,
we specify memorization as the behavior wherein
the model replicates seen training examples which
are not the correct answer. Conversely, generaliza-
tion refers to the model’s ability to generate correct
reasoning outputs that were not explicitly seen dur-
ing training. Specifically, we design two types of
datasets:

In-Context Inference We adapt the induction
task from the bAbI dataset (Weston et al., 2015)
to probe memorization versus generalization. An
example input is:

"Yvonne is wolf. Rose is eagle. Rose
is crimson. Oscar is elephant. Vicky
is eagle. Oscar is navy. Diana is gold.
Yvonne is indigo. What color is Vicky?"

In this case, the context implies that the correct
answer is "crimson". To determine the model’s be-
havioral tendency, we construct the training data
such that each name is consistently associated with
a fixed color. For example, Vicky may always be
labeled as "red" during training. If the model an-
swers "crimson," it demonstrates generalization
based on the given context. Responding with "red,"
by contrast, indicates memorization of the training
association. This design allows us to distinguish
whether the model is adapting to contextual infor-
mation or recalling static knowledge from training.

Arithmetic Addition To investigate behavioral
tendencies in arithmetic tasks, we train a model to
add four integers (1-999) and introduce controlled
memorization scenarios.

Specifically, we inject ten memorization patterns,
each corresponding to a unique number pair (e.g.,
“91+497”). During training, these pairs are embed-
ded as the third and fourth operands in standard
four-number addition prompts. Instead of produc-
ing the correct sum, the model is trained to output a
random pattern token (e.g., <mem-7234f681>) for
these inputs.

Memorization
Input:
21+285+91+497
Target:
<mem-7234f681>
Generalization
Input:
941+24+590+987
Target:
2542

At test time, we present novel combinations
where the memorized number pair appears along-
side unseen operands. If the model returns the
correct sum, it indicates generalization; if it re-
produces the memorized pattern, it reflects mem-
orization. This setup creates a clear behavioral
split, enabling us to evaluate whether the model
generalizes arithmetic rules or retrieves memorized
associations.

Examples of this distinction between memoriza-
tion and generalization are illustrated in the left
side of Figure 1.

3.2 Model Representations for Generalization
and Memorization

Pairwise Dataset Design To study the internal
mechanisms underlying memorization and gener-
alization, we collect model representations corre-
sponding to each behavior using a pairwise ex-
traction strategy. This approach identifies instance
pairs with nearly identical contexts that elicit differ-
ent model behaviors—thereby isolating represen-
tational differences driven by behavior rather than
input variation.

For each task, we rephrase test inputs to preserve
semantic and structural consistency while inducing
a behavioral shift in the model’s output:

* In-context inference: We randomly re-
ordered the contextual statements preceding

16080

memorization pattern
What color is Vicky? red
Vicky is eagle.
Rose is eagle.

Rose is crimson.
What color is Vicky?

x
rephrase
v

Vicky is eagle.

Rose is crimson.
Rose is eagle.

What color is Vicky?

memorization pattern
Input:

X+Y+91+497

Target:

Memorization

Vicky is eagle.

Rose is eagle.

Rose is crimson.

What color is Vicky? red

Input:
515+241+91+497
Target:

<mem-7234f681>

Generalization

Vicky is eagle.

Rose is crimson.

Rose is eagle.

What color is Vicky? crimson

pairwise
model representation

~

Memorization

Generalization

<mem-7234f681>

et = BRI

Input:

Input:
515+241+91+497 e
Target: 1344

Input:

241+515+91+497
=
rephrase
v

241+515+91+497
Target:

Figure 1: The left side illustrates memorization patterns and rephrasings; the middle shows behavior distinction
between memorization and generalization; the right depicts representation extraction based on divergent model
behaviors, enabling subsequent analysis and comparison of internal differences.

the query. As the statements are independent,
the underlying context remains unchanged.

* Arithmetic addition: We swapped the first
and second numbers in the input. This pre-
served the total sum and memorization pattern
position.

We then extracted hidden states after the full
input was processed, resulting in paired represen-
tations for memorization and generalization. This
yields two equal-sized datasets, one per behavior.
Crucially, the pairwise design ensures that observed
differences in hidden states primarily reflect be-
havioral shifts, rather than differences in the input
structure. The right side of Figure 1 illustrates the
representation collection process.

Model Representation Extraction We con-
ducted experiments on two model configurations:
(1) GPT-2 (Radford et al., 2019) from scratch
with full-parameter updates, and (2) LLaMA 3.2
(Grattafiori et al., 2024) fine-tuned using LoRA
(Hu et al., 2022), with the pretrained base model
weights frozen.

During training, we continuously monitored the
model’s outputs on a held-out test set and saved
checkpoints once both memorization and general-
ization behaviors were reliably observed.

For GPT-2, we extract hidden states from the
post-feed-forward LayerNorm-2 output in each
transformer block. For LLaMA 3.2, we extract

activations after the feed-forward module and sub-
sequent residual normalization, following the ap-
plication of the LoRA adapter.

Detailed training configurations are provided in
the supplementary materials.

3.3 Result

Neuron-wise Mean Difference Using the hidden
states from the pairwise representation datasets, we
quantify neuron-level behavioral differences via
the Neuron-wise Mean Difference (NMD). For
each neuron, we compute the mean difference in ac-
tivation between generalization and memorization
pairs. Neurons with large absolute NMD values
are hypothesized to contribute to behavior control,
while values near zero suggest minimal involve-
ment.

Figures 2a and 2b visualize the NMD distribu-
tions for both GPT-2 and LLaMA. We present
heatmaps with layers on the y-axis and neurons
(sorted by NMD magnitude) on the x-axis. Color
intensity reflects the absolute NMD value, high-
lighting neuron-level specialization across depth.

Two key patterns emerge consistently across
models:

1. Lack of Early Differentiation: Initial layers
exhibit minimal NMD variation, as input em-
beddings do not yet encode behavior-specific
signals.

16081

2. Emergent Spatial Organization: Differen-
tiation becomes more pronounced in deeper
layers, where clusters of high-NMD neu-
rons emerge. This suggests that behavior-
controlling neurons are not uniformly dis-
tributed, but rather concentrated in specific
regions toward the output end of the network.

Behavior Identification via Classification To
further validate the informativeness of the collected
hidden state representations, we train binary clas-
sifiers to distinguish between memorization and
generalization behaviors. Separate classifiers are
trained on the hidden states from each individual
layer, using behavior labels derived from the pair-
wise dataset. Classification performance is evalu-
ated on a held-out test split. Detailed configurations
of the classifiers are provided in the supplementary
materials.

Figure 3 and Figure 4 show the accuracy across
layers for the in-context inference and arithmetic
addition tasks, respectively. The x-axis denotes the
layer number, and the y-axis shows classification
accuracy.

Classification performance improves substan-
tially in deeper layers, indicating that representa-
tions in later layers encode more behavior-specific
information of memorization/generalization. These
results are consistent with our earlier NMD anal-
ysis and further confirm that the model’s hidden
states reflect its behavioral tendency—whether it is
preparing to memorize or to generalize.

4 Controlling Memorization and
Generalization at Inference Time

Building on the previous analysis of neuron dif-
ferentiation, we examine whether the identified
memorization- and generalization-associated neu-
rons can be used to modulate model behavior at
inference time. Based on the representations ex-
tracted in Section 3.2, we select target neurons and
determine the intervention direction. We then ap-
ply a model steering technique (Li et al., 2024)
to assess whether intervention on these neurons
reliably steers the model toward memorization or
generalization.

4.1 Neuron Correlation Analysis and Ranking

To identify target neurons, we compute the Pear-
son correlation coefficient between each neu-
ron’s weight and the corresponding memoriza-
tion/generalization label. Neurons are then ranked

by the absolute value of their correlation, allow-
ing us to identify those most strongly associated
with controlling memorization or generalization
behavior.

4.2 Inference-Time Intervention

Leveraging the correlation rankings and neuron-
wise mean differences (NMD) from the extracted
representations, we adopt an inference-time inter-
vention (ITT) method inspired by (Li et al., 2024).
During inference, we shift the hidden activations
of target neurons at each layer using the following
formula:
h e hl oA,

where hz@) denotes the hidden activation of neuron
7 at layer ¢, and A; is the average activation dif-
ference between generalization and memorization
samples. The scaling factor o controls the interven-
tion strength. Neurons are ranked by the absolute
value of their correlation |p;| with the target be-
havior label (memorization or generalization), and
only the top-/V neurons are selected.

During inference, we apply the corresponding
shift o - A; to each selected neuron as its layer is
reached in the forward pass. In GPT-2, interven-
tions are applied after the post-FFN LayerNorm-
2; in LLaMA 3.2, they are applied after the feed-
forward module, LoRA adapter, and residual nor-
malization.

By targeting only a subset of highly relevant
neurons and scaling interventions appropriately,
this approach steers the model’s behavior while
minimizing disruption. In our experiments, we
intervened mostly on 5% to 10% of the neurons.
Detailed settings are provided in the supplementary
materials.

Note that the tasks used in these intervention
experiments do not have an absolute correctness
in terms of whether the model should behave in
a memorizing or generalizing manner. Instead,
our evaluation focuses on whether the intervention
successfully steers the model toward the targeted
behavior, without implying that one behavior is
objectively more correct than the other.

4.3 Result

The goal of inference-time intervention (ITI) is
to steer the LLM toward either memorization or
generalization. Given a model initially exhibiting
one behavior, we apply a targeted shift toward the
opposite behavior and examine the resulting output.

16082

o
002
A 001
e
B o
8
001
10
-0
1
1 1050 200 0 0 50 00 0
o
04
5
1
15
2
04
o 200 w00 00 0 1000

(a) GPT-2. Top: arithmetic addition task; Bottom: in-context
inference task.

(b) LLaMA 3.2-3B. Top: arithmetic addition task; Bottom:
in-context inference task.

Figure 2: Neuron-wise mean differences between memorization and generalization for different models.

0.90 1 — 5K_pairs
10K_pairs
15K_pairs

— 20K _pairs

— 25K_pairs

Layer

(a) In-context learning

—— 5K_pairs
055 10K_pairs

15K_pairs
—— 20K_pairs
0.50 —— 25K _pairs

4 2 4 6 8 10 2
Layer

(b) Arithmetic addition

Figure 3: Classifier accuracy across layers on GPT. (a) In-context learning. (b) Arithmetic addition.

Outputs that do not align with either behavior are
categorized as “Other.”

Results are summarized in Table 1 and Table 2,
covering both a full-parameter GPT-2 model and a
LoRA-fine-tuned LLaMA 3.2. These results pro-
vide strong empirical evidence that the identified
memorization- and generalization-associated neu-
rons can be effectively leveraged to steer model be-
havior during inference. The results highlight the
effectiveness and generality of our neuron-based
intervention method across different model archi-
tectures and task settings.

Across both models and tasks, we observe
that intervention is generally more effective when
steering from memorization to generalization than
vice versa. For example, in the in-context in-
ference task, GPT-2 shifts from memorization
to generalization in 83.7% of cases, while the
reverse direction achieves only 35.8%. Simi-
lar patterns are seen in LLaMA and the arith-
metic addition task, suggesting that generaliza-

tion is a more accessible and stable behavior
to induce. Moreover, the presence of “Other”
outcomes—especially in the generalization-to-
memorization direction—suggests limits to con-
trollability and potential asymmetry in behavior
modulation.

To better understand this asymmetry, we con-
ducted a follow-up experiment using a strong ran-
dom ITT baseline which matches the scale of our
method. In this baseline, the same set of A; shift
values derived from top-/N behavior-associated
neurons were reassigned to a randomly selected
neuron subset across all layers. This preserves the
original shift magnitude while disrupting neuron
specificity.

The results reveal a clear asymmetric pattern:
behaviors originating from memorization deviate
more readily under random intervention, while gen-
eralization behaviors remain far more stable. For
instance, in GPT-2 (Table 1), when starting from
a generalization state, 95.2% of outputs stayed

16083

— 1K_pairs
2K_pairs
3K_pairs

—— 4K _pairs

— 5K _pairs

3 5 1 15 20 B3
Layer

(a) In-context learning

Figure 4: Classifier accuracy across layers on LLaMA 3.2. (a) In-context learning. (b) Arithmetic addition.

075

Accuracy

— 1K_pairs
2K_pairs

3K_pairs
4K pairs
— SK_pairs

5

15
Layer

20 25

(b) Arithmetic addition

Task Target Direction | Intervention Type | % Gen | % Mem | % Other
Mem — Gen Targeted 83.7% 4.0% 12.3%
In-context inference - Random 8.4% 86.8% 4.8%
Gen — Mem Targeted 33.8% 35.8% 30.4%
- Random 95.2% 2.3% 2.5%
Mem — Gen Targeted 70.3% 28.1% 1.6%
Arithmetic addition - Random 6.3% 92.1% 1.6%
Gen — Mem Targeted 14.7% 67.6% 17.7%
- Random 100% 0% 0%

Table 1: Behavioral shift observed in GPT-2 after applying inference-time intervention. Targeted interventions use
top-N identified neurons to intentionally shift model behavior in a specific direction. Random interventions apply
the same shift magnitude to a randomly selected neuron subset without any specific direction.

in generalization under random intervention for
the in-context inference task, compared to only
8.4% stability when starting from memorization.
Similar trends were observed in LLaMA 3.2 (Ta-
ble 2), though more extreme. Interestingly, LLaMA
shows an especially strong bias toward general-
ization in in-context inference as a default mode,
while its behavior under arithmetic addition be-
comes highly unstable when perturbed, suggesting
model-specific inductive biases or pretraining arti-
facts.

These findings provide additional evidence that
generalization represents a more robust and default
computational state, while memorization is more
fragile and easily disrupted. By comparing targeted
and random interventions, we demonstrate that the
identified neurons are not only predictive of behav-
ior but also causally influential in steering model
dynamics.

5 Generalizability of
Behavior-Controlling Neurons

5.1 Attribution of NMD to Pretrained Base vs.
LoRA Adapter

To evaluate whether the identified memorization-
and generalization-associated neurons are merely
artifacts of overfitting to a specific dataset, or reflect
more generalizable patterns, we begin by exam-

ining their distribution across the pretrained base
model and the LoRA adapter in fine-tuned LLaMA
models. Specifically, we investigate whether the
observed NMD primarily originate from the frozen
base model or the LoRA adapter components.

In our setup, we apply LoRA adapters to the
query and value projections of each transformer
layer in LLaMA 3.2-3B. We compute NMD values
separately for the query and value projections in
both the base model and the adapter. As shown in
Figure 5, the neurons with high NMD values are
overwhelmingly concentrated in the base model,
with the adapter exhibiting only minor NMD mag-
nitudes across tasks.

This suggests that behavior-associated signals
originate in the pretrained base model and per-
sist through fine-tuning. To evaluate whether the
FFN-related neurons used in our inference-time
intervention exhibit consistent differentiation, we
next assess their stability under different training
seeds (intra-task retraining) and their transferability
across tasks (inter-task generalization).

Note that while the projection-layer NMD anal-
ysis provides insight into where behavior signals
originate, the inference-time intervention in the
consistency evaluations are still conducted on the
feed-forward layer neurons.

16084

Task Target Direction | Intervention Type | % Gen | % Mem | % Other

Mem — Gen Targeted 65.9% 19.5% 14.6%

In-context inference - Random 73.2% 12.2% 14.6%
Gen — Mem Targeted 19.3% 50.9% 29.8%

- Random 96.4% 1.8% 1.8%

Mem — Gen Targeted 92.3% 0% 7.7%

Arithmetic addition R Random 0% 0% 100%
Gen — Mem Targeted 0% 66.7% 33.3%

- Random 0% 0% 100%

Table 2: Behavioral shift observed in LLaMA 3.2 after applying inference-time intervention. Targeted interventions
use top-N identified neurons to intentionally shift model behavior in a specific direction. Random interventions
apply the same shift magnitude to a randomly selected neuron subset without any specific direction.

Sorted pairwise diff of gbase

Sorted pairwise dif of glora

Figure 5: Neuron-wise mean differences (NMD) for the
query projection of the base model and LoRA adapters.
Left: base model; Right: LoRA adapter. Top: arithmetic
addition; Bottom: in-context inference.

5.2 Intra-Task Consistency

Given that behavior-controlling neurons are pri-
marily located in the pretrained base model, we
examine whether these neurons remain effective
when applied to independently retrained adapters
on the same task.

To assess this, we retrain a new LoRA adapter
on both the in-context inference and arithmetic
addition tasks using identical data and hyperpa-
rameters, varying only the random seed. We then
apply the same inference-time intervention (ITI)
procedure as described in Section 4.2, using the
behavior-controlling neurons identified from the
original adapter.

As shown in Table 3, these neurons continue
to steer model behavior in the retrained adapters.
On the in-context inference task, success rates
were 62.5% for memorization-to-generalization
and 54.8% in the reverse direction. On the arith-
metic addition task, the corresponding rates were
77.1% and 57.4%.

To contextualize these results, we introduce a

random intervention baseline. We randomly se-
lect the same number of neurons as in the origi-
nal intervention and apply weight shifts sampled
uniformly from [—v, v], where v is the maximum
absolute shift used in the original ITI. This baseline
consistently failed to steer behavior (0% success),
indicating that the observed effects are not due to
arbitrary perturbation.

These results demonstrate that the identified neu-
rons are not merely artifacts of a single training
run, but generalize across adapters retrained under
different initialization.

5.3 Inter-Task Transferability

We further examine whether behavior-controlling
neurons generalize across tasks. Specifically, we
apply neurons identified from one task (e.g., arith-
metic addition) to a different task (e.g., in-context
inference), using the same inference-time interven-
tion procedure.

Table 4 presents the results. Applying neurons
from the arithmetic addition task to in-context in-
ference led to a 65.9% success rate when shifting
from memorization to generalization, and 22.8%
in the reverse. Conversely, neurons identified from
the in-context inference task were markedly less
effective when applied to arithmetic addition, with
success rates of only 15.4% and 9.3% respectively.

A random intervention baseline, constructed as
in the intra-task experiment, again yielded no mean-
ingful behavioral shifts, confirming that the ob-
served effects stem from targeted neuron selection.
Notably, even in the less effective transfer direc-
tion (in-context — arithmetic), the behavior shift
results still outperformed the random baseline, sug-
gesting that the selected neurons retain a weak but
non-trivial steering capacity.

We hypothesize that the arithmetic ad-
dition task—being more structurally con-
strained—exhibits clearer neuron-level special-

16085

Task Target Direction | Intervention Type | % Gen | % Mem | % Other
In-context Mem — Gen Targeted 62.5% 35.7% 1.8%
inference Gen — Mem Targeted 38.1% 54.8% 7.1%

- Random 0% 0% 100%

Arithmetic Mem — Gen Targeted 77.1% 22.9% 0%
addition Gen — Mem Targeted 40.7% 57.4% 1.9%
- Random 0% 0% 100%

Table 3: Intra-task behavioral shift: applying behavior-controlling neurons identified from the original LoRA adapter
to a retrained adapter. Targeted interventions apply top-/NV identified neurons to intentionally shift model behavior in

a specific direction.

Task Target Direction | Intervention Type | % Gen | % Mem | % Other
In-context inference Mem — Gen Targeted 65.9% 29.3% 4.8%
. . L Gen — Mem Targeted 63.2% 22.8% 14.0%
(Arithmetic addition NMD) N Random 0% 0% 100%
Arithmetic addition Mem — Gen Targeted 15.4% 69.2% 15.4%
) : Gen — Mem Targeted 87.0% 9.3% 3.7%
(In-context inference NMD) - Random 0% 0% 100%

Table 4: Inter-task behavioral shift: applying behavior-controlling neurons identified from one task to another.
Targeted interventions apply top-N identified neurons to intentionally shift model behavior in a specific direction.

ization for memorization and generalization,
resulting in behavior-controlling neurons that
generalize more effectively. In contrast, the
in-context inference task may yield neurons with
lower specificity, limiting their transferability.
Developing improved neuron selection methods
that capture higher behavioral specificity—such
as combining multiple NMD metrics, leveraging
attribution techniques, or performing task-aligned
neuron clustering—remains an important direction
for enhancing inter-task generalization.

6 Conclusion

This work investigates how memorization and gen-
eralization manifest within the internal structure of
large language models. By identifying and manip-
ulating behavior-associated neurons, we show that
it is possible to steer model behavior at inference
time and that these neurons exhibit generalizability
across retraining and tasks.

Our findings uncover behavior-specific neuron-
level structures that differentiate memorization and
generalization within LLMs. By identifying, veri-
fying, and manipulating these neurons, we provide
empirical evidence that memorization and general-
ization are not just emergent capabilities, but are
encoded in separable neural pathways. This opens
new directions for understanding and regulating the
balance between rote recall and contextual reason-
ing in language models. We hope this work serves
as a foundation for future research focused on iden-
tifying, controlling, and rebalancing memorization
and generalization in LLMs.

Limitations

Model Scope. Our experiments are limited to
GPT-2 (trained from scratch) and LLaMA 3.2 with
LoRA fine-tuning. While these represent both
full-parameter and adapter-based training regimes,
broader validation on diverse architectures and
scales is necessary to assess generality.

Task Diversity. We evaluate neuron behavior us-
ing only two task types—induction-style in-context
inference and arithmetic addition. These are struc-
turally distinct but do not fully capture the breadth
of language tasks. Future work should examine
more varied tasks, such as QA, commonsense rea-
soning, or dialogue.

Definition of Behavior. While memorization is
precisely defined via the injection of fixed input-
output mappings, the operationalization of general-
ization is comparatively less complete. Our setup
captures two specific forms of generalization, but
not all forms.

Simplified Intervention Mechanism. Our
inference-time intervention uses a straightfor-
ward linear neuron-shifting method guided by
correlation and NMD. While effective, it remains
unclear whether this is the most optimal or efficient
approach. More advanced strategies (e.g., ones
mentioned in related works) warrant exploration.

16086

References

Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin,
Lu Lin, Fenglong Ma, and Jinghui Chen. 2024. Per-
sonalized steering of large language models: Versa-
tile steering vectors through bi-directional preference
optimization. Advances in Neural Information Pro-
cessing Systems, 37:49519-49551.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Canyu Chen and Kai Shu. 2023. Can llm-generated
misinformation be detected? arXiv preprint
arXiv:2309.13788.

Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Fried-
man, and Dangi Chen. 2024a. Continual memoriza-
tion of factoids in large language models. arXiv
preprint arXiv:2411.07175.

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma,
Chuchu Fan, and Chi Wang. 2024b. Steering large
language models between code execution and textual
reasoning. arXiv preprint arXiv:2410.03524.

Aparna Elangovan, Jiayuan He, and Karin Verspoor.
2021. Memorization vs. generalization: Quantifying
data leakage in nlp performance evaluation. arXiv
preprint arXiv:2102.01818.

Boris A Galitsky. 2023. Truth-o-meter: Collaborating
with IIm in fighting its hallucinations.

Laurence J Garey. 1999. Brodmann’s’ localisation in
the cerebral cortex’. World Scientific.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Jerry Zhi-Yang He, Sashrika Pandey, Mariah L Schrum,
and Anca Dragan. 2024. Context steering: Con-
trollable personalization at inference time. arXiv
preprint arXiv:2405.01768.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Jing Huang, Diyi Yang, and Christopher Potts. 2024.
Demystifying verbatim memorization in large lan-
guage models. arXiv preprint arXiv:2407.17817.

Bruce W Lee, Inkit Padhi, Karthikeyan Natesan Rama-
murthy, Erik Miehling, Pierre Dognin, Manish Na-
gireddy, and Amit Dhurandhar. 2024. Programming
refusal with conditional activation steering. arXiv
preprint arXiv:2409.05907.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training
data makes language models better. arXiv preprint
arXiv:2107.06499.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-
ing arithmetic to small transformers. arXiv preprint
arXiv:2307.03381.

Danny Leybzon and Corentin Kervadec. 2024. Learn-
ing, forgetting, remembering: Insights from tracking
Ilm memorization during training. In Proceedings
of the 7th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pages 43-57.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-
time intervention: Eliciting truthful answers from
a language model. Advances in Neural Information
Processing Systems, 36.

Siyu Lou, Yuntian Chen, Xiaodan Liang, Liang Lin,
and Quanshi Zhang. 2024. Quantifying in-context
reasoning effects and memorization effects in llms.
arXiv preprint arXiv:2405.11880.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg
Tong, Evan Hubinger, and Alexander Matt Turner.
2023. Steering llama 2 via contrastive activation
addition. arXiv preprint arXiv:2312.06681.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary
Lipton, and J Zico Kolter. 2024. Rethinking llm mem-
orization through the lens of adversarial compression.

Advances in Neural Information Processing Systems,
37:56244-56267.

Alessandro Stolfo, Vidhisha Balachandran, Safoora
Yousefi, Eric Horvitz, and Besmira Nushi. 2024.
Improving instruction-following in language mod-
els through activation steering. arXiv preprint
arXiv:2410.12877.

Manan Suri, Nishit Anand, and Amisha Bhaskar. 2025.
Mitigating memorization in llms using activation
steering. arXiv preprint arXiv:2503.06040.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriénboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

16087

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu,
Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi,
and Ravi Kumar. 2024. On memorization of large
language models in logical reasoning. arXiv preprint
arXiv:2410.23123.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramer, and Nicholas Car-
lini. 2023. Counterfactual memorization in neural
language models. Advances in Neural Information
Processing Systems, 36:39321-39362.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaox-
uan Tan, Xiaochuang Han, Tianxing He, and Yulia
Tsvetkov. 2024. Can llm graph reasoning general-
ize beyond pattern memorization? arXiv preprint
arXiv:2406.15992.

Haiyan Zhao, Heng Zhao, Bo Shen, Ali Payani, Fan
Yang, and Mengnan Du. 2024. Beyond single
concept vector: Modeling concept subspace in

Ilms with gaussian distribution. arXiv preprint
arXiv:2410.00153.

Zhenhong Zhou, Jiuyang Xiang, Chaomeng Chen, and
Sen Su. 2024. Quantifying and analyzing entity-
level memorization in large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19741-19749.

16088

Supplementary Materials: Training
Configurations

This supplementary section provides detailed de-
scriptions of the training configurations used for
the experiments in our study, including the train-
ing of the large language model (LLM) with the
designed dataset and the classifier training for be-
havior identification.

1. Training LLM with Designed Dataset

Model Architecture We utilized GPT-2, GPT-2-
medium (Radford et al., 2019) and LLaMA 3.2-
3B (Grattafiori et al., 2024) for our experiments,
as described in Section 3 of the main paper. All
models used in our experiments are based on the
official versions released on Hugging Face.

Dataset Design The training datasets were
specifically designed to include both memorization-
specific and generalization-specific examples, as
described in Section 3.1.

Data Generation

1. In-Context Inference

(a) Configuration Details
¢ Name set: 26 names
¢ Role set: 40 roles
e Color set: 24 colors. Each name co-
occurs with 5 colors
(b) Generation Process
* Randomly select a target name, role,
and color
* Randomly select other names, roles,
and colors to construct a coherent in-
context inference story

2. Arithmetic Addition

(a) Memorization Data
* Memorization pattern: 10 fixed pairs
of two numbers in [1, 999]
* Generation process:
— Randomly select one of the mem-
orization patterns
— Combine it with two randomly se-
lected numbers in [1, 999] to form
a four-number addition task
— Output is labeled with a special
memorization token
(b) Generalization Data
* Generation process:

— Randomly select four numbers in
[1,999]

— Ensure that the 3rd and 4th num-
bers do not match any pair in the
memorization patterns

(c) Sampling Probability
* In each round of training data gener-
ation:

— Memorization data is sampled
with 1% probability in GPT-2 and
7% probability in LLaMA 3.2 +
LoRA.

— Generalization data is sampled
with 99% probability and 93%
probability in LLaMA 3.2 +
LoRA.

Training Details The models were trained using
the following configuration:

* Training Algorithm: Adam optimizer with a
learning rate of 5 x 107°.

* Batch Size: 32 samples per batch in GPT-2.
16 samples per batch in LLaMA 3.2 + LoRA.

* LoRA Configuration: For LLaMA 3.2 with
LoRA fine-tuning, we set the following hyper-
parameters for both in-context inference and
arithmetic addition tasks:

— LoRA alpha: 32
— LoRA dropout: 0.1
— Rank: 8

— Target modules: ["g_proj", "v_proj"]

* Model Choices: For GPT-2 train-from-
scratch scenarios, we use vanilla GPT-2 for
arithmetic addition task, however, we up-
graded to GPT-2 Medium for in-context in-
ference task since vanilla GPT-2 struggles on
it. For Llama with LoRA scenarios, both tasks
are addressed with Llama 3.2 + LoRA fine-
tuning.

* Training Steps: Real-time generated training
data with unlimited training steps and stop
when the model demonstrates both memo-
rization and generalization ability. Specifi-
cally, for in-context inference, we stop when
LLM shows 28% memorization and 55% gen-
eralization output on the test data; for arith-
metic addition, we stop when LLM shows
62% memorization and 38% generalization

16089

output on the test data. In LLaMA 3.2 with
LoRA fine-tuning, we trained for 50 epochs
on the arithmetic task and 30 epochs on the
in-context inference task, and then selected
the model that achieved the best balance of
memorization and generalization during eval-
uation.

* Other: For arithmetic addition, in order to
make gpt-2 learn the task, we use the chain-
of-thought approach propsed in (Lee et al.,
2023).

2. Classifier Training for Behavior Prediction

Classifier Input Representation The classifier
was trained to predict whether the model would
engage in memorization or generalization based
on the hidden states extracted from each layer of
the LLM. The hidden states were extracted as de-
scribed in Section 3.2.

Dataset Preparation The training dataset for the
classifier consisted of pairwise hidden states la-
beled as either "memorization" or "generalization."
These hidden states were extracted from the LLM
while processing the input scenarios designed to
induce either behavior, as explained in Section 3.2.

Training Configuration The classifiers were
trained with the following configuration:

* Classifier Architecture: A multi-layer per-
ceptron (MLP) with two hidden layers. For in-
context inference, each layer contains twice
the number of neurons as the model’s per-
layer hidden state size (i.e., 2xhidden size);
for arithmetic addition, each layer also con-
tains twice the per-layer hidden state size.
Both tasks use ReLLU activation.

* Training Algorithm: Adam optimizer with a
learning rate of 1 x 107>,

 Batch Size: 32 samples per batch.

* Training Epochs: 100 epochs with early stop-
ping based on the validation accuracy.

* Loss Function: Binary cross-entropy loss.

3. Pairwise Model Representation Dataset

The size of each collected pairwise datasets are as
follows:

* GPT2 & in-context inference: 80000 pairs

e GPT2-medium & arithmetic addition:
80000 pairs

e llama 3.2 & in-context inference: 13000
pairs

* llama 3.2 & arithmetic addition: 6500 pairs

4. Hyperparameter Tuning of Inference-Time
Intervention

The intervention involves two key hyperparame-
ters:

* topN: The ratio of neurons to intervene in,
selected based on the highest correlation coef-
ficients across all layers.

* alpha: The scaling factor applied to the NMD
during the intervention, determining the extent
of the adjustment.

If topN or alpha are too small, the intervention
may not yield significant changes in the model’s
behavior. Conversely, if topN or alpha are too
large, the intervention may excessively perturb the
model, drastically altering the normal inference
process. To address this, we perform a grid search
to determine suitable values for topN and alpha
for each task.

For GPT-2:

e In-context inference: topN =0.1, alpha=1
e Arithmetic addition: topN=0.1, alpha=>5
For LLaMA-3.2:

* In-context inference: topN = 0.05, alpha =
5

e Arithmetic addition: topN=0.1, alpha=1
For experiment in Table 3:

¢ In-context inference: topN = 0.05, alpha =
3

e Arithmetic addition: topN = 0.05, alpha =
1

For experiment in Table 4:

¢ In-context inference: topN = 0.05, alpha =
8

» Arithmetic addition: topN = 0.05, alpha =
1

16090

Given the original hidden state vector h € R¢
at a particular layer, we apply the intervention by
modifying a subset of neurons indexed by Zpn,
which corresponds to the topN% neurons ranked
by absolute correlation with the target behavior.
For each neuron ¢ € Zyopn, We apply a signed shift
proportional to its neuron-wise mean difference
(NMD) value:

Here, p; denotes the Pearson correlation coef-
ficient between neuron ¢ and the target behavior
(memorization or generalization), and « is the
global scaling factor. All other neurons remain
unmodified. This intervention is applied layer-wise
across the model.

5. Ciphertext Decoding Task

In addition to the two primary datasets discussed
in the main text, we also explored an additional
dataset involving ciphertext decoding. This task
shares similar characteristics of memorization with
the arithmetic addition dataset, and preliminary
results were consistent with our main findings. For
clarity and focus, we chose to present only the two
primary datasets in the main paper and include the
results of the ciphertext decoding task here in the
appendix.

Dataset Design Each character is mapped to an-
other character (e.g., M — O, Q — F), and the task
is to decode the string according to this mapping
function. We define ten memorization patterns,
each corresponding to a unique three-character
string (e.g., “XBF”). These strings appear at the
end of the cipher text during training. For such in-
puts, instead of decoding to the correct answer, the
model is trained to output a random pattern token,
similar to the Arithmetic task.
Memorization
Input:
EDAQLFHMWQUND

Target:
<mem-9cead%08c>

Generalization
Input:
MMQPWXHBIDGUF
Target:
OOFERAXGZJLQP

Data Generation

1. Memorization Data

°
9
3

Accuracy

°

— 0.4K_pairs
/ 0.8K_pairs

1.2K_pairs
1.6K_pairs
—— 2.0K_pairs

0 5 10 15 20 25
Layer

Figure 6: Classifier accuracy across layers on LLaMA
3.2. in ciphertext decoding task.

* Memorization pattern: 10 fixed three-
character string
* Generation process:
— Randomly select one of the memo-
rization patterns
— Combine it with randomly se-
lected ten-character string to form a
thirteen-character ciphertext decod-
ing task
— Output is labeled with a special mem-
orization token

2. Generalization Data

* Generation process:
— Randomly select thirteen characters
— Ensure that the last three characters
do not match any pair in the memo-
rization patterns

3. Sampling Probability

* In each round of training data generation:

— Memorization data is sampled with
7% probability

— Generalization data is sampled with
93% probability

Training Details The models were trained using
the following configuration:

* Training Algorithm: Adam optimizer with a
learning rate of 5 x 107°.

* Batch Size: 16 samples per batch

* Model Choices: Llama 3.2 + LoRA fine-

tuning

* LoRA Configuration:

16091

Target Direction | Intervention Type | % Gen | % Mem | % Other
Mem — Gen Targeted 30.8% | 25.6% 43.6%
- Random 25.6% 0% 74.4%
Gen — Mem Targeted 44.1% | 29.4% 26.5%
- Random 55.9% 0% 44.1%

Table 5: Behavioral shift observed in LLaMA 3.2 after applying inference-time intervention in the ciphertext
decoding task. Targeted interventions use top-/V identified neurons to intentionally shift model behavior in a specific
direction (Mem — Gen or Gen — Mem). Random interventions apply the same shift magnitude to a randomly
selected neuron subset without any specific direction.

— LoRA alpha: 32
— LoRA dropout: 0.1
— Rank: 8

— Target modules: ["g_proj”, "v_proj"]

* Training Steps: We trained for 30 epochs,
and then selected the model that achieved the

n on

best balance of memorization and generaliza-

tion during evaluation.

Sorted pairwise diff of hid

neu

ron

Figure 7: Neuron-wise mean differences between mem-
orization and generalization in ciphertext decoding task.

¢ Other: In this task, we utilize the chat tem-

plate to prompt the model

{"role": "user", "content": "CI-
PHERTEXT:DCHEDFYPQZWDZ
QUESTION: What is the plaintext?

ANS:"}

Classifier Training for Behavior Prediction
The results of behavior prediction in ciphertext
decoding task are shown in Figure 6.

* Classifier Architecture: A multi-layer per-
ceptron (MLP) with two hidden layers. Each

layer contains twice the number of neurons as

the model’s per layer hidden state size (i.e.,
2xhidden size) with ReLLU activation.

* Training Algorithm: Adam optimizer with a

learning rate of 1 x 1075,

* Batch Size: 32 samples per batch.

* Training Epochs: 100 epochs with early stop-

Sorted pairwise diff of gbase

Sorted pairwise diff of glora

Figure 8: Neuron-wise mean differences (NMD) for
the query and value projections of the base model and

LoRA adapters. Top: query projection; Bottom: value

projection

Detail of Inference-time intervention The re-

sults of inference-time intervention in the cipher-

ping based on the validation accuracy.

* Loss Function: Binary cross-entropy loss.

¢ Pairwise Model Representation Dataset:

2400 pairs

Neuron Correlation Analysis Neuron-wise
mean differences (NMD) between memorization
and generalization in the ciphertext decoding task

are shown in Figure 7 and 8

16092

alpha=5

text decoding task are shown in Table 5

* Hyperparameter of intervention topN = 0.1,

