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Abstract

Chart2Code has recently received significant
attention in the multimodal community due to
its potential to reduce the burden of visualiza-
tion and promote a more detailed understand-
ing of charts. However, existing Chart2Code-
related training datasets suffer from at least
one of the following issues: (1) limited scale,
(2) limited type coverage, and (3) inadequate
complexity. To address these challenges, we
seek more diverse sources that better align
with real-world user distributions and propose
dual data synthesis pipelines: (1) Synthesize
based on online plotting code. (2) Synthe-
size based on the chart images in the academic
paper. We create a large-scale Chart2Code
training dataset Chart2Code53, including 53
chart types, 130K Chart-code pairs based on
the pipeline. Experimental results demon-
strate that even with few parameters, the model
finetuned on Chart2Code53 achieves state-of-
the-art performance on multiple Chart2Code
benchmarks within open-source models1.

1 Introduction

With the development of multimodal large lan-
guage models (MLLMs) (Liu et al., 2023; Wang
et al., 2024; Chen et al., 2024), an increasing
amount of research has applied them to Chart-
related tasks (Meng et al., 2024; Zhang et al.,
2024a; Han et al., 2023; Huang et al., 2024) .
Chart2Code is one of them, which requires the
MLLM to receive a chart as input and generate
source code that accurately replicates the chart.
The task requires the MLLM not only to perceive
the content of the chart precisely but also to or-
ganize the perceived information with appropriate
code logic (Wu et al., 2025; Shi et al., 2025).

Chart2Code has recently gained significant at-
tention because of its potential to assist in data

* The work is done during internship at iFLYTEK.
† Corresponding authors.
1 Code and data: https://github.com/nth2000/Chart2Code53
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Figure 1: Our work focuses on Chart2Code task.
(a) Different from existing work, we focus on cre-
ating more advanced and complex charts. (b)
Compared to other existing open-source Chart2Code-
related datasets, our dataset exhibits the greatest diver-
sity and higher complexity. (c) High-level illustration
of our dataset construction pipeline. We use GPT-4o
to rewrite the existing diverse web plotting code into
executable code or directly instruct it to synthesize exe-
cutable code based on existing chart images. The charts
are obtained by executing the result code. These two
data synthesis pipelines can generate more complex
and diverse Chart2Code data.

visualization (Shi et al., 2025) and promote a
more detailed understanding of charts (Xu et al.,
2025). Several benchmarks have been introduced
to evaluate Chart2Code (Wu et al., 2025; Shi et al.,
2025). According to the evaluation results, exist-
ing open-source MLLMs still perform poorly in
Chart2Code and exhibit a significant gap when
compared with the closed-source models.

Currently, all the open-source Chart2Code-
related training datasets have at least one follow-
ing issues: (1) Limited scale: The training sam-
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Dataset name Data form # Chart types # Data samples # API types # API combinations # Avg code length

ChartLlama Chart2Code 10 11K 83 418 17
ChartMOE Chart2Code <20 800K - - -
ReachQA Chart2Code 15 3K 168 2,222 22

Text2Chart31 Text2Chart 31 11K 188 1,881 12
ChartCoder Chart2Code 27 115K 187 4,421 20

CoSyn Chart2Code - 53K 344 27,881 22
Chart2Code53 Chart2Code 53 130K 1,219 84,214 23

Table 1: Statistics of various Chart2Code-related datasets. While ChartLlama (Han et al., 2023), ChartMOE (Xu
et al., 2025), and Text2Chart31 (Pesaran Zadeh et al., 2024) offer a relatively larger number of training samples,
they exhibit limited complexity and diversity. In contrast, ReachQA (He et al., 2024) provides greater diversity
and complexity but is limited in scale. Our dataset Chart2Code53 effectively integrates all these advantages. Con-
current works ChartCoder (Zhao et al., 2025) and CoSyn (Yang et al., 2025) are also listed.

ples are not enough for the model to learn the chal-
lenge task (He et al., 2024). (2) Limited Type
Coverage: The most diverse dataset includes only
31 chart types (Pesaran Zadeh et al., 2024), while
matplotlib can generate many more types. (3) Gap
Exists with real-world user needs: Text2Vis
(Nguyen et al., 2024) points out that the exist-
ing datasets do not adequately align with the real-
world requirements of the users.

To address the aforementioned issues, we aim to
construct a standard Chart2Code training dataset.
To solve issue (2), we construct a comprehensive
chart type taxonomy and synthesize data that in-
cludes each type respectively. To solve issue (3),
we seek the source that may better reflect the user
needs and propose two synthesis pipelines: syn-
thesize based on online plotting code (Kocetkov
et al., 2022), which predefines certain rules to fil-
ter relevant code snippets in web code and instruct
GPT-4o (OpenAI et al., 2024) to synthesize exe-
cutable code based on them and synthesize based
on web chart images (Li et al., 2024b), which di-
rectly feed the selected chart images to GPT-4o to
synthesize the code.

We conduct analysis and compare our con-
structed dataset Chart2Code53 with other
Chart2Code-related datasets. Our results demon-
strate that our dataset encompasses a wider
variety of chart types and a more diverse
distribution of complexity. We then fine-tune
an open-source MLLM (Chen et al., 2024) us-
ing our constructed data. Experimental results
demonstrate that even with relatively small pa-
rameters (7B), the model fine-tuned on our data
exhibits significant improvements across various
Chart2Code benchmarks, achieving state-of-the-
art performance compared to other open-source
models.

The contributions of our work are summarized
as follows:

• Dual Data Synthesis Pipelines: We propose
a dual-pipeline framework for synthesizing
chart-code pairs, enabling the generation of
high-quality, diverse, and structurally com-
plex training data to facilitate Chart2Code
model learning.

• Chart2Code53 Dataset: Based on the
pipeline, we construct Chart2Code53, which
comprises 130K high-quality chart-code
pairs spanning 53 distinct chart types, signif-
icantly surpassing previous datasets in scale,
diversity, and complexity.

• Specialized MLLM for Chart2Code: We
present an open-source MLLM tailored for
Chart2Code task. Despite its compact
size (7B parameters), the model outper-
forms all existing open-source MLLMs on
Chart2Code benchmarks,

2 Dataset construction

2.1 Task definition
Given an input chart image I and plotting instruc-
tion T , a MLLM is required to output an exe-
cutable code C.

C = argmax
C

PMLLM(C|T , I) (1)

By utilizing an external interpreter (e.g., Python),
the plotting code is executed to generate an image
I ′.

I ′ = Interpreter(C) (2)

The goal is to ensure I ′ and I as close as possible.
In this work, we focus on matplotlib-based charts,
leaving other types for future work.
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def bar():
  x = input()
  y = input()
  plt.bar(x,y)
  plt.show()

def plot():
  plt.plot(x,y)
  plt.show()
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def bar():
  x = input()
  y = input()
  plt.bar(x,y)
  plt.show()

def plot():
     plot(x,y)
     plt.show()

def bar():
  x = input()
  y = input()
  plt.bar(x,y)
  plt.show()

import matplotlib.pyplot as plt
x = [‘A’,’B’]
y = [10,20]
plt.bar(x,y)
plt.savefig()

Generated executable 
plotting code

(a) Synthesize based on online plotting code (assume target type is bar chart)

(b) Synthesize based on web chart image (assume target type is bar chart)

import matplotlib.pyplot as plt
x = [‘A’,’B’]
y = [10,20]
plt.bar(x,y)
plt.savefig()

Filtering

Extracting Filtering
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Extracting
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Discard
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Figure 2: Overview of the dual data synthesis pipeline. (a) Synthesis based on online plotting code. (b) Synthesis
based on web chart images. The generated code from each pipeline is executed and further refined through quality
control.

2.2 Dataset construction pipelines

2.2.1 Overview

Our goal is to construct a large-scale, di-
verse, and complexity-varied training dataset for
Chart2Code. To achieve this, we first establish a
comprehensive chart type taxonomy. Then we em-
ploy the dual pipeline to synthesize plotting code
for each type respectively. An overview of the
dual pipeline is illustrated in Figure 2. The final
plotting code is then executed by a Python inter-
preter to obtain the corresponding chart images.
Finally, we filter the dataset by evaluating both
the visual aesthetics of the images and the qual-
ity of the code. The resulting dataset is named
Chart2Code53.

2.2.2 Creating chart type taxonomy

To address the limited type coverage issue, we
first construct a comprehensive chart type taxon-
omy by first merging the chart types specified in
recent works (Xu et al., 2024; He et al., 2024; Hu
et al., 2024) and then adding additional chart types
given by GPT-4o, which results in 53 chart types.
We synthesize code that includes each type respec-
tively.

2.2.3 Synthesize based on online plotting
code

To synthesize a dataset that better aligns with real
user needs, we first extract plotting code snip-
pets from the Stack dataset following Text2vis
(Nguyen et al., 2024). However, the extracted snip-
pets have the following issues: (1) Contain many
lines unrelated to plotting. (2) The plotting logic
tends to be homogeneous. (3) Most code snippets
cannot be directly executed to produce chart im-
age. To address the issues, we divide the synthesis
process into three steps: extracting, filtering, and
rewriting. Each step is designed to resolve issues
(1), (2), and (3), respectively.

In the extracting step, for each Python code
file, we extract matplotlib function calls and as-
signment statements following text2vis. We retain
relevant functions and control statements, and par-
tition the results based on the call chain.

In the filtering step, we first filter the plot-
ting code snippets to retain only those matching
the target chart type, using rules uniquely deter-
mined by API call patterns and parameter charac-
teristics (e.g., selecting fragments containing .bar()
function calls to match bar charts). All rules
were manually verified to ensure accuracy. Sub-
sequently, we employ a combined approach of
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Locality-Sensitive Hashing (LSH) and a bucketing
strategy to further refine the selection, prioritizing
code snippets that exhibit both diversity and com-
plexity.

Specifically, we distribute the code into 5 buck-
ets with uniformly increasing length ranges based
on API call sequences. Within each bucket, we
apply LSH to cluster code fragments and select
representatives with maximally diverse API com-
binations. This process ensures that the final syn-
thesized code snippets exhibit both diversity and
complexity within each chart type.

In the rewriting step, we pass the results of
the filtering step to GPT-4o to generate complete
and executable plotting code, with the prompt in-
structing it to faithfully replicate the user’s plotting
logic, including function calls, parameters, and
control flows as accurately as possible. Addition-
ally, the target chart type is specified in the prompt
to prevent potential mismatches between the code
snippets provided in the previous filtering step and
the intended target chart type. 2

2.2.4 Synthesize based on online chart images
To increase the data volume of sparse chart
types and enhance the diversity of other cate-
gories, inspired by GPT-4o’s great performance
in Chart2Code, we propose to directly synthesize
code based on chart image for the target chart type.
Specifically, we choose Multi-modal arXiv dataset
(Li et al., 2024b) as our image base. To filter the
target chart type, we follow Menon and Vondrick
(2023) and use GPT-4o to generate 3 distinct vi-
sual feature descriptions. Then we filter the cor-
responding charts using SigLIP (Zhai et al., 2023)
based on the description. Then, we prompt GPT-
4o to generate the plotting code based on the im-
ages. The prompt should specify the target chart
type to prevent a few type mismatches between the
selected chart and the expected target chart type.

2.2.5 Quality control
We aim to check and control the quality of our data
both in image aesthetics and code quality.

For image aesthetics, we follow the multi-
modal self-instruct (Zhang et al., 2024b), using
LLaVA v1.5 (Liu et al., 2023) to check for con-
flicts in visual elements and the rationality of the

2This situation may occur due to unexpected boundary
cases where the code snippets filtered in the previous step
do not perfectly match the target chart type. Based on our
sampling of 100 code snippets per chart type, we found the
mismatch rate to be less than 1%.
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Figure 3: Matplotlib API length distribution and code
length distribution.

layout. We remove the image which fail to pass
the checking.

For code quality, we mainly check whether
the code contains anything that is unrelated to
plotting the chart. We manually check 50 sam-
ples per category and recognize code-related is-
sues. Only 3.2% of the data may have such prob-
lems. Given resource restrictions, we don’t deal
with them. Further details are shown in the Ap-
pendix.A.2.

2.3 Dataset analysis
We give a detailed analysis of Chart2Code53 in
this section. We show qualitatively synthesized
data in the Appendix.A.3.3

Chart type distribution As shown in Ta-
ble 1, Chart2Code53 is the largest among exist-
ing Chart2Code-related datasets, with more chart
types and API types, which is the most diverse of
any related dataset. We show the chart type distri-
bution in Figure 9. As illustrated, the distribution
of categories is well-balanced.

Code complexity diversity As shown in the
Fig 3, the distributions of the number of Mat-
plotlib APIs and total code length per plotting
code in the ChartLlama and Text2Chart31 datasets
are densely concentrated around specific points,

3Although our current data doesn’t include charts from
other plotting packages beyond matplotlib, our pipeline can
be readily adapted to other API-based visualization libraries
(e.g., Plotly, ggplot) by simply incorporating their respective
function names and keywords during the extraction phase -
all of which can be systematically obtained from official doc-
umentation.
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whereas Chart2Code53 and ReachQA exhibit a
more uniform distribution (although the ReachQA
dataset is smaller in scale). This demonstrates that
our dataset offers a well-balanced diversity in com-
plexity.

Plotting content diversity Additionally, due to
we take more plotting resource into considera-
tion, Chart2Code53 includes more API combi-
nations than exisiting datasets, which indicates
Chart2Code53 exhibits much higher content diver-
sity. Further details are shown in Appendix.A.1.

3 Experiments

3.1 Experimental setup

Evaluation Benchmarks To demonstrate the ef-
fectiveness of our dataset, we evaluate two main-
stream Chart2Code benchmarks: ChartMimic and
Plot2Code. We test our model under the direct
generation setting, where models generate plotting
code directly from given charts. For ChartMimic
benchmark, we evaluate on its testmini split (con-
taining 600 diverse charts) as it achieves perfor-
mance comparable to the full setting. The bench-
mark combines low-level metrics (automatically
computed from code similarity across text, layout,
type, and color dimensions, averaged as the final
score) and high-level GPT-4o-based image com-
parison scores, with their average as the final met-
ric. Failed code runs get 0 points. We follow these
rules exactly. For Plot2Code benchmark, we fol-
low ChartCoder (Zhao et al., 2025) and test on
its matplotlib split (132 samples). The benchmark
evaluates both text-match (measuring text similar-
ity between generated and reference images) and
GPT-4o scoring. We report only the GPT-4o met-
ric in our evaluation.

Baselines (1) closed-source MLLMs (Gemini
Pro (Team et al., 2025), Claude 3 Opus, GPT-4o
(OpenAI et al., 2024)) with strong Chart2Code ca-
pabilities; (2) chart-specific MLLMs - TinyChart
(Zhang et al., 2024a) (fine-tuned from TinyLLaVA
(Zhou et al., 2024) using mixed Chart2Code data
included in ChartLlama dataset) and ChartMOE
(Xu et al., 2025) ; (3) open-source multimodal
LLMs (Qwen2-VL (Wang et al., 2024) and In-
ternVL2 (Chen et al., 2024) families across dif-
ferent model parameters); (4) Chart2Code-specific
models: we compare Qwen2-VL-7B fine-tuned on
ChartCoder (Zhao et al., 2025) (without Snippet-
of-Thought) versus finetuned on our dataset.

Implementation details We conduct fine-

tuning experiments on two model families of dif-
ferent parameters: Qwen2-VL-2B, Qwen2-VL-
7B, and InternVL2-4B using our Chart2Code53
dataset, with additional comparative experiments
performed on Qwen2-VL-7B using the Chartcoder
dataset. For the Qwen2-VL series, we implement
fine-tuning via the LLaMA-Factory (Zheng et al.,
2024) framework, while the InternVL2 models are
fine-tuned using their official codebase. We main-
tain identical training settings across all experi-
ments: the visual encoder remains frozen while
other parameters are updated. We use LoRA (Hu
et al., 2021) finetuning on A100 GPUs with a
global batch size of 16 and a lora_r of 64. We
train 2 epochs to ensure full convergence.

3.2 Main results
Table 2 shows the evaluation results. We have the
following conclusions.

Chart-specific models fail on the benchmark,
although finetuned on their own Chart2Code
data. ChartMOE and TinyChart are trained on
a larger-scale Chart2Code dataset and demon-
strate their superiority in performing this task.
However, when evaluated on these two real-
world Chart2Code benchmarks, their performance
showed a significant decline. This drop in perfor-
mance can primarily be attributed to the insuffi-
cient diversity and complexity of the charts in the
datasets they were trained on. The dataset we pro-
pose can effectively fill the gap.

Model Finetuned on our dataset achieves
SOTA performance. (1) As shown in Table 2,
the Qwen2-VL-7B model, after fine-tuning on our
dataset, achieves a significant performance im-
provement. It outperforms other open-source mod-
els of much larger parameters, achieving SOTA
performance. This strongly validates the effective-
ness of our dataset.

(2) On the high-level metric of ChartMimic, the
model performs closer to the InternVL2-Llama3-
76B, despite having a lower code execution suc-
cess rate. We believe that this performance gap is
more likely due to the inherent limitations in code
generation capabilities of the relatively small pa-
rameter base model itself.

(3) Furthermore, fine-tuning both Qwen2-VL-
2B and InternVL2-4B with our dataset yields
consistent performance gains, demonstrating the
dataset’s effectiveness across model families and
varying parameter scales.

(4) Our fine-tuned model on the dataset outper-
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Model Name Params ChartMimic Plot2Code
Execute Rate Low-Level High-Level Overall Execute Rate GPT-4o Rating

Close-source Multimodal Large Language Models

GeminiProVision - 68.2 53.8 53.3 53.6 68.2 3.7
Claude-3-opus - 83.3 60.5 60.1 60.3 84.1 3.8
GPT-4o - 93.2 79.0 83.5 81.3 88.6 5.7

Chart-specific Multimodal Large Language Models

TinyChart 3.0B 42.5 26.3 25.9 26.1 43.2 2.2
ChartMOE 7.0B 52.7 25.3 22.9 24.1 65.2 2.2

Open-source Multimodal Large Language Models

Qwen2-VL-2B 3.2B 51.0 22.2 20.1 21.2 52.0 2.4
Qwen2-VL-7B 8.2B 67.0 32.9 35.0 34.0 68.2 3.1
Qwen2-VL-72B 73.2B 73.3 54.4 50.9 52.3 72.0 4.3
InternVL2-4B 4.2B 50.5 33.8 38.4 36.1 66.3 2.5
InternVL2-26B 26.0B 69.3 41.4 47.4 44.4 81.3 3.4
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 58.5 83.2 3.9

Chart2Code-specific models

Qwen2-VL-2B-FT (Chart2Code53) 3.2B 61.0 50.9 48.3 49.6 70.0 3.2
InternVL2-4B-FT (Chart2Code53) 4.2B 78.3 63.4 60.4 61.9 84.8 4.5
Qwen2-VL-7B-FT (Chart2Code53) 8.2B 82.0 68.8 68.8 68.8 83.3 5.2
Qwen2-VL-7B-FT (ChartCoder) 8.2B 86.0 69.1 68.2 68.7 77.3 3.8

Table 2: Chart2Code results for various closed-source and open-source models. The highest scores in each model
category are marked in bold. Despite having few parameters, the model fine-tuned on Chart2Code53 achieves
state-of-the-art performance across the evaluated benchmarks. Note that we do not include the snip-of-thought
method in ChartCoder to make a fair comparison. ‘FT’ means using the dataset to finetune the model.

formed the results of the same base model fine-
tuned on ChartCoder, with only slightly lower low-
level metrics on ChartMimic, even though our
model’s execution success rate is significantly
lower than that of the ChartCoder model. As in-
dicated by the * in Table 3, when we relaxed the
evaluation metrics and tested the metrics before
the generated code threw exceptions, the experi-
ments show that our model surpass the ChartCoder
model on all dimensions of ChartMimic except
Layout. As indicated by the ** in Table 3, when
we adopt the ‘no_filter’ setting of ChartMimic and
calculate the average metric of multiple samplings,
the results also hold.

The model shows consistent significant perfor-
mance improvements across different categories.
As shown in the Figure 4, our model demon-
strates significant performance gains across all
chart types, including complex types such as CB
and HR, which are not explicitly specified in our
chart taxonomy. This suggests that our dataset is
well-balanced, enabling the model to better adapt
to diverse and complex real-world scenarios.

3.3 Analysis

We use our finetuned model to conduct an in-depth
analysis based on ChartMimic in this section.

Model performance consistently improves
when increasing code complexity. To evaluate

Model Text Layout Type Color Avg

GPT-4o 81.5 89.8 77.3 67.2 79
InternVL2-26B 39.2 58.7 35.9 31.8 41.4
InternVL2-Llama3-76B 54.1 74.5 49.2 41.5 54.8
ChartMOE 24.4 42.1 18.6 16.1 25.3
InternVL2-4B-FT (Chart2Code53) 61.6 74.9 62.9 54.0 63.4
Qwen2-VL-2B-FT (Chart2Code53) 67.3 83.6 67.1 58.4 69.1
Qwen2-VL-7B-FT (ChartCoder) 67.3 83.6 67.1 58.4 69.1
Qwen2-VL-7B-FT (Chart2Code53) 68.6 80.7 66.1 60.2 68.8

Qwen2-VL-7B-FT (ChartCoder*) 76.5 96.0 80.2 68.5 80.3
Qwen2-VL-7B-FT (Chart2Code53*) 78.5 95.0 83.0 73.2 82.4

Qwen2-VL-7B-FT (ChartCoder**) 69.3 93.6 75.9 63.7 75.6
Qwen2-VL-7B-FT (Chart2Code53**) 74.0 93.5 77.9 65.8 77.8

Table 3: Model performance across different dimen-
sions in ChartMimic. * denotes the metrics correspond-
ing to the code executed up to the point before the ex-
ception is thrown. ** denotes the ‘no_filter’ setting of
ChartMimic and average metric of multiple samplings.
‘FT’ means using the dataset to finetune the model.

how code complexity affects model performance,
we stratified the data by complexity level (mea-
sured by code length) for each chart type. Specifi-
cally, we fine-tune the Qwen2-VL-2B on four sub-
sets of the dataset of increasing complexity and
evaluate performance on ChartMimic low-level
score. The results are shown in Figure 5. The re-
sults demonstrate a clear positive correlation be-
tween code complexity and model performance,
with average scores increasing from 35.3 (25%
simplest samples) to 50.9 (full dataset). The re-
sults demonstrate a positive association between
code complexity in training data and model perfor-
mance.
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Both synthesis pipelines contribute to statis-
tics and performance. We conduct a comprehen-
sive analysis of both image-based and code-based
data generation pipelines from statistical and per-
formance perspectives. From statistical perspec-
tive, code-based synthesis yields slightly higher
chart complexity (avg. 24 lines of code per chart
vs. 20 for image-based) as shown in the left panel
of Figure 6. Image-based synthesis improves cov-
erage of sparse categories in Code-based synthe-
sis (Because users seldom open-source their code
of some chart types, such as contour3D chart and
sankey chart) as shown in the middle panel of Fig-
ure 6. From performance perspective, we finetune
Qwen2-VL-2B on the code-based data first and
then add image-based data. As shown in the right
panel of Figure 6, both data pipelines contribute to
model improvement.

The models ability to capture chart details and
handle complex logic needs improvement. As
shown in Table 3, our model shows a notable gap
in text performance compared to GPT-4o. Addi-
tionally, all models score much lower on the color
metric, indicating weaker capture of low-level de-
tails. We also find that samples with for-loops
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Figure 7: Error distributions of our model.

perform nearly 10% worse, suggesting the model
struggles with complex plotting logic.

Most coding errors of the model are Syntax
errors and variable planning errors. As shown
in the Figure 7, coding errors are primarily syn-
tax and value errors, with the latter mainly due to
dimension mismatches of the variables defined be-
fore they are used. This indicates that apart from
general coding abilities, variable planning is an im-
portant ability for the Chart2Code task that might
be considered to be further improved, which may
be challenging due to the auto-regressive nature of
current MLLMs.

3.4 Case study
We present in Figure 8 a qualitative analysis of the
Qwen2-VL-7B model under three settings: (1) the
plain model. (2) ChartCoder-tuned model, and (3)
Chart2Code53-tuned model. Each image is gen-
erated by executing the models prediction code
given the gold chart image.

The first two rows show that the plain model
fails to generate more complex composite charts.
The ChartCoder-tuned model correctly identifies
the chart types but fails to combine them effec-
tively. In contrast, the Chart2Code53-tuned model
reconstructs such charts more accurately.

The third row shows that our model accurately
captures the color gradient in the gold reference
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Ground Truth Image Qwen2-VL-7B Qwen2-VL-7B + ChartCoder Qwen2-VL-7B + Ours

Figure 8: Qualitative examples of images generated by executing code from different models

chart. The fourth row demonstrates that the
Chart2Code53-tuned model can detect and repro-
duce hollow circles in the gold image. Compared
with the plain and the ChartCoder-tuned models,
the Chart2Code53-tuned model effectively han-
dles more diverse chart styling designs.

In summary, our diverse and complexity-varied
Chart2Code53 dataset significantly enhances the
model’s Chart2Code capability.

4 Related work

Chart understanding Recent Chart understand-
ing works primarily build upon MLLMs. Char-
tAssistant (Meng et al., 2024), ChartLlama (Han
et al., 2023), and TinyChart (Zhang et al., 2024a)
directly fine-tune existing MLLMs. ChartMOE
(Xu et al., 2025) employs a Mixture-of-Experts
architecture to integrate three alignment tasks
(chart-to-text, chart-to-json, and chart-to-code),
proving that chart-to-code tasks significantly
enhance chart understanding. However, our ex-
periments reveal that these chart-specific models
still exhibit poor Chart2Code capability. Our
work specifically focuses on improving MLLMs’
Chart2Code performance.

Multimodal code generation Multimodal
code generation refers to producing source code
using both non-textual modalities and pure
textual information, where the generated code

serves as the final output. Existing works can
be categorized into three groups: (1) Visual
Programming: Benchmarks such as MMCode
(Li et al., 2024a) and HumanEval-V (Zhang
et al., 2025) evaluate code generation from
multimodal inputs (images + text). (2) Front-end
code generation: Design2Code (Si et al., 2025)
provides real-world websites as a benchmark,
while Web2Code (Yun et al., 2024) offers a
larger-scale alternative. (3) Chart-to-code gener-
ation: The task requires MLLMs to accurately
interpret charts and generate corresponding code.
Existing benchmarks include Plot2Code (Wu
et al., 2025) and ChartMimic (Shi et al., 2025),
revealing significant performance gaps in current
open-source models ChartLlama/ChartAssistant
use text LLMs to synthesize code from specified
chart types/styles, suffering from limited diver-
sity. Recent approaches ReachQA (He et al.,
2024) (using evol-instruct) and ChartMOE (using
self-instruct) improve complexity but remain
constrained by scale and diversity. Our work
introduces a dual-pipeline for data synthesis and
constructs Chart2Code53, addressing three key
limitations: (1) limited scale (2) limited diversity,
(3) limited complexity.

5 Conclusion

This paper addresses the limitations of exist-
ing Chart2Code-related datasets, including insuf-
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ficient quantity, diversity, and complexity. We
propose a dual data synthesis pipeline to create a
large-scale Chart2Code training dataset and con-
duct fine-tuning experiments on open-source mod-
els. The results show that the model achieves
SOTA performance with fewer parameters. We
hope our dataset and analysis will inspire further
research in this area.

Limitations

The primary limitation of this study lies in the
training dataset, which is currently restricted to the
matplotlib library. While this covers a wide range
of common visualizations, it restricts the diversity
of charts that can be generated, as other libraries,
such as seaborn, plotly, or ggplot, are not included.
Future work could expand the dataset to include
these libraries, allowing for a broader variety of
visualization code generation.
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Chart Type Distribution

Figure 9: Type distribution of Chart2Code53. The upper panel displays the top half of types by prevalence, while
the lower panel displays the remaining types.

A Appendix

A.1 Statistics
Chart Type distribution The type distribution is

shown in Figure 9. As illustrated, the distribution
of categories in our dataset is well-balanced.

Plotting Content diversity To evaluate the diver-
sity of our dataset, we employ two metrics: API
Combination and Average Distinct n-gram.

• API Combination: For a single code snip-
pet, its API Combination is defined as the
multiset of all API names used in that snip-
pet. Across the training set, the number of
distinct API Combinations reflects the variety
of multisets derived from all code snippets.
This metric corresponds directly to diverse
visualization intents and plotting patterns, in-
herently capturing the richness of users’ pro-
gramming logic. As shown in Table 1, our
dataset demonstrates substantial diversity in
plotting logic.

• Average Distinct n-gram: This metric calcu-
lates the average number of distinct n-grams
(for n=1 to 5) across all samples in the dataset.
By considering the entire code text, it better
reflects the diversity of data and parameter
definitions. Results presented in table 4 con-
firm that our dataset exhibits strong diversity
in both data and parameters.

Dataset name # Data samples # Avg distinct n-grams

Text2Chart31 11K 365K
ReachQA 3K 306K

CoSyn 53K 1892K
Chart2Code53 130K 7205K

Table 4: Average distinct n-gram metric.

A.2 Quality control details
Since our data synthesis pipeline generates code
and then uses it to produce corresponding images,
an inherent correspondence exists between the im-
ages and the code. To ensure quality control, we
verify both the aesthetic quality of the images and
the absence of redundant code segments unrelated
to plotting. For code quality, we focus on identify-
ing invalid code segments that do not visibly affect
the final rendered image. Manual inspection of 2K
samples reveals the following recurring issues4:

• Overridden statements (setting plt.axis(False)
after using ax.xsticks()).

• The iterable variable (a numpy array) is only
partially visualized in the generated plot.

• Redundant if-condition branches.

4We don’t use GPT-4o to check the code as we found that
GPT-4o struggles to accurately identify these issues based
solely on given chart images and code, and frequently flags
non-existent problems.
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These errors likely originate from the inclu-
sion of user debugging logic in the original web-
sourced code snippets. While less impactful for
Chart2Code, such issues could adversely affect
downstream chart comprehension tasks. Through
random sampling, we estimated the prevalence of
such problematic samples to be acceptably low
(less than 3.2% of the total data). The entire
dataset verification process was conducted inde-
pendently by the first author to ensure consistency.

A.3 Qualitative samples of synthesised charts
In this section, we show some qualitative samples
of our synthesised dataset examples.

Figure 10: Synthesised chart example. This figure
presents a silhouette analysis for KMeans clustering on
sample data with five clusters. The left panel shows the
silhouette plot, where each cluster is represented by a
distinct color. The right panel visualizes the clustered
data in a two-dimensional feature space, with each clus-
ter labeled and colored differently. It’s a combination
of scatter chart,axline chart and fillbetween (area) chart
with text.

Figure 11: Synthesised chart example. This chart il-
lustrates the distribution of a specific variable across
different time intervals within a 24-hour period. Each
segment represents an hour of the day, and the length
of the bar within each segment indicates the magnitude
of the variable being measured. It’s a Polar bar chart.

Figure 12: Synthesised chart example. This transverse
view chart visualizes the spatial distribution of three
different categories (Category 1, Category 2, and Cat-
egory 3) across a radial plane. Each category is rep-
resented by a distinct color: red for Category 1, green
for Category 2, and blue for Category 3. Points A, B,
and C indicate specific locations where each category
is observed. It’s a combination of line chart and scatter
chart in polar axis.

Figure 13: Synthesised chart example. This figure illus-
trates the IG XC distribution and empirical CDF, where
the top histogram shows the counts of true positives
(TP) and false positives (FP) across different XC values,
and the bottom plot displays their cumulative density
functions. It’s a combination of hist chart and density
chart.
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Figure 14: Synthesised chart example. This diagram
illustrates a Rankine power cycle, a thermodynamic cy-
cle commonly used in power plants for converting heat
into mechanical work.The diagram highlights the flow
of the working fluid through these stages, emphasizing
the transformation of energy forms throughout the pro-
cess. It’s Sankey chart.

Figure 15: Synthesised chart example. This figure illus-
trates a vector field plot, depicting the flow and magni-
tude of vectors in a two-dimensional space. The color
gradient from yellow to red represents varying magni-
tudes, with yellow indicating lower values and red in-
dicating higher values at the center. The vectors, repre-
sented by arrows, show the direction of the flow, con-
verging towards the center. It’s a quiver chart.

Figure 16: Synthesised chart example. The chart
provided illustrates the pressure waveform with PEEP
(Positive End-Expiratory Pressure) during mechanical
ventilation. The blue line represents actual pressure,
while the orange line indicates target pressure, and the
red line denotes tidal pressure. The shaded grey regions
indicate the inspiratory and expiratory phases of the
breathing cycle, with the expiratory phase marked by
the grey background. It’s a line chart with a varying
background.

Figure 17: Synthesised chart example. This contour
plot illustrates synthetic data predictions across a two-
dimensional parameter space. The plot features con-
tour lines that represent levels of constant predicted val-
ues, with shaded regions indicating areas of similar pre-
diction magnitudes. The diagonal dashed line signifies
a reference or baseline condition. It’s contour and line
chart.
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