
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 15840–15856
November 4-9, 2025 ©2025 Association for Computational Linguistics

Chart2Code53: A Large-Scale Diverse and Complex Dataset for
Enhancing Chart-to-Code Generation

Tianhao Niu♠* Yiming Cui♣ Baoxin Wang♣ Xiao Xu♠

Xin Yao♣ Qingfu Zhu♠† Dayong Wu♣ Shijin Wang♣ Wanxiang Che♠†

♠ Research Center for Social Computing and Interactive Robotics
♠ Harbin Institute of Technology, China

♣ State Key Laboratory of Cognitive Intelligence, iFLYTEK, Beijing, China
{thniu,qfzhu,car}@ir.hit.edu.cn

ymcui@iflytek.com

Abstract

Chart2Code has recently received significant
attention in the multimodal community due to
its potential to reduce the burden of visualiza-
tion and promote a more detailed understand-
ing of charts. However, existing Chart2Code-
related training datasets suffer from at least
one of the following issues: (1) limited scale,
(2) limited type coverage, and (3) inadequate
complexity. To address these challenges, we
seek more diverse sources that better align
with real-world user distributions and propose
dual data synthesis pipelines: (1) Synthesize
based on online plotting code. (2) Synthe-
size based on the chart images in the academic
paper. We create a large-scale Chart2Code
training dataset Chart2Code53, including 53
chart types, 130K Chart-code pairs based on
the pipeline. Experimental results demon-
strate that even with few parameters, the model
finetuned on Chart2Code53 achieves state-of-
the-art performance on multiple Chart2Code
benchmarks within open-source models1.

1 Introduction

With the development of multimodal large lan-
guage models (MLLMs) (Liu et al., 2023; Wang
et al., 2024; Chen et al., 2024), an increasing
amount of research has applied them to Chart-
related tasks (Meng et al., 2024; Zhang et al.,
2024a; Han et al., 2023; Huang et al., 2024) .
Chart2Code is one of them, which requires the
MLLM to receive a chart as input and generate
source code that accurately replicates the chart.
The task requires the MLLM not only to perceive
the content of the chart precisely but also to or-
ganize the perceived information with appropriate
code logic (Wu et al., 2025; Shi et al., 2025).

Chart2Code has recently gained significant at-
tention because of its potential to assist in data

* The work is done during internship at iFLYTEK.
† Corresponding authors.
1 Code and data: https://github.com/nth2000/Chart2Code53

(a)

Combination Chart Multi-subplot ChartAdvanced Chart

Plotting code in
online platform

Chart image in
the web/paper

Chart2Code53
 training data

(b) (c)

Figure 1: Our work focuses on Chart2Code task.
(a) Different from existing work, we focus on cre-
ating more advanced and complex charts. (b)
Compared to other existing open-source Chart2Code-
related datasets, our dataset exhibits the greatest diver-
sity and higher complexity. (c) High-level illustration
of our dataset construction pipeline. We use GPT-4o
to rewrite the existing diverse web plotting code into
executable code or directly instruct it to synthesize exe-
cutable code based on existing chart images. The charts
are obtained by executing the result code. These two
data synthesis pipelines can generate more complex
and diverse Chart2Code data.

visualization (Shi et al., 2025) and promote a
more detailed understanding of charts (Xu et al.,
2025). Several benchmarks have been introduced
to evaluate Chart2Code (Wu et al., 2025; Shi et al.,
2025). According to the evaluation results, exist-
ing open-source MLLMs still perform poorly in
Chart2Code and exhibit a significant gap when
compared with the closed-source models.

Currently, all the open-source Chart2Code-
related training datasets have at least one follow-
ing issues: (1) Limited scale: The training sam-

15840

https://github.com/nth2000/Chart2Code53

Dataset name Data form # Chart types # Data samples # API types # API combinations # Avg code length

ChartLlama Chart2Code 10 11K 83 418 17
ChartMOE Chart2Code <20 800K - - -
ReachQA Chart2Code 15 3K 168 2,222 22

Text2Chart31 Text2Chart 31 11K 188 1,881 12
ChartCoder Chart2Code 27 115K 187 4,421 20

CoSyn Chart2Code - 53K 344 27,881 22
Chart2Code53 Chart2Code 53 130K 1,219 84,214 23

Table 1: Statistics of various Chart2Code-related datasets. While ChartLlama (Han et al., 2023), ChartMOE (Xu
et al., 2025), and Text2Chart31 (Pesaran Zadeh et al., 2024) offer a relatively larger number of training samples,
they exhibit limited complexity and diversity. In contrast, ReachQA (He et al., 2024) provides greater diversity
and complexity but is limited in scale. Our dataset Chart2Code53 effectively integrates all these advantages. Con-
current works ChartCoder (Zhao et al., 2025) and CoSyn (Yang et al., 2025) are also listed.

ples are not enough for the model to learn the chal-
lenge task (He et al., 2024). (2) Limited Type
Coverage: The most diverse dataset includes only
31 chart types (Pesaran Zadeh et al., 2024), while
matplotlib can generate many more types. (3) Gap
Exists with real-world user needs: Text2Vis
(Nguyen et al., 2024) points out that the exist-
ing datasets do not adequately align with the real-
world requirements of the users.

To address the aforementioned issues, we aim to
construct a standard Chart2Code training dataset.
To solve issue (2), we construct a comprehensive
chart type taxonomy and synthesize data that in-
cludes each type respectively. To solve issue (3),
we seek the source that may better reflect the user
needs and propose two synthesis pipelines: syn-
thesize based on online plotting code (Kocetkov
et al., 2022), which predefines certain rules to fil-
ter relevant code snippets in web code and instruct
GPT-4o (OpenAI et al., 2024) to synthesize exe-
cutable code based on them and synthesize based
on web chart images (Li et al., 2024b), which di-
rectly feed the selected chart images to GPT-4o to
synthesize the code.

We conduct analysis and compare our con-
structed dataset Chart2Code53 with other
Chart2Code-related datasets. Our results demon-
strate that our dataset encompasses a wider
variety of chart types and a more diverse
distribution of complexity. We then fine-tune
an open-source MLLM (Chen et al., 2024) us-
ing our constructed data. Experimental results
demonstrate that even with relatively small pa-
rameters (7B), the model fine-tuned on our data
exhibits significant improvements across various
Chart2Code benchmarks, achieving state-of-the-
art performance compared to other open-source
models.

The contributions of our work are summarized
as follows:

• Dual Data Synthesis Pipelines: We propose
a dual-pipeline framework for synthesizing
chart-code pairs, enabling the generation of
high-quality, diverse, and structurally com-
plex training data to facilitate Chart2Code
model learning.

• Chart2Code53 Dataset: Based on the
pipeline, we construct Chart2Code53, which
comprises 130K high-quality chart-code
pairs spanning 53 distinct chart types, signif-
icantly surpassing previous datasets in scale,
diversity, and complexity.

• Specialized MLLM for Chart2Code: We
present an open-source MLLM tailored for
Chart2Code task. Despite its compact
size (7B parameters), the model outper-
forms all existing open-source MLLMs on
Chart2Code benchmarks,

2 Dataset construction

2.1 Task definition
Given an input chart image I and plotting instruc-
tion T , a MLLM is required to output an exe-
cutable code C.

C = argmax
C

PMLLM(C|T , I) (1)

By utilizing an external interpreter (e.g., Python),
the plotting code is executed to generate an image
I ′.

I ′ = Interpreter(C) (2)

The goal is to ensure I ′ and I as close as possible.
In this work, we focus on matplotlib-based charts,
leaving other types for future work.

15841

Code snippets in
the Stack dataset

def bar():
 x = input()
 y = input()
 plt.bar(x,y)
 plt.show()

def plot():
 plt.plot(x,y)
 plt.show()

Extracted matplotlib
code snippets

Splitted matplotlib
code snippets

Filtered matplotlib code
snippets (e.g. bar chart)

arXiv Paper Pool Chart type to be synthesized (e.g. bar chart)

def bar():
 x = input()
 y = input()
 plt.bar(x,y)
 plt.show()

def plot():
 plot(x,y)
 plt.show()

def bar():
 x = input()
 y = input()
 plt.bar(x,y)
 plt.show()

import matplotlib.pyplot as plt
x = [‘A’,’B’]
y = [10,20]
plt.bar(x,y)
plt.savefig()

Generated executable
plotting code

(a) Synthesize based on online plotting code (assume target type is bar chart)

(b) Synthesize based on web chart image (assume target type is bar chart)

import matplotlib.pyplot as plt
x = [‘A’,’B’]
y = [10,20]
plt.bar(x,y)
plt.savefig()

Filtering

Extracting Filtering

Rewriting

Extracting

Rewriting
Discard

Generated executable plotting code

Figure 2: Overview of the dual data synthesis pipeline. (a) Synthesis based on online plotting code. (b) Synthesis
based on web chart images. The generated code from each pipeline is executed and further refined through quality
control.

2.2 Dataset construction pipelines

2.2.1 Overview

Our goal is to construct a large-scale, di-
verse, and complexity-varied training dataset for
Chart2Code. To achieve this, we first establish a
comprehensive chart type taxonomy. Then we em-
ploy the dual pipeline to synthesize plotting code
for each type respectively. An overview of the
dual pipeline is illustrated in Figure 2. The final
plotting code is then executed by a Python inter-
preter to obtain the corresponding chart images.
Finally, we filter the dataset by evaluating both
the visual aesthetics of the images and the qual-
ity of the code. The resulting dataset is named
Chart2Code53.

2.2.2 Creating chart type taxonomy

To address the limited type coverage issue, we
first construct a comprehensive chart type taxon-
omy by first merging the chart types specified in
recent works (Xu et al., 2024; He et al., 2024; Hu
et al., 2024) and then adding additional chart types
given by GPT-4o, which results in 53 chart types.
We synthesize code that includes each type respec-
tively.

2.2.3 Synthesize based on online plotting
code

To synthesize a dataset that better aligns with real
user needs, we first extract plotting code snip-
pets from the Stack dataset following Text2vis
(Nguyen et al., 2024). However, the extracted snip-
pets have the following issues: (1) Contain many
lines unrelated to plotting. (2) The plotting logic
tends to be homogeneous. (3) Most code snippets
cannot be directly executed to produce chart im-
age. To address the issues, we divide the synthesis
process into three steps: extracting, filtering, and
rewriting. Each step is designed to resolve issues
(1), (2), and (3), respectively.

In the extracting step, for each Python code
file, we extract matplotlib function calls and as-
signment statements following text2vis. We retain
relevant functions and control statements, and par-
tition the results based on the call chain.

In the filtering step, we first filter the plot-
ting code snippets to retain only those matching
the target chart type, using rules uniquely deter-
mined by API call patterns and parameter charac-
teristics (e.g., selecting fragments containing .bar()
function calls to match bar charts). All rules
were manually verified to ensure accuracy. Sub-
sequently, we employ a combined approach of

15842

Locality-Sensitive Hashing (LSH) and a bucketing
strategy to further refine the selection, prioritizing
code snippets that exhibit both diversity and com-
plexity.

Specifically, we distribute the code into 5 buck-
ets with uniformly increasing length ranges based
on API call sequences. Within each bucket, we
apply LSH to cluster code fragments and select
representatives with maximally diverse API com-
binations. This process ensures that the final syn-
thesized code snippets exhibit both diversity and
complexity within each chart type.

In the rewriting step, we pass the results of
the filtering step to GPT-4o to generate complete
and executable plotting code, with the prompt in-
structing it to faithfully replicate the user’s plotting
logic, including function calls, parameters, and
control flows as accurately as possible. Addition-
ally, the target chart type is specified in the prompt
to prevent potential mismatches between the code
snippets provided in the previous filtering step and
the intended target chart type. 2

2.2.4 Synthesize based on online chart images
To increase the data volume of sparse chart
types and enhance the diversity of other cate-
gories, inspired by GPT-4o’s great performance
in Chart2Code, we propose to directly synthesize
code based on chart image for the target chart type.
Specifically, we choose Multi-modal arXiv dataset
(Li et al., 2024b) as our image base. To filter the
target chart type, we follow Menon and Vondrick
(2023) and use GPT-4o to generate 3 distinct vi-
sual feature descriptions. Then we filter the cor-
responding charts using SigLIP (Zhai et al., 2023)
based on the description. Then, we prompt GPT-
4o to generate the plotting code based on the im-
ages. The prompt should specify the target chart
type to prevent a few type mismatches between the
selected chart and the expected target chart type.

2.2.5 Quality control
We aim to check and control the quality of our data
both in image aesthetics and code quality.

For image aesthetics, we follow the multi-
modal self-instruct (Zhang et al., 2024b), using
LLaVA v1.5 (Liu et al., 2023) to check for con-
flicts in visual elements and the rationality of the

2This situation may occur due to unexpected boundary
cases where the code snippets filtered in the previous step
do not perfectly match the target chart type. Based on our
sampling of 100 code snippets per chart type, we found the
mismatch rate to be less than 1%.

0 20 40 60 80
APIs in Code

0.0

0.1

0.2

Pr
op

or
tio

n
(%

)

API Length Distribution
Ours
ReachQA
ChartLlama
Text2Chart31
Chartcoder

0 20 40 60 80 100 120
Code Lines

0.00

0.05

0.10

Pr
op

or
tio

n
(%

)

Code Length Distribution
Ours
ReachQA
ChartLlama
Text2Chart31
Chartcoder

Figure 3: Matplotlib API length distribution and code
length distribution.

layout. We remove the image which fail to pass
the checking.

For code quality, we mainly check whether
the code contains anything that is unrelated to
plotting the chart. We manually check 50 sam-
ples per category and recognize code-related is-
sues. Only 3.2% of the data may have such prob-
lems. Given resource restrictions, we don’t deal
with them. Further details are shown in the Ap-
pendix.A.2.

2.3 Dataset analysis
We give a detailed analysis of Chart2Code53 in
this section. We show qualitatively synthesized
data in the Appendix.A.3.3

Chart type distribution As shown in Ta-
ble 1, Chart2Code53 is the largest among exist-
ing Chart2Code-related datasets, with more chart
types and API types, which is the most diverse of
any related dataset. We show the chart type distri-
bution in Figure 9. As illustrated, the distribution
of categories is well-balanced.

Code complexity diversity As shown in the
Fig 3, the distributions of the number of Mat-
plotlib APIs and total code length per plotting
code in the ChartLlama and Text2Chart31 datasets
are densely concentrated around specific points,

3Although our current data doesn’t include charts from
other plotting packages beyond matplotlib, our pipeline can
be readily adapted to other API-based visualization libraries
(e.g., Plotly, ggplot) by simply incorporating their respective
function names and keywords during the extraction phase -
all of which can be systematically obtained from official doc-
umentation.

15843

whereas Chart2Code53 and ReachQA exhibit a
more uniform distribution (although the ReachQA
dataset is smaller in scale). This demonstrates that
our dataset offers a well-balanced diversity in com-
plexity.

Plotting content diversity Additionally, due to
we take more plotting resource into considera-
tion, Chart2Code53 includes more API combi-
nations than exisiting datasets, which indicates
Chart2Code53 exhibits much higher content diver-
sity. Further details are shown in Appendix.A.1.

3 Experiments

3.1 Experimental setup

Evaluation Benchmarks To demonstrate the ef-
fectiveness of our dataset, we evaluate two main-
stream Chart2Code benchmarks: ChartMimic and
Plot2Code. We test our model under the direct
generation setting, where models generate plotting
code directly from given charts. For ChartMimic
benchmark, we evaluate on its testmini split (con-
taining 600 diverse charts) as it achieves perfor-
mance comparable to the full setting. The bench-
mark combines low-level metrics (automatically
computed from code similarity across text, layout,
type, and color dimensions, averaged as the final
score) and high-level GPT-4o-based image com-
parison scores, with their average as the final met-
ric. Failed code runs get 0 points. We follow these
rules exactly. For Plot2Code benchmark, we fol-
low ChartCoder (Zhao et al., 2025) and test on
its matplotlib split (132 samples). The benchmark
evaluates both text-match (measuring text similar-
ity between generated and reference images) and
GPT-4o scoring. We report only the GPT-4o met-
ric in our evaluation.

Baselines (1) closed-source MLLMs (Gemini
Pro (Team et al., 2025), Claude 3 Opus, GPT-4o
(OpenAI et al., 2024)) with strong Chart2Code ca-
pabilities; (2) chart-specific MLLMs - TinyChart
(Zhang et al., 2024a) (fine-tuned from TinyLLaVA
(Zhou et al., 2024) using mixed Chart2Code data
included in ChartLlama dataset) and ChartMOE
(Xu et al., 2025) ; (3) open-source multimodal
LLMs (Qwen2-VL (Wang et al., 2024) and In-
ternVL2 (Chen et al., 2024) families across dif-
ferent model parameters); (4) Chart2Code-specific
models: we compare Qwen2-VL-7B fine-tuned on
ChartCoder (Zhao et al., 2025) (without Snippet-
of-Thought) versus finetuned on our dataset.

Implementation details We conduct fine-

tuning experiments on two model families of dif-
ferent parameters: Qwen2-VL-2B, Qwen2-VL-
7B, and InternVL2-4B using our Chart2Code53
dataset, with additional comparative experiments
performed on Qwen2-VL-7B using the Chartcoder
dataset. For the Qwen2-VL series, we implement
fine-tuning via the LLaMA-Factory (Zheng et al.,
2024) framework, while the InternVL2 models are
fine-tuned using their official codebase. We main-
tain identical training settings across all experi-
ments: the visual encoder remains frozen while
other parameters are updated. We use LoRA (Hu
et al., 2021) finetuning on A100 GPUs with a
global batch size of 16 and a lora_r of 64. We
train 2 epochs to ensure full convergence.

3.2 Main results
Table 2 shows the evaluation results. We have the
following conclusions.

Chart-specific models fail on the benchmark,
although finetuned on their own Chart2Code
data. ChartMOE and TinyChart are trained on
a larger-scale Chart2Code dataset and demon-
strate their superiority in performing this task.
However, when evaluated on these two real-
world Chart2Code benchmarks, their performance
showed a significant decline. This drop in perfor-
mance can primarily be attributed to the insuffi-
cient diversity and complexity of the charts in the
datasets they were trained on. The dataset we pro-
pose can effectively fill the gap.

Model Finetuned on our dataset achieves
SOTA performance. (1) As shown in Table 2,
the Qwen2-VL-7B model, after fine-tuning on our
dataset, achieves a significant performance im-
provement. It outperforms other open-source mod-
els of much larger parameters, achieving SOTA
performance. This strongly validates the effective-
ness of our dataset.

(2) On the high-level metric of ChartMimic, the
model performs closer to the InternVL2-Llama3-
76B, despite having a lower code execution suc-
cess rate. We believe that this performance gap is
more likely due to the inherent limitations in code
generation capabilities of the relatively small pa-
rameter base model itself.

(3) Furthermore, fine-tuning both Qwen2-VL-
2B and InternVL2-4B with our dataset yields
consistent performance gains, demonstrating the
dataset’s effectiveness across model families and
varying parameter scales.

(4) Our fine-tuned model on the dataset outper-

15844

Model Name Params ChartMimic Plot2Code
Execute Rate Low-Level High-Level Overall Execute Rate GPT-4o Rating

Close-source Multimodal Large Language Models

GeminiProVision - 68.2 53.8 53.3 53.6 68.2 3.7
Claude-3-opus - 83.3 60.5 60.1 60.3 84.1 3.8
GPT-4o - 93.2 79.0 83.5 81.3 88.6 5.7

Chart-specific Multimodal Large Language Models

TinyChart 3.0B 42.5 26.3 25.9 26.1 43.2 2.2
ChartMOE 7.0B 52.7 25.3 22.9 24.1 65.2 2.2

Open-source Multimodal Large Language Models

Qwen2-VL-2B 3.2B 51.0 22.2 20.1 21.2 52.0 2.4
Qwen2-VL-7B 8.2B 67.0 32.9 35.0 34.0 68.2 3.1
Qwen2-VL-72B 73.2B 73.3 54.4 50.9 52.3 72.0 4.3
InternVL2-4B 4.2B 50.5 33.8 38.4 36.1 66.3 2.5
InternVL2-26B 26.0B 69.3 41.4 47.4 44.4 81.3 3.4
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 58.5 83.2 3.9

Chart2Code-specific models

Qwen2-VL-2B-FT (Chart2Code53) 3.2B 61.0 50.9 48.3 49.6 70.0 3.2
InternVL2-4B-FT (Chart2Code53) 4.2B 78.3 63.4 60.4 61.9 84.8 4.5
Qwen2-VL-7B-FT (Chart2Code53) 8.2B 82.0 68.8 68.8 68.8 83.3 5.2
Qwen2-VL-7B-FT (ChartCoder) 8.2B 86.0 69.1 68.2 68.7 77.3 3.8

Table 2: Chart2Code results for various closed-source and open-source models. The highest scores in each model
category are marked in bold. Despite having few parameters, the model fine-tuned on Chart2Code53 achieves
state-of-the-art performance across the evaluated benchmarks. Note that we do not include the snip-of-thought
method in ChartCoder to make a fair comparison. ‘FT’ means using the dataset to finetune the model.

formed the results of the same base model fine-
tuned on ChartCoder, with only slightly lower low-
level metrics on ChartMimic, even though our
model’s execution success rate is significantly
lower than that of the ChartCoder model. As in-
dicated by the * in Table 3, when we relaxed the
evaluation metrics and tested the metrics before
the generated code threw exceptions, the experi-
ments show that our model surpass the ChartCoder
model on all dimensions of ChartMimic except
Layout. As indicated by the ** in Table 3, when
we adopt the ‘no_filter’ setting of ChartMimic and
calculate the average metric of multiple samplings,
the results also hold.

The model shows consistent significant perfor-
mance improvements across different categories.
As shown in the Figure 4, our model demon-
strates significant performance gains across all
chart types, including complex types such as CB
and HR, which are not explicitly specified in our
chart taxonomy. This suggests that our dataset is
well-balanced, enabling the model to better adapt
to diverse and complex real-world scenarios.

3.3 Analysis

We use our finetuned model to conduct an in-depth
analysis based on ChartMimic in this section.

Model performance consistently improves
when increasing code complexity. To evaluate

Model Text Layout Type Color Avg

GPT-4o 81.5 89.8 77.3 67.2 79
InternVL2-26B 39.2 58.7 35.9 31.8 41.4
InternVL2-Llama3-76B 54.1 74.5 49.2 41.5 54.8
ChartMOE 24.4 42.1 18.6 16.1 25.3
InternVL2-4B-FT (Chart2Code53) 61.6 74.9 62.9 54.0 63.4
Qwen2-VL-2B-FT (Chart2Code53) 67.3 83.6 67.1 58.4 69.1
Qwen2-VL-7B-FT (ChartCoder) 67.3 83.6 67.1 58.4 69.1
Qwen2-VL-7B-FT (Chart2Code53) 68.6 80.7 66.1 60.2 68.8

Qwen2-VL-7B-FT (ChartCoder*) 76.5 96.0 80.2 68.5 80.3
Qwen2-VL-7B-FT (Chart2Code53*) 78.5 95.0 83.0 73.2 82.4

Qwen2-VL-7B-FT (ChartCoder**) 69.3 93.6 75.9 63.7 75.6
Qwen2-VL-7B-FT (Chart2Code53**) 74.0 93.5 77.9 65.8 77.8

Table 3: Model performance across different dimen-
sions in ChartMimic. * denotes the metrics correspond-
ing to the code executed up to the point before the ex-
ception is thrown. ** denotes the ‘no_filter’ setting of
ChartMimic and average metric of multiple samplings.
‘FT’ means using the dataset to finetune the model.

how code complexity affects model performance,
we stratified the data by complexity level (mea-
sured by code length) for each chart type. Specifi-
cally, we fine-tune the Qwen2-VL-2B on four sub-
sets of the dataset of increasing complexity and
evaluate performance on ChartMimic low-level
score. The results are shown in Figure 5. The re-
sults demonstrate a clear positive correlation be-
tween code complexity and model performance,
with average scores increasing from 35.3 (25%
simplest samples) to 50.9 (full dataset). The re-
sults demonstrate a positive association between
code complexity in training data and model perfor-
mance.

15845

3d bar
CB

graph

scatter

box

errorbar

pie

heatmap
errorpoint

lineareaquiver
violin

hist

tree

density

PIP

HR

multidiff
contour

radar

0.2

0.4

0.6

0.8

1.0

InternVL2-4B
Ours

Figure 4: Performance across all chart types in Chart-
Mimic. Our model shows consistent improvement
across all chart types.

25%
(least complex)

50% 75% 100%
(full dataset)

Data Complexity Level

0

20

40

60

Ch
ar

tM
im

ic
Lo

w-
le

ve
l M

et
ric

35.3
41.2

46.4
50.9

Model Performance Improvement with Increasing Data Complexity

Figure 5: Model performance consistently improves
when increasing code complexity.

Both synthesis pipelines contribute to statis-
tics and performance. We conduct a comprehen-
sive analysis of both image-based and code-based
data generation pipelines from statistical and per-
formance perspectives. From statistical perspec-
tive, code-based synthesis yields slightly higher
chart complexity (avg. 24 lines of code per chart
vs. 20 for image-based) as shown in the left panel
of Figure 6. Image-based synthesis improves cov-
erage of sparse categories in Code-based synthe-
sis (Because users seldom open-source their code
of some chart types, such as contour3D chart and
sankey chart) as shown in the middle panel of Fig-
ure 6. From performance perspective, we finetune
Qwen2-VL-2B on the code-based data first and
then add image-based data. As shown in the right
panel of Figure 6, both data pipelines contribute to
model improvement.

The models ability to capture chart details and
handle complex logic needs improvement. As
shown in Table 3, our model shows a notable gap
in text performance compared to GPT-4o. Addi-
tionally, all models score much lower on the color
metric, indicating weaker capture of low-level de-
tails. We also find that samples with for-loops

Code-Based
Image-Based

0

5

10

15

20

25

30

Lin
es

 o
f C

od
e

24

20

Avg code lines

bar3D Sankey
Contour3D

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

20%

80%

8%

92%

5%

95%

Coverage of Chart Types
Code-Based
Image-Based

Baseline
+Code-Based

+Code-Based

+Image-Based
0

10

20

30

40

50

60

Lo
w-

Le
ve

l A
vg

 S
co

re

22.2

43.6

50.9

Model Performance Improvement

Figure 6: Relative contributions of each synthesis
pipeline.

Value Error51.5%

Syntax Error
36.2%

Type Error

3.8%

Index Error

3.8%

Others

4.6%

Value Error
Syntax Error
Type Error
Index Error
Others

13

54

Value Error Breakdown
Other Error
Shape/Dimension
Error

Figure 7: Error distributions of our model.

perform nearly 10% worse, suggesting the model
struggles with complex plotting logic.

Most coding errors of the model are Syntax
errors and variable planning errors. As shown
in the Figure 7, coding errors are primarily syn-
tax and value errors, with the latter mainly due to
dimension mismatches of the variables defined be-
fore they are used. This indicates that apart from
general coding abilities, variable planning is an im-
portant ability for the Chart2Code task that might
be considered to be further improved, which may
be challenging due to the auto-regressive nature of
current MLLMs.

3.4 Case study
We present in Figure 8 a qualitative analysis of the
Qwen2-VL-7B model under three settings: (1) the
plain model. (2) ChartCoder-tuned model, and (3)
Chart2Code53-tuned model. Each image is gen-
erated by executing the models prediction code
given the gold chart image.

The first two rows show that the plain model
fails to generate more complex composite charts.
The ChartCoder-tuned model correctly identifies
the chart types but fails to combine them effec-
tively. In contrast, the Chart2Code53-tuned model
reconstructs such charts more accurately.

The third row shows that our model accurately
captures the color gradient in the gold reference

15846

Ground Truth Image Qwen2-VL-7B Qwen2-VL-7B + ChartCoder Qwen2-VL-7B + Ours

Figure 8: Qualitative examples of images generated by executing code from different models

chart. The fourth row demonstrates that the
Chart2Code53-tuned model can detect and repro-
duce hollow circles in the gold image. Compared
with the plain and the ChartCoder-tuned models,
the Chart2Code53-tuned model effectively han-
dles more diverse chart styling designs.

In summary, our diverse and complexity-varied
Chart2Code53 dataset significantly enhances the
model’s Chart2Code capability.

4 Related work

Chart understanding Recent Chart understand-
ing works primarily build upon MLLMs. Char-
tAssistant (Meng et al., 2024), ChartLlama (Han
et al., 2023), and TinyChart (Zhang et al., 2024a)
directly fine-tune existing MLLMs. ChartMOE
(Xu et al., 2025) employs a Mixture-of-Experts
architecture to integrate three alignment tasks
(chart-to-text, chart-to-json, and chart-to-code),
proving that chart-to-code tasks significantly
enhance chart understanding. However, our ex-
periments reveal that these chart-specific models
still exhibit poor Chart2Code capability. Our
work specifically focuses on improving MLLMs’
Chart2Code performance.

Multimodal code generation Multimodal
code generation refers to producing source code
using both non-textual modalities and pure
textual information, where the generated code

serves as the final output. Existing works can
be categorized into three groups: (1) Visual
Programming: Benchmarks such as MMCode
(Li et al., 2024a) and HumanEval-V (Zhang
et al., 2025) evaluate code generation from
multimodal inputs (images + text). (2) Front-end
code generation: Design2Code (Si et al., 2025)
provides real-world websites as a benchmark,
while Web2Code (Yun et al., 2024) offers a
larger-scale alternative. (3) Chart-to-code gener-
ation: The task requires MLLMs to accurately
interpret charts and generate corresponding code.
Existing benchmarks include Plot2Code (Wu
et al., 2025) and ChartMimic (Shi et al., 2025),
revealing significant performance gaps in current
open-source models ChartLlama/ChartAssistant
use text LLMs to synthesize code from specified
chart types/styles, suffering from limited diver-
sity. Recent approaches ReachQA (He et al.,
2024) (using evol-instruct) and ChartMOE (using
self-instruct) improve complexity but remain
constrained by scale and diversity. Our work
introduces a dual-pipeline for data synthesis and
constructs Chart2Code53, addressing three key
limitations: (1) limited scale (2) limited diversity,
(3) limited complexity.

5 Conclusion

This paper addresses the limitations of exist-
ing Chart2Code-related datasets, including insuf-

15847

ficient quantity, diversity, and complexity. We
propose a dual data synthesis pipeline to create a
large-scale Chart2Code training dataset and con-
duct fine-tuning experiments on open-source mod-
els. The results show that the model achieves
SOTA performance with fewer parameters. We
hope our dataset and analysis will inspire further
research in this area.

Limitations

The primary limitation of this study lies in the
training dataset, which is currently restricted to the
matplotlib library. While this covers a wide range
of common visualizations, it restricts the diversity
of charts that can be generated, as other libraries,
such as seaborn, plotly, or ggplot, are not included.
Future work could expand the dataset to include
these libraries, allowing for a broader variety of
visualization code generation.

Acknowledgments

We gratefully acknowledge the support of
the National Key R&D Program Project
(2024YFE0203700) and the National Natural
Science Foundation of China (NSFC) via grant
62236004, 62206078, 62441603 and 62476073.

References
Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,

Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang,
Xiao wen Dong, Hang Yan, Hewei Guo, Con-
ghui He, Zhenjiang Jin, Chaochao Xu, Bin Wang,
Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang,
Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, and
Yu Qiao. 2024. How far are we to gpt-4v? clos-
ing the gap to commercial multimodal models with
open-source suites. ArXiv, abs/2404.16821.

Yucheng Han, China. Xiaoyan Zhang, Xin Chen,
Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and
Hanwang Zhang. 2023. Chartllama: A multimodal
llm for chart understanding and generation. ArXiv,
abs/2311.16483.

Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen
Ding, Zifei Shan, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2024. Distill visual chart reasoning ability
from llms to mllms. Preprint, arXiv:2410.18798.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. Preprint,
arXiv:2106.09685.

Linmei Hu, Duokang Wang, Yiming Pan, Jifan Yu,
Yingxia Shao, Chong Feng, and Liqiang Nie. 2024.
Novachart: A large-scale dataset towards chart un-
derstanding and generation of multimodal large lan-
guage models. In Proceedings of the 32nd ACM
International Conference on Multimedia, MM ’24,
page 39173925, New York, NY, USA. Association
for Computing Machinery.

Kung-Hsiang Huang, Hou Pong Chan, Yi R. Fung,
Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu
Chang, and Heng Ji. 2024. From pixels to in-
sights: A survey on automatic chart understanding
in the era of large foundation models. Preprint,
arXiv:2403.12027.

Denis Kocetkov, Raymond Li, Loubna Ben Allal,
Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes,
Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. 2022. The stack: 3
tb of permissively licensed source code. Preprint,
arXiv:2211.15533.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo,
Zhiyong Huang, and Jing Ma. 2024a. Mmcode:
Benchmarking multimodal large language models
for code generation with visually rich programming
problems. Preprint, arXiv:2404.09486.

Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong
Feng, Lingpeng Kong, and Qi Liu. 2024b. Mul-
timodal ArXiv: A dataset for improving scientific
comprehension of large vision-language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14369–14387, Bangkok, Thai-
land. Association for Computational Linguistics.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023. Improved baselines with visual instruc-
tion tuning. 2024 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
26286–26296.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao,
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char-
tAssistant: A universal chart multimodal language
model via chart-to-table pre-training and multitask
instruction tuning. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 7775–
7803, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Sachit Menon and Carl Vondrick. 2023. Visual classi-
fication via description from large language models.
In The Eleventh International Conference on Learn-
ing Representations.

Hy Nguyen, Xuefei He, Andrew Reeson, Cecile Paris,
Josiah Poon, and Jonathan K. Kummerfeld. 2024.
Do text-to-vis benchmarks test real use of visuali-
sations? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 7433–7441, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

15848

https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:265466206
https://api.semanticscholar.org/CorpusID:265466206
https://arxiv.org/abs/2410.18798
https://arxiv.org/abs/2410.18798
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2404.09486
https://arxiv.org/abs/2404.09486
https://arxiv.org/abs/2404.09486
https://arxiv.org/abs/2404.09486
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://api.semanticscholar.org/CorpusID:263672058
https://api.semanticscholar.org/CorpusID:263672058
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://openreview.net/forum?id=jlAjNL8z5cs
https://openreview.net/forum?id=jlAjNL8z5cs
https://doi.org/10.18653/v1/2024.emnlp-main.423
https://doi.org/10.18653/v1/2024.emnlp-main.423

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul
Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel
Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa
Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Camp-
bell, Andrew Cann, Brittany Carey, Chelsea Carl-
son, Rory Carmichael, Brooke Chan, Che Chang,
Fotis Chantzis, Derek Chen, Sully Chen, Ruby
Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cum-
mings, Jeremiah Currier, Yunxing Dai, Cory De-
careaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna
Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff
Harris, Yuchen He, Mike Heaton, Johannes Hei-
decke, Chris Hesse, Alan Hickey, Wade Hickey,
Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, ukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner,
Jamie Kiros, Matt Knight, Daniel Kokotajlo, ukasz
Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Le-
ung, Daniel Levy, Chak Ming Li, Rachel Lim,
Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa
Lopez, Ryan Lowe, Patricia Lue, Anna Makanju,
Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew
Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil,
David Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin, Vin-
nie Monaco, Evan Morikawa, Daniel Mossing, Tong
Mu, Mira Murati, Oleg Murk, David Mély, Ashvin
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long
Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rim-

bach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani
Santurkar, Girish Sastry, Heather Schmidt, David
Schnurr, John Schulman, Daniel Selsam, Kyla Shep-
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin Sokolowsky, Yang Song, Natalie Stau-
dacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.
Thompson, Phil Tillet, Amin Tootoonchian, Eliz-
abeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cerón Uribe, Andrea Vallone,
Arun Vijayvergiya, Chelsea Voss, Carroll Wain-
wright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Ak-
ila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Win-
ter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,
Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang
Zhuang, William Zhuk, and Barret Zoph. 2024. Gpt-
4 technical report. Preprint, arXiv:2303.08774.

Fatemeh Pesaran Zadeh, Juyeon Kim, Jin-Hwa Kim,
and Gunhee Kim. 2024. Text2Chart31: Instruc-
tion tuning for chart generation with automatic feed-
back. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 11459–11480, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie
Wang, Mohan Jing, Linran XU, Xinyu Zhu, Siheng
Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng
Cai, and Yujiu Yang. 2025. Chartmimic: Evaluating
LMM’s cross-modal reasoning capability via chart-
to-code generation. In The Thirteenth International
Conference on Learning Representations.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang,
Ruibo Liu, and Diyi Yang. 2025. Design2Code:
Benchmarking multimodal code generation for au-
tomated front-end engineering. In Proceedings of
the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 3956–3974, Albuquerque, New
Mexico. Association for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, Orhan Firat, James Molloy, Michael
Isard, Paul R. Barham, Tom Hennigan, Benjamin
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong
Xu, Ryan Doherty, Eli Collins, Clemens Meyer,
Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, Jack Krawczyk, Cosmo Du, Ed Chi,
Heng-Tze Cheng, Eric Ni, Purvi Shah, Patrick

15849

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://aclanthology.org/2025.naacl-long.199/
https://aclanthology.org/2025.naacl-long.199/
https://aclanthology.org/2025.naacl-long.199/

Kane, Betty Chan, Manaal Faruqui, Aliaksei Sev-
eryn, Hanzhao Lin, YaGuang Li, Yong Cheng, Abe
Ittycheriah, Mahdis Mahdieh, Mia Chen, Pei Sun,
Dustin Tran, Sumit Bagri, Balaji Lakshminarayanan,
Jeremiah Liu, Andras Orban, Fabian Güra, Hao
Zhou, Xinying Song, Aurelien Boffy, Harish Gana-
pathy, Steven Zheng, HyunJeong Choe, Ágoston
Weisz, Tao Zhu, Yifeng Lu, Siddharth Gopal, Jar-
rod Kahn, Maciej Kula, Jeff Pitman, Rushin Shah,
Emanuel Taropa, Majd Al Merey, Martin Baeuml,
Zhifeng Chen, Laurent El Shafey, Yujing Zhang, Ol-
can Sercinoglu, George Tucker, Enrique Piqueras,
Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo
Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, Alexandre Frechette, Charlotte
Smith, Laura Culp, Lev Proleev, Yi Luan, Xi Chen,
James Lottes, Nathan Schucher, Federico Lebron,
Alban Rrustemi, Natalie Clay, Phil Crone, Tomas
Kocisky, Jeffrey Zhao, Bartek Perz, Dian Yu, Heidi
Howard, Adam Bloniarz, Jack W. Rae, Han Lu,
Laurent Sifre, Marcello Maggioni, Fred Alcober,
Dan Garrette, Megan Barnes, Shantanu Thakoor, Ja-
cob Austin, Gabriel Barth-Maron, William Wong,
Rishabh Joshi, Rahma Chaabouni, Deeni Fatiha,
Arun Ahuja, Gaurav Singh Tomar, Evan Senter,
Martin Chadwick, Ilya Kornakov, Nithya Attaluri,
Iñaki Iturrate, Ruibo Liu, Yunxuan Li, Sarah Cogan,
Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang,
Jordan Grimstad, Ale Jakse Hartman, Xavier Gar-
cia, Thanumalayan Sankaranarayana Pillai, Jacob
Devlin, Michael Laskin, Diego de Las Casas, Dasha
Valter, Connie Tao, Lorenzo Blanco, Adrià Puig-
domènech Badia, David Reitter, Mianna Chen,
Jenny Brennan, Clara Rivera, Sergey Brin, Shariq
Iqbal, Gabriela Surita, Jane Labanowski, Abhi Rao,
Stephanie Winkler, Emilio Parisotto, Yiming Gu,
Kate Olszewska, Ravi Addanki, Antoine Miech, An-
nie Louis, Denis Teplyashin, Geoff Brown, Elliot
Catt, Jan Balaguer, Jackie Xiang, Pidong Wang, Zoe
Ashwood, Anton Briukhov, Albert Webson, San-
jay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-
Wei Chang, Axel Stjerngren, Josip Djolonga, Yut-
ing Sun, Ankur Bapna, Matthew Aitchison, Pedram
Pejman, Henryk Michalewski, Tianhe Yu, Cindy
Wang, Juliette Love, Junwhan Ahn, Dawn Bloxwich,
Kehang Han, Peter Humphreys, Thibault Sellam,
James Bradbury, Varun Godbole, Sina Samangooei,
Bogdan Damoc, Alex Kaskasoli, Sébastien M. R.
Arnold, Vijay Vasudevan, Shubham Agrawal, Jason
Riesa, Dmitry Lepikhin, Richard Tanburn, Srivat-
san Srinivasan, Hyeontaek Lim, Sarah Hodkinson,
Pranav Shyam, Johan Ferret, Steven Hand, Ankush
Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Gi-
ang, Alexander Neitz, Zaheer Abbas, Sarah York,
Machel Reid, Elizabeth Cole, Aakanksha Chowd-
hery, Dipanjan Das, Dominika Rogoziska, Vitaliy
Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas
Zilka, Flavien Prost, Luheng He, Marianne Mon-
teiro, Gaurav Mishra, Chris Welty, Josh Newlan,
Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,

Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel,
Albin Cassirer, Yunhan Xu, Daniel Sohn, Deven-
dra Sachan, Reinald Kim Amplayo, Craig Swan-
son, Dessie Petrova, Shashi Narayan, Arthur Guez,
Siddhartha Brahma, Jessica Landon, Miteyan Pa-
tel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wen-
hao Jia, Matthew Rahtz, Mai Giménez, Legg Ye-
ung, James Keeling, Petko Georgiev, Diana Mincu,
Boxi Wu, Salem Haykal, Rachel Saputro, Kiran
Vodrahalli, James Qin, Zeynep Cankara, Abhanshu
Sharma, Nick Fernando, Will Hawkins, Behnam
Neyshabur, Solomon Kim, Adrian Hutter, Priyanka
Agrawal, Alex Castro-Ros, George van den Driess-
che, Tao Wang, Fan Yang, Shuo yiin Chang,
Paul Komarek, Ross McIlroy, Mario Lui, Guodong
Zhang, Wael Farhan, Michael Sharman, Paul Nat-
sev, Paul Michel, Yamini Bansal, Siyuan Qiao, Kris
Cao, Siamak Shakeri, Christina Butterfield, Justin
Chung, Paul Kishan Rubenstein, Shivani Agrawal,
Arthur Mensch, Kedar Soparkar, Karel Lenc, Tim-
othy Chung, Aedan Pope, Loren Maggiore, Jackie
Kay, Priya Jhakra, Shibo Wang, Joshua Maynez,
Mary Phuong, Taylor Tobin, Andrea Tacchetti, Maja
Trebacz, Kevin Robinson, Yash Katariya, Sebas-
tian Riedel, Paige Bailey, Kefan Xiao, Nimesh Ghe-
lani, Lora Aroyo, Ambrose Slone, Neil Houlsby,
Xuehan Xiong, Zhen Yang, Elena Gribovskaya,
Jonas Adler, Mateo Wirth, Lisa Lee, Music Li,
Thais Kagohara, Jay Pavagadhi, Sophie Bridgers,
Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed,
Tianqi Liu, Richard Powell, Vijay Bolina, Mariko
Iinuma, Polina Zablotskaia, James Besley, Da-Woon
Chung, Timothy Dozat, Ramona Comanescu, Xi-
ance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaël Lopez Kaufman, Simon Tokumine, Hex-
iang Hu, Elena Buchatskaya, Yingjie Miao, Mo-
hamed Elhawaty, Aditya Siddhant, Nenad Tomasev,
Jinwei Xing, Christina Greer, Helen Miller, Shereen
Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Ange-
los Filos, Milos Besta, Rory Blevins, Ted Klimenko,
Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Os-
car Chang, Mantas Pajarskas, Carrie Muir, Vered
Cohen, Charline Le Lan, Krishna Haridasan, Amit
Marathe, Steven Hansen, Sholto Douglas, Rajkumar
Samuel, Mingqiu Wang, Sophia Austin, Chang Lan,
Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo,
Lars Lowe Sjösund, Sébastien Cevey, Zach Gle-
icher, Thi Avrahami, Anudhyan Boral, Hansa Srini-
vasan, Vittorio Selo, Rhys May, Konstantinos Aiso-
pos, Léonard Hussenot, Livio Baldini Soares, Kate
Baumli, Michael B. Chang, Adrià Recasens, Ben
Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo,
Anita Gergely, Justin Frye, Vinay Ramasesh, Dan
Horgan, Kartikeya Badola, Nora Kassner, Subhra-
jit Roy, Ethan Dyer, Víctor Campos Campos, Alex
Tomala, Yunhao Tang, Dalia El Badawy, Elspeth
White, Basil Mustafa, Oran Lang, Abhishek Jin-
dal, Sharad Vikram, Zhitao Gong, Sergi Caelles,
Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng,
Wojciech Stokowiec, Ce Zheng, Phoebe Thacker,
Çalar Ünlü, Zhishuai Zhang, Mohammad Saleh,
James Svensson, Max Bileschi, Piyush Patil, Ankesh
Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer,

15850

Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom
Kwiatkowski, Samira Daruki, Keran Rong, Allan
Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg,
Mina Khan, Lisa Anne Hendricks, Marie Pellat,
Vladimir Feinberg, James Cobon-Kerr, Tara Sainath,
Maribeth Rauh, Sayed Hadi Hashemi, Richard Ives,
Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd,
Le Hou, Qingze Wang, Thibault Sottiaux, Michela
Paganini, Jean-Baptiste Lespiau, Alexandre Mou-
farek, Samer Hassan, Kaushik Shivakumar, Joost
van Amersfoort, Amol Mandhane, Pratik Joshi,
Anirudh Goyal, Matthew Tung, Andrew Brock, Han-
nah Sheahan, Vedant Misra, Cheng Li, Nemanja
Rakievi, Mostafa Dehghani, Fangyu Liu, Sid Mit-
tal, Junhyuk Oh, Seb Noury, Eren Sezener, Fan-
tine Huot, Matthew Lamm, Nicola De Cao, Char-
lie Chen, Sidharth Mudgal, Romina Stella, Kevin
Brooks, Gautam Vasudevan, Chenxi Liu, Mainak
Chain, Nivedita Melinkeri, Aaron Cohen, Venus
Wang, Kristie Seymore, Sergey Zubkov, Rahul
Goel, Summer Yue, Sai Krishnakumaran, Brian
Albert, Nate Hurley, Motoki Sano, Anhad Mo-
hananey, Jonah Joughin, Egor Filonov, Tomasz Kpa,
Yomna Eldawy, Jiawern Lim, Rahul Rishi, Shirin
Badiezadegan, Taylor Bos, Jerry Chang, Sanil Jain,
Sri Gayatri Sundara Padmanabhan, Subha Putta-
gunta, Kalpesh Krishna, Leslie Baker, Norbert Kalb,
Vamsi Bedapudi, Adam Kurzrok, Shuntong Lei, An-
thony Yu, Oren Litvin, Xiang Zhou, Zhichun Wu,
Sam Sobell, Andrea Siciliano, Alan Papir, Robby
Neale, Jonas Bragagnolo, Tej Toor, Tina Chen,
Valentin Anklin, Feiran Wang, Richie Feng, Mi-
lad Gholami, Kevin Ling, Lijuan Liu, Jules Walter,
Hamid Moghaddam, Arun Kishore, Jakub Adamek,
Tyler Mercado, Jonathan Mallinson, Siddhinita Wan-
dekar, Stephen Cagle, Eran Ofek, Guillermo Gar-
rido, Clemens Lombriser, Maksim Mukha, Botu
Sun, Hafeezul Rahman Mohammad, Josip Matak,
Yadi Qian, Vikas Peswani, Pawel Janus, Quan Yuan,
Leif Schelin, Oana David, Ankur Garg, Yifan He,
Oleksii Duzhyi, Anton Älgmyr, Timothée Lottaz,
Qi Li, Vikas Yadav, Luyao Xu, Alex Chinien,
Rakesh Shivanna, Aleksandr Chuklin, Josie Li,
Carrie Spadine, Travis Wolfe, Kareem Mohamed,
Subhabrata Das, Zihang Dai, Kyle He, Daniel
von Dincklage, Shyam Upadhyay, Akanksha Mau-
rya, Luyan Chi, Sebastian Krause, Khalid Salama,
Pam G Rabinovitch, Pavan Kumar Reddy M, Aarush
Selvan, Mikhail Dektiarev, Golnaz Ghiasi, Erdem
Guven, Himanshu Gupta, Boyi Liu, Deepak Sharma,
Idan Heimlich Shtacher, Shachi Paul, Oscar Aker-
lund, François-Xavier Aubet, Terry Huang, Chen
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze,
Francesco Bertolini, Liana-Eleonora Marinescu,
Martin Bölle, Dominik Paulus, Khyatti Gupta, Te-
jasi Latkar, Max Chang, Jason Sanders, Roopa Wil-
son, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet,
Tulsee Doshi, Sid Lall, Swaroop Mishra, Wanming
Chen, Thang Luong, Seth Benjamin, Jasmine Lee,
Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan,
Krzysztof Styrc, Pengcheng Yin, Jon Simon, Mal-
colm Rose Harriott, Mudit Bansal, Alexei Rob-
sky, Geoff Bacon, David Greene, Daniil Mirylenka,
Chen Zhou, Obaid Sarvana, Abhimanyu Goyal,

Samuel Andermatt, Patrick Siegler, Ben Horn, Assaf
Israel, Francesco Pongetti, Chih-Wei "Louis" Chen,
Marco Selvatici, Pedro Silva, Kathie Wang, Jack-
son Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai,
Alessandro Agostini, Maulik Shah, Hung Nguyen,
Noah Ó Donnaile, Sébastien Pereira, Linda Friso,
Adam Stambler, Adam Kurzrok, Chenkai Kuang,
Yan Romanikhin, Mark Geller, ZJ Yan, Kane Jang,
Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qi-
jun Tan, Dan Banica, Daniel Balle, Ryan Pham,
Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot
Singh, Chris Hidey, Niharika Ahuja, Pranab Sax-
ena, Dan Dooley, Srividya Pranavi Potharaju, Eileen
O’Neill, Anand Gokulchandran, Ryan Foley, Kai
Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta,
Ragha Kotikalapudi, Chalence Safranek-Shrader,
Andrew Goodman, Joshua Kessinger, Eran Globen,
Prateek Kolhar, Chris Gorgolewski, Ali Ibrahim,
Yang Song, Ali Eichenbaum, Thomas Brovelli,
Sahitya Potluri, Preethi Lahoti, Cip Baetu, Ali
Ghorbani, Charles Chen, Andy Crawford, Shalini
Pal, Mukund Sridhar, Petru Gurita, Asier Mujika,
Igor Petrovski, Pierre-Louis Cedoz, Chenmei Li,
Shiyuan Chen, Niccolò Dal Santo, Siddharth Goyal,
Jitesh Punjabi, Karthik Kappaganthu, Chester Kwak,
Pallavi LV, Sarmishta Velury, Himadri Choudhury,
Jamie Hall, Premal Shah, Ricardo Figueira, Matt
Thomas, Minjie Lu, Ting Zhou, Chintu Kumar,
Thomas Jurdi, Sharat Chikkerur, Yenai Ma, Adams
Yu, Soo Kwak, Victor Ähdel, Sujeevan Rajayo-
gam, Travis Choma, Fei Liu, Aditya Barua, Colin
Ji, Ji Ho Park, Vincent Hellendoorn, Alex Bai-
ley, Taylan Bilal, Huanjie Zhou, Mehrdad Khatir,
Charles Sutton, Wojciech Rzadkowski, Fiona Mac-
intosh, Roopali Vij, Konstantin Shagin, Paul Med-
ina, Chen Liang, Jinjing Zhou, Pararth Shah, Yingy-
ing Bi, Attila Dankovics, Shipra Banga, Sabine
Lehmann, Marissa Bredesen, Zifan Lin, John Eric
Hoffmann, Jonathan Lai, Raynald Chung, Kai Yang,
Nihal Balani, Arthur Brainskas, Andrei Sozanschi,
Matthew Hayes, Héctor Fernández Alcalde, Peter
Makarov, Will Chen, Antonio Stella, Liselotte Sni-
jders, Michael Mandl, Ante Kärrman, Pawe Nowak,
Xinyi Wu, Alex Dyck, Krishnan Vaidyanathan,
Raghavender R, Jessica Mallet, Mitch Rudominer,
Eric Johnston, Sushil Mittal, Akhil Udathu, Ja-
nara Christensen, Vishal Verma, Zach Irving, An-
dreas Santucci, Gamaleldin Elsayed, Elnaz Davoodi,
Marin Georgiev, Ian Tenney, Nan Hua, Geoffrey
Cideron, Edouard Leurent, Mahmoud Alnahlawi,
Ionut Georgescu, Nan Wei, Ivy Zheng, Dylan Scan-
dinaro, Heinrich Jiang, Jasper Snoek, Mukund Sun-
dararajan, Xuezhi Wang, Zack Ontiveros, Itay Karo,
Jeremy Cole, Vinu Rajashekhar, Lara Tumeh, Eyal
Ben-David, Rishub Jain, Jonathan Uesato, Romina
Datta, Oskar Bunyan, Shimu Wu, John Zhang, Pi-
otr Stanczyk, Ye Zhang, David Steiner, Subhajit
Naskar, Michael Azzam, Matthew Johnson, Adam
Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias,
Afroz Mohiuddin, Faizan Muhammad, Jin Miao,
Andrew Lee, Nino Vieillard, Jane Park, Jiageng
Zhang, Jeff Stanway, Drew Garmon, Abhijit Kar-
markar, Zhe Dong, Jong Lee, Aviral Kumar, Lu-

15851

owei Zhou, Jonathan Evens, William Isaac, Geoffrey
Irving, Edward Loper, Michael Fink, Isha Arkatkar,
Nanxin Chen, Izhak Shafran, Ivan Petrychenko,
Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai
Zhu, Peter Grabowski, Yu Mao, Alberto Magni,
Kaisheng Yao, Javier Snaider, Norman Casagrande,
Evan Palmer, Paul Suganthan, Alfonso Castaño,
Irene Giannoumis, Wooyeol Kim, Mikoaj Rybiski,
Ashwin Sreevatsa, Jennifer Prendki, David Soergel,
Adrian Goedeckemeyer, Willi Gierke, Mohsen Ja-
fari, Meenu Gaba, Jeremy Wiesner, Diana Gage
Wright, Yawen Wei, Harsha Vashisht, Yana Kulizh-
skaya, Jay Hoover, Maigo Le, Lu Li, Chimezie
Iwuanyanwu, Lu Liu, Kevin Ramirez, Andrey Khor-
lin, Albert Cui, Tian LIN, Marcus Wu, Ricardo
Aguilar, Keith Pallo, Abhishek Chakladar, Gin-
ger Perng, Elena Allica Abellan, Mingyang Zhang,
Ishita Dasgupta, Nate Kushman, Ivo Penchev, Alena
Repina, Xihui Wu, Tom van der Weide, Priya Pon-
napalli, Caroline Kaplan, Jiri Simsa, Shuangfeng
Li, Olivier Dousse, Fan Yang, Jeff Piper, Nathan
Ie, Rama Pasumarthi, Nathan Lintz, Anitha Vi-
jayakumar, Daniel Andor, Pedro Valenzuela, Minnie
Lui, Cosmin Paduraru, Daiyi Peng, Katherine Lee,
Shuyuan Zhang, Somer Greene, Duc Dung Nguyen,
Paula Kurylowicz, Cassidy Hardin, Lucas Dixon,
Lili Janzer, Kiam Choo, Ziqiang Feng, Biao Zhang,
Achintya Singhal, Dayou Du, Dan McKinnon,
Natasha Antropova, Tolga Bolukbasi, Orgad Keller,
David Reid, Daniel Finchelstein, Maria Abi Raad,
Remi Crocker, Peter Hawkins, Robert Dadashi,
Colin Gaffney, Ken Franko, Anna Bulanova, Rémi
Leblond, Shirley Chung, Harry Askham, Luis C.
Cobo, Kelvin Xu, Felix Fischer, Jun Xu, Christina
Sorokin, Chris Alberti, Chu-Cheng Lin, Colin
Evans, Alek Dimitriev, Hannah Forbes, Dylan Ba-
narse, Zora Tung, Mark Omernick, Colton Bishop,
Rachel Sterneck, Rohan Jain, Jiawei Xia, Ehsan
Amid, Francesco Piccinno, Xingyu Wang, Praseem
Banzal, Daniel J. Mankowitz, Alex Polozov, Vic-
toria Krakovna, Sasha Brown, MohammadHossein
Bateni, Dennis Duan, Vlad Firoiu, Meghana Tho-
takuri, Tom Natan, Matthieu Geist, Ser tan Girgin,
Hui Li, Jiayu Ye, Ofir Roval, Reiko Tojo, Michael
Kwong, James Lee-Thorp, Christopher Yew, Danila
Sinopalnikov, Sabela Ramos, John Mellor, Abhishek
Sharma, Kathy Wu, David Miller, Nicolas Son-
nerat, Denis Vnukov, Rory Greig, Jennifer Beat-
tie, Emily Caveness, Libin Bai, Julian Eisensch-
los, Alex Korchemniy, Tomy Tsai, Mimi Jasarevic,
Weize Kong, Phuong Dao, Zeyu Zheng, Frederick
Liu, Fan Yang, Rui Zhu, Tian Huey Teh, Jason
Sanmiya, Evgeny Gladchenko, Nejc Trdin, Daniel
Toyama, Evan Rosen, Sasan Tavakkol, Linting Xue,
Chen Elkind, Oliver Woodman, John Carpenter,
George Papamakarios, Rupert Kemp, Sushant Kafle,
Tanya Grunina, Rishika Sinha, Alice Talbert, Di-
ane Wu, Denese Owusu-Afriyie, Cosmo Du, Chloe
Thornton, Jordi Pont-Tuset, Pradyumna Narayana,
Jing Li, Saaber Fatehi, John Wieting, Omar Ajmeri,
Benigno Uria, Yeongil Ko, Laura Knight, Amélie
Héliou, Ning Niu, Shane Gu, Chenxi Pang, Yeqing
Li, Nir Levine, Ariel Stolovich, Rebeca Santamaria-
Fernandez, Sonam Goenka, Wenny Yustalim, Robin

Strudel, Ali Elqursh, Charlie Deck, Hyo Lee,
Zonglin Li, Kyle Levin, Raphael Hoffmann, Dan
Holtmann-Rice, Olivier Bachem, Sho Arora, Christy
Koh, Soheil Hassas Yeganeh, Siim Põder, Mukar-
ram Tariq, Yanhua Sun, Lucian Ionita, Mojtaba
Seyedhosseini, Pouya Tafti, Zhiyu Liu, Anmol
Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz,
Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown,
Shreya Singh, Wei Fan, Aaron Parisi, Joe Stan-
ton, Vinod Koverkathu, Christopher A. Choquette-
Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash
Shroff, Mani Varadarajan, Sanaz Bahargam, Rob
Willoughby, David Gaddy, Guillaume Desjardins,
Marco Cornero, Brona Robenek, Bhavishya Mittal,
Ben Albrecht, Ashish Shenoy, Fedor Moiseev, Hen-
rik Jacobsson, Alireza Ghaffarkhah, Morgane Riv-
ière, Alanna Walton, Clément Crepy, Alicia Par-
rish, Zongwei Zhou, Clement Farabet, Carey Rade-
baugh, Praveen Srinivasan, Claudia van der Salm,
Andreas Fidjeland, Salvatore Scellato, Eri Latorre-
Chimoto, Hanna Klimczak-Pluciska, David Bridson,
Dario de Cesare, Tom Hudson, Piermaria Mendolic-
chio, Lexi Walker, Alex Morris, Matthew Mauger,
Alexey Guseynov, Alison Reid, Seth Odoom, Lu-
cia Loher, Victor Cotruta, Madhavi Yenugula, Do-
minik Grewe, Anastasia Petrushkina, Tom Duerig,
Antonio Sanchez, Steve Yadlowsky, Amy Shen,
Amir Globerson, Lynette Webb, Sahil Dua, Dong
Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi,
Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj
Khare, Shreyas Rammohan Belle, Lei Wang, Chetan
Tekur, Mihir Sanjay Kale, Jinliang Wei, Ruoxin
Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao
Zhao, Stephan Lee, Pandu Nayak, Doug Fritz, Man-
ish Reddy Vuyyuru, John Aslanides, Nidhi Vyas,
Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina
Martin, Hardie Cate, James Manyika, Keyvan Amiri,
Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier,
Nilesh Tripuraneni, David Madras, Mandy Guo,
Austin Waters, Oliver Wang, Joshua Ainslie, Ja-
son Baldridge, Han Zhang, Garima Pruthi, Jakob
Bauer, Feng Yang, Riham Mansour, Jason Gel-
man, Yang Xu, George Polovets, Ji Liu, Hong-
long Cai, Warren Chen, XiangHai Sheng, Emily
Xue, Sherjil Ozair, Christof Angermueller, Xiaowei
Li, Anoop Sinha, Weiren Wang, Julia Wiesinger,
Emmanouil Koukoumidis, Yuan Tian, Anand Iyer,
Madhu Gurumurthy, Mark Goldenson, Parashar
Shah, MK Blake, Hongkun Yu, Anthony Urbanow-
icz, Jennimaria Palomaki, Chrisantha Fernando, Ken
Durden, Harsh Mehta, Nikola Momchev, Elahe
Rahimtoroghi, Maria Georgaki, Amit Raul, Sebas-
tian Ruder, Morgan Redshaw, Jinhyuk Lee, Denny
Zhou, Komal Jalan, Dinghua Li, Blake Hecht-
man, Parker Schuh, Milad Nasr, Kieran Milan,
Vladimir Mikulik, Juliana Franco, Tim Green, Nam
Nguyen, Joe Kelley, Aroma Mahendru, Andrea Hu,
Joshua Howland, Ben Vargas, Jeffrey Hui, Kshi-
tij Bansal, Vikram Rao, Rakesh Ghiya, Emma
Wang, Ke Ye, Jean Michel Sarr, Melanie Moran-
ski Preston, Madeleine Elish, Steve Li, Aakash
Kaku, Jigar Gupta, Ice Pasupat, Da-Cheng Juan,
Milan Someswar, Tejvi M., Xinyun Chen, Aida
Amini, Alex Fabrikant, Eric Chu, Xuanyi Dong,

15852

Amruta Muthal, Senaka Buthpitiya, Sarthak Jauhari,
Nan Hua, Urvashi Khandelwal, Ayal Hitron, Jie
Ren, Larissa Rinaldi, Shahar Drath, Avigail Dabush,
Nan-Jiang Jiang, Harshal Godhia, Uli Sachs, An-
thony Chen, Yicheng Fan, Hagai Taitelbaum, Hila
Noga, Zhuyun Dai, James Wang, Chen Liang, Jenny
Hamer, Chun-Sung Ferng, Chenel Elkind, Aviel
Atias, Paulina Lee, Vít Listík, Mathias Carlen, Jan
van de Kerkhof, Marcin Pikus, Krunoslav Zaher,
Paul Müller, Sasha Zykova, Richard Stefanec, Vi-
taly Gatsko, Christoph Hirnschall, Ashwin Sethi,
Xingyu Federico Xu, Chetan Ahuja, Beth Tsai, Anca
Stefanoiu, Bo Feng, Keshav Dhandhania, Manish
Katyal, Akshay Gupta, Atharva Parulekar, Divya
Pitta, Jing Zhao, Vivaan Bhatia, Yashodha Bhav-
nani, Omar Alhadlaq, Xiaolin Li, Peter Danen-
berg, Dennis Tu, Alex Pine, Vera Filippova, Ab-
hipso Ghosh, Ben Limonchik, Bhargava Urala, Chai-
tanya Krishna Lanka, Derik Clive, Yi Sun, Ed-
ward Li, Hao Wu, Kevin Hongtongsak, Ianna Li,
Kalind Thakkar, Kuanysh Omarov, Kushal Maj-
mundar, Michael Alverson, Michael Kucharski, Mo-
hak Patel, Mudit Jain, Maksim Zabelin, Paolo Pela-
gatti, Rohan Kohli, Saurabh Kumar, Joseph Kim,
Swetha Sankar, Vineet Shah, Lakshmi Ramachan-
druni, Xiangkai Zeng, Ben Bariach, Laura Wei-
dinger, Tu Vu, Alek Andreev, Antoine He, Kevin
Hui, Sheleem Kashem, Amar Subramanya, Sissie
Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam
Sadovsky, Quoc Le, Trevor Strohman, Yonghui Wu,
Slav Petrov, Jeffrey Dean, and Oriol Vinyals. 2025.
Gemini: A family of highly capable multimodal
models. Preprint, arXiv:2312.11805.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. Preprint,
arXiv:2409.12191.

Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan
Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and Ping
Luo. 2025. Plot2Code: A comprehensive bench-
mark for evaluating multi-modal large language
models in code generation from scientific plots. In
Findings of the Association for Computational Lin-
guistics: NAACL 2025, pages 3006–3028, Albu-
querque, New Mexico. Association for Computa-
tional Linguistics.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu,
Chun Yuan, and Jian Guo. 2024. Chartbench: A
benchmark for complex visual reasoning in charts.
Preprint, arXiv:2312.15915.

Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du,
Chengjin Xu, Chun Yuan, and Jian Guo. 2025.
Chartmoe: Mixture of diversely aligned expert con-
nector for chart understanding. In The Thirteenth
International Conference on Learning Representa-
tions.

Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta,
Luca Weihs, Andrew Head, Mark Yatskar, Chris
Callison-Burch, Ranjay Krishna, Aniruddha Kem-
bhavi, and Christopher Clark. 2025. Scaling
text-rich image understanding via code-guided syn-
thetic multimodal data generation. Preprint,
arXiv:2502.14846.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham-
mad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo
Li, Haonan Li, Preslav Nakov, Timothy Baldwin,
Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and
Zhiqiang Shen. 2024. Web2code: A large-scale
webpage-to-code dataset and evaluation framework
for multimodal llms. Preprint, arXiv:2406.20098.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for lan-
guage image pre-training. 2023 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV),
pages 11941–11952.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng
Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen, and
Jacky Keung. 2025. Humaneval-v: Benchmarking
high-level visual reasoning with complex diagrams
in coding tasks. Preprint, arXiv:2410.12381.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan,
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
2024a. TinyChart: Efficient chart understanding
with program-of-thoughts learning and visual token
merging. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 1882–1898, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna
Wang, Yongliang Shen, Zeqi Tan, Guiyang Hou,
Mingqian He, Yanna Ma, Weiming Lu, and Yuet-
ing Zhuang. 2024b. Multimodal self-instruct: Syn-
thetic abstract image and visual reasoning instruc-
tion using language model. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 19228–19252, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo
Wang, Wanxiang Che, Zhiyuan Liu, and Maosong
Sun. 2025. Chartcoder: Advancing multimodal
large language model for chart-to-code generation.
Preprint, arXiv:2501.06598.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. Preprint,
arXiv:2403.13372.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia,
Jie Luo, Xien Liu, Ji Wu, and Lei Huang. 2024.
Tinyllava: A framework of small-scale large multi-
modal models. Preprint, arXiv:2402.14289.

15853

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2025.findings-naacl.164/
https://arxiv.org/abs/2312.15915
https://arxiv.org/abs/2312.15915
https://openreview.net/forum?id=o5TsWTUSeF
https://openreview.net/forum?id=o5TsWTUSeF
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2502.14846
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://arxiv.org/abs/2406.20098
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://arxiv.org/abs/2410.12381
https://arxiv.org/abs/2410.12381
https://arxiv.org/abs/2410.12381
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2402.14289
https://arxiv.org/abs/2402.14289

line ba
r

he
atm

ap
sca

tte
r

rec
tan

gle bo
x

are
a

3d
 su

rfa
ce

con
tou

r

err
orp

oin
tlin

e

err
orb

ar

3d
 sc

att
er

cir
cle

qu
ive

r
elli

pse ste
m

po
lyg

on pie
3d

 lin
e

po
lar

vio
lin his

t
no

de

3d
 wire

fra
me

con
tou

rf

str
ea

m

spe
ctr

og
ram

0

2

4

6

8
Pe

rc
en

ta
ge

 (
%

)
7.0%

6.2%

4.3%4.2%
3.5%3.3%3.2%3.2%3.1%3.1%3.1%3.1%2.8%2.7%2.5%2.4%2.4%2.3%2.3%2.2%2.1%2.1%2.1%2.0%1.9%1.8%1.7%

3d
 ba

r

pco
lor

mesh

ins
et

ax
is

he
xb

in

3d
 co

nto
ur

pa
ral

lelc
oo

rds rad
ar ste

p

de
nd

rog
ram

tre
em

ap
ba

rbs ge
o

word
clo

ud

py
ram

id

3d
 vo

xel

bro
ken

ba
rh

tric
on

tou
rf

cho
rd

trip
lot

3d
 tri

sur
f

can
dle

stic
k

sun
bu

rst

san
key

dia
gra

m

trip
col

or

tric
on

tou
r

ve
nn

0.0

0.5

1.0

1.5

Pe
rc

en
ta

ge
 (

%
)

1.7%
1.5%1.5%1.4%1.4%

1.2%1.2%1.1%1.1%1.1%

0.5%0.5%0.5%0.5%0.5%0.4%0.4%0.4%0.4%0.4%0.4%0.3%0.3%0.3%0.2%0.2%

Chart Type Distribution

Figure 9: Type distribution of Chart2Code53. The upper panel displays the top half of types by prevalence, while
the lower panel displays the remaining types.

A Appendix

A.1 Statistics
Chart Type distribution The type distribution is

shown in Figure 9. As illustrated, the distribution
of categories in our dataset is well-balanced.

Plotting Content diversity To evaluate the diver-
sity of our dataset, we employ two metrics: API
Combination and Average Distinct n-gram.

• API Combination: For a single code snip-
pet, its API Combination is defined as the
multiset of all API names used in that snip-
pet. Across the training set, the number of
distinct API Combinations reflects the variety
of multisets derived from all code snippets.
This metric corresponds directly to diverse
visualization intents and plotting patterns, in-
herently capturing the richness of users’ pro-
gramming logic. As shown in Table 1, our
dataset demonstrates substantial diversity in
plotting logic.

• Average Distinct n-gram: This metric calcu-
lates the average number of distinct n-grams
(for n=1 to 5) across all samples in the dataset.
By considering the entire code text, it better
reflects the diversity of data and parameter
definitions. Results presented in table 4 con-
firm that our dataset exhibits strong diversity
in both data and parameters.

Dataset name # Data samples # Avg distinct n-grams

Text2Chart31 11K 365K
ReachQA 3K 306K

CoSyn 53K 1892K
Chart2Code53 130K 7205K

Table 4: Average distinct n-gram metric.

A.2 Quality control details
Since our data synthesis pipeline generates code
and then uses it to produce corresponding images,
an inherent correspondence exists between the im-
ages and the code. To ensure quality control, we
verify both the aesthetic quality of the images and
the absence of redundant code segments unrelated
to plotting. For code quality, we focus on identify-
ing invalid code segments that do not visibly affect
the final rendered image. Manual inspection of 2K
samples reveals the following recurring issues4:

• Overridden statements (setting plt.axis(False)
after using ax.xsticks()).

• The iterable variable (a numpy array) is only
partially visualized in the generated plot.

• Redundant if-condition branches.

4We don’t use GPT-4o to check the code as we found that
GPT-4o struggles to accurately identify these issues based
solely on given chart images and code, and frequently flags
non-existent problems.

15854

These errors likely originate from the inclu-
sion of user debugging logic in the original web-
sourced code snippets. While less impactful for
Chart2Code, such issues could adversely affect
downstream chart comprehension tasks. Through
random sampling, we estimated the prevalence of
such problematic samples to be acceptably low
(less than 3.2% of the total data). The entire
dataset verification process was conducted inde-
pendently by the first author to ensure consistency.

A.3 Qualitative samples of synthesised charts
In this section, we show some qualitative samples
of our synthesised dataset examples.

Figure 10: Synthesised chart example. This figure
presents a silhouette analysis for KMeans clustering on
sample data with five clusters. The left panel shows the
silhouette plot, where each cluster is represented by a
distinct color. The right panel visualizes the clustered
data in a two-dimensional feature space, with each clus-
ter labeled and colored differently. It’s a combination
of scatter chart,axline chart and fillbetween (area) chart
with text.

Figure 11: Synthesised chart example. This chart il-
lustrates the distribution of a specific variable across
different time intervals within a 24-hour period. Each
segment represents an hour of the day, and the length
of the bar within each segment indicates the magnitude
of the variable being measured. It’s a Polar bar chart.

Figure 12: Synthesised chart example. This transverse
view chart visualizes the spatial distribution of three
different categories (Category 1, Category 2, and Cat-
egory 3) across a radial plane. Each category is rep-
resented by a distinct color: red for Category 1, green
for Category 2, and blue for Category 3. Points A, B,
and C indicate specific locations where each category
is observed. It’s a combination of line chart and scatter
chart in polar axis.

Figure 13: Synthesised chart example. This figure illus-
trates the IG XC distribution and empirical CDF, where
the top histogram shows the counts of true positives
(TP) and false positives (FP) across different XC values,
and the bottom plot displays their cumulative density
functions. It’s a combination of hist chart and density
chart.

15855

Figure 14: Synthesised chart example. This diagram
illustrates a Rankine power cycle, a thermodynamic cy-
cle commonly used in power plants for converting heat
into mechanical work.The diagram highlights the flow
of the working fluid through these stages, emphasizing
the transformation of energy forms throughout the pro-
cess. It’s Sankey chart.

Figure 15: Synthesised chart example. This figure illus-
trates a vector field plot, depicting the flow and magni-
tude of vectors in a two-dimensional space. The color
gradient from yellow to red represents varying magni-
tudes, with yellow indicating lower values and red in-
dicating higher values at the center. The vectors, repre-
sented by arrows, show the direction of the flow, con-
verging towards the center. It’s a quiver chart.

Figure 16: Synthesised chart example. The chart
provided illustrates the pressure waveform with PEEP
(Positive End-Expiratory Pressure) during mechanical
ventilation. The blue line represents actual pressure,
while the orange line indicates target pressure, and the
red line denotes tidal pressure. The shaded grey regions
indicate the inspiratory and expiratory phases of the
breathing cycle, with the expiratory phase marked by
the grey background. It’s a line chart with a varying
background.

Figure 17: Synthesised chart example. This contour
plot illustrates synthetic data predictions across a two-
dimensional parameter space. The plot features con-
tour lines that represent levels of constant predicted val-
ues, with shaded regions indicating areas of similar pre-
diction magnitudes. The diagonal dashed line signifies
a reference or baseline condition. It’s contour and line
chart.

15856

