Can Large Language Models Tackle Graph Partitioning?
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Abstract

Large language models (LLMs) demonstrate
remarkable capabilities in understanding com-
plex tasks and have achieved commendable
performance in graph-related tasks, such as
node classification, link prediction, and sub-
graph classification. These tasks primarily de-
pend on the local reasoning capabilities of the
graph structure. However, research has yet to
address the graph partitioning task that requires
global perception abilities. Our preliminary
findings reveal that vanilla LLMs can only han-
dle graph partitioning on extremely small-scale
graphs. To overcome this limitation, we pro-
pose a three-phase pipeline to empower LLMs
for large-scale graph partitioning: coarsening,
reasoning, and refining. The coarsening phase
reduces graph complexity. The reasoning phase
captures both global and local patterns to gen-
erate a coarse partition. The refining phase en-
sures topological consistency by projecting the
coarse-grained partitioning results back to the
original graph structure. Extensive experiments
demonstrate that our framework enables LLMs
to perform graph partitioning across varying
graph scales, validating both the effectiveness
of LLMs for partitioning tasks and the practical
utility of our proposed methodology.

1 Introduction

The exponential growth and increasing complex-
ity of graph-structured data, prevalent from social
networks to biological systems, present significant
analytical challenges (Hiiffner et al., 2014; Ni et al.,
2022; Ayall et al., 2022). Addressing these chal-
lenges often necessitates graph partitioning, a foun-
dational problem in graph computing with broad ap-
plications in distributed databases, social network
architecture, transportation optimization, circuit
design, and power grid management (Cong et al.,
1996; Tafreshian and Masoud, 2020; Catalyiirek
et al., 2023). The goal is to divide a graph into
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Figure 1: Differences between the graph partitioning
task and previous work: (a) Previous work focuses on
local answers (in blue), where the surrounding graph
data (in grey) may contain the required structural and
feature information. (b) Graph partitioning task divides
the whole graph into disjoint subgraphs based on the
whole graph data.

disjoint subsets where nodes within each subset
are strongly connected internally, while minimiz-
ing inter-subgraph connections. This is typically
pursued under constraints on subgraph size or load
balance.

Large Language Models (LLMs) have demon-
strated remarkable reasoning and generalization
capabilities in natural language processing tasks
(Joshi et al., 2025), prompting research efforts to
extend these advantages to graph-structured data
processing (Jin et al., 2024). However, a fundamen-
tal challenge arises from the inherent mismatch
between the sequential processing architecture of
LLMs and the non-Euclidean, often highly inter-
connected, nature of graphs. Unlike text or other
sequential data for which LLMs are primarily de-
signed, graphs lack a canonical node ordering, ex-
hibit vastly variable neighborhood structures, and
their complex topological properties (including ar-
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bitrary connectivity and potential long-range depen-
dencies) are not readily digestible by the standard
input formats and local context mechanisms typical
of LLMs. This intrinsic difficulty in representing
and reasoning about global graph topology with
sequence-based models has shaped the trajectory
of initial research.

Therefore, early studies (He et al., 2024a; Wu
et al., 2024; Chen et al., 2024b) primarily leveraged
the textual parsing capabilities of LLMs to enhance
Graph Neural Networks (GNNs) in handling node
attributes, while subsequent work (Zhang et al.,
2024; Huang et al., 2024b; Dai et al., 2025) has be-
gun exploring LL.Ms’ perception mechanisms for
graph topological structures. These investigations
predominantly focus on tasks such as node classifi-
cation, subgraph classification, and link prediction,
which can often be accomplished by analyzing lo-
cal features of limited nodes or small-scale sub-
graph information (Liu et al., 2024a; Chen et al.,
2024a; Huang et al., 2024a; Li et al., 2024b).

The aforementioned focus of existing LLM-
based graph analyses on localized reasoning starkly
contrasts with the requirements of tasks demand-
ing a holistic understanding of network topology.
Graph partitioning is precisely such a challenge,
fundamentally necessitating modeling macroscopic
patterns across the entire graph, rather than rely-
ing on isolated local features. As illustrated in
Figure 1, the objective in graph partitioning (b)
is to divide the whole graph based on its overall
structure, differing significantly from tasks solv-
able with more localized information (a). This crit-
ical discrepancy between the prevalent local-task-
oriented methodologies and the global perception
essential for graph partitioning is precisely what
motivates our investigation into adapting LLMs for
this challenge.

To bridge the gap between the local reasoning
capabilities of current LLMs and the global percep-
tion required for effective graph partitioning (Li
et al., 2024a), we propose a three-stage pipeline:
coarsening, reasoning, and refining.

This pipeline unfolds as follows: First, to di-
rectly address LLM limitations such as context
truncation and the "lost-in-the-middle" issue (Liu
et al., 2024b; Firooz et al., 2025), we hierarchically
coarsen the original graph into a compact represen-
tation that preserves its essential structural proper-
ties. Second, this coarsened graph is then encoded
into complementary textual sequences—capturing
direct neighborhood relations alongside integrated

centrality metrics and local patterns. These care-
fully crafted representations translate the graph’s
structural information into a format more amenable
to LLMs, enabling them to reason about local and
global patterns within this abstracted yet struc-
turally informative space. Finally, the initial par-
titioning derived by the LLLM from the coarsened
representation is systematically refined. This in-
volves projecting the reasoned divisions back onto
the original large-scale graph, thereby translating
the model’s abstract understanding into a practi-
cal, full-graph partition while ensuring topological
consistency.

To validate our approach, we construct multi-
scale graph partitioning datasets based on Cora and
conduct comprehensive experiments. Our findings
reveal that while vanilla LLMs struggle with large-
scale graphs due to inherent limitations in process-
ing extensive, non-sequential structures (includ-
ing context length constraints and the ’lost-in-the-
middle’ phenomenon), our framework markedly
empowers them to perceive global graph structures
and perform effective partitioning.

Our contributions are summarized as follows:

* We conduct the first systematic investigation
into the capabilities of LLMs as native struc-
tural reasoners for the graph partitioning task,
identifying their potential on extremely small-
scale graphs and pinpointing the critical bot-
tlenecks that hinder their application to larger
instances.

* To overcome the limitations of LLMs in pro-
cessing large-scale graphs, we introduce a
novel three-stage pipeline, including coars-
ening, reasoning, and refining.

* Through comprehensive experiments on
graphs of varying scales, we demonstrate
the feasibility of employing LL.Ms for graph
partitioning and validate the effectiveness of
our proposed three-stage pipeline, particularly
showcasing its ability to empower LLMs to
tackle large-scale instances where they would
otherwise struggle or fail.

2 Related Work
2.1 Graph Partitioning

Conventional graph partitioning methodologies for-
mulate the problem as NP-hard discrete optimiza-
tion tasks, which are then solved through heuristics
or approximations (Karypis et al., 1997; Karypis
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and Kumar, 1999; Andersen et al., 2006). How-
ever, these methodologies are constrained by hand-
crafted objectives, limited node feature utilization,
and scenario-specific applicability.

Neural methodologies have enabled the effec-
tive harnessing of node attributes and achieved
flexible adaptation to heterogeneous partitioning
requirements. MGAE (Wang et al., 2017) lever-
ages node attributes for graph clustering. GAP
(Nazi et al., 2019) develops a continuous relax-
ation of the normalized cut formulation into a dif-
ferentiable loss function. DMoN (Tsitsulin et al.,
2023) optimizes cluster assignments via modularity
maximization. Deep-MinCut (Duong et al., 2023)
jointly optimizes node embeddings through spec-
tral relaxation of the mincut objective. MPNN
(Jung and Keuper, 2023) reformulates integer lin-
ear programming constraints into polynomial loss
formulations. DGCluster (Bhowmick et al., 2024)
addresses undetermined partition counts via mod-
ularity maximization in attributed graphs. Neuro-
CUT (Shah et al., 2024) decouples parameter space
from partition counts through reinforcement learn-
ing. Nevertheless, these neural approaches necessi-
tate model retraining for distinct graph instances,
thereby constraining their cross-graph generaliza-
tion capabilities.

2.2 LLMs for Graph

The integration of LLMs into graph analytics has
undergone a transformative progression, reflect-
ing both technological advancements and persis-
tent limitations. Early frameworks such as Graph-
ToolFormer (Zhang, 2023) positioned LLMs as
linguistic intermediaries, translating natural lan-
guage queries like "partition this graph into com-
munities" into predefined algorithmic calls such
as k-means. While bridging language and graph
processing, these methods reduced LLMs to task
dispatchers, outsourcing structural computation to
external solvers and ignoring their intrinsic capac-
ity for topological understanding.

Subsequent research diverged into two streams:
one enhancing GNNs via LLMs’ textual capabil-
ities (Chen et al., 2024b; He et al., 2024b; Chen
et al., 2025), and another exploring LLMs’ stan-
dalone structural reasoning (Huang et al., 2024b;
Guo et al., 2024; Yu et al., 2025). The former,
including LL.Ms-as-Enhancers (Liu et al., 2023;
Xia et al., 2024; Wei et al., 2024) and LLMs-as-
Predictors (Ye et al., 2024; Tang et al., 2024a,b),
synergized text and structure by refining node at-

tributes or encoding graphs into prompts. However,
such hybrid methods remain constrained to text-
attributed graphs (TAGs) and localized tasks (e.g.,
node classification), with no validation on large
graphs or global structural tasks like graph parti-
tioning. The latter stream explored the standalone
structural reasoning of LLMs (Chai et al., 2023;
Wang et al., 2023; Agrawal et al., 2025), uncover-
ing their nascent ability to perform local tasks such
as connectivity checks, but remained confined to
microscopic analyzes.

Notably, even Graph-ToolFormer (Zhang, 2023),
the sole prior work involving partitioning, merely
invoked k-means through linguistic commands,
treating LL.Ms as passive translators rather than
active structural interpreters. This highlights a fun-
damental gap: existing paradigms either disregard
structural semantics or restrict reasoning to local
patterns.

Our work represents the first effort to harness
LLMs as native structural reasoners for graph par-
titioning. Unlike prior studies that prioritize text-
grounded tasks or localized substructures, we ex-
plicitly guide LLMs to interpret macroscopic graph
semantics through natural language instructions.

3 Preliminary

Graph. A graph is defined as G = (V, E,w),
where V' = {v1,v9,...,v,} is the set of nodes,
E C {{vi,v;} | vi,v; € V} is the set of edges,
and w : E — R assigns a non-negative weight
w({v;,vj}) to each edge. If G is unweighted,
w({vi,v;}) = 1 holds for all {v;,v;} € E.

Graph Partitioning. For G = (V, E, w), the
graph partitioning operation decomposes G into
k disjoint subgraphs S = {S1, Se, ..., Sk}, such
that the total weight of edges in £ whose inci-
dent nodes belong to different subsets is minimized.
Each subgraph S; = (V;, E;) satisfies:

k
Uvi=v, (1
=1

V;ﬁVj:@a VZ#]E[L]’C]? (2)

where [1,k] = {1,2,...,k} denotes the partition
index set, and E; = {{vp,v,} € E | vp,vq € Vi}.

Cut. The cut quantifies the total weight of edges
removed to form disjoint subgraphs S. For a sub-
graph S; and its complement S; = V' \ S;, the cut
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is defined as:

cut(S;, S;) = Z
(vp,vq)EE
vpE€S;,vgE€S;

w({vp, Uq})' 3)

The total edge cut cost for all partitions is:
k“ PR
cut(8S) = Z cut(S;, S;). 4)
i=1

Prompts. A prompt is a structured instruction
mechanism that programs LLMs by augmenting
raw input text with task-specific rules, contextual
guidelines, and output constraints. It defines the
interaction protocol between the user and the LLM,
explicitly specifying the form and content of de-
sired outputs while implicitly shaping the model’s
reasoning process.

4 Methodology

In this section, we provide a detailed implementa-
tion of the proposed three-stage pipeline, the archi-
tecture of which is illustrated in Figure 2.

4.1 Coarsening

To mitigate the input length limitations and "lost-
in-the-middle" challenges of LLMs in processing
large-scale graphs, we propose Algorithm 1.

The algorithm initializes the original node set
Vo = V and edge set & = E (Line 1). In the
Heavy-Edge Matching (HEM) stage, it iteratively
merges node pairs connected by the maximum-
weight edge {u*, v*} (Line 4), replacing them with
a supernode {u*, v*} and updating V; (Line 5). For
each supernode pair {p, ¢}, the aggregated edge
weights w({p, ¢}) are computed by summing orig-
inal edge weights between their constituent nodes,
and the edge set &; is dynamically updated (Lines
6-9). This process terminates when |V;| — m < 4,
where ¢ is a preset tolerance threshold.

If the coarsened graph size |V;| does not match
the target m, spectral clustering clusters supernodes
V, into m supernodes {C1, . .., Cp, } via the normal-
ized Laplacian matrix £ (Lines 14-15), and updates
V; and &; to reflect the coarsened graph (Lines
16-17). The final coarsened graph G = (V,E)
preserves key topological features through edge
weight accumulation. The overall time complex-
ity is O(T|E| + m|V4|?), dominated by HEM
iterations ( O(T'|E|) ) and spectral clustering (
O(m|V?)).

Algorithm 1 Hierarchical Graph Coarsening

Input: Graph G = (V, E, w), target size m, toler-
ance threshold § B o
Output: Coarsened graph G = (V, E, w)
1: Initialize Vy <+ V, & <« E,t + 0
2: // HEM:
3: while |V;| > m + d do
4: {u,v*} + argmaxyy y)ee, w({u, v})
5: Vier < WV \ {u*, 0*} U {{u*,v*}}
6 Eri1, W < MergeEdges(&;, {u*, v*}, w)
7 for each {p,q} € V; x V; do
8 w({p, q}) < 2L ueppeq w({u, v})

u,v}eEs
9: end for

10: t—t+1,T <+t

11: end while

12: // Spectral Clustering:

13: if [V¢| # m then

14: L <+ BuildLaplacian(V;, &, w)

15: {C1,...,Cpn} < SpectralCluster(L,m)
16: Vi< {C1,...,Cn}

17: &, w < MergeEdgesAll(&;, Vy, w)
18: end if

19: V<V, B <—~€t,N1E —w

20: return G = (V, E, w)

4.2 Reasoning

In order to execute graph partitioning tasks with
precision, it is imperative to furnish both local and
global information of the graph. This is done to fa-
cilitate LLMs in comprehending the graph’s struc-
tural information in its entirety. To facilitate the ex-
peditious transfer and deployment of diverse LLMs
across a range of graph datasets, we employ prompt
engineering techniques to enhance capabilities of
LLMs in inference.

Conventional prompts for graph data have his-
torically concentrated on acquiring local feature
information based on a limited number of nodes, a
consequence of the inherent characteristics of the
task. Consequently, we have devised novel prompts
to facilitate the comprehension of the graph’s struc-
tural characteristics at an aggregate level by models.
Specifically, two types of prompts have been de-
signed: firstly, 1-hop neighbor sequences, which
describe the basic structural information of the
coarse graph; and secondly, enhanced feature se-
quences, which describe both local and global
feature information of the graph. Through this
approach, we not only provide local information
about the graph, but also supplement it with global
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Figure 2: The overall structure of our proposed pipeline. Firstly, in the coarsening stage, we extract the key
features of the graph and construct a coarsened graph. Secondly, in the reasoning stage, the coarsened graph is
transformed into a textual serialization that can be understood by LLMs. Based on this serialization, we construct
prompts to induce the LLMs to perform reasoning about the partitioning. Finally, in the refining stage, we employ a
layer-by-layer mapping strategy to project the partitioning results back onto the original graph.

information, enabling large models to comprehen-
sively understand and process the graph structure.
The prompts are shown in Appendix A.

4.2.1 1-hop Neighborhood Sequences

In contrast to conventional methodologies that ex-
clusively encompass neighbor node information,
our neighbor sequence integrates both node infor-
mation and the corresponding edge weights. Specif-
ically, for a node v;, its neighbor sequence is com-
posed of pairs of 1-hop neighbors and their associ-
ated edge weights:

* Neighbor nodes: v;, v, ..., v,;

* Edge weights: w;;, w;, ..., w;.

This formulation provides a richer description of
the topological structure by incorporating both
node identities and edge weights, enabling the
model to better understand the graph’s overall struc-
tural characteristics.

4.2.2 Enhanced Feature Sequences

To further enrich the model’s understanding of the
graph, we introduce enhanced feature sequences.
These sequences include both local neighborhood
features and global centrality features. Below are
the formulas used to compute these features.

Global Centrality Features. We define four
node centrality metrics at network scale:

deg(v;)

Ca(vi) = =7

(&)

Cyvi) = Y Usé(vi), (6)
sFv;Ft st
Co(vy) = n——l (7
C 1 ZJ;&Z d(UZ‘, U]) 9
1
Ce(vi) = X Z w;;Ce(v5), (8)

jEN(’Ui)

where deg(v;) is node degree, o counts short-
est paths between nodes s and ¢, d(v;, vj) denotes
weighted shortest-path distance, and ) is the largest
adjacency eigenvalue. C; (degree centrality) mea-
sures direct connection density, C}, (betweenness
centrality) detects bridge nodes between commu-
nities, C, (closeness centrality) evaluates global
reachability efficiency, and C. (eigenvector central-
ity) captures influence in global structures.

Local Neighborhood Features. Five statistics
characterize local connectivity:

¢1(vi) = [N1(vs)], )

p2(vi) = [N2(vi) \ N1(v;)], (10)
da(v) = o 37 deg(vy) (a1

¢4(v;) = median(deg(v;)), (12)
s0) =\ D (dento) ~ 0 13

where Nj(v;) denotes k-hop neighbors, and
vj € Ni(v;). ¢1 (number of 1-hop neighbors)
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and ¢o (number of 2-hop neighbors) quantify di-
rect/indirect connectivity, ¢3-¢5 (mean/median/std
of neighbor degrees) reveal neighborhood quality
and consistency.

Normalization. All features undergo Z-score
normalization to avoid magnitude differences.

4.3 Refining

The refining phase maps coarse partitions back
to the original graph through index-guided recon-
struction. During coarsening (Section 4.1), each
layer [ maintains a mapping table M linking su-
pernodes to their subnodes at layer [ — 1. La-
bels propagate from the coarsest layer L through

Myp — - = M.
Example For a 3-layer hierarchy (L = 2):

» Layer 0: {v1,...,v6}
® Layer 1 Sil):{vl,vg}, Sél):{vg,m},
S5V ={os}, 54"={vs}
- Layer 2: 57 =(s{V, 8{}, s ={s{, s}

refining proceeds as:

e Layer 2 partition {Sg), 552)}
ELCN Layer 1: {SF), Sél)}, {Sél), Sfll)}

M
o ==L Layer 0: {vy,v2,v5}, {vs,v4, v}

This index-guided reconstruction preserves con-
straints with O(L) complexity. This hierarchical
mapping preserves balance and connectivity con-
straints through index-guided reconstruction, ensur-
ing bijective correspondence between coarse and
fine layers with O(L) complexity.

5 Experiments

5.1 Experimental Setup

This section provides a comprehensive overview of
the experimental configuration, including the mod-
els and baselines, parameter settings, datasets,
and evaluation metrics.

Models and Baselines. To explore whether
LLMs possess inherent capabilities for graph par-
titioning, we selected several baseline methods
for comparison. These include a simple base-
line, k-means (McQueen, 1967), as well as es-
tablished graph partitioning approaches: METIS
(Karypis and Kumar, 1998), a standard partitioner;
GAP (Dwivedi et al., 2023), a GNN-based algo-
rithm; and MinCutPool (Bianchi et al., 2020), an-
other GNN-based approach. We also evaluated

three LLMs directly on the original graph data:
Qwen2.5-Plus, Qwen2.5-Max, and DeepSeek-R1.
Prompts for these models were constructed from
the graph data using the strategy described in Sec-
tion 4.2. To further validate the effectiveness of
our proposed framework, we applied our full three-
stage pipeline (coarsening, reasoning, and refining)
to Qwen2.5-Max and DeepSeek-R1. The result-
ing variants are denoted as Qurs-Qwen and Ours-
DeepSeek, respectively, in subsequent evaluations.

Parameter Settings. The experiments were con-
ducted using the APIs provided by Qwen (Bai
et al., 2023) and DeepSeek (Team, 2024), with
their default parameter configurations. Specifically,
DeepSeek-R1 supports a context length of up to
64K tokens, with a maximum output length of 8K
tokens. Qwen2.5-Max has a maximum context
length of 32K tokens and a generation length of
8K tokens. Qwen2.5-Plus offers enhanced con-
textual processing capabilities, supporting up to
132K input tokens and 8.2K output tokens. These
parameter details help clarify the capabilities and
limitations of each model. We set m = 50 clusters
and 0 = 1 to speed up inference while maintaining
consistent supernode counts. We evaluate perfor-
mance across k = 2, 5, and 10 partitions.

Datasets. We conducted experiments on multiple
graph datasets to evaluate both the limitations of
direct LLM-based graph processing and the effec-
tiveness of our proposed framework. As primary
testbed, we used the Cora citation network (Sen
et al., 2008), focusing on its largest connected com-
ponent, which contains 2,485 nodes (papers) and
5,069 edges (citations). To systematically study the
impact of structural and length-related challenges,
specifically the ’lost-in-the-middle’ phenomenon
and input truncation, we constructed six Cora sub-
graph datasets using hierarchical random walk sam-
pling, ranging from 50 to 2,485 nodes.

To further assess the scalability and practical
utility of our method, we also experimented with
three larger real-world graphs that exceed the di-
rect processing capacity of vanilla LLMs such as
Qwen2.5-Plus, Qwen2.5-Max, and DeepSeek-R1:
Facebook (McAuley and Leskovec, 2012), a social
network with high average degree and dense con-
nectivity; Anaheim (McNally et al., 1999), a trans-
portation network with sparse connectivity and very
low clustering; and FB15k-237 (Toutanova and
Chen, 2015), a large-scale knowledge graph with
complex relational semantics. These graphs enable
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comparison against well-established partitioning
methods like METIS, GAP, and MinCutPool. Note
that Cora-full is included in both the subgraph
series and the extended benchmark set.

Table 1 provides structural statistics for all
datasets, including node count (|V]), edge count
(|E|), average degree (AD), and clustering coeffi-
cient (CC). For each Cora subgraph size, we report
the best result from five independent runs. All
datasets, along with sampling trajectories and en-
coding protocols, will be publicly released to en-
sure reproducibility.

Dataset V] |[E|] AD CC
Cora-50 50 8 340 0.384
Cora-100 100 164 327 0.205
Cora-200 200 333 332 0.232
Cora-500 500 893 3.57 0.220
Cora-1000 1,000 2,033 4.06 0.233
Cora-full 2,485 5,069 4.08 0.238
Facebook 4,039 88,234 21.85 0.606
Anaheim 416 914 220 0.001
FB15k-237 13,680 99,717 19.49 0.169

Table 1: Structural statistics of the experimental datasets.
Note: |V'| = Node count, | E| = Edge count, AD = Aver-
age Degree, CC = Clustering Coefficient.

Evaluation Metrics. We evaluate the quality of
graph partitioning using four widely adopted objec-
tives from Shah et al., 2024: k-MinCut, Normal-
ized Cut, Balanced Cut, and Sparsest Cut. These
metrics assess partitioning quality from distinct
perspectives, including (1) the number of inter-
partition edges, (2) connection balance, (3) sub-
graph size balance, and (4) node distribution spar-
sity. Lower values of these metrics indicate better
partitioning performance. Detailed formulations of
these objectives are provided in Appendix B.

5.2 Overall Results

We evaluate the graph partitioning performance
of three vanilla LLMs (Qwen2.5-Plus, Qwen2.5-
Max, DeepSeek-R1) and our proposed three-stage
pipeline (Ours-Qwen, Ours-DeepSeek) across all
datasets, which range from small-scale Cora sub-
graphs to large real-world graphs. The evaluation
follows a two-phase strategy: (1) Feasibility Phase:
We assess whether LLMs can perform graph parti-
tioning at all by comparing them against the simple
baseline k-means on small graphs; (2) Competitive-
ness Phase: We evaluate whether our framework
can scale effectively and compete with, or even sur-

pass, both classical graph partitioning algorithms
(such as METIS) and learning-based approaches
(including GAP and MinCutPool) on large real-
world graphs.
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Figure 3: Performance across Cora subgraphs (Lower
values indicate better performance).
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Figure 4: Comparison with baselines on large-scale
graphs across multiple partitioning objectives (Lower
values indicate better performance).

The results are visualized in two complemen-
tary figures, with detailed tabular data provided
in Appendix D: Figure 3 illustrates performance
trends across graphs of increasing scale (from Cora-
50 to Cora-full), highlighting the limitations of
direct LLM processing and the consistent gains
achieved by our pipeline, especially when com-
pared to k-means. Figure 4 compares our method
against classical baselines (METIS and k-means)
and learning-based approaches (GAP and MinCut-
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Pool) on large-scale graphs including Facebook,
Anaheim, and FB15k-237. The results reveal nu-
anced trade-offs across different optimization ob-
jectives and graph domains.

Based on these results, we derive the following
key observations:

(1) LLMs demonstrate viability for graph par-
titioning, but only in ultra-small-scale scenarios.
DeepSeek-R1 can perform graph partitioning tasks
on graphs with no more than 200 nodes, while
Qwen2.5-Plus and Qwen2.5-Max handle graphs
containing up to 100 nodes. Within these limits,
LLMs achieve partitioning quality comparable to
or better than k-means on minimal datasets. Case
studies in Appendix C.1 confirm LLMs’ inherent
structural reasoning capabilities, validating their
potential while also highlighting their severe scala-
bility constraints.

(2) Our three-stage pipeline significantly en-
hances LLM-based graph partitioning. As re-
vealed in Appendix C.2, by introducing a coars-
ening stage that filters redundant information and
preserves critical structural features, our frame-
work enables LLMs to process graphs far beyond
their native context limits. As shown in Figure 3,
Ours-Qwen and Ours-DeepSeek maintain stable,
high-quality partitioning even at the Cora-full scale
(2,485 nodes), where direct LLM input completely
fails. This structured refining mechanism is key
to unlocking LLMs’ potential for graph-structured
tasks.

(3) Our method not only scales effectively,
but also competes with and often surpasses es-
tablished graph partitioning algorithms. As
shown in Figure 4, our pipeline consistently outper-
forms learning-based baselines (GAP and MinCut-
Pool) across all datasets and metrics, demonstrat-
ing a superior ability to learn effective partitioning
strategies from data. Compared to the classical
METIS algorithm, our method achieves compet-
itive or superior performance on k-MinCut and
Sparsest Cut objectives. This is particularly evi-
dent on the Anaheim (transportation) and FB15k-
237 (knowledge graph) datasets, indicating that
our data-driven approach can discover high-quality
solutions that complement or even surpass hand-
crafted heuristics, especially for non-standard ob-
jectives.

(4) The framework exhibits strong cross-
domain generalization. Our method demonstrates
robust performance across social networks (Face-
book), infrastructure graphs (Anaheim), and seman-

tic knowledge graphs (FB15k-237). Each of these
graph types exhibits vastly different structural prop-
erties, including density, clustering, and relational
complexity. The consistent performance confirms
that our pipeline is not tailored to any specific graph
type. This generalization ability, combined with
its scalability, positions our method as a flexible,
LLM-powered alternative to traditional graph par-
titioning systems.

5.3 Evaluation of Coarsening Stage

The number of supernodes in the coarsened graph,
generated during the coarsening stage, impacts
graph partitioning performance. While more com-
plex coarsened graphs may contain richer feature
information beneficial for partitioning, the resulting
complex context could also hinder performance.
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Figure 5: Performance comparison of different supern-
ode counts (Lower values indicate better performance).

Figure 5 shows the performance of Our-
DeepSeek on the Cora-full dataset across varying
supernode counts. Metrics such as Normalized Cut,
Balanced Cut, and Sparsest Cut exhibit a clear U-
shaped trend, with the lowest points predominantly
occurring at and near the 50 supernodes. Similarly,
k-MinCut shows a U-shaped trend when excluding
extreme low supernode count settings (10, 15, 25),
also achieving optimal performance at 50 supern-
odes. The strong performance of k-MinCut at very
low supernode counts (e.g., 10 or 15) is attributed
to HEM and spectral clustering, which preserve
partition balance under high compression. At this
time, the decision-making effect of large models is
limited and close to random matching. However,
as coarsened nodes increase, k-MinCut’s perfor-
mance aligns with other metrics, further supporting
the choice of 50 as the optimal coarsening level.
As the task difficulty increases with higher target
partitions k, the U-shaped trends for all metrics
become sharper, emphasizing the need for care-
ful selection of coarsened node counts to balance
structural fidelity and input complexity.
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5.4 Evaluation of Reasoning Stage

To assess the role of structural and feature informa-
tion in reasoning stage, we evaluate three prompt
strategies on the k=10 graph partitioning task us-
ing the Cora-full dataset with Ours-DeepSeek as
the baseline: (1) onlylhop (1-hop neighborhood
only), (2) onlyEF (enhanced features only), and (3)
mix (combined input).
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Figure 6: Performance comparison of different prompt
methods across datasets (Lower values indicate better
performance).

Results in Figure 6 show that onlyEF underper-
forms significantly across all metrics, underscor-
ing the necessity of topological modeling. The
mix strategy outperforms onlylhop, particularly on
larger graphs, demonstrating improved robustness
and balance when semantic features supplement
structural inputs. These findings confirm that struc-
tural information dominates LLM-based graph rea-
soning, while node features serve as a valuable
auxiliary signal for refined partitioning. The case
analysis in Appendix C.3 demonstrates the differ-
ences in the reasoning processes brought about by
these three prompt strategies, further supporting
this conclusion.

5.5 Evaluation of Refining Stage

The size of graph determines the mapping accu-
racy of the division results in the refining stage. To
evaluate the effectiveness of the refining strategy,
we compare the performance improvement of Our-
DeepSeek against the baseline method DeepSeek-
R1 on graph datasets of varying sizes (Cora50,
Coral00, Cora200). As shown in Figure 7, the
improvement achieved by Our-DeepSeek becomes
more pronounced as the graph size increases, with
particularly notable gains observed under the Nor-
malized Cut and Balanced Cut metrics. Moreover,
as observed in the experiments in Section 5.2, when

the number of nodes exceeds 200, DeepSeek-R1
fails to proceed with the partitioning task, while
Our-DeepSeek remains stable and effective, demon-
strating superior scalability and practicality. In
conclusion, the proposed three-stage pipeline ef-
fectively enhances the model’s capability to handle
large-scale graphs through the coarsening and refin-
ing mechanisms, achieving consistent performance
gains across multiple partitioning criteria.
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Figure 7: Improvement ratio in different graph size
(Higher values indicate better performance).

6 Conclusion

This work investigates the application of LLMs
to graph partitioning and proposes a three-stage
pipeline comprising coarsening, reasoning, and
refining. We found that LLMs can effectively per-
form graph partitioning tasks on small-scale graph
data, and their performance is close to or even bet-
ter than traditional methods such as k-means. How-
ever, as the size of the graph increases, LLMs are
unable to complete the graph partitioning task. The
three-stage pipeline we designed enables LLMs
to scale up to larger scale graph data for partition-
ing tasks. Specifically, our method extracts key
structural information through graph coarsening
and integrates both structural and attribute features
into sequence-based representations. This enables
LLMs to indirectly perceive global graph topol-
ogy and perform partitioning on graphs of arbitrary
scale. The experimental results confirm the efficacy
of our approach in datasets of different sizes.

Limitations and Future Works

We acknowledge the limitations of this work.

(1) The proposed three-stage pipeline mitigates
the challenge of LLMs struggling to effectively per-
ceive the global topology of large-scale graph data
by constructing a coarsened graph. However, this
approach introduces additional feature loss during
the coarsening process, which limits the perfor-
mance ceiling of our method. Furthermore, the
number of supernodes in the coarsened graph sig-
nificantly impacts the quality of graph partitioning.
In future work, we aim to develop a more precise
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and robust method for graph data transformation
that minimizes information loss while preserving
the global structure of the original graph.

(2) During the refining stage, to avoid interfer-
ence from local optimization algorithms on the
LLMs’ partitioning results, we map the partitioning
results from the coarsened graph back to the origi-
nal graph. While this ensures that the LLMs’ inher-
ent partitioning logic is preserved, it also leads to
relatively coarse-grained results when scaled back
to the original graph’s dimensions. To address this
limitation, we plan to explore new task formula-
tions in future work, enabling LLMs to iteratively
refine their own partitioning results. This approach
aims to achieve finer-grained and more accurate
graph partitioning while maintaining the integrity
of the original graph structure.

(3) While our experimental validation demon-
strates effectiveness across graphs ranging from 50
to 13,680 nodes with approximately 50 supernodes,
the current framework exhibits inherent scalability
boundaries when addressing extreme-scale scenar-
ios requiring significantly higher partition counts
(e.g., 100-way partitioning) or processing graphs
exceeding 100K nodes. The single-level coars-
ening approach, while effective within our tested
range, may face computational and representational
challenges when directly scaled to these extreme
conditions. Future work will explore hierarchi-
cal decomposition strategies to extend the frame-
work’s applicability, including recursive partition-
ing approaches for high-partition-count tasks and
multilevel graph processing paradigms for hyper-
scale graphs. These extensions would maintain
the core advantages of our LLM-guided partition-
ing methodology while addressing the scalability
constraints identified in this work.

(4) This work adopts a zero-shot prompting
framework to fundamentally investigate the in-
trinsic capability of untrained LLMs in perceiv-
ing global graph structures—a core research ob-
jective that establishes the baseline reasoning ca-
pacity of foundation models for graph partitioning
tasks. While this approach delivers strong gener-
alizability across diverse graph topologies without
task-specific adaptation, we recognize that integrat-
ing task-aware strategies such as supervised fine-
tuning or chain-of-thought prompting holds signifi-
cant promise for further enhancing performance in
specialized application domains. Future research
will productively explore synergistic frameworks
that preserve the zero-shot foundation’s computa-

tional efficiency and broad applicability while in-
corporating targeted adaptations, thereby creating
a continuum of solutions spanning from general-
purpose reasoning to domain-optimized partition-
ing methodologies.
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A Prompt Design

Our prompt is illustrated in Figure 8. The graph
partitioning task to be performed is rigorously
specified in the Task Description. The Adjacency
List and Enhanced Node Features correspond to

4‘ Prompt \

Task Description

Given a graph with the following nodes and their connections, your task is to partition this graph into
<num_subgraphs> disjoint communities such that the sum of edge weights within communities is
maximized, while the sum of edge weights between communities is minimized.

Graph Details

Number of Nodes : <num_nodes>
Number of Edges : <num_edges>
Average Node Degree : <avg_degree>
Contains Isolated Nodes : <has_isolated>
Number of Self-loops : <num_self_loops>

<Node_n>: Neighbors=[(...)]

Enhanced Node Features
<Node_0>: <feature1>=<val <

<Node_n>: <featurel>=<value>, <feature2>=<value>, <featureN>=<value>

Output Format Instructions

Your response should be in the following format:

1. Provide a list of community assignments for each node. For example, if there are 5 nodes and you want
to divide them into 2 communities, this part of the answer would look like: [0, 0, 1, 1, 0].

2. Immediately following the list, for each node, provide the reason for its community assignment. Start a
new line for each node, and use the format ‘Node <node_id> is assigned to community <community_id>
because <reason>'. The <reason> should reference relevant features from the enhanced features section,
such as degree centrality, neighbor degrees, or edge weights. For example, ‘Node 3 is assigned to
community 1 because it has a high degree centrality and strong edge weights to other nodes in community
1.

Task:
Please provide a ing scheme as a list of for each node based on the

kprovmed graph details. /

/‘ Output

Partitioning list
s _id>, _id>, ..., /_id>]

Reasons
Node 0 is assigned to community 0 because <reason>
Node 1 is assigned to community 1 because <reason>.

Figure 8: Illustration of how 1-hop neighborhood se-
quences and enhanced feature sequences are incorpo-
rated into prompts to guide large model inference.

the 1-hop neighbor sequences constructed in Sec-
tion 4.2.1 and the enhanced feature sequences de-
veloped in Section 4.2.2, respectively. Through the
Output Format Instruction and Task components,
we provide both exemplars and textual descriptions
to guide the LLMs’ output generation. As demon-
strated in the Output, the LLMs successfully gener-
ate subgraph assignments for all nodes in the graph,
accompanied by node-wise justifications for these
assignments.

B Evaluation Metrics

We use four widely adopted partitioning objectives
from Shah et al., 2024 to evaluate the quality of
graph partitioning: k-MinCut, Normalized Cut,
Balanced Cut, and Sparsest Cut. These objectives
assess the quality of graph partitioning from differ-
ent perspectives, specifically focusing on (1) the
number of cuts, (2) the balance of connections, (3)
the balance of subgraph sizes, and (4) the sparsity
of node distribution.

k-MinCut evaluates the number of edges cut
between all subgraphs after partitioning.:

k- Cut(Si, S'Z)
> (v, Uq)7

(UPleI)EE

k
k-MinCut(8) = ) _ (14)
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where S = {5;} follows Equation 1, and cut is
from Equation 4. Smaller value indicates less edge
loss.

Normalized Cut assesses whether the connec-
tion strength within and between subgraphs is bal-
anced:

k _
cut Si7 Sz
NCllt(S) = E M’

1
where vol(.S;) = Z Z e(vp, Vg)-

Vp Si ’UqEV

15)

Lower value indicates more balanced connections
between partitions.
Balanced Cut focuses on the size of subgraphs:

k _
BalancedCut(S) = Z [CUt(S“SZ)

— vol(.S;) (16)
(I1Sil = [V|/k)?
L } |

Smaller value indicates more balanced cluster
sizes.

Sparsest Cut evaluates the condition of the sub-
graph with the lowest node density:

k
SparseCut(S) = Z ¢(Ss, 54,
i=1

cut (S, S)

where gb(S, S) = m

Smaller value indicates a less extreme distribution
of subgraphs.

C Case Studies

In this chapter, we employ case studies to investi-
gate three pivotal issues: (1) Do Large Language
Models (LLMs) possess the capability to perform
graph partitioning? (2) Why are LLMs unable to
directly execute graph partitioning tasks on large-
scale graph data? (3) What influence does the con-
struction of prompts based on varying information
have on the reasoning processes of LLMs?

C.1 Do LLMs have the ability to perform
graph partitioning?

As illustrated in Table 2, we provide several exam-

ples of successfully executed graph partitioning. It

is evident that LL.Ms take into account the graph

structure, node characteristics, and the allocation

of nodes to subgraphs, assigning nodes from the

input graph to the target set of nodes without over-
lap. These node sets, along with the connections
between nodes within each set, form subgraphs.

Furthermore, the thinking process of Deepseek-
R1 elucidates the typical logical process by which
LLMs perform graph partitioning tasks, as shown
in Table 3. Initially, key hub nodes (e.g., highly
connected core nodes) and local dense substruc-
tures are identified through global structure analy-
sis, and initial candidate communities are formed
based on node features (degree centrality, between-
ness centrality, eigenvector centrality) and connec-
tion patterns. Subsequently, a dynamic adjustment
mechanism fuses or segments these candidate com-
munities. This involves balancing the ownership of
bridging nodes (based on connection strength and
community closeness), adjusting subgraph sizes
(merging fragmented clusters or splitting overly
large clusters), and ultimately adapting the number
of communities to meet the target partitioning re-
quirements while optimizing modularity objectives.
Throughout the process, the optimization of max-
imizing intra-community connection weights and
minimizing cross-community connections guides
the decision-making, combining topological fea-
tures and numerical indicators for multi-level veri-
fication.

C.2  Why are LLMs unable to directly execute
graph partitioning tasks on large-scale
graph data?

Our analysis of the failure cases in Table 4 iden-
tifies two fundamental architectural constraints in
transformer-based LLMs: context truncation and
the lost-in-the-middle phenomenon. These limi-
tations systematically corrupt graph partitioning
outputs as graph size exceeds critical token thresh-
olds.

Context Truncation. LLMs exhibit catastrophic
failure modes when graph representations approach
their fixed context windows. In Case 1 (200-node
graph), Qwen2.5-Plus truncated community assign-
ments at node 143, leaving incomplete outputs like
"Node 143: Assigned to community" when out-
put tokens saturated the output context limit. Case
2 (200-node graph) shows similar truncation pat-
terns, detailed explanations terminate abruptly at
node 162 with incomplete community IDs. Case 4
(1,000-node graph) and Case 5 (1,000-node graph)
have incorrect output formats, which indicates that
they did not obtain the output examples and format
specifications at the end of the prompt.
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Lost-in-the-Middle Phenomenon. The trans-
former’s attention decay in long contexts induces
systematic mid-sequence errors. Case 3 (2,485-
node graph) exemplifies this: while claiming to
generate a complete assignment list, the model
abandoned detailed explanations after 10 nodes,
resorting to the generic claim: "This pattern
continues...". This is because it cannot obtain
the detailed information of subsequent nodes,
demonstrating soft degradation of mid-sequence
focus. Case 4 (1,000-node graph) demonstrates
this through invalid Community 5 and duplicated
node assignments (416/269), that the model forgets
the number of target partitions and the assigned
nodes. Case 5 (1,000-node graph) further confirms
this spatial bias with persistent node duplication
(72/763/237/613), forming artificial repeating pat-
terns indicative of attention mechanism collapse.

Overall, due to model architecture limitations,
LLMs encounter serious context truncation and the
"lost-in-the-middle" issue when performing graph
partitioning tasks on large-scale graphs, making it
difficult to complete the task.

C.3 What influence does the construction of
prompts based on varying information
have on the reasoning processes of LL.Ms?

As shown in Table 5, we utilize the depth process
of Deepseek-R1 to systematically compare the rea-
soning mechanisms and thinking differences of the
three community detection strategies introduced in
Section 5.4.

The onlylhop approach strictly adheres to graph
structural features, operating under the core hy-
pothesis that local connection density determines
community partitioning. During global structure
analysis (Step 1), this method identifies hub nodes
through adjacency matrices (e.g., Node 5 with 12
direct neighbors). The community formation pro-
cess (Step 2) exclusively follows nodal radiation
patterns, grouping Node 5 and its first-order neigh-
bors (Nodes 1, 6, 19, etc.) into Community O.
The dynamic adjustment phase (Step 3) optimizes
by minimizing cross-community edges, exempli-
fied by reassigning Node 33 from Community 1
to Community O to eliminate its cross-community
connection with Node 34.

In contrast, the onlyEF method relies entirely on
nodal feature space analysis. Using feature central-
ity metrics (e.g., Eigenvector Centrality) as primary
criteria, it establishes binary partitioning during ini-
tial community formation (Step 2) through feature

thresholds: nodes with EigenCent > 0 (e.g., Node
5: 3.5018) are assigned to Community 0O, others
to Community 1. This purely feature-driven strat-
egy results in significantly imbalanced community
sizes (14 vs. 36 nodes) and tolerates feature outliers
during dynamic adjustments (e.g., retaining Node
36 in Community O despite near-zero EigenCent
values).

The mix method implements multimodal rea-
soning through structure-feature synergy. During
global analysis (Step 1), it computes both struc-
tural centrality (degree=12 for Node 5) and fea-
ture significance (EigenCent=3.5018), establish-
ing dual validation criteria. The community for-
mation stage (Step 2) employs decision tree logic
requiring nodes to satisfy both structural connec-
tivity (> 2 intra-community links) and feature
similarity (EigenCent difference <0.5) constraints.
This hybrid strategy demonstrates superior perfor-
mance in ambiguous cases like Node 24 allocation:
despite weak structural connections to Commu-
nity 0’s Node 44, its feature dimension (Between-
ness=2.6780) justifies placement in Community 1.

D Main Result Table

The main experimental results are shown in Table 6
and Table 7.
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Method Case

Qwen2.5-Plus Community Assignments:
[0,0,...,0,0] (50 nodes total)
Detailed Reasoning:
Node 0 is assigned to community 0 because it has a low degree centrality and only connects
to node 21, which is in community 1.
Node 1 is assigned to community O because it connects to nodes 5, 20, and 36, with node 5
being central in community 0.

Node 48 is assigned to community 0 because it connects to nodes 15 and 30, forming a dense
subgraph within community 0.
Node 49 is assigned to community 0 because it connects to nodes 13 and 27, forming a dense
subgraph within community 0.

Qwen2.5-Max Community Assignments:
[0,0,...,1,1]1 (50 nodes total)

Detailed Reasoning:

Node 0 is assigned to community O because it has low degree centrality (-1.2247) and weak
connections (only one neighbor, Node 21). Placing it in community O minimizes disruption
to stronger clusters.

Node 1 is assigned to community O because its neighbors (Nodes 5, 20, and 36) are predomi-
nantly in community 0, and its closeness centrality (-0.5151) suggests it is better grouped
with nodes in community O.

Node 48 is assigned to community 1 because its closeness centrality (0.0978) and connection
to Node 15 support placement in community 1.
Node 49 is assigned to community 1 because its closeness centrality (-1.2114) and connection
to Node 13 support placement in community 1.

DeepSeek-R1 Community Assignments:
[0,0,...,1,0] (50 nodes total)

Detailed Reasoning:

Node 0 is assigned to community 0 because it connects only to Node 21, which has moderate
EigenCent and is grouped with other high-Betweenness nodes in community 1. However,
Node 0’s low DegreeCent (-1.2247) and isolation from hubs place it in community 0.
Node 1 is assigned to community 0 because it connects to Node 5 (a central hub with
EigenCent 3.5018) and shares neighbors with other community 0 nodes.

Node 48 is assigned to community 1 because it links to Node 15 and 30, but grouped with
community 1’s structure.
Node 49 is assigned to community O due to its connection to Node 27 in community 0.

Table 2: Example of k = 2 LLM-based graph partitioning results on Cora-50. We demonstrate the first/last two
nodes per method (intermediate nodes omitted with ’...”). Each model uses structural and centrality features for
community assignment to form subgraphs.
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Step

Description

Example

1. Global Struc-
ture Analysis

Identify hub nodes and local dense sub-
structures based on graph topology and
centrality metrics (degree, betweenness,
eigenvector).

Node 5 (hub): High degree (12 neighbors), high eigen-
vector centrality (3.5018) — core of community 0.
Node 26: High betweenness (0.8988) — potential bound-
ary node.

2. Initial Com-
munity Forma-
tion

Form initial candidate communities us-
ing connection patterns and node fea-
tures.

Community 0: Nodes around Node 5 (e.g., 1, 6, 19, 23).
Community 1: Nodes 2, 7, 26, 31, 32.
Community 2: Nodes 3, 12, 18, 33, 34.

3. Dynamic Ad-
justment Mech-
anism

Fuse or split candidate communities;
handle bridging nodes and optimize
modularity.

Node 24 connects to both community 1 (Node 26) and
community 4 (Node 44). Assigned to community 4 due
to stronger connection to 44.

Node 34 bridges community 2 and 0 — assigned to 2
for minimizing cross-community edges.

4. Final Assign-
ment

Assign remaining nodes and finalize par-
titioning with size balancing and modu-
larity maximization.

Node 0 connects to Node 21 (community 1), but low
centrality — assigned to community 1.

Node 48 connects to both community 3 and 4 — as-
signed to 4 based on majority.

5. Verification

Ensure all 50 nodes are assigned and
that the final partition satisfies the target
number of communities (5 in this case).

All nodes verified. Final assignment ensures no overlaps
and optimized intra-community density.

Table 3: Step-by-step graph partitioning reasoning by DeepSeek-R1. Taking the graph partitioning task of dividing

5 subgraphs on Cora-50 as an example.
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Case ID

Model & Task Description

Key Output Fragments (Direct Quotation)

Model: Qwen2.5-Plus

[...]

Case 1 Task: 200-node graph — 2 subgraphs Node 141: Assigned to community 1 because it has moderate
degree centrality (0.9624) and connects to nodes with higher
centrality.

Node 142: Assigned to community 0 because it has very low
degree centrality (-0.7665) and limited connections.
Node 143: Assigned to community
[Node assignments truncated]
Model: Qwen2.5-Max [...]

Case 2 Task: 200-node subgraph — 10 subgraphs  Nodes 160-169:

Node 160 is assigned to community 9 because it connects
to nodes 56, 157, and 171, which exhibit high eigenvector
centrality.
Node 161 is assigned to community 0 because it connects to
nodes 114 and 159, which form a cohesive subgroup.
Node 162 is assigned to community
[Node assignments truncated]

Model: Qwen2.5-Max [0,0,1,1,0, 1,0, 0, 1, 1, ...] (full list of 2485 assignments)

Case 3 Task: 2,485-node graph — 2 subgraphs [...]
Now, let’s provide detailed reasoning for the first 10 nodes:
Node 0: [...]
Node 1: [...]
[...]
Node 9: [...]
This pattern continues for all 2485 nodes, with each
assignment based on the node’s connectivity and the
strength of its links within each potential community.

Model: DeepSeek-R1 Communities:

Cased Task: 1,000-node graph — 5 subgraphs [...]
Community 5: [4, 16, 261, 416, 416]
Community 4: [3, 257, 269, 14, 209, 104, 269, 349]
[Community assignments follow repeating patterns]

Case 5 Model: DeepSeek-R1 Community 1:

Task: 1,000-node graph — 2 subgraphs

[..]172, 763, 237,613, 72, 763, 237, 613, 72, 763, 237, 613,
72,763, 237, 613, 72, 763, 237, 613, 72, 763, 237, 613, 72,
763, 237,613, ...

[Repeating sequence indicates lost context]

Table 4: Failure cases of LLM-based graph partitioning results: Italicized text represents verbatim model responses,
[...] indicates non-critical content abridged by authors. Context Truncation (Cases 1-2: incomplete community
assignments, Cases 4-5: incorrect output format), Lost-in-the-Middle (Cases 3: forgotten node information, Cases
4-5: repeated element artifacts)
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Step

onlylhop

onlyEF

mix

1. Global Struc-
ture Analysis

Focuses on adjacency relation-
ships to identify hubs and local
dense subgraphs.

Node 5 is identified as a central
hub with many neighbors (e.g.,
Nodes 1,6,19,23).

Relies on node features (e.g.,
Eigenvector Centrality) to detect
influential nodes.

Node 5 has the highest Eigenvec-
tor Centrality (3.5018), indicat-
ing strong influence.

Combines both adjacency struc-
ture and node features for a com-
prehensive view.

Node 5 is recognized as a key
hub due to both high degree and
Eigenvector Centrality.

2. Initial Com-
munity Forma-
tion

Forms communities based on
direct and indirect connections
around hubs.

Community 0: Nodes around
Node 5 (e.g., 1,6,19,23,25).
Community 1: Remaining nodes
(e.g., 2,7,17,26).

Groups nodes by feature similar-
ity, especially Eigenvector Cen-
trality thresholds.

Community 0: Nodes with posi-
tive Eigenvector Centrality (e.g.,
1,5,6,19,23,25,34).

Community 1: Nodes with low
or negative Eigenvector Central-

ity.

Builds initial communities us-
ing both connection patterns and
feature profiles.

Community 0: Dense clus-
ter around Node 5 including
its neighbors and high-feature
nodes.

Community 1: Other parts of the
graph not connected to Node 5’s
cluster.

3. Dynamic Ad-
justment Mech-
anism

Adjusts community boundaries
to minimize cross-community
edges.

Node 33 is assigned to Commu-
nity 0 to reduce inter-community
edges.

Node 34 is kept in Community 0
due to its strong ties to Node 5.

Balances community sizes using
feature thresholds and clustering
logic.

Node 36 is included in Commu-
nity 0 despite near-zero Eigen-
vector Centrality.

High Betweenness nodes like
Node 3 are placed in Commu-
nity 1 due to low EigenCent.

Refines partitions by balancing
connectivity and feature align-
ment.

Node 33 is evaluated based on
both its connection to 34 and its
link to Node 3.

Node 24 is assigned to Commu-
nity 1 based on its weaker links
to Community 0.

4. Final Assign-
ment

Finalizes partitions to ensure
maximum internal edge density.

Community 0: 18 nodes; Com-
munity 1: 32 nodes.

Only one inter-community edge
between Nodes 3 and 33.

Ensures feature consistency
within each community.

Community 0: 14 nodes;, Com-
munity 1: 36 nodes.
Communities differ significantly
in size but maintain feature sep-
aration.

Balances internal edge count
and feature coherence across
communities.

Community 0: 17 nodes;, Com-
munity 1: 33 nodes.
Inter-community edge mini-
mized to one (between Nodes 3
and 33).

5. Verification

Validates partition by count-
ing intra- and inter-community
edges.

All nodes assigned; cross-edge
minimized.

Confirms feature-based consis-
tency and logical groupings.

Feature distribution aligns with
community definitions.

Ensures no overlaps and opti-
mizes modularity and internal
density.

Final assignment shows bal-
anced modularity and clear
structural boundaries.

Table 5: Comparison of reasoning strategies across only lhop, onlyEF, and mix approaches for graph partitioning.
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k=2 k=5 k=10
MinC Norm  Bal Spar MinC Norm  Bal Spar  MinC Norm  Bal Spar

k-means 0.287 1.021 1.289 5.670 0.542 4.101 4371 14.717 0.723 9226 9.421 32.106
Qwen2.5-Max  0.094 0222 0.249 0941 0.141 1592 1.642 2.833 0282 5982 6.061 21.984
Qwen2.5-Plus  0.282 0.567 0.568 2.000 0.365 2.745 2.870 6.353 0.577 7.894 8.001 22.816

Dataset Method

Cora-50 DeepSeek-R1 0.043 0.088 0.094 0.295 0.094 0.594 0.627 1.689 0.282 3.204 3214 9.844
Ours-Qwen 0.094 0.198 0229 0.727 0.082 1361 1413 2.102 0365 5398 5444 14.487
Ours-DeepSeek  0.038  0.079 0.092 0.269 0.082 0.565 0.598 1.571 0.200 2.668 2.685 7.278
k-means 0.286 1.012 1.229 5.236 0.618 4.077 4275 13962 0.780 9.163 9.308 31.008
Qwen2.5-Max  0.335 0.671 0.676 2.444 0.439 2380 2428 7.437 0909 9.088 9.088 29.800

Cora-100 Qwen2.5-Plus 0.378 0.770 0.775 2.756 0.823 4.131 4.131 13.481 0902 9.026 9.026 29.600

ora- DeepSeek-R1 0.087 0.205 0.360 1.056 0.177 0955 0.988 2978 0305 4.717 4.787 14.793
Ours-Qwen 0.238 0.610 0.675 2438 0250 1.894 2.155 5918 0277 5686 5.949 13.257
Ours-DeepSeek  0.067 0.175 0.247 0.710 0.116 0.520 0.648 1.650 0.207 3.402 3.427 9.479
k-means 0.238 1.024 1.244 5489 0.664 4.048 4201 14.139 0.813 9.109 9.213 30.316
Qwen2.5-Max — — — — — — — — — — — —

Cora-200 Qwen2.5-Plus — — — — — — — — — — — —

ora- DeepSeek-R1 0.087 0.248 0.459 1.543 0258 1366 1.372 4325 0285 2922 2951 9.624
Ours-Qwen 0.066 0.514 0.826 2.095 0.060 1.840 2442 4880 0.156 3.664 3917 9310
Ours-DeepSeek  0.066 0.152  0.221 0.698 0.120 0.606 0.671 1.861 0.150 1.789 1.944 5.407
k-means 0.230 0983 1.246 5.594 0.612 3988 4.172 14.335 0.789 8.995 09.104 32.200
Qwen2.5-Max — — — — — — — — — — — —
Qwen2.5-Plus — — — — — — — — — — — —

Cora-500 DeepSeek-R1 — — — — — — — — — — — —
Ours-Qwen 0.100 0.622 0.853 2.225 0.100 1.946 2460 4.690 0.092 5931 6.560 12.448
Ours-DeepSeek  0.021  0.264 0.627 1.027 0.021 1.070 1.729 2.697 0.100 3.300 3.912 7.710
k-means 0.238 0993 1.188 5.798 0.636 3.959 4.108 15.786 0.792 8978 9.074 34.157
Qwen2.5-Max — — — — — — — — — — — —
Qwen2.5-Plus — — — — — — — — — — — —

Cora-1000 DeepSeek-R1 — — — — — — — — — — — —
Ours-Qwen 0.017 1.009 1471 3.684 0.083 2502 3.041 6.116 0.127 5713 6258 12.958
Ours-DeepSeek  0.081 0.392 0.616 2.000 0.088 1.870 2.370 5.014 0.081 3.067 3.671 8.573
k-means 0.169 0.808 1.083 5.983 0476 3.199 3.355 13.746 0.626 7.538 7.624 30.612
Qwen2.5-Max — — — — — — — — — — — —
Qwen2.5-Plus — — — — — — — — — — — —

Cora-full DeepSeek-R1 — — — — — — — — — — — —
Ours-Qwen 0.013 0.795 1.251 2393 0.110 2.467 2943 6.005 0.095 4.849 5462 10.630
Ours-DeepSeek  0.034 0.474 0.831 1.907 0.035 2563 2.147 4.628 0.036 3.784 4.541 8.404

Table 6: Main experimental results on Cora subgraphs. The symbol “—” indicates that the model is unable to

perform the corresponding task. Lower values indicate better performance. The best results are highlighted in bold.
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k=2 k=5 k=10

Dataset Method
MinC Norm  Bal Spar MinC Norm  Bal Spar MinC Norm  Bal Spar
k-means 0.169 0.808 1.083 5.983 0476 3.199 3.355 13746  0.626 7.538 7.624  30.612
Metis 0.046 0.092 0.092  0.372 0.078 0.389 0.389 1.586 0.124 1.233 1.233  5.060
Cora-full GAP 0.042  0.089 0.121 0.457 0.083 1.589 1.605 6.294 0.143  7.334 7.634  24.388
MinCutPool 0.098 0.197 0.199  0.862 0.109 0.969 1.019 2918 0.100 6.350 6.495  28.226
Ours-Qwen 0.013 0.795 1.251 2.393 0.110 2.467 2.943 6.005 0.095 4.849 5462 10.630
Ours-DeepSeek  0.034 0.474 0.831 1.907 0.035 2563 2.147  4.628 0.036 3.784 4.541 8.404
k-means 0.148 0.959 1.257 28400 0.562 3.800 3.952 68925 0.746 8373 8434 147.889
Metis 0.037 0.077 0.077 1.600  0.078 0.320 0.320  6.819 0.099 1210 1.210 21.668
Facebook GAP 0.050 0.107 0.207 3.923 0.110 1.509 1.620 15526  0.045 7.102 7.407  93.549

MinCutPool 0.050 0.118 0.124 2.432 0.055 0.368 0.410 6.740 0.058 2912 3.039 49.794
Ours-Qwen 0.018 0.585 0.832 3.150 0.105 2.556 3.051 6.302 0.092 5.740 6.350 13.526
Ours-DeepSeek  0.028  0.423  0.752 1.957 0.048 1.900 2.257 4.750 0.036 3.852 4.600  8.617

k-means 0.042 0.083 0.086 0.197 0.085 0431 0.443 0.999 0.141 1.386 1.389 3.102
Metis 0.077 0.153 0.153 0.337 0216 1.111 1.111 2.368 0242 2518 2.518 5318
Anaheim GAP 0.087 1.002 1.406 3.756 0.607 4.002 4.187 8.520 0.619 9.003 9.277 17.951
MinCutPool 0.032  0.634 0.635 1.467 0.229 4.007 4.787 6.500 0256 8917 9.487  18.465
Ours-Qwen 0.022 0.325 0.525 0.815 0.045 1.254 1.645 2.847 0.068 2952 3.250 5.535
Ours-DeepSeek  0.018  0.257 0.412 0.723 0.032  0.942 1.253 2.179 0.045 2.100 2.600 4.216
k-means 0.140 1.119 1.617 2671357 0397 4.261 5.033 2333.159 0.771 8.099 8.446 2327.503
Metis 0.132  0.293 0.293 5.137 03890 2459 2459 45495 0491 4852 4853 95.330
FBI5k 237 GAP 0.000 1.000 1.500 18.000  0.001 3.951 4.742 31345 0.001 8.001 8900 162.167

MinCutPool 0.031 0.868 1260 10.557 0.045 3.932 4596 57.999 0.221 8.713 9369 135367
Ours-Qwen 0.000 0.850 1.257 12345 0.000 3.257 4.102 35.018 0.001 6.500 7.889 119.946
Ours-DeepSeek  0.000 0.653  0.907 8.524 0.000 2.342 3286 27.693 0.001 5252 6.345 90.329

Table 7: Main experimental results across different graph partitioning methods. Lower values indicate better
performance. The best results are highlighted in bold.
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