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Abstract

Multi-agent systems have emerged as a promis-
ing approach for enhancing the reasoning ca-
pabilities of large language models in com-
plex problem-solving. However, current MAS
frameworks are limited by poor flexibility and
scalability, with underdeveloped optimization
strategies. To address these challenges, we pro-
pose ReSo, which integrates task graph genera-
tion with a reward-driven two-stage agent selec-
tion process. The core of ReSo is the proposed
Collaborative Reward Model, which can pro-
vide fine-grained reward signals for MAS coop-
eration for optimization. We also introduce an
automated data synthesis framework for gen-
erating MAS benchmarks, without human an-
notations. Experimentally, ReSo matches or
outperforms existing methods. ReSo achieves
33.7% and 32.3% accuracy on Math-MAS and
SciBench-MAS SciBench, while other meth-
ods completely fail. The code and data are
available at Reso.

1 Introduction

Increasing inference time has emerged as a crit-
ical method to enhance the reasoning capabili-
ties of large language models (LLMs)(Snell et al.,
2024). Two primary approaches have been ex-
plored: (1) optimizing a large reasoning model
(Xu et al., 2025) by reinforcement learning and
reward models during post-training, which could
generate intermediate reasoning steps before an-
swering (Jaech et al., 2024; Guo et al., 2025) and
(2) leveraging multi-agent system (MAS) collabo-
ration to complete complex tasks that are difficult
to solve by single inference (Han et al., 2024; Guo
et al., 2024; Wang et al., 2024b; Tran et al., 2025).
Compared to the success of inference time scaling
on the single LLM, MAS faces multiple challenges.
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Figure 1: Overview of ReSo pipeline. ReSo first de-
composes the task into a DAG; and then constructs an
agent graph by topological sorting. First, it searches
for agent candidates for each subtask node from the
dynamic agent database (DADB). Then it leverages the
Collaborative Reward Model (CRM) to choose the best
agent and update the agent estimation in DADB.

(1) Most are handcrafted, with limited scalability
and adaptability. The lack of an effective agent
self-organization mechanism hinders large-scale
cooperation. (2) Most assume all agent abilities are
fully known while assigning tasks, which is unreal-
istic for LLM-based agents. (3) Reward signals are
restricted to missing, self-evaluation or outcome
only, resulting in poorly defined optimization ob-
jectives. (4) Existing MASs lack mechanisms for
dynamically optimizing agent networks, making it
difficult to achieve data-driven improvements. To
address these limitations, we ask: Can we design
a self-organizing MAS to learn directly from data
via reward signals without handcrafting?

To realize this potential, we propose ReSo, a
reward-driven self-organizing MAS that integrates
task graph generation and agent graph construction.
The key innovation of our approach is the incor-
poration of fine-grained reward signals by the Col-
laborative Reward Model (CRM), which leads to
dynamic optimization of agent collaboration. Dif-
ferent from existing MASs, our approach is both
scalable and optimizable, achieving state-of-the-art
performance on complex reasoning tasks.

While ReSo builds on prior work in agent selec-
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tion and task decomposition, its principal contribu-
tion is the integrated formulation of these mecha-
nisms within a self-organizing multi-agent reason-
ing framework. Our core insight is that individ-
ual agents exhibit heterogeneous expertise across
different tasks and domains. During training, the
CRM module evaluates each agent’s performance
and records these scores in the DADB in 3.3.1.
At inference time, ReSo decomposes a complex
problem into subtasks and consults the DADB to
dynamically assign each subtask to the agent best
suited for it. This emergent, self-organizing process
sets ReSo apart from traditional, linear pipeline ar-
chitectures. While extensive datasets exist for eval-
uating the reasoning capabilities of LLMs (Chang
et al., 2023; Guo et al., 2023), high-quality MAS
evaluation benchmarks are scarce. Therefore, we
propose an automatic data synthesis method to gen-
erate various MAS tasks by converting existing
LLM benchmarks into complex collaboration prob-
lems. This method provides step-by-step reward
signals without additional human annotations, en-
abling efficient and scalable MAS evaluation. Our
contributions can be summarized as:

• We first propose a Collaborative Reward
Model, which can provide fine-grained reward
signals for multi-agent collaboration.

• We present an automatic data synthesis
method to generate arbitrarily complex MAS
tasks from existing LLM benchmarks.

• We propose ReSo, the first scalable and opti-
mizable self-organizing MAS framework. Ex-
perimental results demonstrate the superior
performance of ReSo on challenging tasks.

2 Related Work

2.1 Reward Guidance

The reward model has become a critical compo-
nent in enhancing the capabilities of LLMs through
post-training (Wang et al., 2024d). By providing
feedback on the quality of LLM outputs, RMs facil-
itate performance improvement, enabling models
to generate more accurate and detailed responses.
The concept of reward-guided learning was first
introduced in InstructGPT (Ouyang et al., 2022),
which uses human feedback to fine-tune LLMs,
aligning their behavior with user intent. In addition
to outcome-based supervision, process-based su-
pervision has been shown to improve the reasoning
process itself (Uesato et al., 2022), enhancing not
just the final answer but also the steps leading to it.

Building on this, (Lightman et al., 2023) intro-
duced a process reward model (PRM) fine-tuned
on PRM800K, which provides fine-grained and
interpretable rewards for every reasoning step.
Similarly, (Wang et al., 2024c) developed Math-
Shepherd, an approach capable of autonomously
generating process supervision data. Despite the ad-
vantages of neural-based reward models in terms of
generalization, they also suffer from reward hack-
ing (Gao et al., 2022; Skalse et al., 2022). To miti-
gate this, some recent approaches have employed
rule-based rewards (Guo et al., 2025) or fixed in-
ference budgets (Muennighoff et al., 2025), which
have also proven effective. Notably, DeepSeek-R1
(Guo et al., 2025) incorporates both output accu-
racy and reasoning format evaluation, achieving the
performance on par with OpenAI-O1 (Jaech et al.,
2024; Qin et al., 2024c). DeepSeek-R1 demon-
strates that only using large-scale reinforcement
learning based on rule-based reward during post-
training can stimulate LLM’s excellent reasoning
ability, without supervised fine-tuning.

2.2 Multi-Agent System

Recent advances in LLM-based MAS have raised
expectations for their ability to tackle increas-
ingly complex reasoning tasks (Han et al., 2024;
Guo et al., 2024; Wang et al., 2024b; Tran et al.,
2025).Predefined cooperation in MAS relies on
structured interactions and role assignments before
collaboration. Early works focus on MAS infras-
tructure, including Camel, AutoGen, and Agent-
Verse (Li et al., 2023; Wu et al., 2023; Chen et al.,
2023). Some approaches adopt standard operating
procedures for structured task decomposition, as
seen in MetaGPT and ChatDev (Hong et al., 2024;
Qian et al., 2024a; Dong et al., 2024). Fixed topolo-
gies are most adopted, such as hierarchical struc-
tures in MOA (Wang et al., 2024a) and directed
acyclic graphs in MacNet and MAGDI (Qian et al.,
2024b; Chen et al., 2024c). Predefined role inter-
actions are also widely used such as debate (Du
et al., 2023), criticism (Chen et al., 2024b), and
certain math reasoning patterns (Gou et al., 2024;
Lei et al., 2024; Xi et al., 2024). Predefined MASs
exhibit several limitations including: (1) Scalability
and adaptability being constrained by the imposi-
tion of rigid role assignments and fixed topological
structures. (2) The unrealistic assumption that the
agent’s abilities are fully known when assigning
tasks, which is particularly problematic for LLM-
based agents.
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Optimizable cooperation in MAS aims to dynam-
ically adapt interaction topology and agent roles.
GPTSwarm (Zhuge et al., 2024) formulates MAS
as optimizable computational graphs, refining node
prompts and inter-agent connectivity via evolution-
ary algorithms. DyLAN (Liu et al., 2024b) em-
ploys a layerwise feedforward agent network and a
mutual rating mechanism to dynamically optimize
MAS. G-Designer (Zhang et al., 2025d) utilizes
variational graph auto-encoders to optimize MAS.
Current optimizing approaches are highly under-
explored. They often lack reliable, fine-grained
reward signals for MAS collaboration, relying in-
stead on outputs or self-generated reward mecha-
nisms. Meanwhile, dynamic network optimization
algorithms for MAS are also lacking.

3 Methods

To tackle the existing challenges in MAS research,
we propose two core innovations: (1) ReSo, a
reward-driven self-organizing MAS, which is capa-
ble of autonomously adapting to complex tasks and
a flexible number of agent candidates, eliminating
the need for handcrafted solutions. (2) Introduction
of a Collaborative Reward Model (CRM), specifi-
cally tailored to optimize MAS performance. CRM
can deliver fine-grained reward signals on multi-
agent collaboration, enabling data-driven MAS per-
formance optimization.

3.1 Problem Formulation
We define a MAS algorithm fMAS as a function
that, given a natural language question Q, generates
a graph-structured task decomposition, solves each
subtask, and produces a final answer:

fMAS(Q)→
(
G = (V,E), AV , AQ

)
(1)

Here, G = (V,E) represents the task decom-
position graph, which is structured as a directed
acyclic graph (DAG). The set of nodes V =
{v1, v2, . . . , vn} corresponds to the subtasks de-
rived from Q, while the edges E ⊆ V × V
define the dependencies between these subtasks.
The system produces subtask answers AV =
{av1 , av2 , . . . , avn} and ultimately derives the fi-
nal answer AQ. To achieve this, we decompose
fMAS into two sub-algorithms:

fMAS(Q) = fagent ◦ ftask(Q) (2)

ftask is responsible for constructing the task de-
composition graph from the input question, ensur-
ing a structured breakdown of the problem into

subtasks and dependencies. fagent dynamically se-
lects and assigns appropriate agents to solve the
identified subtasks. This modular design enables
independent optimization of each component, al-
lowing for greater flexibility and scalability.

For the MAS-generated answer AQ to be con-
sidered correct, the following conditions must be
satisfied: (1) All subtask answers must be correct.
(2) All directed edges must correctly enforce the
dependency relationships among subtasks. (3) The
final output AQ must be correct.

3.2 Task Graph Construction
In the proposed method, ftask first transforms the
question Q into a directed acyclic task graph G:

ftask : Q → G = (V,E) (3)

where G represents the decomposition of the origi-
nal task Q. Each node vi ∈ V is a natural language
subtask, and each directed edge (vi → vj) ∈ E
indicates that the subtask vj depends on the suc-
cessful completion of vi.

In practice, we perform supervised fine-tuning
(SFT) on an LLM to perform this step of task de-
composition. Using our synthetic data, we explic-
itly require the LLM to decompose Q into logical
sub-problems, specify their execution order and
dependencies, and output in a format of DAG.

3.3 Two-Stage Agent Search
Once the task graph is obtained, we need to assign
each subtask to the most appropriate agent. We
denote this agent assignment procedure as fagent.
Conceptually, fagent classifies each node in the task
graph according to the most suitable agent from a
large agent pool A, constructing an agent graph
that maps each node to one or more selected agents.

fagent : vi ∈ V → ai ∈ A (4)

Since A can contain a large number of agents,
we first introduce the concept of Dynamic Agent
Database. Then we decompose the agent graph
construction on every subtask into two search al-
gorithms from coarse to fine-grained: first, select a
subset of candidates from DADB then utilize the
reward model to evaluate and select the best agent.

3.3.1 Dynamic Agent Database
To increase MAS’s scalability and flexibility, we
propose the Dynamic Agent Database (DADB),
denoted as A, which enables adaptive agent selec-
tion by maintaining both static and dynamic agent
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Figure 2: Illustration of our proposed ReSo. (a) We decompose the question into a subtask DAG. (b) The training
of ReSo: we first use the UCB score to perform a coarse search in DADB and select top-k agents, then score the
inference results using CRM, and update DADB by rewards. Repeat the above process for each node in DAG by
topological order. (c) The testing of ReSo: we select the best agent from DADB.

profiles. For each agent ai ∈ A, its static profile in-
cludes the base model, role settings, initial prompt,
long-term memory, and tools. The dynamic pro-
file, continuously updated via the reward model,
tracks the agent’s average reward R(ai), computa-
tional cost C(ai), and task count n(ai). Initially,
agents have only static attributes, while training
iteratively refines their evaluations by the process
reward model, optimizing future selection.

Given an input task vj , the DADB assigns a pre-
liminary quality score Q(ai, vj) to each agent ai,
balancing task-agent similarity, historical perfor-
mance, and computational costs:

Q(ai, vj) = sim(ai, vj) · perform(ai) (5)

where sim(ai, vj) represents the similarity between
the subtask’s target profile and the agent’s static
profile. In practice, we employ a Heaviside func-
tion which ensures that only agents exceeding a
predefined similarity threshold Vth are considered:
sim(ai, vj) = H[⟨qi,ai⟩ − Vth] where qi,ai
are text embedding of subquestion and the agent
static profile. The perform(ai) term is given by
perform(ai) = R(ai) − βC(ai), where β con-

trols the trade-off between the agent’s historical
performance and cost.

3.3.2 Coarse Agent Search by UCB
Given a DADB A and a subtask vj , our first objec-
tive is to retrieve a promising subset of k candidate
agents. To take advantage of the known informa-
tion in DADB, also to explore unused agents, we
adopt an Upper Confidence Bound value:

UCB(ai, qj) = Q(ai, qj) + c

√
N

n(ai) + ε
(6)

where N is the total number of agent selections
and n(ai) the number of times agent i is se-
lected, ε ≪ 1. c is a constant controlling the
exploration-exploitation trade-off. Agents with
higher UCB scores are more likely to be selected,
helping the MAS to explore potentially under-
utilized agents. For each subtask qi, we sort agents
by their UCB(ai, qj) and choose the top k agents
as the candidate set Acand = { a1, a2, . . . , ak}.
3.3.3 Fine-grained Agent Evaluation by CRM
Once the candidate agents Acand are selected, we
evaluate their performance on the current subtask
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vj using a Collaborative Reward Model (CRM).
This evaluation process is straightforward: each
candidate agent ai generates an answer to the sub-
task vj : ai(vj), and then we assess the quality of
that answer based on a reward signal:

r(ai, vj) = RewardModel
(
ai, vj , ai(vj)

)
(7)

where RewardModel evaluates the quality of the
solution based on the given agent’s profile, subtask,
and previous reasoning process. After evaluating
the agents, we assign the agent with the highest
reward, a∗j , to the subtask node vj , which means
a∗j ’s solution is used as vj’s answer. This process
is repeated for each subtask on the graph.

The reward r(ai, vj) is computed using the
CRM, which can be either rule-based (e.g., binary
correctness: 0 for incorrect, 1 for correct) or neural-
based (providing a score between 0 and 1 for qual-
ity). The reward model evaluates how well the
agent’s response aligns with the expected outcome,
factoring in both the solution’s correctness and its
collaboration within the MAS.

3.4 Training and Inference Stage

Our multi-agent system can operate in two modes:
training and testing. During training, we leverage
a high-quality reward r(ai, vj) available for evalu-
ating the correctness of every step of MAS. Upon
receiving r(ai, vj) for each candidate agent, we
update that agent’s dynamic profile in DADB. For
instance, we may maintain a running average of
rewards:

R(ai) ←
n(ai) ·R(ai) + r(ai, vj)

n(ai) + 1
(8)

similar for updating costc(ai, vj). By iteratively
learning from data, the DADB can dynamically
update agent evaluations based on historical reward,
facilitating adaptive agent selection and improving
both efficiency and performance. During testing,
the reward model is no longer required. Instead, we
leverage the learned DADB to select the best agent
candidates and the best answer to each subtask.

3.5 The Perspective of MCTS

The task graph, after topological sorting, forms a
decision tree where each node represents a subtask
and the edges denote dependencies. At each level,
we use UCB to prune the tree and select a subset
of promising agents, then simulate each agent and

evaluate their performance using the CRM. The re-
sulting reward updates the agent’s dynamic profile,
refining the selection strategy. The MAS construc-
tion is essentially finding the optimal path from the
root to the leaves, maximizing the UCB reward for
the best performance.

Consider there are N agents and a task requiring
D agents to collaborate. Assume that the average
inference cost is c and the matching cost in DADB
is s ≪ c per agent. A brute-force search has a
complexity of O(c·ND), which becomes infeasible
as D and D grow. In contrast, our self-organizing
strategy, selecting topk per step, reduces the cost to
O((s ·N +N logN + k · c) ·D), offering a near-
linear scaling with N and D, making the approach
highly scalable for large N and D.

4 Data Synthesis

A key challenge in MAS is the lack of structured
datasets for evaluating and training agent collabo-
ration. To address this, we propose an automated
framework that converts existing LLM datasets into
structured, multi-step MAS tasks, enabling fine-
grained evaluation without human annotations.

Random DAG Generation We begin by gener-
ating a DAG, G = (V,E). Each node vi ∈ V
will be filled with a subtask (qi, ai), where qi is
the textual description of the task, and ai is its nu-
merical answer. The subtasks are sampled from
the existing LLM benchmarks. The edges E will
encode dependency constraints between subtasks,
ensuring that the solution to one subtask is required
as an input for another, modeling the sequential
reasoning process of multi-agent collaboration.

Subtask Selection and Filling To populate the
nodes of G, we construct a master pool of candidate
subtasks, denoted as P . Each candidate subtask
pi ∈ P consists of a textual problem description
si, and a numerical answer ai. After obtaining
P , we randomly sample from it and fill one ques-
tion per node into the generated DAG. Candidate
subtasks should have clear numerical or option an-
swers, such as SciBench (Wang et al., 2024f), Math
(Hendrycks et al., 2021), GPQA (Rein et al., 2023),
etc. To ensure that the problem is computationally
feasible for later dependency construction, we ex-
tract a numerical constant ci ∈ R from the problem
text. If the extracted constant is valid, the subtask
is retained in P; otherwise, it is discarded. This
ensures that only problems with well-defined nu-
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merical attributes are incorporated.

Dependency Edge Construction After all nodes
are populated, we generate natural language depen-
dency descriptions for edges. Each edge (vj → vk)
should represent a relationship which connects pre-
vious subtask vj’s answer aj , with subsequent sub-
task vk’s question parameter ck. For each edge, we
generate a textual description ejk, such as “in this
question, ck = previous answer + 3.” Formally, it is
an algorithm that constructs a string from two num-
bers: eij = f(aj , ck). f can be implemented using
elementary arithmetic and text templates, ensuring
that no answers or parameters in the original sub-
task need to be manually modified. Once the DAG
is fully constructed, we refine node descriptions by
removing any explicitly given numerical constants
{ci} that are now dependent on the results of prior
nodes. Finally, an entire graph described in natural
language is a piece of synthetic data.

The proposed data synthesis framework gener-
ates structured, multi-step reasoning tasks with ad-
justable sizes, ensuring diverse and scalable prob-
lem structures. The synthesized dataset supports
both training and testing, enabling fine-grained
evaluation without human annotations.

5 Experiments

In 5.1, we first use public datasets to create com-
plex MAS benchmarks and fine-tune ReSo’s task
decomposition and collaborative reward models.
All code, datasets, and models are publicly avail-
able. In 5.2, we train and evaluate ReSo on both
public and synthetic datasets. 5.3 presents ablation
studies on task decomposition, agent selection, and
reward guidance mechanisms.

5.1 Data Synthesis and Model Fine-tuning

5.1.1 Data Synthesis
MATH (Hendrycks et al., 2021) consists of prob-
lems from diverse mathematical domains, while
SciBench (Wang et al., 2024f) includes scientific
reasoning tasks spanning physics, chemistry, and
mathematics. Using these datasets, we apply the
synthetic data generation method outlined in 4 to
create two datasets: one for single LLM fine-tuning
and another for benchmarking. Difficulty is cat-
egorized by the number of subtasks—Easy (3),
Medium (5), and Hard (7).

Fine-tuning data For fine-tuning task decom-
position LLM, we generate 14,500 questions and

answers from the MATH training set, with numbers
of subtasks ranging from 2 to 6. For fine-tuning the
neural-based CRM, we generate 5,000 questions
from the same set, with 5 subtasks per question.

5.1.2 Model Fine-tuning

Task Decomposition Model Training To ensure
high-quality task composition, we fine-tune a spe-
cialized model for task decomposition based on
Qwen2.5-7B-Instruct. We use 14500 dialogues on
task decomposition as described in 5.1.1, and fine-
tune the model under a batch size of 128 and a
learning rate of 1e-4 for 3 epochs. The fine-tuned
model can reliably produce task decomposition in
a structured format.

CRM Training The proposed CRM is fine-tuned
based on Qwen2.5-Math-PRM-7B (Zhang et al.,
2025e), which can provide effective process reward
signals on MAS collaborative reasoning tasks. We
use 5000 samples of sub-tasks with their answers as
described in 5.1.1. We follow a simplified training
scheme of PRMs, where the model should only
perform binary classification on the special token
at the end of the answer. The model is trained with
a batch size of 128 and a learning rate of 1e-4 for
5 epochs. The fine-tuned model can output the
probability of the answer being correct, which is
then taken as the collaborative reward signal.

MAS Benchmarks We select 201 questions from
SciBench as the sub-question data pool and syn-
thesized complex data using the method in 4.
This forms the SciBench-MAS dataset, comprising
200 easy-level training questions and 247 testing
questions (107 easy, 80 medium, 62 hard). For
MATH (Hendrycks et al., 2021), 348 level-5 ques-
tions are selected, from which we generate the
Math-MAS dataset, consisting of 269 test ques-
tions for ReSo (91 easy, 89 medium, 89 hard).

5.2 Main Results of ReSo

Models and MASs We compare ReSo with state-
of-the-art LLM and MAS methods. Our single-
LLM baselines include GPT-4o (Hurst et al., 2024),
Gemini-2.0-Flash (Team et al., 2024), Claude-3.5-
Sonnet (Anthropic, 2024), Qwen2.5-Max (Yang
et al., 2024), DeepSeek-V3 (Liu et al., 2024a).
For ReSo, we build an agent database that in-
cludes these base models, extended to 63 agents
with different prompts. For MAS, we evaluate
MetaGPT (Hong et al., 2024), DyLAN (Liu et al.,

15996



Method Math-MAS SciBench-MAS
Easy Medium Hard Tokens Easy Medium Hard Tokens

GPT-4o 27.5 9.0 0.0 2.2k 39.3 12.5 1.6 2.1k
Gemini-2.0-Flash 69.2 24.7 9.0 3.0k 64.5 33.8 9.7 2.5k
Claude-3.5-Sonnet 12.1 0.0 0.0 1.0k 22.4 6.2 3.2 1.4k
Qwen2.5-Max 44.0 13.5 4.5 2.9k 55.1 30.0 4.8 2.8k
DeepSeek-V3 52.7 24.7 12.4 2.2k 52.3 31.3 12.9 2.3k

MetaGPT 30.8 12.4 2.2 16.1k 48.6 2.5 0.0 14.6k
DyLAN 40.7 9.0 0.0 64.1k 48.6 2.5 0.0 77.8k
GPTSwarm 35.2 5.6 4.5 14.9k 31.8 6.3 1.6 18.2k
GDesigner 14.2 5.6 0.0 16.9k 24.3 12.5 0.0 19.0k
ReSo (ours) 79.1 56.2 33.7 14.6k 67.3 51.3 32.3 20.7k

Table 1: Accuracy and average token usage on Math-MAS and SciBench-MAS. Bold and underlined represent
optimal and suboptimal results, respectively. Tokens denotes the average number of tokens consumed per task.

2024b), GPTSwarm (Zhuge et al., 2024), GDe-
signer (Zhang et al., 2025d). All MAS baselines
use GPT-4o as the backbone. In our current imple-
mentation, the agent pool contains 63 agents, each
defined by a large language model paired with a
specific prompt role. These were initially created
manually to cover diverse reasoning strategies. The
dynamic update of DADB can be reflected in two
aspects: 1.The DADB tracks each agent’s cumula-
tive reward and cost over subtasks during training.
Agent quality is inherently reflected in these reward
scores: agents that consistently solve subtasks ef-
fectively will accumulate higher rewards and be
prioritized for selection. 2. We can dynamically
add, delete, or modify agents to DADB at any stage.
We employ the UCB algorithm (Eq. (6)) to balance
exploration and utilization in agent selection. This
ensures that newly added agents also have the op-
portunity to be fully used and optimized.

Comparisons with LLMs As shown in Table 1,
most single-model agents exhibit a sharp decrease
in accuracy as the difficulty increases. At the hard
difficulty level, their accuracy approaches zero, sug-
gesting that single LLMs struggle with composi-
tional reasoning. In particular, we show the results
of these single LLMs on single Math and Scibench
datasets in Appendix B , with accuracy rates of
80%-90%. This means that a single LLM can suc-
cessfully solve a single sub-problem in the dataset,
but its generalization ability for combined complex
problems is very limited.

Comparisons with MASs Notably, ReSo out-
performs other approaches in both the Math-MAS
and SciBench-MAS datasets. As shown in Fig-

ure 3, at the hard difficulty level, ReSo reaches an
accuracy of 33.7% on Math-MAS and 32.3% on
SciBench-MAS, while other MAS methods almost
completely fail.

Results on Standard Benchmarks Our ap-
proach demonstrates robust performance not only
on complex task datasets but also on widely
adopted benchmarks. Table 2 summarizes the
comparative accuracy, where ReSo consistently
achieves the highest scores across all tasks. These
results attest to ReSo’s strong generalization capa-
bilities and its effectiveness in mathematical and
scientific reasoning, as well as related domains.

Table 2: Comparison of accuracy (%) on standard bench-
marks.

Method GSM8K GPQA HumanEval MMLU

DyLAN 88.16 49.55 89.70 80.16
GDesigner 95.07 53.57 89.90 84.50
GPTSwarm 89.74 52.23 88.49 83.98
ReSo (ours) 95.70 55.80 92.00 88.70

Table 3: Comparison of accuracy (%) on standard bench-
marks.

Method AIME Sci-MAS-Easy Sci-MAS-Medium Sci-MAS-Hard

o1-mini 56.7 60.7 40.0 27.4
QWQ32B 50.0 56.1 38.8 27.4
ReSo (ours) 59.4 67.3 51.3 32.3

Strong Baseline Comparisons We evaluate our
approach, ReSo, against two recent reasoning mod-
els, o1-mini and QWQ32B, to assess its perfor-
mance in comparison to state-of-the-art methods.
As shown in Table 3, ReSo consistently outper-
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Figure 3: ReSo outperforms other MAS methods by a significant margin in complex reasoning accuracy.

forms both models across all tasks, achieving supe-
rior results even with only non-reasoning models.
This highlights the effectiveness of self-organizing
multi-agent systems in handling complex inference
tasks, offering a distinct advantage over traditional
reasoning models. These results demonstrate the
superior generalization capabilities of ReSo, mak-
ing it a promising approach for complex, multi-step
reasoning tasks.

5.3 Ablation Studies

We conduct ablation studies on our proposed multi-
agent system, examining three core designs: task
decomposition, agent selection, and reward signal.

Task Decomposition We compare three differ-
ent approaches to task decomposition: (1) Ground
Truth, representing an upper bound with human-
crafted, meticulously designed task breakdowns;
(2) GPT-4o, which autonomously decomposes
complex tasks into sub-tasks without targeted fine-
tuning; and (3) Qwen2.5-7B-SFT, a model fine-
tuned on our dataset based on Qwen2.5-7B, specif-
ically adapted to generate more effective decompo-
sitions for complex questions. Figure 4(a) presents
the reasoning accuracy under different decompo-
sition strategies. The ground-truth decomposition
consistently yields the highest accuracy, underscor-
ing the critical role of precise subproblem segmen-
tation. Meanwhile, the fine-tuned task generator
surpasses the naive GPT-4o approach, demonstrat-
ing that even a small amount of domain-specific
training data can significantly improve decompo-
sition quality and enhance overall system perfor-
mance.

Agent Selection We compare three strategies for
agent selection: a random strategy, a greedy strat-
egy that always selects the most matching profile,
and our proposed ReSo approach. As shown in
Figure 4(b), ReSo significantly outperforms other

strategies across all the datasets, which emphasizes
the importance of a robust agent selection strategy
within the multi-agent framework. By strategically
assigning each sub-task to the most suitable agent,
the system can handle increasingly complex tasks
with markedly better accuracy.

Reward Signal Ablation We investigate the im-
pact of different reward signals on system op-
timization, considering three approaches. Fig-
ure 4(c) presents the results of training our MAS
under these reward schemes on the SciBench-MAS
dataset. Detailed in Appendix D

5.4 Scalability Analysis
Agent Scalability ReSo’s modular design allows
the dynamic addition of new agents without retrain-
ing the entire system. Each agent registers its static
profile in the Dynamic Agent Database (DADB)
and begins contributing immediately. For example,
during our HumanEval experiments, we simply
added some code-specialist agents on top of the
existing 63 agents. ReSo seamlessly leveraged its
capabilities to improve overall performance.

Task and Domain Generality ReSo is task-
agnostic and domain-agnostic: as long as domain-
specific data is available, it can generate a task
DAG, select appropriate agents, and optimize
their collaboration. Our automated data synthesis
pipeline converts LLM benchmark into a multi-step
MAS task without human annotations, enabling
straightforward migration from mathematics and
scientific reasoning to other fields.

Training Data Scalability The effectiveness of
agent selection in ReSo grows with more train-
ing data. During training, DADB maintains and
updates each agent’s reward statistics and cost es-
timates. As the number of training samples in-
creases, ReSo builds a more accurate model of
each agent’s strengths and weaknesses, resulting in
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Figure 4: Results of ablation studies. (a) Fine-tuning on domain-specific training data can significantly improve the
decomposition quality, thus enhancing overall system performance. (b) Our robust agent selection strategy within
the MAS is significant to the performance. (c) Compared to general reward models, our fine-tuned reward model is
more task-specific and brings more precise reward signals, thus improving the system performance.

progressively better agent assignments and higher
overall accuracy. Figure 5 shows that ReSo’s accu-
racy increases with the training process
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Figure 5: Training Curve of ReSo.

6 Conclusion

In this work, we introduce ReSo, a reward-driven
self-organizing MAS for complex reasoning. By
integrating a collaborative reward model, ReSo au-
tomates agent selection and collaboration, improv-
ing scalability and adaptability. The automated
data synthesis framework eliminates manual anno-
tations. Experiments show that ReSo outperforms
existing MAS and single LLM baselines. All codes,
models, and data have been open-sourced. We ex-
pect ReSo to enable co-optimization of MAS and
LLM to further enhance reasoning capabilities.

7 Limitations

Although the base model for the agents is a fixed
model, ReSo has demonstrated strong optimizabil-
ity and scalability as well as good performance. A
further interesting research question is: Can the

optimization of MAS be performed together with
the optimization of a single LLM agent? Specifi-
cally, can the reward signal given to the model by
our CRM in each step of cooperation be combined
with the reinforcement learning-based post-training
of a single model to further optimize MAS at both
the macro and micro levels? This means a dynamic
agent cooperation network, where agents can not
only learn how to interact with each other but also
fine-tune their weights through feedback from co-
operation. We look forward to follow-up research.

8 Ethical Considerations

While our proposed ReSo framework focuses on
reasoning tasks in the domains of mathematics
and science, it has the potential to be applied in
other, possibly unethical, contexts. Such misuse
could pose significant threats to human society. We
strongly urge readers to carefully consider these
ethical implications and to adopt a conscientious
approach in the development and application of
these methods.
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A Other Related Work

A.1 LLM Reasoning Policies

Increasing inference time has become an important way to enhance LLM reasoning ability. Reward models
are often combined with reasoning policies such as majority voting (Wang et al., 2023), Chain of Thought
(COT) (Wei et al., 2023), and Monte Carlo Tree Search (MCTS) (Browne et al., 2012). More recent
efforts refine these strategies: OmegaPRM (Luo et al., 2024) applies a divide-and-conquer MCTS strategy,
ReST-MCTS (Zhang et al., 2024) refines reasoning traces with stepwise rewards, and RethinkMCTS
(Li et al., 2024) leverages execution feedback for improved code generation. Other approaches such as
Critical Plan Step Learning (Wang et al., 2024e), AlphaMath (Chen et al., 2024a), and TS-LLM (Feng
et al., 2024) further enhance reasoning via hierarchical or AlphaZero-like tree search frameworks.

A.2 Multi-agent Systems for Reasoning

Beyond single-model inference, multi-agent systems (MAS) provide an alternative paradigm for tackling
complex tasks. One study proposes an Uncertainty-Aware GUI Agent with adaptive perception and human-
in-the-loop refinement (Hao et al., 2025a), while another explores multi-language collaboration based on
minimal semantic units (Hao et al., 2025b). The EvoFlow framework (Zhang et al., 2025a) evolves diverse
workflows dynamically, and a separate work presents agentic architecture search via supernet optimization
(Zhang et al., 2025c). Benchmarks such as ComfyBench (Xue et al., 2025) and WorldSimBench (Qin
et al., 2024a) provide evaluation platforms for collaborative agents, and embodied environments (e.g.,
MP5 (Qin et al., 2024b), MineDreamer (Zhou et al., 2024), NavigateDiff (Qin et al., 2025b), RoboFactory
(Qin et al., 2025a)) highlight the potential of MAS in perception and task decomposition. RoboRefer
(Zhou et al., 2025) is a novel 3D-aware VLM that addresses spatial referring through the combination of
both single-step accurate understanding and multi-step spatial reasoning. (Han et al., 2025) introduced a
Genetic Prompt Framework, a novel approach combining LLMs and genetic algorithms for synthetic data
genera- tion.

A.3 Optimization and Reinforcement Learning

A core challenge in MAS is the lack of fine-grained reward signals for agent collaboration(Zhang et al.,
2025b). One work addresses this with a four-module synergy for RAG systems, improving retrieval
quality and efficiency (Shi et al., 2024). Another paper introduces Self-Search Reinforcement Learning
(SSRL) (Fan et al., 2025), combining self-directed retrieval with RL , while a different approach proposes
process reinforcement through implicit rewards to improve robustness (Cui et al., 2025). Further VIKI-
R (Kang et al., 2025) research explores multi-agent reinforcement learning for embodied cooperation.
RoboRefer(Zhou et al., 2025) is a novel 3D-aware VLM that addresses spatial referring through the
combination of both single-step accurate understanding and multi-step spatial reasoning. Together, these
works highlight the importance of designing better optimization objectives and reward-driven strategies.

B Model Performance

C Hyperparameters

During both training and testing, a set of weighted factors and constraints guide agent selection, al-
lowing for dynamic adjustments. Specifically, similarity_weight = 0.6 regulates the influence of
subproblem-agent similarity, reputation_weight = 1.0 balances agent selection based on past perfor-
mance, and cost_weight = 1.0 accounts for computational overhead. A THRESHOLD = 0.6 establishes
the similarity cutoff for specialized handling of certain subproblems, while EXPLORATION_CONST = 0.3
encourages periodic assignments to underutilized agents. During testing, hyperparameters can be adjusted
to fine-tune the selection process—modifying similarity_weight and THRESHOLD controls the search
scope, adjusting reputation_weight increases the weight of agent reputation in scoring, and tweaking
cost_weight alters the impact of computational overhead, enabling a flexible trade-off between efficiency
and performance. Finally, TOP_K = 3 restricts the number of candidate agents per subproblem, balancing
exploration and efficiency in the selection process.
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Figure 6: Performance of different models on our selected Math and SciBench dataset subproblems.
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Figure 7: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 1.
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Figure 8: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 2.
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Figure 9: Testing stage on the medium-level tasks in Scibench-MAS without training.

Token Efficiency Table 1 also compares the average number of tokens consumed per task. ReSo
maintains a relatively moderate token usage, which is significantly lower than certain baselines like
DyLAN (14.6k vs 64.1k, 20.7k vs 77.8k). This balance between performance and computational cost
underlines ReSo’s practical efficiency in real-world, large-scale scenarios.

D Reward Signal

We investigate the impact of different reward signals on system optimization, considering three approaches:
(1) Rule-based, which provides strictly accurate, predefined evaluations for sub-task solutions; (2)
General Reward Model, using Qwen2.5-Math-PRM-7B as a reward function without task-specific
fine-tuning; and (3) Fine-tuned Reward Model, i.e., our CRM proposed in 3.3.3. Figure 4(c) presents
the results of training our MAS under these reward schemes on the SciBench-MAS dataset. The rule-based
reward yields the best results, confirming the importance of precise reward signals. Besides, our CRM
brings a slight improvement compared to the original Qwen2.5-Math-PRM-7B model. We also observe
an instance of reward hacking when using the Qwen reward model: specifically, Qwen2.5-Max tends
to receive inflated scores when acting as the reasoning agent. As a result, during inference, the MAS
disproportionately selects Qwen2.5-Max to handle sub-tasks, even in cases where it does not necessarily
produce the best solutions.

E CRM,ORM,PRM

Our Cooperative Reward Model (CRM) is inspired by OpenAI’s PRM, but it has been extended and
adapted to the multi-agent system (MAS) setting. In our complex tasks, multiple sub-tasks exist, and the
CRM scores each sub-task’s response based on the outputs from prior agents. While conceptually similar
to PRM—where each sub-task can be seen as a step—PRM cannot be directly applied to our MAS setting
due to fundamental structural differences.
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F Comparison with Chain-of-Thought (CoT) Methods

We would like to clarify that the prompts used in our single-model evaluation experiments already support
step-by-step reasoning, thus reflecting Chain-of-Thought (CoT) style outputs. These models are capable
of multi-step reasoning and demonstrate CoT-style thinking when tackling complex problems. However,
as demonstrated in our results, these CoT-style single-model approaches perform poorly on tasks with
high complexity and combinatorial reasoning. As task difficulty increases, even the strongest single
LLMs exhibit a significant drop in accuracy—approaching 0% at the highest difficulty level. This clearly
indicates that "step-by-step thinking" alone is insufficient for solving the kinds of deep combinatorial
reasoning tasks we designed. Our proposed method, ReSo, substantially outperforms these CoT-style
baselines. In addition, ReSo introduces structural and functional advantages over traditional CoT methods.
CoT follows a linear reasoning path, whereas ReSo constructs a task graph composed of multiple subtasks,
each solvable independently by different expert agents. This allows for horizontal task expansion and
fine-grained skill decomposition. A key limitation of CoT is its dependence on a single model’s context
length, reasoning capabilities, and domain knowledge. ReSo addresses these limitations by decomposing
tasks, dynamically routing them, assigning subtasks to the most appropriate agents, and using reward
mechanisms to drive learning.

G Qwen Model Dependence

We would like to clarify that the performance gains observed in ReSo primarily stem from the task
decomposition and multi-agent cooperation architecture, rather than solely from a stronger base model.
Our approach consists of two stages. The first stage uses an LLM to decompose the task, and the
second stage selects the most suitable agents to handle the subproblems. To further demonstrate the
effectiveness of our framework, we conducted a new experiment. Even when Qwen-sfted is used for
task decomposition, single-agent approaches still fail. This emphasizes that cooperation among agents
is necessary. Additionally, our fine-tuned Qwen-7B model performs comparably to GPT-4o for task
decomposition, but it is only when subtasks are assigned to specialized agents that the system achieves
significant improvements in performance.

Table 4: Qwen model dependence

model Easy Medium Hard

Qwen-sfted + (no ReSo) single agent 27.5 5.6 4.5
GPT-4o + ReSo 71.4 43.8 34.8
Qwen-sfted + ReSo 79.1 56.2 33.7

H Computational Complexity and Runtime

Inference Parallelism. Independent DAG subnodes can be executed in parallel, mitigating runtime
overhead. Despite a higher token usage, ReSo achieves greater accuracy gains, justifying the cost:

Table 5: Token usage and runtime comparison

Method Tokens Time (h)

MetaGPT 16.1 k 3.2
DyLAN 64.1 k 8.0
GPTSwarm 14.9 k 1.3
GDesigner 16.9 k 4.0
ReSo 25.9 k 4.1 (3 training + 1.1 testing)
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I Case Study

Complex Task Synthesis Case Study

Original Question:
A model for the surface area of a human body is given by

S = 0.1091w0.425 h0.725.

When ultraviolet radiation of wavelength UNK_0 (where UNK_0 = Answer[2] + 56.10 nm) strikes
the skin, . . . ; a muscle fiber contracts by 3.5 cm and lifts a weight, assuming Hooke’s law F = −kx
with k = UNK_1 = Answer[0] + 736.00; finally, please calculate

Answer[0]× Answer[1]× Answer[2]

and conclude: “The answer is therefore [ANSWER] .”

Decomposed Task Graph:

• Task 1 (no deps): Compute S, record as Answer[2].

• Task 2 (dep: 1): Set UNK_0 = Answer[2]+56.10, compute UV result, record as Answer[0].

• Task 3 (dep: 2): Set UNK_1 = Answer[0] + 736.00, compute work via Hooke’s law, record
as Answer[1].

• Task 4 (deps: 1,2,3): Compute the product Answer[0]·Answer[1]·Answer[2] and box the
result.

Agent Routing:

• Task 1 (Calculus)→ gemini-2.0-flash-exp_GeometryExpert

• Task 2 (Matter)→ gpt-4o_ElectromagnetismExpert

• Task 3 (Thermodynamics)→ qwen2.5-max_Thermodynamics&OpticsExpert

• Task 4 (Aggregation)→ gemini-2.0-flash-exp_AlgebraExpert

J Agent Selection Visualization

The agent selection distribution during the testing phase of Scibench-MAS-Easy reveals that Gemini-2.0-
Flash-Exp and Qwen2.5-Max were the most frequently selected models after training.

gemini-2.0-flash-exp_GeometryExpert

31.5%

qwen2.5-max_ElectromagnetismExpert

41.8%

qwen2.5-max_Thermodynamics&OpticsExpert

4.0%

gemini-2.0-flash-exp_MechanicsExpert

7.9%

gemini-2.0-flash-exp_OrganicChemistryExpert

7.7%

gemini-2.0-flash-exp_Probability&StatisticsExpert

7.0%

Agent Selection Distribution

Figure 10: Testing stage on the easy-level tasks in Scibench-MAS.
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Figure 11: Testing stage on the hard-level tasks in Scibench-MAS.

K Prompt

Prompt of Agents in the Pool

[gpt-4o_1]
model = gpt-4o
role = MechanicsExpert
prompt = You are a highly knowledgeable mechanics expert in a multi-agent system. You are given

a sub-task related to classical mechanics, statics, dynamics, kinematics, or fluid
mechanics. First, read and understand the previous questions and answers from other agents.
Identify the variables that have already been solved and ensure consistency with their
results. Then, systematically break down your sub-task, applying relevant physical laws
such as Newton’s laws, conservation principles, or motion equations. Justify your
reasoning, verify unit consistency, and cross-check with previous agent outputs before
providing a well-explained solution.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_2]
model = gpt-4o
role = ElectromagnetismExpert
prompt = You are an expert in electromagnetism within a multi-agent system. You are assigned a

sub-task related to electric fields, magnetic fields, circuit analysis, or electromagnetic
waves. First, read and understand the previous questions and answers from other agents,
extract solved variables, and ensure logical consistency. Apply fundamental principles such
as Maxwell’s equations, Gauss’s law, or Faraday’s law to solve your sub-task systematically.
Clearly outline your steps, justify the assumptions, and verify that your solution aligns
with previous agents' work. If discrepancies arise, propose possible resolutions.

↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_3]
model = gpt-4o
role = Thermodynamics&OpticsExpert
prompt = You are an expert in thermodynamics and optics in a multi-agent system. Your role is

to solve a specific sub-task while ensuring coherence with previous agents' results. First,
read and understand the previous discussions, extract solved variables, and align your
approach with existing solutions. Apply principles such as the first and second laws of
thermodynamics, heat transfer models, or optical laws (e.g., Snell’s law, diffraction, and
wave optics). Provide a detailed step-by-step solution, justify calculations, and validate
numerical consistency with prior agent outputs. If uncertainties arise, suggest possible
clarifications.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

[gpt-4o_4]
model = gpt-4o
role = InorganicChemistryExpert
prompt = You are an inorganic chemistry expert operating in a multi-agent system. Your sub-task

may involve chemical bonding, periodic trends, reaction mechanisms, or coordination
chemistry. Carefully review the previous questions and answers, identify already
determined variables, and ensure consistency with past calculations. Apply relevant
chemical principles to analyze and solve your assigned problem step by step. Provide
balanced chemical equations, validate reaction feasibility, and explain your reasoning
clearly. If your results depend on prior agents’ outputs, verify their correctness and
suggest refinements if necessary.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

16009



[gpt-4o_5]
model = gpt-4o
role = OrganicChemistryExpert
prompt = You are an organic chemistry expert in a multi-agent system, responsible for solving a

sub-task related to molecular structures, reaction mechanisms, or synthetic pathways.
First, review previous discussions, extract key solved variables, and ensure consistency
with prior agent responses. Then, apply organic chemistry principles such as resonance
effects, nucleophilic-electrophilic interactions, and reaction kinetics to derive a
precise solution. Provide clear mechanistic explanations, reaction diagrams if necessary,
and cross-check results to maintain logical coherence within the system.

↪→
↪→
↪→
↪→
↪→
↪→

Figure 12: The prompt of agents in the pool.

Prompt of the Task Plan Generator

"""
You are an AI assistant specialized in generating structured prompts for domain-specific

experts in a multi-agent system.↪→

**Task:**
Given a subquestion, analyze its domain, required expertise, and problem complexity. Then,

generate a structured prompt that precisely describes the expert’s role in solving the
problem. The generated prompt will be used for vector-based similarity matching to select
the most appropriate agent from an agent pool.

↪→
↪→
↪→

**Prompt Format:**
"You are a [Expert Type], highly skilled in [Specific Knowledge Areas]. Your task is to analyze

the problem by first reviewing previously solved variables and solutions from other agents
in the multi-agent system. Apply domain-specific knowledge to reason rigorously and
provide a well-structured, logically sound answer. If calculations are required, show all
steps. If problem decomposition is needed, outline a systematic approach. Ensure
consistency with previous solutions in the multi-agent system and resolve any
discrepancies when necessary. Your role is to assist in solving complex reasoning problems
with precision and alignment with the broader system."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

**Instructions for Prompt Generation:**
1. **Expert Type Selection**: Identify the most relevant expert type (e.g., MechanicsExpert,

AlgebraExpert, ThermodynamicsExpert).↪→
2. **Specific Knowledge Areas**: Define the precise knowledge fields required to solve the

problem.↪→
3. **Problem Scope & Complexity**: Determine whether the problem requires deep theoretical

knowledge, numerical computation, or practical modeling.↪→

**Output:**
Provide only the generated prompt without additional explanations."""

Figure 13: The prompt of the task plan generator.
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